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Abstract

We prove that &-ary 2-cubeQ% with 3 faulty edges but where every vertex
is incident with at leas? healthy edges is bipancyclic, & > 3, andk-pancyclic,
if & > 5is odd (these results are optimal). We go on to show that vithen4 is
even andh > 3, any k-ary n-cube Q¥ with at mostdn — 5 faulty edges so that
every vertex is incident with at lea8thealthy edges is bipancyclic, and that this
result is optimal.
Keywords Interconnection networksk-ary n-cubes. Fault-tolerance. Bipan-
cyclicity.

1 Introduction

Low-dimensional tori are regularly used as interconnectietworks in distributed-
memory parallel computers. For example, the Alpha 213&eth&P GS1280 ma-
chine [10], the iWarp [6] and the Cray X1E vector computeréhavwo-dimensional
torus as their interconnection networks, while the Cray B8Id T3E [22] have three-
dimensional tori as theirs. Furthermore, two-dimensionatsh and torus topologies
are popular choices for networks-on-chips [28]. This hdpdtkto motivate a consid-
erable amount of work on the structural aspects of (arlyitiénensional) tori, and in
particular their uniform variants-ary n-cubes, that are relevant to parallel computing
as well as being of interest in purely graph-theoretic terfagr example, thé-ary
n-cubeQ” has the following basic properties: it is vertex- and edg@setric [1]; it

is Hamiltonian [3, 7]; it has diameterng [3, 7]; it has a recursive decomposition;



and it contains embeddings of many important interconoeatietworks such as cy-
cles (of certain lengths) [1], meshes (of certain dimersi¢8] and even hypercubes
(of certain dimensions) [7]. Moreover, it has admirablegandies in relation to routing,

broadcasting and communication in general (see, for exaritpl7, 11]).

Of particular relevance to us are some recent results coimgepaths and cycles
embedded withirk-ary n-cubes. Paths and cycles are fundamental in parallel com-
puting; for not only is there a multitude of algorithms sieeilly designed for linear
arrays of processors and cycles of processors but pathyealed appear as data struc-
tures in many more algorithms for parallel machines whosegssors are intercon-
nected in a wide variety of topologies. We shall be concemiéd questions relating
to Hamiltonicity, pancyclicity, bipancyclicity and eddmpancyclicity (these concepts
are defined in the next section). The existence of these giepé an interconnec-
tion network enables a much higher degree of flexibility wiggard to the simulation
of linear arrays or cycles of processors. The results of §d]of significance to us,
where earlier results due to Hsieh, Lin and Huang [16] and amdY An, Pan, Wang
and Qu [27] were extended and the situation as regards theyganity and bipan-
cyclicity of Q* was settled. Amongst other results, it was shown in [24] @atis
edge-bipancyclic, when > 2 andk > 3, andk-pancyclic, whem > 2 andk > 3is
odd.

As more and more processors are incorporated into paraiehimes, faults be-
come more common, be it faults in the processors or on theemioms between pro-
cessors. Of course, the temporary unavailability of a cotioie between two proces-
sors due to, for example, high traffic can also be regardedadta Given the signif-
icant cost of parallel machines, we would prefer to be abtelerate (small numbers
of) faults and still be able to use our parallel machine. Bthdtatic’ structural results
such as those mentioned above are important, we are irgdriaste in the tolerance
of k-ary n-cubes when a (limited) number of edges are faulty (thatréespassing). In
particular, we are interested in how many faulty edgésaay n-cubeQ* can tolerate
yet still remain bipancyclic ané-pancyclic.

As thek-ary n-cubeQF has degre@n, an immediate upper bound on the number
of faulty edges® can tolerate and still remain bipancyclic bpancyclic is clearly
2n — 2 (for we can make the edges from a verte2to— 1 of its neighbours faulty and
there clearly can be no cycle through the vertex). Consedtyemany studies assume
the conditional fault assumption on the distribution of thelts so that no matter how
many faulty edges there are, it is always the case that evatgwis incident with
at least2 healthy edges (the legitimacy of this conditional faultussption is given
credence as there is a very small probability that a configuraf faulty edges will



be such as to make a vertex of one of our networks have degsdhan2). For
example, under this conditional fault assumption: it wasvenin [2] thatQ* with
4n — 5 faulty edges still has a Hamiltonian cycle (and that thisiltds optimal); it was
shown in [26] that am-dimensional alternating group graph with — 13 faulty edges
still has a Hamiltonian cycle (and that this result is opfimiawas shown in [19] that
ann-dimensional crossed cube with — 5 faulty edges still has a Hamiltonian cycle
(and that this result is optimal); and in [15] a more geneoaisideration of matching
composition networks was made with regard to whether thesaie Hamiltonian under
a limited number of faults. Other Hamiltonicity results @ndur conditional fault
assumption are available in, for example, [8, 13, 14, 17,268, As far as we are
aware, [25] is the only paper to have considered pancyglisgues in a family of
interconnection networks in the presence of faulty edgeswuarder our conditional
fault assumption: in [25] it was proven that, under our ctindal fault assumption, an
n-dimensional hypercube withn — 5 faulty edges remains bipancyclic (and that this
result is optimal).

In this paper we resolve the situation as regards panctychicid bipancyclicity in
k-ary 2-cubes under our conditional fault assumption. In paréiculve prove that a
k-ary 2-cube@% with 3 faulty edges but where every vertex is incident with at |@ast
healthy edges is bipancyclic &f> 3, andk-pancyclic, ifk > 5 is odd (these results are
optimal). We go on to show that whén> 4 is even anch > 3, anyk-ary n-cubeQ®
with at mostdn — 5 faulty edges so that every vertex is incident with at |edsealthy
edges is bipancyclic, and that this result is optimal. Thmopof this latter result is
long and complicated and uses a variety of techniques coimgethe combinatorial
manipulation ofk-ary n-cubes (in the presence of faults) that are interestingeéir th
own right. In the next section we detail the basic definitidevant to this paper, and
in Section 3 we prove our results for theary 2-cube. In Section 4 we prove our main
result concerning the bipancyclicity 6j* whenk is even. We give our conclusions
and directions for further research in Section 5.

2 Basic definitions

Fork > 3 andn > 1, ak-ary n-cubeQ® has a vertex set of0, 1,...,k — 1}" and
there is an edgf(un,, un—1,-..,u1), (Un, Vn_1,...,v1)) if, @and only if, ju; —v;| =1
(modk), for somei € {1,2,...,n}, withu; = v;, forallj € {1,2,...,n}\{i}; such
an edge is termed as lying dimensiory (throughout, arithmetic on the components
of vertices is moduld). A k; x ks, torushas vertex sef(u,v) : v € {0,1,...,k —



1},v € {0,1,...,ke — 1}} and there is an edg€u;, uz), (v1,v2)) if, and only if,

|ui —v;| = 1 (modk;), for somei € {1,2}, with u; = v;, for j # i. We sometimes
refer to edges of the forf(i, j), (¢, j + 1)) (resp.((¢, ), (i + 1, 5))) in ak-ary 2-cube
or ak; x ko torus as lying omow i (resp. incolumny).

Leti € {1,2,...,n}. We say that w@artition Q% over dimension if we consider
QF to be the disjoint union of copie9g, Q1, . .., Qr_1 of QF_, as follows: for each
j €{0,1,...,k—1},Q; is the subgraph ap* induced by the vertices 6§* whoseith
componentig (we suppress, n andk in the notation as they are always understood).
Clearly, all edges not in som@; lie in dimensioni. Suppose that we have partitioned
QF over dimensioni asQq, Q1, . .., Qr_1 andz = (z,,, Ty _1, ..., 1) IS SOMe vertex
of someQ;. The vertex(z,,...,Ziy1,m, Ti—1,...,21) Of Qn, is denoted as,, (z)
(and sar = n;(x)).

We considek-ary n-cubes withfaulty edgegor simplyfaults); that is, where cer-
tain edges are missing. Thusfaalty k-ary n-cube is really just a copy ap* where
some edges, the faulty edges, are missing, and where wdaefer edges that remain
as thehealthyedges. Even though our faulty edges are regarded as miskjeg,eve
still say, for example, that a vertexs incident with some faulty edgewhen the edge
e was originally incident withv before it was removed. On occasion, we want to em-
phasise that all edges of some sub-graph are healthy and saywer example, that a
cycle or a path is healthy.

A conditional fault assumptiois an assumption relating to the faults (in our case,
faulty edges) and their distribution within an interconti@t network (which for us is
always ak-aryn-cube). The conditional fault assumption we make is thatltbibu-
tion of faults is such that no vertex in any faultyary n-cube is ever incident with less
than2 healthy edges (that is, has degree less thamen we regard our faulty-ary
n-cube as being &-ary n-cube with some edges missing).

