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Abstract

We present a model of a ‘gas of circles’: regions in the imagman composed of a un-
known number of circles of approximately the same radiu® irtodel has applications
to medical, biological, nanotechnological, and remotessgnimaging. The model is con-
structed using higher-order active contours (HOACS) ireoitd include non-trivial prior

knowledge about region shape without constraining topoldbge main theoretical contri-
bution is an analysis of the local minima of the HOAC energat @llows us to guarantee
stable circles, fix one of the model parameters, and condinairest. We apply the model
to tree crown extraction from aerial images of plantatiddamerical experiments both
confirm the theoretical analysis and show the empirical it@nze of the prior shape in-
formation.

Key words. tree, crown, extraction, aerial image, higher-order vaatontour, gas of
circles, prior, shape

1 Introduction

Forestry is a domain in which image processing and compusesn/techniques
can have a significant impact. Resource management andreatige require in-
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formation about the current state of a forest or plantatitunch of this information
can be summarized in statistics related to the size andmpkaweof individual tree
crowns €.g. mean crown area and diameter, density of the trees). Clyréms
information is gathered using expensive field surveys ameé-tonsuming semi-
automatic procedures, with the result that partial infaiorafrom a number of
chosen sites frequently has to be extrapolated. An imageepsing method capa-
ble of automatically extracting tree crowns from high resioin aerial or satellite
images and computing statistics based on the results woeddlg aid this domain.

The tree crown extraction problem can be viewed as a speasal of a general
image understanding problem: the identification of theaedt in the image do-
main ) corresponding to some entity or entities in the scene. lera@solve this
problem in any particular case, we have to construct, evemyfimplicitly, a prob-
ability distribution on the space of regioné/M® I, K'). This distribution depends on
the current image dataand on any prior knowledgg” we may have about the re-
gion or about its relation to the image data, as encoded ilikidléhood P(/| R, K)
and the prior PR|K) appearing in the Bayes’ decomposition of I, K) (or
equivalently in their energies In P(/|R, K') and — In P(R|K)). This probability
distribution can then be used to make estimates of the reggoare looking for.

In the automatic solution of realistic problems, the prinowledgek’, and in par-
ticular prior knowledge about the ‘shape’ of the region, esalibed by PR|K), is
critical. The tree crown extraction problem provides a gegdmple: particularly
in plantations R takes the form of a collection of approximately circular neated
components of similar size. There is thus a great deal of griowledge about the
region sought. The question is then how to incorporate suoh knowledge into
a model forR. If the model does not include enough prior knowledge, it id
necessary for the user to provide it.

The simplest prior information concerns the smoothnes$i@frégion boundary.
For example, the Ising model and many active contour model3 B] use a com-
bination of region boundary length and region area as thiar pnergies, but cur-
vature can be used to&][ Such models are integrals over the region boundary of
a function of various derivatives of the boundary. In consewge, they capture lo-
cal differential geometric information, correspondinddoal interactions between
boundary points, but can say nothing more global about tapesiof the region.
To go further, one must introduce longer range interactidhgre are two princi-
pal ways to do this: one is to introduce hidden variablessmgiwhich the original
variables of interest are (more or less) independent. Malging over the hidden
variables then introduces interactions between the aigiariables. Another is to
include explicit long-range interactions between theioagvariables.

The first approach has been much investigated, in the formnoplate shapes and
their deformations. Here a probability distribution or areryy is defined based
on a distance measure of some kind between regions. Onenrege template,



is fixed, while the other is the variable. Template regions may be learned from
examples 4, 5, 6, 7, 8, 9] or fixed by hand 10]; similarly the distance function
maybe based, for example, on the learned covariance of ssfaausistribution p,

6, 7, 8, 9], or chosera priori [4, 10, 11]. The most sophisticated methods use the
kernel trick to define the distance as a pullback from a highedsional space,
thereby allowing more complex behaviouf?]. Multiple templates may also be
used, corresponding to a mixture modg2,[13)].

These methods assign high probability to regions ‘closesddain points in the
space of regions. The set of regions with high probabilithiss in some sense
bounded. As such, it is difficult to construct models of tlyiget that favour regions
for which the topology, and in particular the number of cartted components, is
unknowna priori, because the set of regions in this case is unbounded, andtcan
be described as variations around one or more templatese &aleemany problems,
however, for which the topology is unknovenpriori, for example, the extraction
of networks, or the extraction of an unknown number of olgjecia particular type
from astronomical, biological, medical, or remote sensingges. For this type of
prior knowledge, a different type of model is needed. Higbreler active contours
(HOACS) are one such category of models.

