
Bipancyclicity ink-aryn-cubes with faulty edges

under a conditional fault assumption

Yonghong Xiang and Iain A. Stewart

School of Engineering and Computing Sciences

Durham University

Science Labs, South Road

Durham DH1 3LE, U.K.

Abstract

We prove that ak-ary 2-cubeQk

2 with 3 faulty edges but where every vertex

is incident with at least2 healthy edges is bipancyclic, ifk ≥ 3, andk-pancyclic,

if k ≥ 5 is odd (these results are optimal). We go on to show that whenk ≥ 4 is

even andn ≥ 3, anyk-ary n-cubeQk

n with at most4n − 5 faulty edges so that

every vertex is incident with at least2 healthy edges is bipancyclic, and that this

result is optimal.

Keywords: Interconnection networks.k-ary n-cubes. Fault-tolerance. Bipan-

cyclicity.

1 Introduction

Low-dimensional tori are regularly used as interconnection networks in distributed-

memory parallel computers. For example, the Alpha 21364-based HP GS1280 ma-

chine [10], the iWarp [6] and the Cray X1E vector computer have a two-dimensional

torus as their interconnection networks, while the Cray T3Dand T3E [22] have three-

dimensional tori as theirs. Furthermore, two-dimensionalmesh and torus topologies

are popular choices for networks-on-chips [28]. This has helped to motivate a consid-

erable amount of work on the structural aspects of (arbitrary dimensional) tori, and in

particular their uniform variantsk-aryn-cubes, that are relevant to parallel computing

as well as being of interest in purely graph-theoretic terms. For example, thek-ary

n-cubeQk
n has the following basic properties: it is vertex- and edge-symmetric [1]; it

is Hamiltonian [3, 7]; it has diameternbk
2 c [3, 7]; it has a recursive decomposition;



and it contains embeddings of many important interconnection networks such as cy-

cles (of certain lengths) [1], meshes (of certain dimensions) [3] and even hypercubes

(of certain dimensions) [7]. Moreover, it has admirable properties in relation to routing,

broadcasting and communication in general (see, for example, [1, 7, 11]).

Of particular relevance to us are some recent results concerning paths and cycles

embedded withink-ary n-cubes. Paths and cycles are fundamental in parallel com-

puting; for not only is there a multitude of algorithms specifically designed for linear

arrays of processors and cycles of processors but paths and cycles appear as data struc-

tures in many more algorithms for parallel machines whose processors are intercon-

nected in a wide variety of topologies. We shall be concernedwith questions relating

to Hamiltonicity, pancyclicity, bipancyclicity and edge-bipancyclicity (these concepts

are defined in the next section). The existence of these properties in an interconnec-

tion network enables a much higher degree of flexibility withregard to the simulation

of linear arrays or cycles of processors. The results of [24]are of significance to us,

where earlier results due to Hsieh, Lin and Huang [16] and to Wang, An, Pan, Wang

and Qu [27] were extended and the situation as regards the pancyclicity and bipan-

cyclicity of Qk
n was settled. Amongst other results, it was shown in [24] thatQk

n is

edge-bipancyclic, whenn ≥ 2 andk ≥ 3, andk-pancyclic, whenn ≥ 2 andk ≥ 3 is

odd.

As more and more processors are incorporated into parallel machines, faults be-

come more common, be it faults in the processors or on the connections between pro-

cessors. Of course, the temporary unavailability of a connection between two proces-

sors due to, for example, high traffic can also be regarded as afault. Given the signif-

icant cost of parallel machines, we would prefer to be able totolerate (small numbers

of) faults and still be able to use our parallel machine. Whilst ‘static’ structural results

such as those mentioned above are important, we are interested here in the tolerance

of k-aryn-cubes when a (limited) number of edges are faulty (that is, are missing). In

particular, we are interested in how many faulty edges ak-aryn-cubeQk
n can tolerate

yet still remain bipancyclic andk-pancyclic.

As thek-aryn-cubeQk
n has degree2n, an immediate upper bound on the number

of faulty edgesQk
n can tolerate and still remain bipancyclic ork-pancyclic is clearly

2n− 2 (for we can make the edges from a vertex to2n− 1 of its neighbours faulty and

there clearly can be no cycle through the vertex). Consequently, many studies assume

the conditional fault assumption on the distribution of thefaults so that no matter how

many faulty edges there are, it is always the case that every vertex is incident with

at least2 healthy edges (the legitimacy of this conditional fault assumption is given

credence as there is a very small probability that a configuration of faulty edges will
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be such as to make a vertex of one of our networks have degree less than2). For

example, under this conditional fault assumption: it was shown in [2] thatQk
n with

4n− 5 faulty edges still has a Hamiltonian cycle (and that this result is optimal); it was

shown in [26] that ann-dimensional alternating group graph with4n− 13 faulty edges

still has a Hamiltonian cycle (and that this result is optimal); it was shown in [19] that

ann-dimensional crossed cube with2n− 5 faulty edges still has a Hamiltonian cycle

(and that this result is optimal); and in [15] a more general consideration of matching

composition networks was made with regard to whether they remain Hamiltonian under

a limited number of faults. Other Hamiltonicity results under our conditional fault

assumption are available in, for example, [8, 13, 14, 17, 18,25]. As far as we are

aware, [25] is the only paper to have considered pancyclicity issues in a family of

interconnection networks in the presence of faulty edges and under our conditional

fault assumption: in [25] it was proven that, under our conditional fault assumption, an

n-dimensional hypercube with2n− 5 faulty edges remains bipancyclic (and that this

result is optimal).

In this paper we resolve the situation as regards pancyclicity and bipancyclicity in

k-ary 2-cubes under our conditional fault assumption. In particular, we prove that a

k-ary2-cubeQk
2 with 3 faulty edges but where every vertex is incident with at least2

healthy edges is bipancyclic, ifk ≥ 3, andk-pancyclic, ifk ≥ 5 is odd (these results are

optimal). We go on to show that whenk ≥ 4 is even andn ≥ 3, anyk-aryn-cubeQk
n

with at most4n− 5 faulty edges so that every vertex is incident with at least2 healthy

edges is bipancyclic, and that this result is optimal. The proof of this latter result is

long and complicated and uses a variety of techniques concerning the combinatorial

manipulation ofk-ary n-cubes (in the presence of faults) that are interesting in their

own right. In the next section we detail the basic definitionsrelevant to this paper, and

in Section 3 we prove our results for thek-ary2-cube. In Section 4 we prove our main

result concerning the bipancyclicity ofQk
n whenk is even. We give our conclusions

and directions for further research in Section 5.

2 Basic definitions

For k ≥ 3 andn ≥ 1, a k-ary n-cubeQk
n has a vertex set of{0, 1, . . . , k − 1}n and

there is an edge((un, un−1, . . . , u1), (vn, vn−1, . . . , v1)) if, and only if, |ui − vi| = 1

(modk), for somei ∈ {1, 2, . . . , n}, with uj = vj , for all j ∈ {1, 2, . . . , n}\{i}; such

an edge is termed as lying indimensioni (throughout, arithmetic on the components

of vertices is modulok). A k1 × k2 torushas vertex set{(u, v) : u ∈ {0, 1, . . . , k1 −
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1}, v ∈ {0, 1, . . . , k2 − 1}} and there is an edge((u1, u2), (v1, v2)) if, and only if,

|ui − vi| = 1 (modki), for somei ∈ {1, 2}, with uj = vj , for j 6= i. We sometimes

refer to edges of the form((i, j), (i, j + 1)) (resp.((i, j), (i+1, j))) in ak-ary2-cube

or ak1 × k2 torus as lying onrow i (resp. incolumnj).

Let i ∈ {1, 2, . . . , n}. We say that wepartitionQk
n over dimensioni if we consider

Qk
n to be the disjoint union of copiesQ0, Q1, . . . , Qk−1 of Qk

n−1 as follows: for each

j ∈ {0, 1, . . . , k−1},Qj is the subgraph ofQk
n induced by the vertices ofQk

n whoseith

component isj (we suppressi, n andk in the notation as they are always understood).

Clearly, all edges not in someQj lie in dimensioni. Suppose that we have partitioned

Qk
n over dimensioni asQ0, Q1, . . . , Qk−1 andx = (xn, xn−1, . . . , x1) is some vertex

of someQj . The vertex(xn, . . . , xi+1,m, xi−1, . . . , x1) of Qm is denoted asnm(x)

(and sox = nj(x)).

We considerk-aryn-cubes withfaulty edges(or simply faults); that is, where cer-

tain edges are missing. Thus, afaulty k-aryn-cube is really just a copy ofQk
n where

some edges, the faulty edges, are missing, and where we referto the edges that remain

as thehealthyedges. Even though our faulty edges are regarded as missing edges, we

still say, for example, that a vertexv is incident with some faulty edgee when the edge

e was originally incident withv before it was removed. On occasion, we want to em-

phasise that all edges of some sub-graph are healthy and so wesay, for example, that a

cycle or a path is healthy.

A conditional fault assumptionis an assumption relating to the faults (in our case,

faulty edges) and their distribution within an interconnection network (which for us is

always ak-aryn-cube). The conditional fault assumption we make is that thedistribu-

tion of faults is such that no vertex in any faultyk-aryn-cube is ever incident with less

than2 healthy edges (that is, has degree less than2 when we regard our faultyk-ary

n-cube as being ak-aryn-cube with some edges missing).