A graph onn vertices is;pancyclidf it contains a cycle of every length frofup to
n; edge-pancyclid there is cycle of every length froBup ton containing any given
edge; andn-pancyclicif it contains a cycle of every length from up ton. Of course,
no bipartite graph can be pancyclic (as there can be no odthiexcles); consequently,
a notion of pancyclicity has been devised for bipartite ggapA bipartite graph on
vertices ishipancyclicif there is an even length cycle of every even length frbop
to n, andedge-bipancyclidf there is an even length cycle of every even length from
4 up ton containing any given edge. Even though the notions of bipaiwity and
edge-bipancyclicity have been devised to primarily apphbipartite graphs, it still
makes sense to apply them to non-bipartite graphs too. Webshbuilding cycles of
various lengths in faulty-ary n-cubes. We say that a cyal¢ of lengthc, say, can be



progressively shortened a cycle of length’, say, if starting fromC' we can iteratively
apply the following construction to obtain cycles of all ¢ghsc, ¢ — 2, ¢ — 4, down
to ¢: in the current cycl€’, replace a sub-patfu, v, w, y) of length3 with the edge
(u, y) to obtain a cycle of length less than the length @’ (note that we also describe
a cycle in a graph as a sequence of vertices so that conseeatiices in the sequence
are joined by an edge in the cycle, as well as there being am fedign the last vertex
of the sequence to the first).

If 7 is a property of graphs then a graphis said to bem-edge-fault-tolerantr
if G still has propertyr even after the removal of at most edges fromG. Thus,
for example, to say that/aary n-cubeQ?¥ is (4n — 5)-edge-fault-tolerant bipancyclic
under the conditional fault assumption that no vertex iglieist with less thag healthy
edges means that no matter whigh — 5 edges we remove frol@*, so long as no
vertex in the resulting graph has degree less thélmere is a cycle of every even length
m whered < m < k™.

A graphdG is vertex-symmetriif given any two distinct verticeg andv of G, there
is an automorphism af mappingu to v. Similarly, a graph i€dge-symmetri given
two distinct edgeg and f of G (possibly incident), there is an automorphism(of
mappinge to f. We shall use the fact th&” is edge-symmetric [2] throughout. The
k-ary 2-cube@% has a number of automorphisms. For example, the ntags —
(i+1,5), (i,7) — (3,7 +1), (i,5) — (k—1—1i,5), and(i,j) — (i,k — 1 — j) are
all automorphisms of)%.

3 The case whem = 2
We begin by dealing with the-ary 2-cubeQ% in which there are faulty edges.

Lemma 1 Consider ak-ary 2-cubeQ¥, for some eveit > 6, in which there are at
most3 faulty edges but where every vertex is incident with at |@dsealthy edges.
There is a cycle of lengthfor every ever such thatt < [ < k2.

Proof There exists some dimension containing at |@astulty edges, which w.l.o.g.
we assume is dimensidh that is, these faulty edges are column edges. 8% is
edge-symmetric [1], w.l.0.g. we may assume that the édg®), (k — 1,0)) is faulty.

Case 1 all faulty edges lie in dimensio®; that is, all faults are column faults.

We remark that throughout the proof of this case, we neveredgges of the form
((k—1,1),(0,4)) and so we may simply ignore the faulty edde, 0), (k — 1,0)) and



assume that we are working in tthex k& grid with wrap-around edges of the form
((i,k —1),(,0)), fori = 0,1,...,k — 1. Consider the Hamiltonian cycle 6}5 as
pictured in Fig. 14) (although we have only drawn a Hamiltonian cycle@]j, the
analogous cycle )%, for any everk > 6, should be clear). This cycle, which we
call the E-cycle rooted g0, 0), can be translated (horizontally) by simply increasing
the first component of every vertex 2y and yet another cycle can be obtained by
increasing the first component of every vertexdbyote that the Hamiltonian cycles
S0 obtained are edge-disjoint when we consider only colutge® (as: > 6). Thus,

at least one of these Hamiltonian cycles contains only healiges; call iC. W.l.0.g.

we may assume that is the E-cycle rooted g0, 0).

faulty edges B shortened by 4

==, (0,1)(0,2) (0,1)(0,2)

lengthened by 2
(0

(a) (b)

Figure 1. An E-cycle and progressive shortenin@ih

If our copy of Q% had no faulty edges then we could clearly progressivelytehor
C by at each step removingedges and including new edge, so that we obtain a
healthy cycle of every even lengttfor which4 < [ < k2. However, in the process
of progressively shortening our cycle, we might try to ird#ua new edge that is actu-
ally faulty (note that we encounter at m@sfaulty edges in our process of progressive
shortening). We deal with this situation as follows. Ourqass of progressive short-
ening begins by introducing column edges; so, with refezdad-ig. 16), we shorten
our cycle ‘from the right-hand side’ (note that there érg 3 ways in which we could
do this). We also ensure that we shorten the cycle in this waywich as we can be-
fore having to deal with attempting to introduce a faulty edf we try to introduce a
faulty edge then we simply ‘jump’ that particular iteratiofour process of progressive
shortening and instead of shortening the cyclebwe shorten the cycle by, unless
the next edge to be introduced is faulty too, when we shohtercycle by6. Note that
because of how we have chosen to progressively shorten oler ey until this point,
we can simultaneously lengthen our cyclegr 4 (in a different part of the cycle) to
ensure that we obtain cycles of all the required lengths.prbeess can be visualized
in Fig. 1 where we have encountered a faulty edge in Fig). 44d ‘jumped’ over it in



Fig. 1(c) as well as lengthened our cycle Bythere are subtleties when at ledsbf
our column faults is of the forni(z, 1), (¢ + 1, 1)) but such configurations can easily
be coped with).

Case 2 exactly2 faulty edges lie in dimensioR; that is, there are exactly column
faults.

Case 2.1 The3 faults are such that they do not form a path of lergy#tarting with a
column edge, followed by a row edge, and ending with a coludgee

W.l.o.g. we may assume th@b, 0), (k—1,0)) is a faulty edge and that the row fault is
not incident with any column fault different frof0, 0), (k — 1,0)). As in Case 1, we
never use edges of the forftk — 1, ), (0,4)) and so we may simply ignore the faulty
edge((0,0), (k — 1,0)) and assume that we are working in the k grid with wrap-
around edges of the for(fi, k — 1), (¢,0)), fori = 0,1, ...,k — 1. By translating the
E-cycle rooted af0, 0) (as illustrated in Fig. H)) by increasing the first component
of every vertex byl, 2, and so on, w.l.o.g. we may assume that: we have a (not
necessarily healthy) Hamiltonian cyofe in Q% that is the E-cycle rooted &0, 0);

C contains no faulty column edge; axddcontains a faulty row edge and this faulty
edgeisone of ((i,k — 4), (i, k — 3)), ((i, k — 3), (4, k — 2)), ((i, k — 2), (i, k — 1))},

for somei € {0,1,...,k — 1} (note that ifC' contains no faulty row edge then we
can progressively shorteri, as in Case 1, so as to obtain healthy cycles of every even
length! wherel is such thatt < [ < k2, jumping’ over faults as in Case 1).

Depending upon where the faulty row edge lies, we now amendyaile C anal-
ogously to the illustration in Fig. 2] where: we remove the faulty row edge and its
‘opposite’ (healthy) edge on the same ‘branch’ of the E-eyuale include the column
edges which join the two edges just removed; and we ‘jointdsailting disconnected
path to the main cycle by removing a column edge and inclutfilmgow edges. What
results is a healthy Hamiltonian cydiéthat can be progressively shortened just as we
did in Casel, above (and ‘jumping’ over the faulty column edge, shoultetencoun-
tered), so that we obtain a cycle of lengttor every everi for which4 < [ < k2.

Case 2.2the3 faults form a path in the form of a column edge followed by a suige
followed by a column edge.

W.l.o.g. the faults aré(k — 1, 0), (0,0)), ((0,0), (0,1)) and((0,1), (k — 1,1)) or the
faults are((k — 1,0),(0,0)), ((0,0), (0,1)) and((0,1), (1,1)). In the first case, we
have a healthy E-cycle rooted @ 1) and so the result clearly follows (by proceeding
asin Case 1). In the second case, the Hamiltonian cycle astelén Fig. 2p) can be
progressively shortened so that we obtain a healthy cyclengith/ for every even

for which 2k < [ < k? (although we have only depicted this Hamiltonian cycl&#



the analogous cycle i@%, for any everk > 6, should be clear). It is trivial to obtain
healthy cycles of even length frodnup to2k — 2. The result follows. O

amended cycle

01)(02) faulty edges

(@)

Figure 2. Amending the E-cycle i35 and a Hamiltonian cycle.

Lemma 2 Consider ad-ary 2-cube@3 in which there are at most faulty edges but
where every vertex is incident with at le@dtealthy edges. There is a cycle of length
for every ever such thatd <1 < 16.

Proof There exists some dimension containing at I€afstulty edges, which w.l.o.g.
we assume is dimensian

Case 1all faulty edges are column edges.