HOACSs [14] take the second approach mentioned above. They introdyiieie
long-range interactions between region boundary poirgsewergies that contain
multiple integrals over the boundary, thus avoiding the okéemplate shapes.
HOAC energies can be made intrinsically Euclidean invdyiand, as required by
the above analysis, incorporate sophisticated prior métion about region shape
without necessarily constraining region topology. As wither methods incorpo-
rating significant prior knowledge, it is not necessary todduce extra knowledge
via an initialization close to the target region: a genemitialization suffices, thus
rendering the method quasi-automatit4][applied the method to road extraction
from satellite and aerial images using a prior which favawetvork-like objects.

In this paper, we describe a HOAC model of a ‘gas of circldss tnodel favours
regions composed of aa priori unknown number of circles of a certain radius.
For such a model to work, the circles must be stable to smetlligmtions of their
boundariesij.e. they must be local minima of the HOAC energy, for otherwise a
circle would tend to ‘decay’ into other shapes. The main tagcal contribution of
this paper is an analysis of the stability of local minimaled HOAC energy that
allows us to ensure that circles of a given radius are stéladdition, it allows
us to fix one of the model parameters in terms of the othersi@iednstrain the
rest. The type of calculation has wide applicability to ataetive contour models
and to other shapes. For example, it shows that no stable @rpossible using
a classical active contour model containing only boundangth and interior area
terms. The calculation proceeds by performing a functidaglor expansion of the
HOAC energy around a circle (or more generally, any shape) tfleen demanding
that the first order term be zero for all perturbations, arad titne second order term



be positive semi-definite. Gradient descent experimenigyube HOAC energy,
with parameters fixed using the stability calculationsdoice stable circles of the
expected radii, thereby demonstrating empirically theecehce between the sta-
bility calculations and the numerical computations usegractice to minimize the
energy.

The model has many potential applications, to medicalpigichl, physical, and re-
mote sensing imagery in which the entities to be identifiedcancular. We choose
to apply it to the problem of extracting tree crowns from akirnagery, using the
‘gas of circles’ model as a prior energy, and an approprikétithood. We will see
that the extra prior knowledge included in the ‘gas of csti@odel permits the
separation of trees that cannot be separated by simplepagtbuch as maximum
likelihood or classical active contours. We focus on imagfeglantations and or-
chards, for which the model is well adapted. The case of géferests is much
harder, and will be left for future work.

In the next section, we present a brief introduction to HOAlGssection3, we
describe the ‘gas of circles’ HOAC model, the stability aiséd, and the results
of geometric experiments. In sectidh we apply the new model to tree crown
extraction. We describe a likelihood energy for trees, &ied present experimental
results on synthetic data and on aerial images. We conatugtiorb, and discuss
some open issues with the model.

2 Higher order active contours

HOAC models, like all active contour models, represent &red by its boundary,
OR, a closedl-chain+ in the image domaif ([15] is a useful reference for the
following discussion). Although region boundaries cop@sd to a special subset
of closedl-chains known as domains of integration, active contourgiee them-
selves are defined for generakhains. It is convenient to use this more general
context to distinguish HOAC energies from classical activetours, because it al-
lows for notions of linearity to be used to characterize tbmplexity of energy
functionals.

Using this representation, HOAC energies can be definedlas/fo[14]. Let v be
al-chain in2, and domy be its domain. Then™ : (dom~y)" — Q" is ann-chain

in 2". We define a class dfi — p)-forms on{2" that arel-forms with respect to
(n — p) factors and)-forms with respect to the remainingfactors (by symmetry,

it does not matter which factors). These forms can be pulled backdom~)™ by
~". The Hodge duals of the 0-form factors with respect to the induced metric on
dom~ can then be taken independently on each such factor, thyertmg them

to 1-forms, and rendering the whole form arfform on(dom-~)”. Thisn-form can
then be integrated ofdom-)".



In the (n, p) = (n,0) cases, we are simply integrating a generébrm on the im-
age ofy™ in Q", thus defining a linear functional on the space.afhains inQ2",
and hence an™-order monomial on the space bfchains in(). Taking arbitrary
linear combinations of such monomials then gives the spapelgnomial func-
tionals on the space dfchains. By analogy we refer to the genefal p) cases
as ‘generalizech"-order monomials’ on the space bfchains inS, and to arbi-
trary linear combinations of the latter as ‘generalizedypomial functionals’ on
the space of-chains inQ2. HOAC energies are generalized polynomial functionals.
Standard active contour energies are generalizedr functionals onl-chains in
this sense, hence the term ‘higher-order’.