A graph onn vertices is:pancyclicif it contains a cycle of every length from3 up to

n; edge-pancyclicif there is cycle of every length from3 up ton containing any given

edge; andm-pancyclicif it contains a cycle of every length fromm up ton. Of course,

no bipartite graph can be pancyclic (as there can be no odd length cycles); consequently,

a notion of pancyclicity has been devised for bipartite graphs. A bipartite graph onn

vertices isbipancyclicif there is an even length cycle of every even length from4 up

to n, andedge-bipancyclicif there is an even length cycle of every even length from

4 up ton containing any given edge. Even though the notions of bipancyclicity and

edge-bipancyclicity have been devised to primarily apply to bipartite graphs, it still

makes sense to apply them to non-bipartite graphs too. We shall be building cycles of

various lengths in faultyk-aryn-cubes. We say that a cycleC, of lengthc, say, can be
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progressively shortenedto a cycle of lengthc′, say, if starting fromC we can iteratively

apply the following construction to obtain cycles of all lengthsc, c − 2, c − 4, down

to c′: in the current cycleC′, replace a sub-path(u, v, w, y) of length3 with the edge

(u, y) to obtain a cycle of length2 less than the length ofC′ (note that we also describe

a cycle in a graph as a sequence of vertices so that consecutive vertices in the sequence

are joined by an edge in the cycle, as well as there being an edge from the last vertex

of the sequence to the first).

If π is a property of graphs then a graphG is said to bem-edge-fault-tolerantπ

if G still has propertyπ even after the removal of at mostm edges fromG. Thus,

for example, to say that ak-aryn-cubeQk
n is (4n− 5)-edge-fault-tolerant bipancyclic

under the conditional fault assumption that no vertex is incident with less than2 healthy

edges means that no matter which4n − 5 edges we remove fromQk
n, so long as no

vertex in the resulting graph has degree less than2, there is a cycle of every even length

m where4 ≤ m ≤ kn.

A graphG is vertex-symmetricif given any two distinct verticesu andv of G, there

is an automorphism ofG mappingu to v. Similarly, a graph isedge-symmetricif given

two distinct edgese andf of G (possibly incident), there is an automorphism ofG

mappinge to f . We shall use the fact thatQk
n is edge-symmetric [2] throughout. The

k-ary 2-cubeQk
2 has a number of automorphisms. For example, the maps(i, j) 7→

(i + 1, j), (i, j) 7→ (i, j + 1), (i, j) 7→ (k − 1 − i, j), and(i, j) 7→ (i, k − 1 − j) are

all automorphisms ofQk
2 .

3 The case whenn = 2

We begin by dealing with thek-ary2-cubeQk
2 in which there are3 faulty edges.

Lemma 1 Consider ak-ary 2-cubeQk
2 , for some evenk ≥ 6, in which there are at

most3 faulty edges but where every vertex is incident with at least2 healthy edges.

There is a cycle of lengthl for every evenl such that4 ≤ l ≤ k2.

Proof There exists some dimension containing at least2 faulty edges, which w.l.o.g.

we assume is dimension2; that is, these2 faulty edges are column edges. AsQk
2 is

edge-symmetric [1], w.l.o.g. we may assume that the edge((0, 0), (k− 1, 0)) is faulty.

Case 1: all faulty edges lie in dimension2; that is, all faults are column faults.

We remark that throughout the proof of this case, we never useedges of the form

((k− 1, i), (0, i)) and so we may simply ignore the faulty edge((0, 0), (k− 1, 0)) and
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assume that we are working in thek × k grid with wrap-around edges of the form

((i, k − 1), (i, 0)), for i = 0, 1, . . . , k − 1. Consider the Hamiltonian cycle ofQk
2 as

pictured in Fig. 1(a) (although we have only drawn a Hamiltonian cycle inQ8
2, the

analogous cycle inQk
2 , for any evenk ≥ 6, should be clear). This cycle, which we

call the E-cycle rooted at(0, 0), can be translated (horizontally) by simply increasing

the first component of every vertex by2, and yet another cycle can be obtained by

increasing the first component of every vertex by4. Note that the3 Hamiltonian cycles

so obtained are edge-disjoint when we consider only column edges (ask ≥ 6). Thus,

at least one of these Hamiltonian cycles contains only healthy edges; call itC. W.l.o.g.

we may assume thatC is the E-cycle rooted at(0, 0).

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(a)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

faulty edges

(b)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

shortened by 4

lengthened by 2
(c)

Figure 1. An E-cycle and progressive shortening inQ8
2.

If our copy ofQk
2 had no faulty edges then we could clearly progressively shorten

C by at each step removing3 edges and including1 new edge, so that we obtain a

healthy cycle of every even lengthl for which 4 ≤ l ≤ k2. However, in the process

of progressively shortening our cycle, we might try to include a new edge that is actu-

ally faulty (note that we encounter at most2 faulty edges in our process of progressive

shortening). We deal with this situation as follows. Our process of progressive short-

ening begins by introducing column edges; so, with reference to Fig. 1(a), we shorten

our cycle ‘from the right-hand side’ (note that there arek
2 ≥ 3 ways in which we could

do this). We also ensure that we shorten the cycle in this way as much as we can be-

fore having to deal with attempting to introduce a faulty edge. If we try to introduce a

faulty edge then we simply ‘jump’ that particular iterationof our process of progressive

shortening and instead of shortening the cycle by2, we shorten the cycle by4, unless

the next edge to be introduced is faulty too, when we shorten the cycle by6. Note that

because of how we have chosen to progressively shorten our cycle up until this point,

we can simultaneously lengthen our cycle by2 or 4 (in a different part of the cycle) to

ensure that we obtain cycles of all the required lengths. Theprocess can be visualized

in Fig. 1 where we have encountered a faulty edge in Fig. 1(b) and ‘jumped’ over it in
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Fig. 1(c) as well as lengthened our cycle by2 (there are subtleties when at least1 of

our column faults is of the form((i, 1), (i + 1, 1)) but such configurations can easily

be coped with).

Case 2: exactly2 faulty edges lie in dimension2; that is, there are exactly2 column

faults.

Case 2.1: The3 faults are such that they do not form a path of length3 starting with a

column edge, followed by a row edge, and ending with a column edge.

W.l.o.g. we may assume that((0, 0), (k−1, 0)) is a faulty edge and that the row fault is

not incident with any column fault different from((0, 0), (k− 1, 0)). As in Case 1, we

never use edges of the form((k − 1, i), (0, i)) and so we may simply ignore the faulty

edge((0, 0), (k − 1, 0)) and assume that we are working in thek × k grid with wrap-

around edges of the form((i, k− 1), (i, 0)), for i = 0, 1, . . . , k − 1. By translating the

E-cycle rooted at(0, 0) (as illustrated in Fig. 1(a)) by increasing the first component

of every vertex by1, 2, and so on, w.l.o.g. we may assume that: we have a (not

necessarily healthy) Hamiltonian cycleC in Qk
2 that is the E-cycle rooted at(0, 0);

C contains no faulty column edge; andC contains a faulty row edge and this faulty

edge is one of{((i, k− 4), (i, k − 3)), ((i, k − 3), (i, k− 2)), ((i, k − 2), (i, k − 1))},

for somei ∈ {0, 1, . . . , k − 1} (note that ifC contains no faulty row edge then we

can progressively shortenC, as in Case 1, so as to obtain healthy cycles of every even

lengthl wherel is such that4 ≤ l ≤ k2, ‘jumping’ over faults as in Case 1).

Depending upon where the faulty row edge lies, we now amend our cycleC anal-

ogously to the illustration in Fig. 2(a) where: we remove the faulty row edge and its

‘opposite’ (healthy) edge on the same ‘branch’ of the E-cycle; we include the column

edges which join the two edges just removed; and we ‘join’ theresulting disconnected

path to the main cycle by removing a column edge and includingtwo row edges. What

results is a healthy Hamiltonian cycleC that can be progressively shortened just as we

did in Case1, above (and ‘jumping’ over the faulty column edge, should itbe encoun-

tered), so that we obtain a cycle of lengthl for every evenl for which4 ≤ l ≤ k2.

Case 2.2: the3 faults form a path in the form of a column edge followed by a rowedge

followed by a column edge.

W.l.o.g. the faults are((k − 1, 0), (0, 0)), ((0, 0), (0, 1)) and((0, 1), (k − 1, 1)) or the

faults are((k − 1, 0), (0, 0)), ((0, 0), (0, 1)) and((0, 1), (1, 1)). In the first case, we

have a healthy E-cycle rooted at(0, 1) and so the result clearly follows (by proceeding

as in Case 1). In the second case, the Hamiltonian cycle as depicted in Fig. 2(b) can be

progressively shortened so that we obtain a healthy cycle oflengthl for every evenl

for which2k ≤ l ≤ k2 (although we have only depicted this Hamiltonian cycle inQ8
2,
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the analogous cycle inQk
2 , for any evenk ≥ 6, should be clear). It is trivial to obtain

healthy cycles of even length from4 up to2k − 2. The result follows.

(a)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

amended cycle

faulty edges

(b)

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

Figure 2. Amending the E-cycle inQ8
2 and a Hamiltonian cycle.

Lemma 2 Consider a4-ary 2-cubeQ4
2 in which there are at most3 faulty edges but

where every vertex is incident with at least2 healthy edges. There is a cycle of lengthl

for every evenl such that4 ≤ l ≤ 16.

Proof There exists some dimension containing at least2 faulty edges, which w.l.o.g.

we assume is dimension2.

Case 1: all faulty edges are column edges.