Fori =0,1,2,3, letC; be the cycl€(i,0), (i, 1), (,2), (¢,3)). Both edges of at least
one of the edge-pairs

e {((0,0),(1,0)), ((0,1),(1,1))}
e {((0,0),(3,0)),((0,1),(3,1))}
e {((0,2),(1,2)),((0,3),(1,3))}
e {((0,2),(3,2)),((0,3),(3,3))}

are healthy; thus, we can ‘joir’ to C; or Cs, as appropriate and using these edges,
to obtain a healthy cycle of length We can also joirC, to an edge of’; or Cs, as ap-
propriate and using these edges, to obtain a healthy cy#agth6 (see Fig. 34) and
Fig. 3(b) for an illustration of these constructions). By contimyiin the same way and
using the same reasoning with the resulting cycle of lefgite can ultimately obtain
healthy cycles of every even length frahup to 16 as required.

Case 2 exactly2 faulty edges are column edges.



W.L.o.g. we may assume that the ed@® 0), (0, 1)) is faulty. Ifitis the case that either
((0,0),(1,0)) and((0, 1), (1, 1)) are both healthy of(0, 0), (3,0)) and((0, 1), (3, 1))
are both healthy then we may proceed as we did in Case 1 aathidy obtain healthy
cycles of all the required lengths. Thus, supposettiuithe2 edge<(0,0), (1,0)) and
((0,1),(1,1)) is faulty andl1 of the2 edgeg (0, 0), (3,0)) and((0, 1), (3, 1)) is faulty.
W.l.o.g. we may assume that tRdaulty edges ar¢(0,0), (0,1)), ((0,0), (1,0)), and
((0,1),(3,1)) or they arg((0, 0), (0,1)), ((0,0), (3,0)), and((0,1), (3,1)) (recall our
conditional fault assumption). In the former case, the Htmmian cycle in Fig. 3¢) can
clearly be progressively shortened so that we obtain healtbles of lengthd4, 12,
10, and8, and it is trivial to find healthy cycles of lengtiésand4. In the latter case,
we have a healthy E-cycle rooted(@t 1) and so can proceed as we did in Case 1 of
Lemma 1. The result follows. O

(0,1)(0,2) (0,3) (0,1) (0,2) (0,3) (0,1)(0,2) (0,3)

Figure 3. Joining cycles and a Hamiltonian cycle in a fagity

Lemma 3 Consider ak-ary 2-cube@%, for some odd: > 7, in which there are at
most3 faulty edges but where every vertex is incident with at |@dstalthy edges.
There is a cycle of lengthfor every everd such thatt <[ < k2 — 1.

Proof There exists some dimension containing at |@afsiulty edges, which w.l.0.g.
we assume is dimensian

Case 1all faults are column edges.

Let G be the wrap-around grid induced by the verticeg@fj) : 0 < i <k —2,0 <
j < k—1}. Wlo.g. we may assume th&{0,0), (k — 1,0)) is a faulty edge and
that at leastl other fault lies inG. The constructions of Case 1 of Lemma 1 apply
to G and suffice for us to build a healthy cycle of lendtfor every everl such that
4 <1 < (k—1)k. Moreover, the cycl€ of length(k — 1)k spanningG is such that
it contains a sub-patlk of lengthk — 1 consisting of all the vertices of rolw — 2. If
G does not contain a faulty edge joining a vertex in fow 2 to a vertex in ronk — 1
then we can easily obtain a healthy cycle of every even lehgthere! is such that
(k—1)k <1 < k?—1 (byreplacing alternating edgés: —2, j)(k—2, j+1)) of P with
paths(((k—2,5), (k—1,7)), (k=1.4), (k—1,j+1)), (k—1,5+1), (k—2,j+1)))).
So, suppose thdtk — 2, 5), (k — 1, 7)) is a faulty edge. Thug contains onlyl fault.



By translatingC' if necessary, w.l.0.g. we may assume that- 2, j) is therth vertex
on P, for some odd-. Hence, by proceeding similarly we can obtain a healthyecycl
of every even lengthwherel is such thatk — 1)k < I < k% — 1 (the construction is
depicted in Fig. 44)).

faulty edges

(0,1)(0,2) grid G with wrap-around

0.0) {7 O / 00 5"'

10§ (10§

20} 20

faulty edge ((5,4),(6,4))
(a)

Figure 4. Cycles irQ?.

Case 2 exactly2 faults are column edges.

Case 2.1 The 3 faults do not form a path of length starting with a column edge,
followed by a row edge and ending with a column edge.

W.l.o.g. we may assume that(0,0), (k — 1,0)) is a faulty edge; the row fault
((¢,7), (1,5 + 1)) is such that < %; and the row fault is not incident with any
column fault except possibli(0, 0), (k — 1,0)). Let G be the wrap-around grid in-
duced by the vertices df(i,j) : 0 <i < k —2,0 < j < k — 1}. The constructions
of Case 2.1 of Lemma 1 apply @ and suffice for us to build id7 a healthy cycle of
length! for every everl such thatt <[ < (k — 1)k. The cycleC of length(k — 1)k

S0 constructed is such that it contains a sub-patt lengthk — 1 consisting of all the
vertices of rowk — 2. If there does not exist a faulty edge joining a vertex in fow 2

to a vertex in rowk — 1 then we can easily obtain a healthy cycle of every even length
I wherel is such thatk — 1)k < < k? — 1 (just as we did above). If there is a fault
((k—2,7),(k—1,3)) then we ensure that when we construct our healthy ay/obd
length(k — 1)k above, the vertexk — 2, j) is therth vertex onP, for some odd-.
Consequently, we can obtain a healthy cycle of every evegtémwherel is such that
(k—1Dk<I<k*-1.

Case 2.2the3 faults form a path in the form of a column edge followed by a emge
followed by a column edge.

W.l.o.g. the faults aré(k — 1, 0), (0, 0)), ((0,0), (0,1)) and((0,1), (k — 1,1)) or the
faults are((k — 1,0),(0,0)), ((0,0),(0,1)) and((0,1),(1,1)). In the first case, we
have a healthy E-cycle rooted@t 1) and so the result clearly follows (using the above

10



arguments). In the second case, the cycle of lehgth 1 as depicted in Fig. &) can
be progressively shortened so that we obtain a healthy ofdéangthi for every even
[ for which2k < I < k% — 1 (although we have only depicted this cycle@s, the
analogous cycle i®%, for any oddk > 7, should be clear). It is trivial to obtain
healthy cycles of every even length frahup to2k — 2. The result follows. O

Lemma 4 Consider a5-ary 2-cube@3 in which there are at most faulty edges but
where every vertex is incident with at le@gdtealthy edges. There is a cycle of lenjth
for every everd such thatt <[ < 24.

Proof There exists some dimension containing at |@afsiulty edges, which w.l.0.g.
we assume is dimensian

Case 1 all faulty edges are column edges.

W.L.o.g. we may assume that the edge, 0), (4, 0)) is faulty and that no other faulty
edge joins a vertex in ro® and a vertex in rowk — 1 (otherwise obtaining the result
is trivial: simply assume we are working in the fault-fiee 5 grid with wrap-around
edges of the forn{(¢,4), (i,0)), find a cycle of an appropriate length and then, if
necessary, translate, via an appropriate automorphistiasahe column fault does
not lie on the translated cycle).

Suppose that faulty edges are of the forif(z, j), (i + 1, 7)), for some fixed: €
{0,1,2,3}. W.lL.o.g.i = 0 ori = 1. ltis trivial to see that i = 0 then in the subgraph
of Q3 induced by the vertices df(0, i), (1,4) : 0 < i < 4} there are healthy cycles of
lengthss, 6, 8 and10. Moreover, w.l.0.g. we may assume that the cycle of lengtis
((0,0),(0,1),...,(0,4),(1,4),(1,3),...,(1,0)). Of course, an analogous statement
can be made if there atefaulty edges of the forni(1, j), (2,7)). Regardless, it is
trivial to extend any such cycle of lengtli so as to obtain healthy cycles of all even
lengthsl where4 < [ < 24. These extensions can be visualized as in Fig. 5 where a
cycle of length24 is shown that can be progressively shortened so as to olsalthig
cycles of any even lengthfor which 10 < [ < 24 (Fig. 5(@) corresponds to the case
wheni = 0 and Fig. 5b) to that when = 1).

(0,1)(0,2) (0,3) (0,4) (0,1)(0,2) (0,3) (0,4)
(0,0)

(@) faulty edges )

Figure 5. Cycles of lengt®4 in Q3.
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Suppose that at mostfaulty edge is of the forni(4, j), (i + 1, )), for any fixed
i € {0,1,2,3}. W.l.o.g., either there is a faulty edgeof the form((0, 5), (1, )) or
there is a faulty edge of the form((1, ), (2, 7)) with the other faultf (different from
((0,0), (4,0))) of the form((2, '), (3,4")). As above, we can construct healthy cycles
of lengths4, 6, 8 and10 using the vertices of rowsand1 or rows1 and2, respectively,
so asto avoid. W.l.0.g. the faultf different frome lies in column0, 1 or 2. Depending
upon wheref lies, at leastl of the cycles in Fig. &), Fig. 6() and Fig. 6¢) can be
progressively shortened so as to obtain healthy cycled tdrajths from10 up to 24
and so that all faults are avoided (in thelsBgures: the different possibilities for the
fault f are shown using dashed lines, with Figa}dnd Fig. 6b) depicting the situation
whene joins vertices in row$ and1 and Fig. 6€) the situation whem joins vertices in
rows1 and2; moreover, w.l.0.g. we have assumed that our cycle of leh@panning
the vertices on row$ and1 or on rows1 and2, respectively, omits edges joining
column4 vertices and columf vertices).