The(1, 1) case is simply the boundary length in some metric. Tlhé) case gives
the region area in some metric. An interesting applicatidh®(2, 2) case to topol-
ogy preservation is described bif. We specialize to thé2, 0) case. Lett" be an
2-form onQ)". Using the antisymmetry of together with the symmetry of?, we

can write the energy functional in this case as

BO) = [ F = o S F =[] dedd () <>v<t’>>~7g>l,)

whereF (z, 2'), for each(z, z') € 2, is a2 x 2 matrix, ¢ is a coordinate on dom,
andr = 7 is the tangent vector tp.

By imposing Euclidean invariance on this term, and addingdr terms, 4] de-
fined the following higher-order active contour prior:

Ey(y) = AcL(7) + acA(y / dtdt' r(t') - 7(t) D(RLT)),  (2.2)

where L is the boundary length functionall is the interior area functional and
R(t, ") = |y(t) —~(¢")] is the Euclidean distance betwee(t) and~(t'). [14] used
the following interaction functiod:

1(] _z=d _ 1 ﬂ(z d) —
(I)<Z) = 2(1 ¢ Sln ) |Z d| <€, (23)
H(d—z) else.

In this paper, we use this same interaction function with ¢, but other monoton-
ically decreasing functions lead to qualitatively similasults.



3 The'gasof circles model

For certain ranges of the parameters involved, the en&gy favours regions in
the form of networks, consisting of long narrow arms with rEpgmately parallel
sides, joined together at junctions, as describedlia. It thus provides a good
prior for network extraction from images. This behaviouegmot persist for all
parameter values, however, and we will exploit this paramé&tpendence to create
amodel for a ‘gas of circles’, an energy that favours regemmposed of aa priori
unknown number of circles of a certain radius.

For this to work, a circle of the given radius must be staliiaf ts, it must be a
local minimum of the energy. In secti@l, we show that stable circles are indeed
possible provided certain constraints are placed on thenpeters. More specifi-
cally, we expand the enerdy, in a functional Taylor series to second order around
a circle of radius-. The constraint that the circle be an energy extremum then re
quires that the first order term be zero, while the constitaiat it be a minimum
requires that the operator in the second order term be y@siimi-definite. These
requirements constrain the parameter values. In subs&:8owe present numer-
ical experiments usingy that confirm the results of this analysis.

3.1 Sability analysis

We denote a member of the equivalence class of maps repgresdéme 1-chain
defining the circle byy,, and a small perturbation byy. To second order,

Eq(7) = Eg(70 +07) = Eg(v0) + (071> >m ( 15 IMMO- (3.1)

where(-|-) is a metric on the space ofchains.

Sincey, represents a circle, it is easiest to express it in terms lair poordinates
r, 0 on Q. For a suitable choice of coordinate 6, a circle of radius, centred
on the origin is then given by, (t) = (ro(t), 0o(t)), wherery(t) = 1o, 0(t) = t,
andt € [—m,m). We are interested in the behaviour of small perturbations-
(0r,06). Because the energy, is defined orl-chains, tangential changes-rdo
not affect its value. We can therefore 8ét= 0, and concentrate ofr.

On the circle, using the arc length parameterizatjghe integrands of the different
terms inEy are functions of — ¢’ only; they are invariant to translations around the
circle. In consequence, the second derivatitEy/ 5 (t)d~(t') is also translation
invariant, and this implies that it can be diagonalized ie Bourier basis of the
tangent space at. It is thus easiest to perform the calculation by expressing



terms of this basisir(t) = 3, are’*, wherek € {m/r, : m € Z}. Below, we
simply state the resulting expansions to second order i tler the three terms
appearing in equatior2(2). Details can be found in appendix

The boundary length and interior area of the region are divesecond order by

L(%) :/:rdt I7()] :27rr0{1+—+ Zkz\a |2} (3.2)

T r(0) 9
A(y) = /_7r d@/o dr' v’ = qrd 4+ 2wroag + 7T2|ak| (3.3)

Note that there are no stable solutions using these terms.afor the circle to be
an extremum, we requirg-2m + ac2rrg = 0, which tells us thatye = —A\¢ /7.
The criterion for a minimum is, for each, A\crok? + o= > 0. We must have
Ac > 0 for stability at high frequencies. Substituting faf, the condition becomes
Ao (rok? —rgt) > 0. Substitutingk = m/r, gives the conditiom? — 1 > 0: the
zero frequency perturbation is never stable.