For i = 0, 1, 2, 3, letCi be the cycle((i, 0), (i, 1), (i, 2), (i, 3)). Both edges of at least

one of the edge-pairs

• {((0, 0), (1, 0)), ((0, 1), (1, 1))}

• {((0, 0), (3, 0)), ((0, 1), (3, 1))}

• {((0, 2), (1, 2)), ((0, 3), (1, 3))}

• {((0, 2), (3, 2)), ((0, 3), (3, 3))}

are healthy; thus, we can ‘join’C0 to C1 or C3, as appropriate and using these edges,

to obtain a healthy cycle of length8. We can also joinC0 to an edge ofC1 orC3, as ap-

propriate and using these edges, to obtain a healthy cycle oflength6 (see Fig. 3(a) and

Fig. 3(b) for an illustration of these constructions). By continuing in the same way and

using the same reasoning with the resulting cycle of length8, we can ultimately obtain

healthy cycles of every even length from4 up to16 as required.

Case 2: exactly2 faulty edges are column edges.
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W.l.o.g. we may assume that the edge((0, 0), (0, 1)) is faulty. If it is the case that either

((0, 0), (1, 0)) and((0, 1), (1, 1)) are both healthy or((0, 0), (3, 0)) and((0, 1), (3, 1))

are both healthy then we may proceed as we did in Case 1 and iteratively obtain healthy

cycles of all the required lengths. Thus, suppose that1 of the2 edges((0, 0), (1, 0)) and

((0, 1), (1, 1)) is faulty and1 of the2 edges((0, 0), (3, 0)) and((0, 1), (3, 1)) is faulty.

W.l.o.g. we may assume that the3 faulty edges are((0, 0), (0, 1)), ((0, 0), (1, 0)), and

((0, 1), (3, 1)) or they are((0, 0), (0, 1)), ((0, 0), (3, 0)), and((0, 1), (3, 1)) (recall our

conditional fault assumption). In the former case, the Hamiltonian cycle in Fig. 3(c) can

clearly be progressively shortened so that we obtain healthy cycles of lengths14, 12,

10, and8, and it is trivial to find healthy cycles of lengths6 and4. In the latter case,

we have a healthy E-cycle rooted at(0, 1) and so can proceed as we did in Case 1 of

Lemma 1. The result follows.

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

(a)

C 0

C 1

C 3

C 2

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

(b)

C 0

C 1

C 3

C 2

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,3)

(c)

Figure 3. Joining cycles and a Hamiltonian cycle in a faultyQ4
2.

Lemma 3 Consider ak-ary 2-cubeQk
2 , for some oddk ≥ 7, in which there are at

most3 faulty edges but where every vertex is incident with at least2 healthy edges.

There is a cycle of lengthl for every evenl such that4 ≤ l ≤ k2 − 1.

Proof There exists some dimension containing at least2 faulty edges, which w.l.o.g.

we assume is dimension2.

Case 1: all faults are column edges.

Let G be the wrap-around grid induced by the vertices of{(i, j) : 0 ≤ i ≤ k − 2, 0 ≤

j ≤ k − 1}. W.l.o.g. we may assume that((0, 0), (k − 1, 0)) is a faulty edge and

that at least1 other fault lies inG. The constructions of Case 1 of Lemma 1 apply

to G and suffice for us to build a healthy cycle of lengthl for every evenl such that

4 ≤ l ≤ (k − 1)k. Moreover, the cycleC of length(k − 1)k spanningG is such that

it contains a sub-pathP of lengthk − 1 consisting of all the vertices of rowk − 2. If

G does not contain a faulty edge joining a vertex in rowk − 2 to a vertex in rowk − 1

then we can easily obtain a healthy cycle of every even lengthl wherel is such that

(k−1)k ≤ l ≤ k2−1 (by replacing alternating edges((k−2, j)(k−2, j+1)) of P with

paths(((k−2, j), (k−1, j)), ((k−1, j), (k−1, j+1)), ((k−1, j+1), (k−2, j+1)))).

So, suppose that((k− 2, j), (k− 1, j)) is a faulty edge. Thus,G contains only1 fault.

9



By translatingC if necessary, w.l.o.g. we may assume that(k − 2, j) is therth vertex

onP , for some oddr. Hence, by proceeding similarly we can obtain a healthy cycle

of every even lengthl wherel is such that(k − 1)k ≤ l ≤ k2 − 1 (the construction is

depicted in Fig. 4(a)).

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

faulty edge ((5,4),(6,4))

grid G with wrap-around
(0,0)

(0,1) (0,2)

(1,0)

(2,0)

faulty edges

grid G with wrap-around

(a) (b)

Figure 4. Cycles inQ7
2.

Case 2: exactly2 faults are column edges.

Case 2.1: The 3 faults do not form a path of length3 starting with a column edge,

followed by a row edge and ending with a column edge.

W.l.o.g. we may assume that:((0, 0), (k − 1, 0)) is a faulty edge; the row fault

((i, j), (i, j + 1)) is such thati ≤ k−1
2 ; and the row fault is not incident with any

column fault except possibly((0, 0), (k − 1, 0)). Let G be the wrap-around grid in-

duced by the vertices of{(i, j) : 0 ≤ i ≤ k − 2, 0 ≤ j ≤ k − 1}. The constructions

of Case 2.1 of Lemma 1 apply toG and suffice for us to build inG a healthy cycle of

lengthl for every evenl such that4 ≤ l ≤ (k − 1)k. The cycleC of length(k − 1)k

so constructed is such that it contains a sub-pathP of lengthk− 1 consisting of all the

vertices of rowk− 2. If there does not exist a faulty edge joining a vertex in rowk− 2

to a vertex in rowk − 1 then we can easily obtain a healthy cycle of every even length

l wherel is such that(k − 1)k ≤ l ≤ k2 − 1 (just as we did above). If there is a fault

((k − 2, j), (k − 1, j)) then we ensure that when we construct our healthy cycleC of

length(k − 1)k above, the vertex(k − 2, j) is therth vertex onP , for some oddr.

Consequently, we can obtain a healthy cycle of every even length l wherel is such that

(k − 1)k ≤ l ≤ k2 − 1.

Case 2.2: the3 faults form a path in the form of a column edge followed by a rowedge

followed by a column edge.

W.l.o.g. the faults are((k − 1, 0), (0, 0)), ((0, 0), (0, 1)) and((0, 1), (k − 1, 1)) or the

faults are((k − 1, 0), (0, 0)), ((0, 0), (0, 1)) and((0, 1), (1, 1)). In the first case, we

have a healthy E-cycle rooted at(0, 1) and so the result clearly follows (using the above
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arguments). In the second case, the cycle of lengthk2 − 1 as depicted in Fig. 4(b) can

be progressively shortened so that we obtain a healthy cycleof lengthl for every even

l for which 2k ≤ l ≤ k2 − 1 (although we have only depicted this cycle inQ7
2, the

analogous cycle inQk
2 , for any oddk ≥ 7, should be clear). It is trivial to obtain

healthy cycles of every even length from4 up to2k − 2. The result follows.

Lemma 4 Consider a5-ary 2-cubeQ5
2 in which there are at most3 faulty edges but

where every vertex is incident with at least2 healthy edges. There is a cycle of lengthl

for every evenl such that4 ≤ l ≤ 24.

Proof There exists some dimension containing at least2 faulty edges, which w.l.o.g.

we assume is dimension2.

Case 1: all faulty edges are column edges.

W.l.o.g. we may assume that the edge((0, 0), (4, 0)) is faulty and that no other faulty

edge joins a vertex in row0 and a vertex in rowk − 1 (otherwise obtaining the result

is trivial: simply assume we are working in the fault-free5× 5 grid with wrap-around

edges of the form((i, 4), (i, 0)), find a cycle of an appropriate length and then, if

necessary, translate, via an appropriate automorphism, sothat the column fault does

not lie on the translated cycle).

Suppose that2 faulty edges are of the form((i, j), (i + 1, j)), for some fixedi ∈

{0, 1, 2, 3}. W.l.o.g.i = 0 or i = 1. It is trivial to see that ifi = 0 then in the subgraph

of Q5
2 induced by the vertices of{(0, i), (1, i) : 0 ≤ i ≤ 4} there are healthy cycles of

lengths4, 6, 8 and10. Moreover, w.l.o.g. we may assume that the cycle of length10 is

((0, 0), (0, 1), . . . , (0, 4), (1, 4), (1, 3), . . . , (1, 0)). Of course, an analogous statement

can be made if there are2 faulty edges of the form((1, j), (2, j)). Regardless, it is

trivial to extend any such cycle of length10 so as to obtain healthy cycles of all even

lengthsl where4 ≤ l ≤ 24. These extensions can be visualized as in Fig. 5 where a

cycle of length24 is shown that can be progressively shortened so as to obtain healthy

cycles of any even lengthl for which 10 ≤ l ≤ 24 (Fig. 5(a) corresponds to the case

wheni = 0 and Fig. 5(b) to that wheni = 1).

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

faulty edges

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

(b)(a)

Figure 5. Cycles of length24 in Q5
2.
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Suppose that at most1 faulty edge is of the form((i, j), (i + 1, j)), for any fixed

i ∈ {0, 1, 2, 3}. W.l.o.g., either there is a faulty edgee of the form((0, j), (1, j)) or

there is a faulty edgee of the form((1, j), (2, j)) with the other faultf (different from

((0, 0), (4, 0))) of the form((2, j′), (3, j′)). As above, we can construct healthy cycles

of lengths4, 6, 8 and10 using the vertices of rows0 and1 or rows1 and2, respectively,

so as to avoide. W.l.o.g. the faultf different frome lies in column0, 1 or2. Depending

upon wheref lies, at least1 of the cycles in Fig. 6(a), Fig. 6(b) and Fig. 6(c) can be

progressively shortened so as to obtain healthy cycles of all lengths from10 up to24

and so that all faults are avoided (in these3 figures: the different possibilities for the

faultf are shown using dashed lines, with Fig. 6(a) and Fig. 6(b) depicting the situation

whene joins vertices in rows0 and1 and Fig. 6(c) the situation whene joins vertices in

rows1 and2; moreover, w.l.o.g. we have assumed that our cycle of length10 spanning

the vertices on rows0 and1 or on rows1 and2, respectively, omits edges joining

column4 vertices and column0 vertices).