(0,1)(02) (03) (0,4) (0,1)(02) (03) (0,4) (0,1)(02) (03) (0,4)
(0,0) (0,0) (0,0)
(1,0) (1,0)
20 C

(3,0

20
3,0) C

40 € (4,0)

(@ ®) faulty edges ©

Figure 6. Cycles of lengt®4 in Q3.

Case 2 exactly2 faulty edges are column edges.

W.l.o.g. we may assume that the row faul{{g, 0), (4,4)). If there is a column fault
that is incident with a vertex in rowthen w.l.0.g. we may assume that this fault joins
avertexin row0 and a vertex in row and that the other column fault lies in colurin

1 or2. This being the case, at least one of the cycles in Fig). &(Fig. 60) is healthy
and yields healthy cycles of any even lengfior which4 < [ < 24 (note that if the
column fault different from((4, 0), (4,4)) is ((0,0), (1,0)) then the cycle obtained by
mapping the cycle in Fig. & according to the automorphisfa, y) — (4 — z,y) of

Q5 suffices).

Hence, we may assume that the row fauli(is 0), (4,4)) and that neither column
fault is incident with a vertex on row. There exists an E-cycle rooted @t m), for
somem € {0,1,2,3,4}, and spanning the vertices 6fi,j) : 0 < i < 3,0 < j <
4} that consists entirely of healthy edges. This E-cycle, ngtk 20, can clearly be
extended using vertices in roiMno matter what the value ofi) so as to obtain cycles
of length22 and24, and the resulting cycle of leng# can be progressively shortened
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S0 as to obtain healthy cycles of any even lerigibr which4 < [ < 18. The result
follows. O

The proof of the following lemma is omitted as it can easilydieained by hand
by a case-by-case analysis (and the use of appropriate argbisms).

Lemma 5 Consider a3-ary 2-cube@3 in which there are at most faulty edges but
where every vertex is incident with at le@dtealthy edges. There is a cycle of length
for every evern such that <[ < 8.

We draw the lemmas of this section together in the followiagptary.

Corollary 6 Letk > 3. Consider ak-ary 2-cube@% in which there are at most
faulty edges but where every vertex is incident with at |Bdetalthy edges. There is a
cycle of lengthi for every everi such thatt <[ < k2.

Whenk is even then Corollary 6 is the best we can do, in the senset®} is
bipartite, there cannot be any cycle of odd length. Howenvbenk is odd we can say
more.

Lemma 7 Consider ak-ary 2-cubeQ¥, wherek > 7 is odd, in which there are at most
3 faulty edges but where every vertex is incident with at |edsalthy edges. There is
a cycle of lengtli for every odd such that: < [ < k2.

Proof Suppose that all faults are column faults. By proceedingnake proof Case
1 of Lemma 3, there is a healthy cyd& contained within the subgraph induced by
the vertex sef{(4,j) : 0 < i < k—2,0 < j < k — 1}, of every even lengtl
for which4 < I < k(k — 1). Moreover, we may clearly arrange that every such
cycle C contains an edge of the forffk — 2,5), (k — 2,5 + 1)) so that the path
((k—2,79),(k—1,5),(k—1,7+1),(k — 2,5 + 1)) is healthy. Thus, by joining any
such cycleC' (or any edge on rovit — 2) to a cycle of lengthk spanning the vertices
of {(k—1,0),(k—1,1),...,(k—1,k— 1)}, we can clearly obtain a healthy cycle of
every odd lengtli, wherek <1 < k2.

Suppose that there is a row fault but that it is not the casetitieafaults form a
path consisting of a column fault, followed by a row fault amtling with a column
fault. Again, similarly to above, the proof of Case 2.1. ohlima 3 suffices to enable
us obtain a cycle of every odd lengttwherek <[ < k2.

Finally, suppose that w.l.0.g. the faults df& — 1,0), (0,0)), ((0,0),(0,1)) and
((0,1), (k—1,0)) or the faults aré(k—1,0), (0,0)), ((0,0), (0,1)) and((0, 1), (1, 1)).
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In the first case, we have a healthy E-cycle rootedat) spanning the vertices of the
first k — 1 rows, which clearly suffices for us to construct a healthyiewpt every odd
length! wherek < | < k2. In the second case, the healthy Hamiltonian cycle as
depicted in Fig. 7 can be progressively shortened so as &rmdhealthy cycle of any
odd length where3k —2 < [ < k% (whilst we have depicted the cycle only fQ¥, the
construction inQ%, wherek > 7 is odd, should be clear). It is trivial to build healthy
cycles of any odd lengthfor which k < I < 3k — 2 and so the result follows. O

faulty edges

(0,1) (0,2) grid G with wrap-around

00
1,0
20}

Figure 7. A Hamiltonian cycle i))7.

Lemma 8 Consider a5-ary 2-cube@3 in which there are at most faulty edges but
where every vertex is incident with at le@dtealthy edges. There is a cycle of length
for every odd such thats <[ < 25.

Proof The proofis similar to that of Lemma 4 and so we do not presenttll details.
There exists some dimension containing at l€a&ulty edges, which w.l.o.g. we
assume is dimensidh

Case 1all faulty edges are column edges.

W.l.o.g. we may assume that the edd, 0), (4, 0)) is faulty and that no other faulty
edge joins a vertex in roWw and a vertex in rowk — 1 (if there is a fault joining a
vertex in row0 and a vertex in rowt then take the cycle in Fig. 8 and translate it, if
necessary, to avoid any additional column fault before regjvely shortening it).

faulty edges
(0,1)(0,2)(0,3) (0,4) (0,1)(0,2) (0,3) (0,4) 0,1)(0,2)(0,3) (0,4) (0,1)(0,2)(0,3) (0,4)
0,0) O O (0,0

Figure 8. Cycles of lengt5 in Q3.
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Suppose that faulty edges are of the forif{i, j), (i + 1, j)), for some fixed €
{0,1,2,3}. W.l.o.g.« = 0 ori = 1. We proceed as in the proof of Lemma 4 with the
cycle as depicted in Fig. 8) (this cycle corresponds to the case whiea 0 and its
image under the automorphigm, y) — (4 — x, y) to that when = 1).

Suppose that at mostfaulty edge is of the forni(4, j), (i + 1, 5)), for any fixed
i € {0,1,2,3}. As in the proof of Lemma 4, w.l.o.g. either there is a faultigee
of the form((0, j), (1,7)) or there is a faulty edge of the form((1, ), (2, 7)) with
the other faultf (different from ((0,0), (4,0))) of the form ((2, '), (3,5")). Sup-
pose that is of the form((0, j), (1,4)). The cycles in Fig. &) and Fig. 8¢) suf-
fice (ife = ((0,1),(1,1)) and f = ((2,1), (3, 1)) then take the image of the cycle in
Fig. 8() under the automorphisiz, y) — (z,4 — y)). Suppose that is of the form
((1,4), (2, 7)) with the other faultf of the form((2, j/), (3, j')). The cycle in Fig. 8)
suffices (ife = ((1,3), (2,3)) then progressively shorten to obtain a healthy cycle of
any odd length fron25 down to11, and then build healthy cycles of lengthsr and5
separately).

Case 2 exactly2 faulty edges are column edges.

W.l.o.g. we may assume that the row faul{(s, 0), (0,4)). If there is a column faukt
that is incident with a vertex in rowthen w.l.0.g. we may assume thgbins a vertex
in row 0 and a vertex in rom and that the other columyi fault lies in columno, 1
or 2. No matter wheref lies, so long as it is nof(0,0), (1,0)), one of the cycles in
Fig. 8@), Fig. 8() or Fig. 8() suffices. Suppose thdt= ((0,0), (1,0)). The cycle in
Fig. 9@®) suffices (note that(0, 0), (4,0)) is necessarily healthy).

(0,1)(0,2) (0,3) (0,4)
(0,0) f, QO e (). (0,0)

)

(1,0) (1,0)
(2,0)

(3,0)

(2,0
(3,0

(4,0 LO—O (4,0

(@ faulty edges

Figure 9. Cycles of lengt5 in Q3.