The quadratic term can be expressed to second order as

/_7T dt dt' G(t,t') = 27 /7r dp Foo(p) + 4mag /7T dp Fio(p)
+227T|ak|2{[ / dp Fa(p) + dp@ TR By (p )]
k
~ [2inok [ dperirm )] + [k: [ v F<p>}} . (34

whereG(t',t') = 7(t') - 7(t) ®(R(¢,t')). The F;; are functionals ofb (and hence
of d), and functions of-,, as well as op.

Combining equations3(2), (3.3), and @.4), we find, up to second order:

1
Ey(vo + 07) = eo(ro) + agei(ro) + 5 Z|ak|2€2(k‘>7’o) ; (3.5)
%

where

60(7‘0) = 271')\07’0 + WOéch — WﬁcGoo(To)
e1(ro) = 2wA¢ + 2macry — 2w BcGho(ro)
ea(k,mo) = 2mAcrok? + 2mac

— 277'60 [2G20(7’0) + Ggl(k’, 7“0) — 2iT0k’G23(k’, 7“0) + 7’81{52G24(]{5, ’T’Q)} 5



whereG,; = [7_dp e~k [.(p). Note that there are no off-diagonal terms
linking a;, anda, for k # k’: the Fourier basis diagonalizes the second order term.

3.1.1 Parameter constraints

Note that a circle of any radius is always an extremum for pem frequency
perturbations {;, for £ # 0), as these Fourier coefficients do not appear in the
first order term (this is also a consequence of invariancettstations around the
circle). The condition that a circle be an extremum dgras well ¢; = 0) gives
rise to a relation between the parameters:

)\C -+ Oéc’f’AO

“Guli) eo

BC()\CUO‘Ca,ﬁO) =

where we have introducedq to indicate the radius at which there is an extremum,
to distinguish it fromrg, the radius of the circle about which we are calculating the
expansiond.l). The left hand side of figuré shows a typical plot of the energy

of a circle versus its radiusg, with the 5~ parameter fixed using the equatiég)
with \c = 1.0, « = 0.8, andr, = 1.0. The energy has a minimum &t = 7

as desired. The relationship betwegrand 5 is not quite as straightforward as it
might seem though. As can be seen, the energy also has a nmx@hsome radius.
Itis nota priori clear whether it will be the maximum or the minimum that appea
atry. If we graph the positions of the extrema of the energy of deiagainsti

for fixed a¢, we find a curve qualitatively similar to that shown in fig@réthis

is an example of a fold catastrophe). The solid curve reptegbe minimum, the
dashed the maximum. Note that there is indeed a uniguder a given choice of,.
Denote the point at the bottom of the curve(l;ﬁgo), féo)). Note that ats- = ﬁéo),

the extrema merge and foi < ﬁéo), there are no extrema: the energy curve is
monotonic because the quadratic term is not strong enougfetcome the shrink-
ing effect of the length and area terms. Note also that thenmoirn cannot move
belowr, = r(()o). This behaviour is easily understood qualitatively in terofi the
interaction function in equatio2(3). If 2ry < d—e¢, the quadratic term will be con-
stant, and no force will exist to stabilize the circle. In erdo use equatior3(6)
then, we have to ensure that we are on the upper branch of figure

Equation 8.6) gives the value of- that provides an extremum ef with respect

to changes of radiug, at a givenr, (e;(79) = 0), but we still need to check that
the circle of radius®, is indeed stable to perturbations with non-zero frequency,
i.e. thatey(k, ) is non-negative for alk. Scaling arguments mean that in fact the
sign ofe, depends only on the combinatiofis= r,/d andac = (d/\¢)ac. The
equation fore, can then be used to obtain boundsignin terms ofr. (Details of
these calculations and bounds can be found ) The right hand side of figurg
shows a plot oé,(k, 79) againstiyk for the same parameter values used for the left
hand side, showing that it is non-negative for/gh.
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Fig. 1. Plots ofey againstry and e; againstryk. Left: the energy of a circley plotted
against radiug for A\c = 1.0, « = 0.8, and5¢c = 1.39 calculated from equatior8(6)
with 7o = 1.0. (The parameters ob ared = 1.0 ande = 1.0, but note that it is not
necessary in general thdt= 73.) The function has a minimum at, = 7, as desired.
Right: the second derivative dfg, ez, plotted againstyk for the same parameter values.
The function is non-negative for all frequencies.
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Fig. 2. Schematic plot of the positions of the extrema of thergy of a circle versugc.