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

faulty edges

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)
(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

(b)(a) (c)

Figure 6. Cycles of length24 in Q5
2.

Case 2: exactly2 faulty edges are column edges.

W.l.o.g. we may assume that the row fault is((4, 0), (4, 4)). If there is a column fault

that is incident with a vertex in row4 then w.l.o.g. we may assume that this fault joins

a vertex in row0 and a vertex in row4 and that the other column fault lies in column0,

1 or 2. This being the case, at least one of the cycles in Fig. 6(a) or Fig. 6(b) is healthy

and yields healthy cycles of any even lengthl for which 4 ≤ l ≤ 24 (note that if the

column fault different from((4, 0), (4, 4)) is ((0, 0), (1, 0)) then the cycle obtained by

mapping the cycle in Fig. 6(a) according to the automorphism(x, y) 7→ (4 − x, y) of

Q5
2 suffices).

Hence, we may assume that the row fault is((4, 0), (4, 4)) and that neither column

fault is incident with a vertex on row4. There exists an E-cycle rooted at(0,m), for

somem ∈ {0, 1, 2, 3, 4}, and spanning the vertices of{(i, j) : 0 ≤ i ≤ 3, 0 ≤ j ≤

4} that consists entirely of healthy edges. This E-cycle, of length 20, can clearly be

extended using vertices in row4 (no matter what the value ofm) so as to obtain cycles

of length22 and24, and the resulting cycle of length24 can be progressively shortened
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so as to obtain healthy cycles of any even lengthl for which 4 ≤ l ≤ 18. The result

follows.

The proof of the following lemma is omitted as it can easily beobtained by hand

by a case-by-case analysis (and the use of appropriate automorphisms).

Lemma 5 Consider a3-ary 2-cubeQ3
2 in which there are at most3 faulty edges but

where every vertex is incident with at least2 healthy edges. There is a cycle of lengthl

for every evenl such that4 ≤ l ≤ 8.

We draw the lemmas of this section together in the following corollary.

Corollary 6 Let k ≥ 3. Consider ak-ary 2-cubeQk
2 in which there are at most3

faulty edges but where every vertex is incident with at least2 healthy edges. There is a

cycle of lengthl for every evenl such that4 ≤ l ≤ k2.

Whenk is even then Corollary 6 is the best we can do, in the sense thatasQk
2 is

bipartite, there cannot be any cycle of odd length. However,whenk is odd we can say

more.

Lemma 7 Consider ak-ary 2-cubeQk
2 , wherek ≥ 7 is odd, in which there are at most

3 faulty edges but where every vertex is incident with at least2 healthy edges. There is

a cycle of lengthl for every oddl such thatk ≤ l ≤ k2.

Proof Suppose that all faults are column faults. By proceeding as in the proof Case

1 of Lemma 3, there is a healthy cycleC, contained within the subgraph induced by

the vertex set{(i, j) : 0 ≤ i ≤ k − 2, 0 ≤ j ≤ k − 1}, of every even lengthl

for which 4 ≤ l ≤ k(k − 1). Moreover, we may clearly arrange that every such

cycle C contains an edge of the form((k − 2, j), (k − 2, j + 1)) so that the path

((k − 2, j), (k − 1, j), (k − 1, j + 1), (k − 2, j + 1)) is healthy. Thus, by joining any

such cycleC (or any edge on rowk − 2) to a cycle of lengthk spanning the vertices

of {(k− 1, 0), (k− 1, 1), . . . , (k− 1, k− 1)}, we can clearly obtain a healthy cycle of

every odd lengthl, wherek ≤ l ≤ k2.

Suppose that there is a row fault but that it is not the case that the faults form a

path consisting of a column fault, followed by a row fault andending with a column

fault. Again, similarly to above, the proof of Case 2.1. of Lemma 3 suffices to enable

us obtain a cycle of every odd lengthl, wherek ≤ l ≤ k2.

Finally, suppose that w.l.o.g. the faults are((k − 1, 0), (0, 0)), ((0, 0), (0, 1)) and

((0, 1), (k−1, 0)) or the faults are((k−1, 0), (0, 0)), ((0, 0), (0, 1)) and((0, 1), (1, 1)).
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In the first case, we have a healthy E-cycle rooted at(0, 1) spanning the vertices of the

first k − 1 rows, which clearly suffices for us to construct a healthy cycle of every odd

length l wherek ≤ l ≤ k2. In the second case, the healthy Hamiltonian cycle as

depicted in Fig. 7 can be progressively shortened so as to obtain a healthy cycle of any

odd lengthl where3k−2 ≤ l ≤ k2 (whilst we have depicted the cycle only forQ7
2, the

construction inQk
2 , wherek ≥ 7 is odd, should be clear). It is trivial to build healthy

cycles of any odd lengthl for whichk ≤ l ≤ 3k − 2 and so the result follows.

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

faulty edges

grid G with wrap-around

Figure 7. A Hamiltonian cycle inQ7
2.

Lemma 8 Consider a5-ary 2-cubeQ5
2 in which there are at most3 faulty edges but

where every vertex is incident with at least2 healthy edges. There is a cycle of lengthl

for every oddl such that5 ≤ l ≤ 25.

Proof The proof is similar to that of Lemma 4 and so we do not present the full details.

There exists some dimension containing at least2 faulty edges, which w.l.o.g. we

assume is dimension2.

Case 1: all faulty edges are column edges.

W.l.o.g. we may assume that the edge((0, 0), (4, 0)) is faulty and that no other faulty

edge joins a vertex in row0 and a vertex in rowk − 1 (if there is a fault joining a

vertex in row0 and a vertex in row4 then take the cycle in Fig. 8(a) and translate it, if

necessary, to avoid any additional column fault before progressively shortening it).

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)
faulty edges

(a)

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

(b)

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

(c)

(0,0)

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

(d)

Figure 8. Cycles of length25 in Q5
2.
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Suppose that2 faulty edges are of the form((i, j), (i + 1, j)), for some fixedi ∈

{0, 1, 2, 3}. W.l.o.g. i = 0 or i = 1. We proceed as in the proof of Lemma 4 with the

cycle as depicted in Fig. 8(a) (this cycle corresponds to the case wheni = 0 and its

image under the automorphism(x, y) 7→ (4− x, y) to that wheni = 1).

Suppose that at most1 faulty edge is of the form((i, j), (i + 1, j)), for any fixed

i ∈ {0, 1, 2, 3}. As in the proof of Lemma 4, w.l.o.g. either there is a faulty edgee

of the form((0, j), (1, j)) or there is a faulty edgee of the form((1, j), (2, j)) with

the other faultf (different from ((0, 0), (4, 0))) of the form ((2, j′), (3, j′)). Sup-

pose thate is of the form((0, j), (1, j)). The cycles in Fig. 8(b) and Fig. 8(c) suf-

fice (if e = ((0, 1), (1, 1)) andf = ((2, 1), (3, 1)) then take the image of the cycle in

Fig. 8(b) under the automorphism(x, y) 7→ (x, 4 − y)). Suppose thate is of the form

((1, j), (2, j)) with the other faultf of the form((2, j′), (3, j′)). The cycle in Fig. 8(d)

suffices (ife = ((1, 3), (2, 3)) then progressively shorten to obtain a healthy cycle of

any odd length from25 down to11, and then build healthy cycles of lengths9, 7 and5

separately).

Case 2: exactly2 faulty edges are column edges.

W.l.o.g. we may assume that the row fault is((0, 0), (0, 4)). If there is a column faulte

that is incident with a vertex in row0 then w.l.o.g. we may assume thate joins a vertex

in row 0 and a vertex in row4 and that the other columnf fault lies in column0, 1

or 2. No matter wheref lies, so long as it is not((0, 0), (1, 0)), one of the cycles in

Fig. 8(a), Fig. 8(b) or Fig. 8(c) suffices. Suppose thatf = ((0, 0), (1, 0)). The cycle in

Fig. 9(a) suffices (note that((0, 0), (4, 0)) is necessarily healthy).

(0,0)
(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(4,0)

(0,3) (0,4)

faulty edges
(a)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(b)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(c)

Figure 9. Cycles of length25 in Q5
2.

Hence, we may assume that the row fault is((0, 0), (0, 4)) and that neither column

fault is incident with a vertex on row0. Consider the cycle in Fig. 9(b) and its image

under the automorphism(x, y) 7→ (x, 4 − y). These cycles suffice to yield the result

when the two column faults do not lie in columns0 or4 (as these cycles can be progres-

sively shortened to cycles of length5 no matter where the2 column faults lie, subject

to them both not lying in columns0 or 4). If the 2 column faults lie in columns0 or 4

then the cycle in Fig. 9(c) suffices to yield the result. The result follows.
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We bring all the results of this section together in the following theorem.

Theorem 9 Consider ak-ary 2-cubeQk
2 in which there are at most3 faulty edges but

where every vertex is incident with at least2 healthy edges.

(a) If k ≥ 3 thenQk
2 is bipancyclic.

(b) If k ≥ 5 is odd thenQk
2 is k-pancyclic.