Hence, we may assume that the row fauli( 0), (0,4)) and that neither column
fault is incident with a vertex on roW. Consider the cycle in Fig. BY and its image
under the automorphisiix, y) — (x,4 — y). These cycles suffice to yield the result
when the two column faults do not lie in columier 4 (as these cycles can be progres-
sively shortened to cycles of lengiimo matter where th2 column faults lie, subject
to them both not lying in column&or 4). If the 2 column faults lie in column8 or 4
then the cycle in Fig. @) suffices to yield the result. The result follows. O
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We bring all the results of this section together in the felltg theorem.

Theorem 9 Consider ak-ary 2-cube@% in which there are at most faulty edges but
where every vertex is incident with at le@gtealthy edges.

(@) If k > 3 thenQ} is bipancyclic.
(b) If k > 5is odd thenQ} is k-pancyclic.

An equivalent formulation of the above result is tii§ is 3-edge-fault-tolerant
bipancyclic, wherk > 3, and3-edge-fault-tolerant-pancyclic, wherk > 5 is odd,
with both results assuming the conditional fault assunmptii@t no vertex is incident
with less thar? healthy edges.

Theorem 9 cannot be improved whers odd, for it is not difficult to see that when
n > 2, QF has no odd length cycles of length less titafsee also [24]). Also, i3
there are configurations Gffaulty edges so that even though every vertex is incident
with at least2 healthy edges, no Hamiltonian cycle exists (one of theséigumations
is when the edgeg0,0), (0,1)), ((0,1),(0,2)), and((0, 2), (0,0)) are faulty edges).
We also note that (as was explained in [2]) Corollary 6 isroptiin the sense that there
are configurations of faults in Q% for which a Hamiltonian circuit does not exist, no
matter what the value df (one such configuration is the set of fau{{g0, 0), (0, & —

1)), ((0,0), (k = 1,0)), ((1,1),(1,2)), (1, 1), (2, 1)) }).

4 The general case

In this section, we prove our main result. The proof is long aomplicated and so

it might be beneficial if we outline our approach. Essentjalle proceed by induc-
tion and partitionQ* over a specific dimension so that we can ensure that there is a
certain number of faults in this dimension (Theorem 9 dedtk the base case of the
induction). That leaves the rest of the faults spread owektary (n — 1)-cubes that
result from the partition. We would like to apply the inductihypothesis to each of
thesek-ary (n — 1)-cubes and then piece together the resulting cycles to\azhier
required result. However, there are two cases to considerfirst is where, when we
partition, there is somg-ary (n — 1)-cube that does not satisfy our conditional fault
assumption; and the second is where this is not the case.ethad case is split into

2 further cases: when the faults not in the dimension over lvhie have partitioned
are not co-located in the sameary (n — 1)-cube; and the second case is when they
are. Throughout, we build different healthy cycles of diet (even) lengths, in a very
non-uniform fashion and using a variety of techniques.
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Theorem 10 Letn > 2 and letk > 4 be even. Suppose that theary n-cubeQ*
has at mostin — 5 faulty edges but is such that every vertex is incident witleast
2 healthy edges. The@” contains cycles of any even length frdrap to k™; that is,
QF is (4n — 5)-edge-fault-tolerant-bipancyclic under the conditiofeallt assumption
that every vertex is incident with at leashealthy edges.

Proof Letn > 3 throughout and suppose as our induction hypothesis thatthst
holds forQ* _,. The base case of our induction follows from Theorem 9. Sapploat

QF hasan — 5 faulty edges so that every vertex is incident with at Iedstalthy edges.
There exists some dimensiore {1,2,...,n} such that dimensiohcontains at least

3 faults; w.l.o.g. we may assume that dimenslocontains at least faults. Partition

QF over dimension to obtainQy, Q1, ..., Qx_1. There are at mositn, — 8 faults not
contained in dimensiom. In each of the cases below, we construct healthy cycles of
various lengths in a piecemeal fashion and using a numbeffefeht constructions.

Case 1there exists some vertexin someQ;, wherei € {0,1,...,k — 1}, such that
x is incident with at leas2n — 3 faults in@Q;.

W.l.0.g. we may assume thaties in Qy. Note thate is the only vertex that is incident
with at leastn — 3 faults in the@; in which it lies (as otherwise we would hate — 7
faults not lying in dimension). Suppose that for every pair of neighboyrandz of

x in Qo, with y # z, at leastl of the edgesy, n1(y)) and(z,n1(z)) is faulty and at
leastl of the edgesy, nx—1(y)) and(z, nx—1(z)) is faulty. So, there must be at least
(2n —3)+ (2n — 3) + (2n — 3) = 6n — 9 > 4n — 5 faults in total, which yields a
contradiction. W.l.o.g. we may assume that there are disédgesz, y) and(z, z)

in Qo such that'y, n1(y)) and(z,n1(z)) are healthy. Amend), as follows so as to
obtainQo.

e If x is incident with a healthy edger, w) in Qo andy # w # z then make
(z,w) faulty and makez, y) and(z, z) healthy.

o If (z,y) (resp.(z, 2)) is healthy then makeér, z) (resp.(z, y)) healthy.
e If z is incident only with faults inQ, then makez, y) and(z, z) healthy.

Note that inQ,, vertexz is incident with2 healthy edges and there are at mbst- 9
faults. Suppose that some other veriesf @y is incident with at most healthy edge

in Qo. So, we must have thét, v) is an edge that is healthy i), but which is made
faulty in Qo. Thus inQo, (x,u) is an edge that is the only healthy edge incident with
x and1 of 2 healthy edges incident with, with the result that), has at leastn — 7
faults, which yields a contradiction. Hence, we can apply ittduction hypothesis
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to Qo and so obtain a Hamiltonian cyci&, in Q, containing the (potentially faulty)
edgeqz, y) and(zx, z) and where all other edges 6§ are healthy (irQo).

Consider@1, which contains at mostn — 5 faults. The vertex.; () is incident
with at most2n — 2 healthy edges. We obtaif}; by making all healthy edges inci-
dent withn, (x) faulty, apart from(ny (z), n1(y)) and(ni(z), n1(z)) which we make
healthy if necessary. This means introducing at nest- 4 faults, and saQ; has
at mostdn — 9 faults. Suppose thap; has a vertex that is incident with at madst
healthy edge irQ;. As any vertex ofQ; is incident with at leas? healthy edges in
Q1, this means tha);, has at leastn — 4 faults, which yields a contradiction. Thus,
we can apply the induction hypothesis@q to obtain a Hamiltonian cyclé; in Q,
that contains the edgés, (z), n1(y)) and(n1(z), n1(2z)) and where all other edges of
(4 are healthy (inQ,). We can joinCy andC; by removing the edgei&;, y), (z, 2),
(n1(x),n1(y)) and(n1(z),n1(z)) and including the edgey, n1(y)) and(z, n1(2))
to obtain a cycle’y;, spanning all vertices @)y and@, apart fromz andn, (z), that
has lengti2k"~! — 2 and which only contains healthy edges.

In the rest of this case, we construct cycles of every evagtten, whered < m <
k™, with the cycleCy; providing a base cycle from which to work in many situations.
Moreover, we do this for batches of values far For example, our first batch of
values, below, i$k"~! —2 < m < (k—1)k"~! and our second ik — 1)k"~! <
m < k™ — (4n—2); eventually, we covet < m < k™ (throughoutyn is always even).
To aid readability, we partition our constructions accogdio the techniques used. We
remind the reader that > 4 is even anch > 3.

Case 1.1 Consider the patl®; of lengthk”~! — 2 from n;(y) to n1(z) on C;. By
partitioning the vertices on this path into batches @bnsecutive vertices and noting
that L’“"_Tlflj > 2n — 2, where2n — 2 is an upper bound on the number of faults not
in Qo, there are edg€s:, v) and(v, w) of P; such that all edges of

{(ni(u),niv1(w)), (ni(v), nip1(v)), (ni(w), niva(w)), (ni(u), ni(v)),

(ni(v),ni(w)) :1<i<k-—1}

are healthy.

Fix « € {2,3,...,k — 1} and leti € {2,3,...,a}. In @, make all edges
incident with n;(v) faulty apart from the edge&:;(u),n;(v)) and (n;(v), n;(w)),
which are healthy, and denote the amendidby Q,;. Note thatQ, has at most
(2n — 5) + (2n — 4) = 4n — 9 faults. Also, ifQ; has a vertex that is incident with
at mostl healthy edge if); then this means th&}; has at leastn — 4 faults, which
yields a contradiction. By the induction hypothesis apptie(;, we obtain a healthy
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Hamiltonian cycleC; in Q; that containgn;(u), n;(v)) and(n;(v), n;(w)). We can
join the cyclesCy, Cs, Cs, . . ., C,, using healthy dimensioh edges, as appropriate,
to obtain a cycleD,, of length(a+1)k"~! —2 spanning all vertices @o, Q1, - . ., Qu
apart fromz andn; (z). The situation can be depicted as in Fig. 10 (wheteppens
to be odd).

G Co Cy

n3(u) 7@)%4@ nelu)
o— = O ne(v)

Ng-1(V)

ne(w)

Figure 10. Joining cycles together wheris odd.