We call the resulting model, the energly with parameters chosen according to the
above criteria, the ‘gas of circles’ model.

3.2 Geometric experiments

To illustrate the behaviour of ‘gas of circles’ model, inglsiection we show the re-
sults of some experiments usiig (there are no image terms). FiguBshows the
result of gradient descent usirg; starting from various different initial regions.
(For details of the implementation of gradient descent fghér-order active con-
tour energies using level set methods, sk&.] In the first column, four different
initial regions are shown. The other three columns show tta¢ fegions, at conver-
gence, for three different sets of parameters. In particthia three columns have
7o = 15.0, 10.0, and5.0 respectively.



In the first row, the initial shape is a circle of radis® pixels. The stable states,
which can be seen in the other three columns, are circles tivthdesired radii
in every case. In the second row, the initial region is coregosf four circles
of different radii. Depending on the value &f, some of these circles shrink and
disappear. This behaviour can be explained by looking atdifyuAs already noted,
the energy of a circle, has a maximum at some raditg.. If an initial circle has
a radius less than,ay, it will ‘slide down the energy slope’ towards = 0, and
disappear. If its radius is larger thap,s, it will finish in the minimum, with radius
7o. Thisis precisely what is observed in this second experiniethe third row, the
initial condition is composed of four squares. The squave$ve to circles of the
appropriate radii. The fourth row has an initial conditi@mgposed of four differing
shapes. The nature of the stable states depends on thenmdlativeen the stable
radius,r,, and the size of the initial shapes.#f is much smaller than an initial
shape, this shape will ‘decay’ into several circles of radiu

(Initial) (7o =15)  (Fo=10)  (fo = 5)

Fig. 3. Experimental results using the geometric term: trst &iolumn shows the initial
conditions; the other columns show the stable states fawwsichoices of the radius.

4 Likelihood energy and experiments

In this section, we apply the ‘gas of circles’ model to therastion of trees from
aerial images. We give a brief state of the art for tree cromtraetion, and then

10



present the likelihood energy we use in sectdad In sectiord.3 we describe tree
crown extraction experiments on aerial images and compereedsults to those
found using a classical active contour model. In sectiah we examine the ro-
bustness of the method to noise using synthetic images.ilitngnates the prin-
cipal failure modes of the model, which will be further dissad in sectiod, and
which point the way for future work. In sectigh5, we illustrate the importance of
prior information via tree crown separation experimentspnthetic images, and
compare the results to those obtained using a classicaeantour model.

4.1 Previouswork

The problem of locating, counting, or delineating indivaditrees in high resolution
aerial images has been studied in a number of papers. FompéxdiB] observes
that trees are brighter than the areas separating theml imcana of the image
are found using & x 3 filter, and the ‘valleys’ connecting them are then found
using a5 x 5 filter. The tree crowns are subsequently delineated usingddvel
rule-based method designed to find circular shapes, butseitie small variations
permitted. While the method is quite effective in separatiees, the size of the
filters results in an significant overestimation of the sizéhe trees. 19] concen-
trates on spruce tree detection using a template matchittgoohelhe 3D shape of
the tree is modelled using a generalized ellipsoid, whiilerination is modelled
using the position of the sun and a clear-sky model. Temphatiehing is used to
calculate a correlation measure between the tree imagemedby the model and
the image data. The local maxima of this measure are treatéea candidates,
and various strategies are then used to eliminate falsé\mssiThis method pro-
vides 3D information about the trees, but requires specifidets for each species
of tree, as well as knowledge of a number of extraneous paeasyéor example,
illumination. [20] decompose an image into multiple scales, and then defiee tre
crown boundary candidates at each scale as zero crossitigsomvex grey-scale
curvature. Edge segment centres of curvature are thenasedstruct a candidate
tree crown region at each scale. These are then combinedliffezent scales and
a final tree crown region is grown.

The above methods use a serieshoc steps rather than a single unified model,
which makes identifying the assumptions behind the methfidwdt. Closer in
spirit to the present work is that o], which models the collection of tree crowns
by a marked point process, where the marks are circles @se#ii An energy is
defined that penalizes, for example, overlapping shap&scantrols the param-
eters of the individual shapes. Compared to the work desdriib this paper, the
method has the advantage that overlapping trees can beeeped as two separate
objects, but the disadvantage that the tree crowns are aocispty delineated due
to the small number of degrees of freedom for each mark.