An equivalent formulation of the above result is thatQk
2 is 3-edge-fault-tolerant

bipancyclic, whenk ≥ 3, and3-edge-fault-tolerantk-pancyclic, whenk ≥ 5 is odd,

with both results assuming the conditional fault assumption that no vertex is incident

with less than2 healthy edges.

Theorem 9 cannot be improved whenk is odd, for it is not difficult to see that when

n ≥ 2, Qk
n has no odd length cycles of length less thank (see also [24]). Also, inQ3

2

there are configurations of3 faulty edges so that even though every vertex is incident

with at least2 healthy edges, no Hamiltonian cycle exists (one of these configurations

is when the edges((0, 0), (0, 1)), ((0, 1), (0, 2)), and((0, 2), (0, 0)) are faulty edges).

We also note that (as was explained in [2]) Corollary 6 is optimal in the sense that there

are configurations of4 faults inQk
2 for which a Hamiltonian circuit does not exist, no

matter what the value ofk (one such configuration is the set of faults{((0, 0), (0, k −

1)), ((0, 0), (k − 1, 0)), ((1, 1), (1, 2)), ((1, 1), (2, 1))}).

4 The general case

In this section, we prove our main result. The proof is long and complicated and so

it might be beneficial if we outline our approach. Essentially, we proceed by induc-

tion and partitionQk
n over a specific dimension so that we can ensure that there is a

certain number of faults in this dimension (Theorem 9 deals with the base case of the

induction). That leaves the rest of the faults spread over the k-ary (n − 1)-cubes that

result from the partition. We would like to apply the induction hypothesis to each of

thesek-ary (n − 1)-cubes and then piece together the resulting cycles to achieve our

required result. However, there are two cases to consider: the first is where, when we

partition, there is somek-ary (n − 1)-cube that does not satisfy our conditional fault

assumption; and the second is where this is not the case. The second case is split into

2 further cases: when the faults not in the dimension over which we have partitioned

are not co-located in the samek-ary (n − 1)-cube; and the second case is when they

are. Throughout, we build different healthy cycles of different (even) lengths, in a very

non-uniform fashion and using a variety of techniques.
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Theorem 10 Let n ≥ 2 and letk ≥ 4 be even. Suppose that thek-ary n-cubeQk
n

has at most4n − 5 faulty edges but is such that every vertex is incident with atleast

2 healthy edges. ThenQk
n contains cycles of any even length from4 up tokn; that is,

Qk
n is (4n− 5)-edge-fault-tolerant-bipancyclic under the conditionalfault assumption

that every vertex is incident with at least2 healthy edges.

Proof Let n ≥ 3 throughout and suppose as our induction hypothesis that theresult

holds forQk
n−1. The base case of our induction follows from Theorem 9. Suppose that

Qk
n has4n−5 faulty edges so that every vertex is incident with at least2 healthy edges.

There exists some dimensioni ∈ {1, 2, . . . , n} such that dimensioni contains at least

3 faults; w.l.o.g. we may assume that dimension1 contains at least3 faults. Partition

Qk
n over dimension1 to obtainQ0, Q1, . . . , Qk−1. There are at most4n− 8 faults not

contained in dimension1. In each of the cases below, we construct healthy cycles of

various lengths in a piecemeal fashion and using a number of different constructions.

Case 1: there exists some vertexx in someQi, wherei ∈ {0, 1, . . . , k − 1}, such that

x is incident with at least2n− 3 faults inQi.

W.l.o.g. we may assume thatx lies inQ0. Note thatx is the only vertex that is incident

with at least2n−3 faults in theQi in which it lies (as otherwise we would have4n−7

faults not lying in dimension1). Suppose that for every pair of neighboursy andz of

x in Q0, with y 6= z, at least1 of the edges(y, n1(y)) and(z, n1(z)) is faulty and at

least1 of the edges(y, nk−1(y)) and(z, nk−1(z)) is faulty. So, there must be at least

(2n − 3) + (2n − 3) + (2n − 3) = 6n − 9 > 4n − 5 faults in total, which yields a

contradiction. W.l.o.g. we may assume that there are distinct edges(x, y) and(x, z)

in Q0 such that(y, n1(y)) and(z, n1(z)) are healthy. AmendQ0 as follows so as to

obtainQ̃0.

• If x is incident with a healthy edge(x,w) in Q0 andy 6= w 6= z then make

(x,w) faulty and make(x, y) and(x, z) healthy.

• If (x, y) (resp.(x, z)) is healthy then make(x, z) (resp.(x, y)) healthy.

• If x is incident only with faults inQ0 then make(x, y) and(x, z) healthy.

Note that inQ̃0, vertexx is incident with2 healthy edges and there are at most4n− 9

faults. Suppose that some other vertexu of Q0 is incident with at most1 healthy edge

in Q̃0. So, we must have that(x, u) is an edge that is healthy inQ0 but which is made

faulty in Q̃0. Thus inQ0, (x, u) is an edge that is the only healthy edge incident with

x and1 of 2 healthy edges incident withu, with the result thatQ0 has at least4n− 7

faults, which yields a contradiction. Hence, we can apply the induction hypothesis
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to Q̃0 and so obtain a Hamiltonian cycleC0 in Q0 containing the (potentially faulty)

edges(x, y) and(x, z) and where all other edges ofC0 are healthy (inQ0).

ConsiderQ1, which contains at most2n − 5 faults. The vertexn1(x) is incident

with at most2n − 2 healthy edges. We obtaiñQ1 by making all healthy edges inci-

dent withn1(x) faulty, apart from(n1(x), n1(y)) and(n1(x), n1(z)) which we make

healthy if necessary. This means introducing at most2n − 4 faults, and soQ̃1 has

at most4n − 9 faults. Suppose that̃Q1 has a vertex that is incident with at most1

healthy edge inQ̃1. As any vertex ofQ1 is incident with at least2 healthy edges in

Q1, this means thatQ1 has at least2n − 4 faults, which yields a contradiction. Thus,

we can apply the induction hypothesis tõQ1 to obtain a Hamiltonian cycleC1 in Q1

that contains the edges(n1(x), n1(y)) and(n1(x), n1(z)) and where all other edges of

C1 are healthy (inQ1). We can joinC0 andC1 by removing the edges(x, y), (x, z),

(n1(x), n1(y)) and(n1(x), n1(z)) and including the edges(y, n1(y)) and(z, n1(z))

to obtain a cycleC01, spanning all vertices ofQ0 andQ1 apart fromx andn1(x), that

has length2kn−1 − 2 and which only contains healthy edges.

In the rest of this case, we construct cycles of every even lengthm, where4 ≤ m ≤

kn, with the cycleC01 providing a base cycle from which to work in many situations.

Moreover, we do this for batches of values form. For example, our first batch of

values, below, is3kn−1 − 2 ≤ m ≤ (k − 1)kn−1 and our second is(k − 1)kn−1 ≤

m ≤ kn−(4n−2); eventually, we cover4 ≤ m ≤ kn (throughout,m is always even).

To aid readability, we partition our constructions according to the techniques used. We

remind the reader thatk ≥ 4 is even andn ≥ 3.

Case 1.1: Consider the pathP1 of lengthkn−1 − 2 from n1(y) to n1(z) on C1. By

partitioning the vertices on this path into batches of3 consecutive vertices and noting

thatbkn−1
−1

3 c > 2n− 2, where2n− 2 is an upper bound on the number of faults not

in Q0, there are edges(u, v) and(v, w) of P1 such that all edges of

{(ni(u), ni+1(u)), (ni(v), ni+1(v)), (ni(w), ni+1(w)), (ni(u), ni(v)),

(ni(v), ni(w)) : 1 ≤ i ≤ k − 1}

are healthy.

Fix α ∈ {2, 3, . . . , k − 1} and let i ∈ {2, 3, . . . , α}. In Qi make all edges

incident with ni(v) faulty apart from the edges(ni(u), ni(v)) and (ni(v), ni(w)),

which are healthy, and denote the amendedQi by Q̃i. Note thatQ̃i has at most

(2n − 5) + (2n − 4) = 4n − 9 faults. Also, if Q̃i has a vertex that is incident with

at most1 healthy edge iñQi then this means thatQi has at least2n− 4 faults, which

yields a contradiction. By the induction hypothesis applied to Q̃i, we obtain a healthy
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Hamiltonian cycleCi in Qi that contains(ni(u), ni(v)) and(ni(v), ni(w)). We can

join the cyclesC01, C2, C3, . . . , Cα using healthy dimension1 edges, as appropriate,

to obtain a cycleDα of length(α+1)kn−1−2 spanning all vertices ofQ0, Q1, . . . , Qα

apart fromx andn1(x). The situation can be depicted as in Fig. 10 (whereα happens

to be odd).

...

x 1n (x)

z

y

1n (z)

1n (y)
v

w

u
2n  (u)

2n  (v)

2n  (w)

3n  (u)

3n  (v)

3n  (w)

α−1n       (u)

α−1n       (v)

α−1n       (w)

αn   (u)

αn   (v)

αn   (w)

01C 2C 3C α−1C αC

Figure 10. Joining cycles together whenα is odd.

Suppose thatα ∈ {2, 3, . . . , k − 3} and thatβ ∈ {0, 1, . . . , kn−1

2 + 1}. Let P0

(resp.Pα) be the path of lengthkn−1 − 2 (resp.kn−1 − 1) onC01 (resp.Cα) from y

to z (resp. fromnα(v) to nα(w), if α is odd, and fromnα(v) to nα(u), if α is even).