Suppose thatr € {2,3,...,k — 3} and that5 € {0,1,...,% +1}. Let Ry
(resp.P,) be the path of length™~! — 2 (resp.k"~! — 1) on Cy; (resp.C,) fromy
to z (resp. fromn, (v) to ny(w), if ais odd, and fromm,, (v) to ny(u), if « is even).
By considering alternating edges 8§ and P, there are at Ieasﬁ% + k"; =
k™"~1 — 1 mutually non-incident edges &% andP,. Count the number of such edges
(s,t) for which the path(s, ni_1(s), ng—1(t),t) is healthy, if(s, t) lies on Py, or for
which the path(s, no+1(s), na+1(t), t) is healthy, if(s, ¢) lies onP,. This number is
atleastc” ! — 1 — (2n — 2) > 3 and so we can choogksuch edgess, t) and easily
extendD,, using the appropriate healthy paths of lengjtto obtain a healthy cycle of
length(a + 1)k™~! — 2 + 23 (note thatt — 1 # « + 1); that is, we have constructed
healthy cycles of any even length frabh"—! — 2 up to(k — 1)k" L.

Suppose that = k— 2 andg € {0,1, ..., LQ_I — (2n — 2)}; thus,D,, has length
(k — 1)k~ — 2. By considering alternate edges - (as defined in the previous
paragraph), there aﬂi—:f;_—l mutually non-incident edges é%_-. Count the number of
such edgegs, t) for which the path(s,ny_1(s), nx—1(t), t) is healthy. This number
is at IeastL;1 — (2n — 2) > B and so we can choogesuch edge$s, t) and easily
extendD,, using the appropriate healthy paths of lengjtto obtain a healthy cycle of
length(k — 1)k™~! — 2 + 2; that is, we have constructed healthy cycles of any even
length from(k — 1)k"~! — 2 up tok™ — (4n — 2).

Case 1.2 We shall now construct healthy cycles of any even lengtmfioup to
2k™~1. By the induction hypothesis applied @, there is a healthy cycle of any
even length fromt up to k"~1. Let C] be a healthy Hamiltonian cycle i@;. By
considering alternating edges 61, we have% mutually non-incident edges on
C}. For each such edge, t), let the set of edge®; ; = {(n;(s), ni+1(s)), (ni(t),
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nit1(t)), (nix1(s), nip1(t)) 4 =1,2,...,k — 2}. Note that if all edges of sonig, ,
are healthy then we can exte@ to obtain healthy cycles of lengthg —* +2, k"1 +
4,..., k" 14+2(k—2) by replacing the edgg, t) with the pathgs, na(s), na(t), t), (s,
na(s),n3(s),ns(t), n2(t),t) and so on. At Ieasi“;—_1 — (2n — 2) of theseT ;s
are such that all of the edges T ; are healthy, and so we can obtain healthy cy-
cles of any even length from”~! up to k"' + 2(k — 2)(K°= — (2n — 2)) =
(k— k"t —2(k —2)(2n — 2) > k"1 + (4n — 4). Alternatively, suppose that
2n—1<8< L; By the induction hypothesis applieddd , there is a cycl€;’ of
length28in Q1. As 8 > 2n — 2, there is an edgés, t) of C}’ such that botlgs, n2(s))
and(t, no(t)) are healthy. Amend)- so as to ensure that exacfyedges incident with
na(s) are healthy, one of which i&w2(s), n2(t)) and the other of which is a healthy
edge ofQ,, and denote this amended version@f by Q.. It is also the case that
every vertex of(), is incident with at leas? healthy edges ii),. By the induction
hypothesis applied t@),, there is a Hamiltonian path in Q, from na(s) to na(t)
consisting of healthy edges. Thus, we have a healthy cydémgthk™ ! + 23 formed
by joining CY’ to P,. Thatis, we have constructed a healthy cycle of every evegtte
from k"~ + (4n — 2) up to 2k"~1. Hence, we have constructed a healthy cycle of
every even length fron up to25™ 1.

We can extend any of the cycles constructed in the previous paragraph asi¥ello
In the first construction, instead of starting with the cy€le start with the cycleCy,,
of length2k™~1 — 2, as constructed earlier. By applying identical reasonting joting
that at Ieasf“";—f1 —1—(2n — 2) of theT ;s are such that all of the edgesTn , are
healthy), we obtain a healthy cycle of any even length fedmi—! up to2k™ ! — 2 +
20k —2)(E = —1— (20 —2)) > 2k" 1 — 24+ 4(£ - —1—(2n—2)) = 2k" ' 4
2477142 8n > 2k"~1 + (4n —4). Alternatively, suppose that — 1 < 8 < ’“"271 .
Instead of starting with the cycléy’, of length23, as in the previous paragraph, start
with a cycle, as constructed in the previous paragraphpgfttec” —! 4- 23 (recall, this
cycle was obtained by joining’} to P;) and extend this cycle just as we did above
but using a Hamiltonian path iQs;. That is, we have constructed a healthy cycle of
every even length frok™ ! + (4n — 2) up to3k" 1. Hence, taking into account our
earlier constructions (above and in Case 1.1), we have reanst a healthy cycle of
every even length fromd up tok™ — (4n — 2).

Case 1.3Thus, all that remains is for us to build healthy cycles of enen length from
k™ —(4n—4) up tok™ (of course, by [2] there is a healthy Hamiltonian cycléjfy). Let

B {Hln—t) BT-Un=6) k13 By arguing exactly as we did earlier, we
can apply the induction hypothesisd@g (as constructed earlier) and obtain a cycle
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in Qo of length25 (note that2 > 4). There are two possibilities: either the cyclg
contains bothz, y) and(z, z); or the cycleC{, does not contair. In the former case,
we proceed exactly as we did earlier. First, we build a cgleof lengthk™ 1425 —2
spanning all vertices ap; apart fromn; (z) and all vertices o’} apart fromz; and,
second, we extend this cycf®); (as we did in Fig. 10) using (healthy) Hamiltonian
cycles in each 062, Qs, ..., Q,_1. Thus, we obtain a healthy cycle @¢ of length
(k—2)k" 1 +k""1423-2 = (k—1)k"~1+23-2; thatis, we have constructed healthy
cycles of any even length froii® — (4n — 2) up to k™ — 2. Consequently, we may
assume that the cyct&) does not pass through the vertexBy considering alternating
edges orCy, there is a seX of 8 mutually non-incident edggs, t) of C{j. Consider
the set of23 paths{(s,n1(s),ni(t),t), (s, nk—1(s), ng—1(t),t) : (s,t) € X}. The
number of faults not id), is at mosen—2 and a5 > 2n—2, w.l.0.g. we may assume
that there is an edge, t) of C{, such that the edges of the pdthn,(s), n1(¢), ) are
healthy. Just as we have done throughoutthis proof, we dahélnealthy Hamiltonian
cycle Cf in @, containing the edgén;(s),n1(¢t)) and join C{, and Cj to obtain a
healthy cycleC), of lengthk"~! + 23. By continuing this argument iteratively, we
obtain a healthy cycle of lengttk — 1)k"~! + 23; that is, irrespective of whether the
vertexz lies onCy{, we have healthy cycles of any even length frefn— (4n — 4) up
to k™.

Case 2every vertex: in anyQ;, wherei € {0,1, ...,k —1}, is such that is incident
with at least healthy edges if);.

As in Case 1, we construct cycles of various lengths in batchbere are two possi-
bilities: either every;, wherei € {0,1,...,k — 1}, contains at mostn — 9 faults;
orw.l.0.g.Q containsin — 8 faults.

Case 2.1every@,, wherei € {0,1,...,k — 1}, contains at mostn — 9 faults.

W.l.o.g. suppose th&, contains most faults fro@, Q1, . .., Qx_1. In particular, if
i€{1,2,...,k — 1} thenQ; contains at mostn — 4 faults.

Case 2.1.1n0Q;, wherei € {1,2, ...,k — 1}, contains more tha?n — 5 faults.

By the induction hypothesis applied €, there are healthy cycles of any even length
from 4 up to k™. In particular, there is a healthy Hamiltonian cy¢lg in Qq. By
considering alternating edges afy, we have% mutually non-incident edges on
Cy. For each such edge, t), let the set of edge®; ; = {(n;(s), ni+1(s)), (ni(t),
nit1(8)), (nix1(s), nip1(t)) : 4= 0,1,...,k — 1}. Note that if all edges of sonig, ,
are healthy then we can exte@ to obtain healthy cycles of lengttg—* +2, k"~ 1+
4,...,k"14+2(k—1) by replacing the edg@, t) with the pathss, ny (s), n1(t), 1), (s,
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n1(s),n2(s),n2(t), n1(t),t) and so on. Alternatively, we can obtain our healthy cy-
cles by extending’y by replacing the edgés, t) with the pathgs, ni_1(s), ng—1(t),
t), (s,ng—1(s),nk—2(s), nk—2(t),nx—1(t),t) and so on. In fact, if there is only
faulty edge inT , then we can clearly still extend, using healthy paths of lengths
3,5,..., 2(% —1)+1=k—1. So, leta be the number df ;s that contain exactly
1 fault and letg be the number of’; ;'s that contain at leas? faults. By extending
Cy using different paths, we can clearly obtain healthy cyofeall even lengths from
Aupto k"t 42k — 1B — (a+ 8) + alk —2) = k" — 2(k — 1) — ka.
Asa + 28 < 4n — 5, we have thap < 4"="=%) ‘and sok” — 2(k — 1) — ka >
Kt —2(k— 1)) g = g —a— (k—1)(4n—5) > k™ —k(4n—5) > 2k 1,
Hence, we have constructed a healthy cycle of every evetidram 4 up to2k™ 1.