11



4.2 Likelihood energy and gradient descent

In order to couple the region modeg), to image data, we need a likelihood /PR, K).
The images we use for the experiments are coloured infr&@Hel) (mages. Orig-

inally they are composed of three bands, correspondinghtgug green, red,

and near infrared (NIR). Analysis of the one-point statstf the image in the
region corresponding to trees and the image in the backdrashows that the
‘colour’ information does not add a great deal of discrintiimg power compared
to a ‘greyscale’ combination of the three bands, or indeed\itiR band on its own.

We therefore model the latter.

The image resolution is- 0.5m/pixel, and tree crowns have diameters of the order
of ten pixels. Little dependence remains between the patdlss resolution, which
means, when combined with the paucity of statistics witl@ohetree crown, that
pixel dependencies.€. texture) are very hard to use for modelling purposes. We
therefore model the interior of tree crowns using a Gausdigtnbution with mean

w and covariance?dr, whered 4 is the identity operator on images anc ().

The background is very varied, and thus hard to model in aiggegay. We use
a Gaussian distribution with meanand variance?d. In general,u > ji, and
o < 0, trees are brighter and more constant in intensity than de&dround. The
boundary of each tree crown has significant inward-poiningge gradient, and
although the Gaussian models should in principle take dafeisy we have found
in practice that it is useful to add a gradient term to thelilied energy. Our
likelihood thus has three factors:

PUI|R,K) = Z"" gr(Ir) gr(1z) for(Ior) -

wherely andl are the images restricted foand R respectively, angi andgp
are proportional to the Gaussian distributions alreadygilesd,i.e.

1

—Ingalln) = [ d 5 (Inlx) = ) (4.1)

and similarly forgz. The functionfsr depends on the gradient of the imagjeon
the boundary R:

—mmﬂb@=a4mgmm»mu> (4.2)

wheren is the unnormalized outward normal4oThe normalization constaut is
thus a function ofs, o, 1, 3, and);. Z is also a functional of the regiaR. To a first
approximation, it is a linear combination 6f0R) and A(R). It thus has the effect
of changing the parameteks: andac in Ey. However, since these parameters are

12



essentially fixed by hand (the criteria described in se@idnlonly allow us to fix
B and constrainy:), knowledge of the normalization constant does not change
their values, and we ignore it once the likelihood paransdtewve been learnt.

The full model is then given by (R) = Ei(I, R) + E4(R), where

Ei(I,R) = —Ingr(Ir) —Ingr(Ig) — In for(lar) -

The energy is minimized by gradient descent. The functialeivatives of all
terms except the quadratic term Iy are standard. The functional derivative of
the quadratic term gives rise to a gradient descent forandiy

0Dy = [ R n)B(RLY)) (4.3)

or dom-~y

where R(t,t') = (y(t) — ~(t))/|v(t) — ~(t)|. To evolve the region we use the
level set framework ofg2] extended to the demands of nonlocal forces such as
equation 4.3) [14].

The computational complexity of the algorithm is unknowtheut a bound on the
number of iterations. However, the complexity of one itemrais easily analysed.
Equation 4.3) involves an integration over the contour for each contauntp The
worst case complexity is thu§(L?), where L is the length of the contour. The
implementation however, only integrates over those paiittsin interaction range
(i.e. d+¢), and so the complexity depends on the average leraftbontour within
interaction range of a point, becomidg( Ll). Typically [ is a local quantity that
does not depend on the size of the image. In our applicatipan the other hand,
is proportional to the number of trees, which is in turn pmdjemal to the size of
the imagen. So the complexity of one iteration {3(n).

4.3 Tree crown extraction from aerial images

In this section, we present the results of the applicatiothefabove model t60
cm/pixel colour infrared aerial images of poplar standsated in the ‘Sadne et
Loire’ region in France. The images were provided by the Enedational Forest
Inventory (IFN). As stated in sectiof.2, we model only the NIR band of these
images, as adding the other two bands does not increaserdisating power. The
tree crowns in the images are8—10 pixels in diameteri.e. ~ 4-5m.

In the experiments, we compare our model to a classical ectntour model
(Bc = 0). The parameters, o, i, anda were the same for both models, and were
learned from hand-labelled examples in advance. The clssitive contour prior
model thus has three free parameters - andac), while the ‘gas of circles’

13



model has sixX;, Ac, ac, Bc, d andrg). We fixedr, based on our prior knowledge
of tree crown size in the images, ardvas then set equal tg. Onceac and \¢
have been fixed;j is determined by equatio3©). There are thus three effective
parameters for the HOAC model. In the absence of any methdebto \;, ac
and )¢, they were fixed by hand to give the best results, as with npgdtcations
of active contour models. The values xf \o anda- were not the same for the
classical active contour and HOAC models; they were chaseive the best pos-
sible result for each model separately. The initial regio@li experiments was a
rounded rectangle slightly bigger than the image domaie. iiitage values in the
region exterior to the image domain were sefitto ensure that the region would
shrink inwards.