By considering alternating edges ofP0 andPα, there are at leastk
n−1

−2
2 + kn−1

2 =

kn−1 − 1 mutually non-incident edges ofP0 andPα. Count the number of such edges

(s, t) for which the path(s, nk−1(s), nk−1(t), t) is healthy, if(s, t) lies onP0, or for

which the path(s, nα+1(s), nα+1(t), t) is healthy, if(s, t) lies onPα. This number is

at leastkn−1 − 1− (2n− 2) > β and so we can chooseβ such edges(s, t) and easily

extendDα, using the appropriate healthy paths of length3, to obtain a healthy cycle of

length(α + 1)kn−1 − 2 + 2β (note thatk − 1 6= α + 1); that is, we have constructed

healthy cycles of any even length from3kn−1 − 2 up to(k − 1)kn−1.

Suppose thatα = k− 2 andβ ∈ {0, 1, . . . , kn−1

2 − (2n− 2)}; thus,Dα has length

(k − 1)kn−1 − 2. By considering alternate edges onPk−2 (as defined in the previous

paragraph), there arek
n−1

2 mutually non-incident edges ofPk−2. Count the number of

such edges(s, t) for which the path(s, nk−1(s), nk−1(t), t) is healthy. This number

is at leastk
n−1

2 − (2n − 2) ≥ β and so we can chooseβ such edges(s, t) and easily

extendDα, using the appropriate healthy paths of length3, to obtain a healthy cycle of

length(k − 1)kn−1 − 2 + 2β; that is, we have constructed healthy cycles of any even

length from(k − 1)kn−1 − 2 up tokn − (4n− 2).

Case 1.2: We shall now construct healthy cycles of any even length from 4 up to

2kn−1. By the induction hypothesis applied toQ1, there is a healthy cycle of any

even length from4 up to kn−1. Let C′

1 be a healthy Hamiltonian cycle inQ1. By

considering alternating edges onC′

1, we havekn−1

2 mutually non-incident edges on

C′

1. For each such edge(s, t), let the set of edgesTs,t = {(ni(s), ni+1(s)), (ni(t),
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ni+1(t)), (ni+1(s), ni+1(t)) : i = 1, 2, . . . , k − 2}. Note that if all edges of someTs,t

are healthy then we can extendC′

1 to obtain healthy cycles of lengthskn−1+2, kn−1+

4, . . . , kn−1+2(k−2) by replacing the edge(s, t)with the paths(s, n2(s), n2(t), t), (s,

n2(s), n3(s), n3(t), n2(t), t) and so on. At leastk
n−1

2 − (2n − 2) of theseTs,t’s

are such that all of the edges inTs,t are healthy, and so we can obtain healthy cy-

cles of any even length fromkn−1 up to kn−1 + 2(k − 2)(k
n−1

2 − (2n − 2)) =

(k − 1)kn−1 − 2(k − 2)(2n − 2) > kn−1 + (4n − 4). Alternatively, suppose that

2n− 1 ≤ β ≤ kn−1

2 . By the induction hypothesis applied toQ1, there is a cycleC′′

1 of

length2β in Q1. Asβ > 2n− 2, there is an edge(s, t) of C′′

1 such that both(s, n2(s))

and(t, n2(t)) are healthy. AmendQ2 so as to ensure that exactly2 edges incident with

n2(s) are healthy, one of which is(n2(s), n2(t)) and the other of which is a healthy

edge ofQ2, and denote this amended version ofQ2 by Q̃2. It is also the case that

every vertex ofQ̃2 is incident with at least2 healthy edges iñQ2. By the induction

hypothesis applied tõQ2, there is a Hamiltonian pathP2 in Q2 from n2(s) to n2(t)

consisting of healthy edges. Thus, we have a healthy cycle oflengthkn−1+2β formed

by joiningC′′

1 toP2. That is, we have constructed a healthy cycle of every even length

from kn−1 + (4n − 2) up to 2kn−1. Hence, we have constructed a healthy cycle of

every even length from4 up to2kn−1.

We can extend any1 of the cycles constructed in the previous paragraph as follows.

In the first construction, instead of starting with the cycleC′

1, start with the cycleC01,

of length2kn−1−2, as constructed earlier. By applying identical reasoning (but noting

that at leastk
n−1

2 − 1 − (2n− 2) of theTs,t’s are such that all of the edges inTs,t are

healthy), we obtain a healthy cycle of any even length from2kn−1 up to2kn−1 − 2 +

2(k − 2)(k
n−1

2 − 1− (2n− 2)) ≥ 2kn−1 − 2 + 4(4
n−1

2 − 1− (2n− 2)) = 2kn−1 +

2.4n−1+2−8n≥ 2kn−1+(4n−4). Alternatively, suppose that2n−1 ≤ β ≤ kn−1

2 .

Instead of starting with the cycleC′′

1 , of length2β, as in the previous paragraph, start

with a cycle, as constructed in the previous paragraph, of lengthkn−1+2β (recall, this

cycle was obtained by joiningC′′

1 to P2) and extend this cycle just as we did above

but using a Hamiltonian path inQ3. That is, we have constructed a healthy cycle of

every even length from2kn−1+(4n− 2) up to3kn−1. Hence, taking into account our

earlier constructions (above and in Case 1.1), we have constructed a healthy cycle of

every even length from4 up tokn − (4n− 2).

Case 1.3: Thus, all that remains is for us to build healthy cycles of any even length from

kn−(4n−4)up tokn (of course, by [2] there is a healthy Hamiltonian cycle inQk
n). Let

β ∈ {kn−1
−(4n−4)
2 ,

kn−1
−(4n−6)
2 , . . . , kn−1

2 }. By arguing exactly as we did earlier, we

can apply the induction hypothesis tõQ0 (as constructed earlier) and obtain a cycleC′

0
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in Q0 of length2β (note that2β > 4). There are two possibilities: either the cycleC′

0

contains both(x, y) and(x, z); or the cycleC′

0 does not containx. In the former case,

we proceed exactly as we did earlier. First, we build a cycleC′

01 of lengthkn−1+2β−2

spanning all vertices ofQ1 apart fromn1(x) and all vertices ofC′

0 apart fromx; and,

second, we extend this cycleC′

01 (as we did in Fig. 10) using (healthy) Hamiltonian

cycles in each ofQ2, Q3, . . . , Qk−1. Thus, we obtain a healthy cycle inQk
n of length

(k−2)kn−1+kn−1+2β−2 = (k−1)kn−1+2β−2; that is, we have constructed healthy

cycles of any even length fromkn − (4n − 2) up tokn − 2. Consequently, we may

assume that the cycleC′

0 does not pass through the vertexx. By considering alternating

edges onC′

0, there is a setX of β mutually non-incident edges(s, t) of C′

0. Consider

the set of2β paths{(s, n1(s), n1(t), t), (s, nk−1(s), nk−1(t), t) : (s, t) ∈ X}. The

number of faults not inQ0 is at most2n−2 and as2β > 2n−2, w.l.o.g. we may assume

that there is an edge(s, t) of C′

0 such that the edges of the path(s, n1(s), n1(t), t) are

healthy. Just as we have done throughout this proof, we can build a healthy Hamiltonian

cycle C′

1 in Q1 containing the edge(n1(s), n1(t)) and joinC′

0 andC′

1 to obtain a

healthy cycleC′

01 of lengthkn−1 + 2β. By continuing this argument iteratively, we

obtain a healthy cycle of length(k − 1)kn−1 + 2β; that is, irrespective of whether the

vertexx lies onC′

0, we have healthy cycles of any even length fromkn − (4n− 4) up

to kn.

Case 2: every vertexx in anyQi, wherei ∈ {0, 1, . . . , k−1}, is such thatx is incident

with at least2 healthy edges inQi.

As in Case 1, we construct cycles of various lengths in batches. There are two possi-

bilities: either everyQi, wherei ∈ {0, 1, . . . , k − 1}, contains at most4n − 9 faults;

or w.l.o.g.Q0 contains4n− 8 faults.

Case 2.1: everyQi, wherei ∈ {0, 1, . . . , k − 1}, contains at most4n− 9 faults.

W.l.o.g. suppose thatQ0 contains most faults fromQ0, Q1, . . . , Qk−1. In particular, if

i ∈ {1, 2, . . . , k − 1} thenQi contains at most2n− 4 faults.

Case 2.1.1: noQi, wherei ∈ {1, 2, . . . , k − 1}, contains more than2n− 5 faults.

By the induction hypothesis applied toQ0, there are healthy cycles of any even length

from 4 up tokn−1. In particular, there is a healthy Hamiltonian cycleC0 in Q0. By

considering alternating edges onC0, we havekn−1

2 mutually non-incident edges on

C0. For each such edge(s, t), let the set of edgesTs,t = {(ni(s), ni+1(s)), (ni(t),

ni+1(t)), (ni+1(s), ni+1(t)) : i = 0, 1, . . . , k − 1}. Note that if all edges of someTs,t

are healthy then we can extendC0 to obtain healthy cycles of lengthskn−1+2, kn−1+

4, . . . , kn−1+2(k−1) by replacing the edge(s, t)with the paths(s, n1(s), n1(t), t), (s,
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n1(s), n2(s), n2(t), n1(t), t) and so on. Alternatively, we can obtain our healthy cy-

cles by extendingC0 by replacing the edge(s, t) with the paths(s, nk−1(s), nk−1(t),

t), (s, nk−1(s), nk−2(s), nk−2(t), nk−1(t), t) and so on. In fact, if there is only1

faulty edge inTs,t then we can clearly still extendC0 using healthy paths of lengths

3, 5, . . . , 2(k2 − 1) + 1 = k − 1. So, letα be the number ofTs,t’s that contain exactly

1 fault and letβ be the number ofTs,t’s that contain at least2 faults. By extending

C0 using different paths, we can clearly obtain healthy cyclesof all even lengths from

4 up to kn−1 + 2(k − 1)(k
n−1

2 − (α + β)) + α(k − 2) = kn − 2(k − 1)β − kα.