Leta € {1,2,...,k — 2}. By the induction hypothesig), has a healthy Hamil-
tonian cycleCy. By considering alternating edges 6fy, there are@ mutually
non-incident edges affy. Count the number of such edgést) for which at least
1 of (s,m1(s)) and (¢, ny(t)) is faulty. This cannot be more tham — 5. However,
asLQ_1 > 4n — 5, there is at least one edde, ¢t) of C, for which (s, n(s)) and
(t,n1(t)) are both healthy. Consider the vertex(s) in Q1. Amend(@), by ensuring
that2n — 4 edges incident with (s) are faulty so thatni(s),n1(t)) and exactlyl
other edge incident with, (s) are healthy, and denote the amended versiaf0by
Q1. Thus,Q; has at mostn — 9 faults. Note that a§); contains at mostn — 5 faults
then every vertex ii); is incident with at leas? healthy edges. By the induction hy-
pothesis applied t@);, there is a healthy Hamiltonian pathdh from n1(s) tony(t).
Thus, we have a healthy cycle of leng@tt*—! spanning all vertices i), andQ,. We
can continue iteratively in this way (and as we have doneiposly) so as to obtain a
healthy cycleD,, of length(a + 1)k"~! spanning the vertices ¢fo, Q1, . .., Qq.

Suppose that # k£ — 2 and lets € {0,1,..., ’“"2_1 }. Let Py (resp. P,) be the
sub-path ofD,, spanning the vertices @f, (resp.Q.,). Both of these paths have length
k"~1 — 1. By considering alternating edges ép and P,,, there aré:"~! mutually
non-incident edges ofy and P,. As k"~! — (4n — 5) > k—; we can choosg
mutually non-incident such edgés ¢) so that either the patts, no+1(s), na+1(t),t)
or the path(s,ny_1(s),nx_1(t),t) is healthy, depending upon wheth@c ¢) lies on
P, or Py, respectively (note thdt — 1 # « + 1). Consequently, we can clearly obtain
a healthy cycle irQ* of length(a + 1)k"~! + 23; that is, we have cycles of any even
length from2k™~! up to (k — 1)k L.

Suppose thatr = k£ — 2 and lets € {(),1,...,L2_1 — (4n — 5)}. There are
’%1 mutually non-incident edges on the sub-p&th , of D;,_5 spanning the vertices
of Qr_2. Just as in the previous paragraph, we can chgosmitually non-incident
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edgeqs, t) on P;_» so that the patls, nx—1(s), nx—1(t), ) is healthy. Thus, we have
healthy cycles of any even length frai— 1)k"~* up tok™ — (8n — 10). In fact, if the
number of faults joining a vertex i@ - to a vertex inQ,_; plus the number of faults
in Qx—_1 is~ then we have healthy cycles of any even length froap tok™ — 2. We
shall return to this comment in a moment.

All that remains is for us to obtain healthy cycles of any elemgth fromk™ —
(8n — 12) up to k™. Suppose tha{‘“";—f1 —(dn -5 +3 <8< ’“"271. By the
induction hypothesis applied 19, there is a healthy cycl€|, of length23 in Q. By
considering alternating edges 6§, there is a seX of 8 mutually non-incident edges
of Cy. For any edgés, t) € X, define the path,_1(s,t) = (s,nk—1(s), nk—1(t),1)
and the patlp; (s, t) = (s,n1(s),n1(t),t), and count the number of such paths that
contain at least fault. This number is at modtn — 5. So, if25 > 4n — 5 then we
can find a pathy,_1 (s, t) or p1 (s, t) that consists entirely of healthy edges. However,
28 > k"~ — (8n — 10) + 6 > 4n — 5, and so w.l.0.g. there is an edget) of Cy so
that the pathp,(s,t) = (s,n1(s),n1(t),t) consists entirely of healthy edges. We can
amendQ); to obtainQ; so thatn, (s) is incident with exacth2n — 4 faults inQ,, one
of which is(n1(s), n1(t)). Thus,Q, has at mostn — 9 faults. Moreover, every vertex
in Q, is incident with at leas? healthy edges. By the induction hypothesis applied to
Q1, there is a healthy Hamiltonian path fram(s) to n(¢) in Q;. We can join this
path withCj, using the healthy edgés, n1(s)) and(¢,n1(t)), S0 as to obtain a healthy
cycleCy; of lengthk™ ! +23. As k2—71 > 4n — 5, we can iteratively extendy; to a
cycle of length(k — 1)k"~! + 23; that is, we have healthy cycles of any even length
from k™ — (8n — 16) up tok™.

Thus, we only have to find healthy cycles of lengtfis- (8n — 12) andk™ — (8n —
14). From our comment above, relating to the numbeof faults joining vertices
in Qx—2 andQr—1 or lying in Qx—_1, we may assume thatis 4n — 5 or 4n — 6.
By the induction hypothesis applied @, we can find healthy cycle€{ and C{
of lengthsk™ ! — 8n + 12 andk™~! — 8n + 14, respectively. As all but at mogt
fault is incident with a vertex of)._1, there clearly exists an edge, ¢) of C{, or C{
such that(s,n1(s)) and(¢,n1(t)) are both healthy. Just as we have done a number
of times so far, we can iteratively exteidt) and C{] by using appropriately chosen
Hamiltonian cycles i1, Q2, . . ., Qx_1 SO as to build healthy cycles ®* of lengths
k™ — (8n — 12) andk™ — (8n — 14). Thus, we have constructed healthy cycles of any
even length froml up tok".

Case 2.1.2someQ;, wherei € {1,2,...,k — 1}, contain2n — 4 faults.

It must be the case th&), contain2n — 4 faults, Q; contains2n — 4 faults and this
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accounts for all faults iQ* apart from the3 faults in dimensiori. W.l.0.g. we may
assume thaf); contains no faults. By the induction hypothesis applie@gothere is
a healthy cycle of lengths in Qo, foranyg € {2,3,..., k—;} Let Cy be the cycle
of lengthk™~! in @, that we have just constructed and tety andz be consecutive
vertices on this cycle so that all edges{¢f;(z), n;+1(x)), (n;(y), nj+1(¥)), (n;(2),
nj+1(2)), (n;(x),n;(y)), (n;(y),nj(z)) : j = 0,1,...,k — 1} are healthy. Such
consecutive vertices exist whén> 4 orn > 3 as LL;J > (2n —4) + 3. Sup-
pose that: = 4 andn = 3 and that there do not exist consecutive verticegs and
z with the properties as stated. Note that there ffaults not lying inQy. Enu-
merate the vertices afy asug, u1,...,u1s, and for0 < [ < 15, let T; be the set of
edges{(n;(u), 41 (ur)), (nj(uir1), njpr (wis)), (g (uig2), njea (wige)), (ng(w),
n;(wit1)), (nj(wit1), nj(wg2)) @ 5 = 0,1,...,k — 1} (with addition on the indices
of theu;'s modulo15). So, each offy, T3, Tg, Tog andTy, (which are mutually dis-
joint as sets of edges) must contain a fault, and this acedontall 5 faults. Also,
T14 must contain a fault and so w.l.0.g32 must contain a dimensiohfault of the
form (n;(w14), n;+1(u14)). AsTh; must contain a faultly must contain a dimension
1 fault of the form(n; (u11), nj+1 (u11)). Arguing in this way yields that there must be
more tham3 dimensionl faults which yields a contradiction. Hence, we can find
andz as required.

AmendQ; so thatn;(y) is incident with exactly2 healthy edges, namely the edges
(ni(z),n;(y)) and(n;(y), n;(z)) which are healthy ir);. Denote this amended ver-
sion of Q; by Q;. Note thatQ, has at mostn — 8 faults. Suppose th&}; has at most
4n — 9 faults and there is a vertex that is incident with at mbéealthy edge. This
vertex must be a neighbour ef(y) so that this edge is healthy @; and, further, it
must be incident witl2n — 4 faults in@Q;. So, in order to forn@i we must have intro-
duced2n — 4 faults which yields a contradiction &3; only hasin — 9 faults. Thus, if
Q; has at mostn — 9 faults then every vertex @; is incident with at leas? healthy
edges. Alternatively, suppose tf@t hasin — 8 faults; so, we have mad: — 4 edges
incident withn;(y) faulty (all except(n;(z),n;(y)) and(n;(y), n:(z))). In this case,
there might be a vertex of Q;, adjacent ta;(y) and different fromn; () andn;(z),
such thatw is incident with exactlyl healthy edge i);. If such a vertexw exists then
let the edgdw, n;(y)) revert back to being healthy i;; otherwise, choose any faulty
edge(w, n;(y)), wheren,(z) # w # n;(z), and let it revert back to being healthy in
Q.. DenoteQ; after any additional amendments 8y (note that(); contains at most
4n — 9 faults).