Figure4 illustrates the first experiment. On the left is the datayshg a regularly
planted poplar stand. The result is shown on the right. Wéiegbthe algorithm to
the central part of the image only, for reasons that will bgl&xed in sectiorb.

Figure5illustrates a second experiment. On the left is the dataiffge shows a
small piece of an irregularly planted poplar forest. Thegmas difficult because the
intensities of the crowns are varied and the gradients aredal. In the middle is the
best result we could obtain using a classical active con@uithe right is the result
we obtain with the ‘gas of circles’ modél.Note that in the classical active contour
result several trees that are in reality separate are mengedingle connected
components, and the shapes of trees are often rather distarhereas the prior
geometric knowledge included wheén#£ 0 allows the separation of almost all the
trees and the regularization of their shapes.

Figure®6 illustrates a third experiment. Again the data is on the teg best result
obtained with a classical active contour model is in the neidand the result with
the ‘gas of circles’ model is on the right. The trees are cldsgether than in
the previous experiment. Using the classical active cantbe result is that the
tree crown boundaries touch in the majority of cases, despgir separation in
the image. Many of the connected components are malformedadbackground
features. The HOAC model produces more clearly delinea¢edcrowns, but there
are still some joined trees. We will discuss this furtherantgon5.

Figure7 shows a fourth experiment. Again the data is on the left, #s tesult ob-
tained with a classical active contour model is in the middiel the result with the
‘gas of circles’ model is on the right. Again, the ‘gas of é&€ model better delin-
eates the tree crowns and separates more trees, but some fiegas remain also.

I Unless otherwise specified, in the figure captions the vabfi¢ise parameters learned
from the image are shown when the data is mentioned, in the fqQr, o, n,5).
The other parameter values are shown when each result isiomedt in the form
(Nis Aey ac, Bo,d, o), truncated if the parameters are not present. All parameiieles
are truncated to two significant figures. Unless otherwiseifipd, images were scaled to
take values ino, 1]. The region boundary is shown in white.
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Figure | CD% | FP% | FN% | CD% | FP % | FN %
Figure5 85 0 15 97 0 3
Figure6 | 96.2 | 2.8 1.9 97.7 0 2.3
Figure7 | 89.4 5 5.6 955 | 0.6 3.9

Table 1

Results on real images using a classical active contour Inflef® and the ‘gas of circles’
model (right). CD: correct detections; FP: false positiye: false negatives (two joined
trees count as one false negative).

The HOAC model selects only objects of the size chosen, dofdlse positives
involving small objects do not occur.

Fig. 4. Left: real image with a planted forestIFN (0.3, 0.06, 0.05, 0.05). Right: the result
obtained using the ‘gas of circles’ modéR9, 5.88,5.88,5.64, 4, 4).

Table 1 shows the percentages of correct tree detections, falstvpesand false
negatives (two joined trees count as one false negativ&girea with the classi-
cal active contour model and the ‘gas of circles’ model ingRperiments shown
in figuresb, 6, and7. The ‘gas of circles’ model outperforms the classical activ
contour in all measures, except in the number of false negmin the experiment
in figure®6.

The typical runtime of the ‘gas of circles’ model in these esiments (image size
0O(100) pixels) is of the order of ten minutes on a normal personalpasr. In our
implementation, this is approximately ten times slowenthaing classical active
contours.

4.4 Noisy synthetic images

In this section, we present the results of tests of the seitygivf the model to noise
in the image. Fifty synthetic images were created, eacheitltircles with radius

15



Fig. 5. From left to right: image of poplait®IFN (0.73, 0.11, 0.23, 0.094); the best re-
sult with a classical active contoyB80, 13, 73); result with the 'gas of circles’ model
(100, 6.7,39,31,4.2,4.2).

Fig. 6. From left to right: image of popla®IFN (0.71, 0.075, 0.18, 0.075); the best result
with a classical active contoy4000, 100, 500); result with the 'gas of circles’ model
(1500, 25,130, 100, 3.5, 3.5).
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Fig. 7. From left to right: image of popla®IFN (0.71, 0.075, 0.18, 0.075); the best result
with a classical active contou35000, 100, 500); result with the 'gas of circles’ model
(1200, 20,100, 82, 3.5, 3.5).