As α + 2β ≤ 4n − 5, we have thatβ ≤ (4n−5−α)
2 , and sokn − 2(k − 1)β − kα ≥

kn−2(k−1) (4n−5−α)
2 −kα = kn−α− (k−1)(4n−5) ≥ kn−k(4n−5) ≥ 2kn−1.

Hence, we have constructed a healthy cycle of every even length from4 up to2kn−1.

Let α ∈ {1, 2, . . . , k − 2}. By the induction hypothesis,Q0 has a healthy Hamil-

tonian cycleC0. By considering alternating edges onC0, there arekn−1

2 mutually

non-incident edges ofC0. Count the number of such edges(s, t) for which at least

1 of (s, n1(s)) and(t, n1(t)) is faulty. This cannot be more than4n − 5. However,

as kn−1

2 > 4n − 5, there is at least one edge(s, t) of C0 for which (s, n1(s)) and

(t, n1(t)) are both healthy. Consider the vertexn1(s) in Q1. AmendQ1 by ensuring

that2n − 4 edges incident withn1(s) are faulty so that(n1(s), n1(t)) and exactly1

other edge incident withn1(s) are healthy, and denote the amended version ofQ1 by

Q̃1. Thus,Q̃1 has at most4n− 9 faults. Note that asQ1 contains at most2n− 5 faults

then every vertex iñQ1 is incident with at least2 healthy edges. By the induction hy-

pothesis applied tõQ1, there is a healthy Hamiltonian path inQ1 fromn1(s) to n1(t).

Thus, we have a healthy cycle of length2kn−1 spanning all vertices inQ0 andQ1. We

can continue iteratively in this way (and as we have done previously) so as to obtain a

healthy cycleDα of length(α+ 1)kn−1 spanning the vertices ofQ0, Q1, . . . , Qα.

Suppose thatα 6= k − 2 and letβ ∈ {0, 1, . . . , kn−1

2 }. Let P0 (resp.Pα) be the

sub-path ofDα spanning the vertices ofQ0 (resp.Qα). Both of these paths have length

kn−1 − 1. By considering alternating edges onP0 andPα, there arekn−1 mutually

non-incident edges ofP0 andPα. As kn−1 − (4n − 5) > kn−1

2 , we can chooseβ

mutually non-incident such edges(s, t) so that either the path(s, nα+1(s), nα+1(t), t)

or the path(s, nk−1(s), nk−1(t), t) is healthy, depending upon whether(s, t) lies on

Pα orP0, respectively (note thatk − 1 6= α+ 1). Consequently, we can clearly obtain

a healthy cycle inQk
n of length(α+ 1)kn−1 + 2β; that is, we have cycles of any even

length from2kn−1 up to(k − 1)kn−1.

Suppose thatα = k − 2 and letβ ∈ {0, 1, . . . , kn−1

2 − (4n − 5)}. There are
kn−1

2 mutually non-incident edges on the sub-pathPk−2 of Dk−2 spanning the vertices

of Qk−2. Just as in the previous paragraph, we can chooseβ mutually non-incident
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edges(s, t) onPk−2 so that the path(s, nk−1(s), nk−1(t), t) is healthy. Thus, we have

healthy cycles of any even length from(k−1)kn−1 up tokn−(8n−10). In fact, if the

number of faults joining a vertex inQk−2 to a vertex inQk−1 plus the number of faults

in Qk−1 is γ then we have healthy cycles of any even length from4 up tokn − 2γ. We

shall return to this comment in a moment.

All that remains is for us to obtain healthy cycles of any evenlength fromkn −

(8n − 12) up to kn. Suppose thatk
n−1

2 − (4n − 5) + 3 ≤ β ≤ kn−1

2 . By the

induction hypothesis applied toQ0, there is a healthy cycleC0 of length2β in Q0. By

considering alternating edges onC0, there is a setX of β mutually non-incident edges

of C0. For any edge(s, t) ∈ X , define the pathρk−1(s, t) = (s, nk−1(s), nk−1(t), t)

and the pathρ1(s, t) = (s, n1(s), n1(t), t), and count the number of such paths that

contain at least1 fault. This number is at most4n − 5. So, if 2β > 4n − 5 then we

can find a pathρk−1(s, t) or ρ1(s, t) that consists entirely of healthy edges. However,

2β ≥ kn−1 − (8n− 10) + 6 > 4n− 5, and so w.l.o.g. there is an edge(s, t) of C0 so

that the pathρ1(s, t) = (s, n1(s), n1(t), t) consists entirely of healthy edges. We can

amendQ1 to obtainQ̃1 so thatn1(s) is incident with exactly2n− 4 faults inQ̃1, one

of which is(n1(s), n1(t)). Thus,Q̃1 has at most4n− 9 faults. Moreover, every vertex

in Q̃1 is incident with at least2 healthy edges. By the induction hypothesis applied to

Q̃1, there is a healthy Hamiltonian path fromn1(s) to n1(t) in Q1. We can join this

path withC0, using the healthy edges(s, n1(s)) and(t, n1(t)), so as to obtain a healthy

cycleC01 of lengthkn−1 + 2β. As kn−1

2 > 4n− 5, we can iteratively extendC01 to a

cycle of length(k − 1)kn−1 + 2β; that is, we have healthy cycles of any even length

from kn − (8n− 16) up tokn.

Thus, we only have to find healthy cycles of lengthskn−(8n−12) andkn−(8n−

14). From our comment above, relating to the numberγ of faults joining vertices

in Qk−2 andQk−1 or lying in Qk−1, we may assume thatγ is 4n − 5 or 4n − 6.

By the induction hypothesis applied toQ0, we can find healthy cyclesC′

0 andC′′

0

of lengthskn−1 − 8n + 12 andkn−1 − 8n + 14, respectively. As all but at most1

fault is incident with a vertex ofQk−1, there clearly exists an edge(s, t) of C′

0 or C′′

0

such that(s, n1(s)) and(t, n1(t)) are both healthy. Just as we have done a number

of times so far, we can iteratively extendC′

0 andC′′

0 by using appropriately chosen

Hamiltonian cycles inQ1, Q2, . . . , Qk−1 so as to build healthy cycles inQk
n of lengths

kn − (8n− 12) andkn − (8n− 14). Thus, we have constructed healthy cycles of any

even length from4 up tokn.

Case 2.1.2: someQi, wherei ∈ {1, 2, . . . , k − 1}, contains2n− 4 faults.

It must be the case thatQ0 contains2n− 4 faults,Qi contains2n − 4 faults and this
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accounts for all faults inQk
n apart from the3 faults in dimension1. W.l.o.g. we may

assume thatQ1 contains no faults. By the induction hypothesis applied toQ0, there is

a healthy cycle of length2β in Q0, for anyβ ∈ {2, 3, . . . , kn−1

2 }. LetC0 be the cycle

of lengthkn−1 in Q0 that we have just constructed and letx, y andz be consecutive

vertices on this cycle so that all edges of{(nj(x), nj+1(x)), (nj(y), nj+1(y)), (nj(z),

nj+1(z)), (nj(x), nj(y)), (nj(y), nj(z)) : j = 0, 1, . . . , k − 1} are healthy. Such

consecutive vertices exist whenk > 4 or n > 3 asbkn−1

3 c > (2n − 4) + 3. Sup-

pose thatk = 4 andn = 3 and that there do not exist consecutive verticesx, y and

z with the properties as stated. Note that there are5 faults not lying inQ0. Enu-

merate the vertices ofC0 asu0, u1, . . . , u15, and for0 ≤ l ≤ 15, let Tl be the set of

edges{(nj(ul), nj+1(ul)), (nj(ul+1), nj+1(ul+1)), (nj(ul+2), nj+1(ul+2)), (nj(ul),

nj(ul+1)), (nj(ul+1), nj(ul+2)) : j = 0, 1, . . . , k − 1} (with addition on the indices

of theul’s modulo15). So, each ofT0, T3, T6, T9 andT12 (which are mutually dis-

joint as sets of edges) must contain a fault, and this accounts for all 5 faults. Also,

T14 must contain a fault and so w.l.o.g.T12 must contain a dimension1 fault of the

form (nj(u14), nj+1(u14)). AsT11 must contain a fault,T9 must contain a dimension

1 fault of the form(nj(u11), nj+1(u11)). Arguing in this way yields that there must be

more than3 dimension1 faults which yields a contradiction. Hence, we can findx, y

andz as required.

AmendQi so thatni(y) is incident with exactly2 healthy edges, namely the edges

(ni(x), ni(y)) and(ni(y), ni(z)) which are healthy inQi. Denote this amended ver-

sion ofQi by Q̃i. Note thatQ̃i has at most4n− 8 faults. Suppose that̃Qi has at most

4n − 9 faults and there is a vertex that is incident with at most1 healthy edge. This

vertex must be a neighbour ofni(y) so that this edge is healthy inQi and, further, it

must be incident with2n− 4 faults inQi. So, in order to formQ̃i we must have intro-

duced2n− 4 faults which yields a contradiction as̃Qi only has4n− 9 faults. Thus, if

Q̃i has at most4n− 9 faults then every vertex of̃Qi is incident with at least2 healthy

edges. Alternatively, suppose thatQ̃i has4n−8 faults; so, we have made2n−4 edges

incident withni(y) faulty (all except(ni(x), ni(y)) and(ni(y), ni(z))). In this case,

there might be a vertexw of Q̃i, adjacent toni(y) and different fromni(x) andni(z),

such thatw is incident with exactly1 healthy edge iñQi. If such a vertexw exists then

let the edge(w, ni(y)) revert back to being healthy iñQi; otherwise, choose any faulty

edge(w, ni(y)), whereni(x) 6= w 6= ni(z), and let it revert back to being healthy in

Q̃i. DenoteQ̃i after any additional amendments bŷQi (note thatQ̂i contains at most

4n− 9 faults).