We can now apply the induction hypothesisio or Q;, as appropriate, so as to
obtain a cycleC; of length k"1, If we are working withQ; thenC; contains the
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edgeqn;(x),n;(y)) and(n;(y), n;(z)) and all edges of’; are healthy irQ;; if we are
working with ) thenC; contains at least of (n;(z),n;(y)) and (n;(y),n:(z)) and
all edges ofC; are healthy inQ;. In the latter case, w.l.o.g. we may assume thiat
contains(n;(x),n;(y)). Hence, whatever the case, we may assume that the €ycle
contains the edg€n;(z), n;(y)) and that every edge of this cycle is healthyn

For eachj € {0,1,...,k — 1} \ {0, ¢}, let C; be the isomorphic copy af} in
Q;. Foranyl € {1,2,...,k}, we can clearly join the cycleS;, Cit1,...,Ciyi—1
(with arithmetic on indices modulg) similarly to as is depicted in Fig. 10 so as to
obtain a cycleD; of lengthl.k™~!, spanning all vertices @;, Qi41, . .., Qi+1—1, that
is healthy inQk. Fix anyl € {1,2,...,k — 1} and choose some edge t) of D,
that lies in@; and for which(n;(s),n;—1(s)) and(n;(t),n;—1(t)) are healthy edges
(such an edge clearly exists 5%1 > 3). By [24], Q;_1 is edge-bipancyclic (note
that there are no faults i);_1) and so contains a (healthy) cycle of length for any
8 €{2,3,..., %} that contains the edge;—1(s),n;—1(t)). Thus, we obtain a
healthy cycle inQ” of every even lengtim where4 < m < k™.

Case 2.2Q) containsin — 8 faults.

Choose some faultz, y) in Qo such that the patkis, n1(s), n1(¢),t) is healthy and
amend@, so as to make this fault healthy. Applying the induction hyaesis to this
amended version af, yields a healthy Hamiltonian patR, in Qg from z to y. We
can join this healthy Hamiltonian path @, to its isomorphic copy irQ;, namely a
healthy Hamiltonian pattP; from ni(z) to n1(y). Thus, we can joinP, and P; to
obtain a healthy cycle of leng@k™~!. Let (s, t) be some edge aP;. We can replace
(s,t) with the pathss, na(s), na(t), t), (s, na(s), n3(s), ns(t), na2(t), t), and so on, so
as to obtain healthy cycles of lengths™ 1 + 2,2k" 1 +4, ... 2k" "1 + 2(k — 2).
Choosing other such edges and extending in the same wayyabeables us to build
healthy cycles of any length frog%k™~! up tok™.

Consider; and@-. Neither contains a fault and there are at n3dsiults joining a
vertex inQ; to a vertex inQ-. Applying the induction hypothesis 19, yields healthy
cycles of all even lengths fromhup tok™ 1. Let3 € {4,5,..., ’“";} and letC; be
the cycle inQ; of length2 just constructed. There is an edget) of C’ such that
the edgess, n2(s)) and(t, no(t)) are both healthy. By applying the induction hypoth-
esis to an appropriately amended versiod)ef we can obtain a healthy Hamiltonian
cycle Cs in Q2 containing the edgéns(s), n2(t)). Hence, we obtain healthy cycles
of all even lengths fronk™~! + 8 up to2k"~ . In order to obtain cycles of lengths
k"=t 42, k! + 4 andk™! + 6, we extend a healthy Hamiltonian cycledh by
replacing up ta3 edges of this cycle of the foris, t) with healthy paths of the form
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(s,n2(s),na(t),t). The result follows. O

It was proven in [2] that there are configurationsdaef — 4 faulty edges inQ*,
wherek > 3, so that even if every vertex is incident with at ledstealthy edges,
there does not exist a Hamiltonian cycle. Such a configurasimbtained by taking
a cycle(z,y,u,v) in QF and ensuring that all edges incident withare faulty apart
from (z,y) and(x,u) and that all edges incident with are faulty apart fromu, y)
and(u,v). This amounts tain — 4 faults. If x andwu both lie on some cycle in (the
faulty) Q¥ then this cycle is necessarily, y, u, v). Consequently, the value @f, — 5
for the number of faulty edges i* in the statement of Theorem 10 is optimal.

5 Conclusions

We end by presenting our conclusions and some open probl®msmain result is
that Q* with 4n — 5 faulty edges, but where every vertex is incident with atti@as
healthy edges, is bipancyclic, for every eviergreater than or equal té. Ideally,
we would like to prove that whe@* has4n — 5 faulty edges so that every vertex is
incident with at leas? healthy edges” is bipancyclic for allk > 3 (no matter what
the parity ofk). However, consider the proof of Theorem 10. There are a rumb
constructions within that proof that have drawbacks whes odd. For example, we
often extend a specific cycle, of some (even) length, by iteratively joining it to
(even length) Hamiltonian cycles in sorhery (n — 1)-cubes contained withi@* so
as to obtain healthy cycles of all even lengths frenup tok” in Q. Whenk is odd,
this technique cannot be applied in such an elementary weyeadamiltonian cycles
of thek-ary (n — 1)-cubes have odd length. Alternatively, extending our cytheith
healthy cycles of (even) lengtti—! — 1 leaves us with a vertex in each suktary
(n — 1)-cube not contained within the resulting cycle. Also, by shene token, when
we extend a healthy cycle using healtfy;’s (as in the proof of Theorem 10), because
k is odd we find that we have vertices not appearing on our cydtesould appear
that a significant amount of extra work has to be done (andilglgssew techniques
established) if one wishes to prove tig is bipancyclic wherk is odd. The same can
be said as regards proving th@f is k-pancyclic wherk is odd.

As remarked at the end of the previous section, Theorem 1gtisal. The argu-
ment for optimality is that used in [2] to rule out Hamiltoniaycles in certain config-
urations of more thatn — 5 faults inQ . It would be interesting to know in a situation
where there are more than — 5 faulty edges irQ”* (and@?* still satisfies our condi-
tional fault assumption), whether there is an upper bourti@formk™ — m so that
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whenk > 4 is even, there are healthy cycles of all lengths frbomp to k™ — m (of
course, we would prefer that is constant or at least a very slow growing function of
n and possiblyk). From the constructions in [2], the smallestcan be i2.

Related to pancyclicity and bipancyclicity are two coneept graphG onn ver-
tices ispanconnectedresp. bipanconnectexif for any two distinct vertices, andv
of G, there is a path of every lengttfor which dist(u,v) < I < n (resp. for which
dist(u,v) <1 < nandl anddist(u,v) have the same parity), whedlést(u, v), for 2
verticesu andv of a graph, is the length of a shortest path joiningndv. Both pan-
connectivity and edge-pancyclicity (resp. bipanconnégtand edge-bipancyclicity)
imply pancyclicity (resp. bipancyclicity). It was proven [24] that whenk > 3
andn > 2, Q* is bipannconnected and edge-bipancyclic. It would be éstimg to
know as to whether the main result of this paper can be extetalencompass bi-
pannconnectivity or edge-bipancyclicity. However, weaniiat in order to prove such
extensions, we will need radically different techniquethimse employed in the proof
of Theorem 10 which are decidedly non-uniform.

Finally, we mention the study of pancyclicity in arbitrarseghs which has a long
history. In [5], Bondy made the following ‘meta-conjectur@lmost any non-trivial
condition on a graph which implies that the graph is Hamiliaralso implies that the
graph is pancyclic (there may be a simple family of excegtigmaphs). The classical
result giving such a condition is Dirac’s Theorem [12] thays that every graph on
n > 3 vertices that has minimum degree at legsts Hamiltonian, and which was
extended by Bondy [4] who showed that the same assumptigply tfmat a graph is
either K= » or pancyclic. Other conditions include: if the connecy\af a graphG:
is no less than the independence numbe&ndG is triangle-free thery contains
a cycle of every length from up ton unlessG is a cycle of lengtts or G = K, i,
for somek [21] (Erdos [9] had shown that if a graph is such that its @ntivity is
no less than its independence number then the graph is Kaimait); and ifG is a
Hamiltonian graph with minimum degree at le&80 times the independence number
of G thenG is pancyclic [20]. Of course, results such as these are oadaius when
dealing withk-ary n-cubes but it would be interesting to study which conditionsan
arbitrary (Hamiltonian) bipartite graph force the graplo&obipancyclic.
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