We can now apply the induction hypothesis toQ̃i or Q̂i, as appropriate, so as to

obtain a cycleCi of lengthkn−1. If we are working withQ̃i thenCi contains the
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edges(ni(x), ni(y)) and(ni(y), ni(z)) and all edges ofCi are healthy inQi; if we are

working with Q̂ thenCi contains at least1 of (ni(x), ni(y)) and(ni(y), ni(z)) and

all edges ofCi are healthy inQi. In the latter case, w.l.o.g. we may assume thatCi

contains(ni(x), ni(y)). Hence, whatever the case, we may assume that the cycleCi

contains the edge((ni(x), ni(y)) and that every edge of this cycle is healthy inQi.

For eachj ∈ {0, 1, . . . , k − 1} \ {0, i}, let Cj be the isomorphic copy ofC0 in

Qj. For anyl ∈ {1, 2, . . . , k}, we can clearly join the cyclesCi, Ci+1, . . . , Ci+l−1

(with arithmetic on indices modulok) similarly to as is depicted in Fig. 10 so as to

obtain a cycleDl of lengthl.kn−1, spanning all vertices ofQi, Qi+1, . . . , Qi+l−1, that

is healthy inQk
n. Fix any l ∈ {1, 2, . . . , k − 1} and choose some edge(s, t) of Dl

that lies inQi and for which(ni(s), ni−1(s)) and(ni(t), ni−1(t)) are healthy edges

(such an edge clearly exists ask
n−1

2 > 3). By [24], Qi−1 is edge-bipancyclic (note

that there are no faults inQi−1) and so contains a (healthy) cycle of length2β, for any

β ∈ {2, 3, . . . , kn−1

2 }, that contains the edge(ni−1(s), ni−1(t)). Thus, we obtain a

healthy cycle inQk
n of every even lengthm where4 ≤ m ≤ kn.

Case 2.2: Q0 contains4n− 8 faults.

Choose some fault(x, y) in Q0 such that the path(s, n1(s), n1(t), t) is healthy and

amendQ0 so as to make this fault healthy. Applying the induction hypothesis to this

amended version ofQ0 yields a healthy Hamiltonian pathP0 in Q0 from x to y. We

can join this healthy Hamiltonian path inQ0 to its isomorphic copy inQ1, namely a

healthy Hamiltonian pathP1 from n1(x) to n1(y). Thus, we can joinP0 andP1 to

obtain a healthy cycle of length2kn−1. Let (s, t) be some edge ofP1. We can replace

(s, t) with the paths(s, n2(s), n2(t), t), (s, n2(s), n3(s), n3(t), n2(t), t), and so on, so

as to obtain healthy cycles of lengths2kn−1 + 2, 2kn−1 + 4, . . . , 2kn−1 + 2(k − 2).

Choosing other such edges and extending in the same way clearly enables us to build

healthy cycles of any length from2kn−1 up tokn.

ConsiderQ1 andQ2. Neither contains a fault and there are at most3 faults joining a

vertex inQ1 to a vertex inQ2. Applying the induction hypothesis toQ1 yields healthy

cycles of all even lengths from4 up tokn−1. Let β ∈ {4, 5, . . . , k
n−1

2 } and letC1 be

the cycle inQ1 of length2β just constructed. There is an edge(s, t) of C′ such that

the edges(s, n2(s)) and(t, n2(t)) are both healthy. By applying the induction hypoth-

esis to an appropriately amended version ofQ2, we can obtain a healthy Hamiltonian

cycleC2 in Q2 containing the edge(n2(s), n2(t)). Hence, we obtain healthy cycles

of all even lengths fromkn−1 + 8 up to 2kn−1. In order to obtain cycles of lengths

kn−1 + 2, kn−1 + 4 andkn−1 + 6, we extend a healthy Hamiltonian cycle inQ1 by

replacing up to3 edges of this cycle of the form(s, t) with healthy paths of the form
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(s, n2(s), n2(t), t). The result follows.

It was proven in [2] that there are configurations of4n − 4 faulty edges inQk
n,

wherek ≥ 3, so that even if every vertex is incident with at least2 healthy edges,

there does not exist a Hamiltonian cycle. Such a configuration is obtained by taking

a cycle(x, y, u, v) in Qk
n and ensuring that all edges incident withx are faulty apart

from (x, y) and(x, u) and that all edges incident withu are faulty apart from(u, y)

and(u, v). This amounts to4n − 4 faults. If x andu both lie on some cycle in (the

faulty)Qk
n then this cycle is necessarily(x, y, u, v). Consequently, the value of4n− 5

for the number of faulty edges inQk
n in the statement of Theorem 10 is optimal.

5 Conclusions

We end by presenting our conclusions and some open problems.Our main result is

thatQk
n with 4n − 5 faulty edges, but where every vertex is incident with at least 2

healthy edges, is bipancyclic, for every evenk greater than or equal to4. Ideally,

we would like to prove that whenQk
n has4n − 5 faulty edges so that every vertex is

incident with at least2 healthy edges,Qk
n is bipancyclic for allk ≥ 3 (no matter what

the parity ofk). However, consider the proof of Theorem 10. There are a number of

constructions within that proof that have drawbacks whenk is odd. For example, we

often extend a specific cycleC, of some (even) lengthm, by iteratively joining it to

(even length) Hamiltonian cycles in somek-ary(n− 1)-cubes contained withinQk
n so

as to obtain healthy cycles of all even lengths fromm up tokn in Qk
n. Whenk is odd,

this technique cannot be applied in such an elementary way asthe Hamiltonian cycles

of thek-ary (n− 1)-cubes have odd length. Alternatively, extending our cycleC with

healthy cycles of (even) lengthkn−1 − 1 leaves us with a vertex in each suchk-ary

(n− 1)-cube not contained within the resulting cycle. Also, by thesame token, when

we extend a healthy cycle using healthyTs,t’s (as in the proof of Theorem 10), because

k is odd we find that we have vertices not appearing on our cycles. It would appear

that a significant amount of extra work has to be done (and possibly new techniques

established) if one wishes to prove thatQk
n is bipancyclic whenk is odd. The same can

be said as regards proving thatQk
n is k-pancyclic whenk is odd.

As remarked at the end of the previous section, Theorem 10 is optimal. The argu-

ment for optimality is that used in [2] to rule out Hamiltonian cycles in certain config-

urations of more that4n− 5 faults inQk
n. It would be interesting to know in a situation

where there are more than4n− 5 faulty edges inQk
n (andQk

n still satisfies our condi-

tional fault assumption), whether there is an upper bound ofthe formkn −m so that
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whenk ≥ 4 is even, there are healthy cycles of all lengths from4 up tokn − m (of

course, we would prefer thatm is constant or at least a very slow growing function of

n and possiblyk). From the constructions in [2], the smallestm can be is2.

Related to pancyclicity and bipancyclicity are two concepts. A graphG onn ver-

tices ispanconnected(resp. bipanconnected) if for any two distinct verticesu andv

of G, there is a path of every lengthl for which dist(u, v) ≤ l ≤ n (resp. for which

dist(u, v) ≤ l ≤ n andl anddist(u, v) have the same parity), wheredist(u, v), for 2

verticesu andv of a graph, is the length of a shortest path joiningu andv. Both pan-

connectivity and edge-pancyclicity (resp. bipanconnectivity and edge-bipancyclicity)

imply pancyclicity (resp. bipancyclicity). It was proven in [24] that whenk ≥ 3

andn ≥ 2, Qk
n is bipannconnected and edge-bipancyclic. It would be interesting to

know as to whether the main result of this paper can be extended to encompass bi-

pannconnectivity or edge-bipancyclicity. However, we note that in order to prove such

extensions, we will need radically different techniques tothose employed in the proof

of Theorem 10 which are decidedly non-uniform.

Finally, we mention the study of pancyclicity in arbitrary graphs which has a long

history. In [5], Bondy made the following ‘meta-conjecture’: Almost any non-trivial

condition on a graph which implies that the graph is Hamiltonian also implies that the

graph is pancyclic (there may be a simple family of exceptional graphs). The classical

result giving such a condition is Dirac’s Theorem [12] that says that every graph on

n ≥ 3 vertices that has minimum degree at leastn
2 is Hamiltonian, and which was

extended by Bondy [4] who showed that the same assumptions imply that a graph is

eitherKn

2
,n
2

or pancyclic. Other conditions include: if the connectivity of a graphG

is no less than the independence number ofG andG is triangle-free thenG contains

a cycle of every length from4 up ton unlessG is a cycle of length5 or G = Kk,k,

for somek [21] (Erdös [9] had shown that if a graph is such that its connectivity is

no less than its independence number then the graph is Hamiltonian); and ifG is a

Hamiltonian graph with minimum degree at least600 times the independence number

of G thenG is pancyclic [20]. Of course, results such as these are of no use to us when

dealing withk-aryn-cubes but it would be interesting to study which conditionson an

arbitrary (Hamiltonian) bipartite graph force the graph tobe bipancyclic.
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