8 pixels and ten circles with radius5 pixels, placed at random but with overlaps
rejected. Six different levels of white Gaussian noisehwitage variance to noise
power ratios from-5 dB to 20 dB, were then added to the images to geneiate
noisy images. Six of these, corresponding to noisy versidriie same original
image, were used to leagn o, i, ands. The model used was the same as that used
for the aerial images, except that was set equal to zero. The parameters were
adjusted to give a stable radiuspixels.
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(0.90, 0.028, 0.11, 0.028, 100, 100, 170) (0.85,0.043, 0.16, 0.043, 33, 33, 58) (0.78,0.061, 0.23,0.062, 13, 13, 22)

(0.71,0.081, 0.31,0.081, 4,4, 6.9) (0.65, 0.098, 0.37,0.099, 1.4, 1.4, 2.5) (0.60,0.11, 0.43,0.11, 0.51,0.51, 0.89)

Fig. 8. One of the synthesized images, with six differenelewf added white Gaussian
noise. Reading from left to right, top to bottom, the imagdarece to noise power ratios
are20, 15, 10, 5, 0, —5 dB. Parameter values in the forim, o, ii, 5, A, e, Bc) are shown
under the six images. The parametéi@dr, were fixed ta8 throughout.

The results obtained on the noisy versions of one of the fiftgges are shown
in figure 8. Table2 shows the proportion of false negative and false positikeeci
detections with respect to the total number of potentiallyectly detectable circles
(500 = 50 x 10), as well as the proportion of ‘joined circles’, when twoaobés are
grouped together (an example can be seen in the bottom nigige of figureB).
Detections of one of the smaller circles (which only occdraefew times even at
the highest noise level) were counted as false positives niéthod is very robust
with respect to all but the highest levels of noise. The firsbrs occur at dB,
where there is 2% false positive rate. Ab dB, the error rate is- 10%, i.e. one
of the ten circles in each image was misidentified on average-5 dB, the total
error rate increases to 30%, rendering the method not very useful.

Note that the principal error modes of the model are falsatipes and joined
circles. There are good reasons why these two types of eomirgte. We will
discuss them further in sectidn
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Noise (dB)| 20| 15| 10 | 5

FP% | 0| 0|0|2|64|27.6
FN% |o|0|o0|0| 4] 36
J% olo|o|o| o] 23

Table 2
Results on synthetic noisy images. FP, FN, J: percentagiedsefpositive, false negative,
and joined circle detections respectively, with respedhé&potential total number of cor-
rect detections.

4.5 Circle separation: comparison to classical active contours

In a final experiment, we simulated one of the most importanises of error in
tree crown extraction, and examined the response of clssitive contour and
HOAC models to this situation. The errors, which involvengd circles similar to
those found in the previous experiment, are caused by théhacin many cases
nearby tree crowns in an image are connected by regions woifisant intensity
with significant gradient with respect to the backgroundstforming a dumbbell
shape. Calling the bulbous extremities, the ‘bells’, araljtin between them, the
‘bar’, the situation arises when the bells are brighter tiharbar, while the bar is in
turn brighter than the background, and most importantly,gradient between the
background and the bar is greater than that between the Bdharells.

The first row of figured shows a sequence of bells connected by bars. The inten-
sity of the bar varies along the sequence, resulting inmiffegradient values. We
applied the classical active contour and ‘gas of circlesteisto these images.

The middle row of figuré® shows the best results obtained using the classical active
contour model. The model was either unable to separate tidnal circles, or

the region completely vanished. The intuition is that ifrthis insufficient gradient

to stop the region at the sides of the bar, then there willladésimsufficient gradient

to stop the region at the boundary between the bar and the belthat the region
will vanish. On the other hand, if there is sufficient gradibaetween the bar and
the background to stop the region, the circles will not beasasied, and a ‘bridge’

will remain between the two circles.

The corresponding results using the ‘gas of circles’ modekaown in the bottom
row of figure9. All the circles were segmented correctly, independenhefgray
level of the bar. Encouraging as this is, it is not the whoteystas we indicated in
sectiond.4. We make a further comment on this issue in sechion

2 ‘Bar’ and ‘bell’ refer to image properties; we use ‘bridgaida‘circle’ to refer to the
corresponding pieces of a dumbbell-shaped region.
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Fig. 9. Results on circle separation comparing the HOAC ‘giasircles’ model to the
classical active contour model. Top: original images. Ttterisity of the bar takes values
equally spaced betweei and 128 from left to right; the background &55; the bells are
0. In the middle: the best results obtained using the clalsaatave contour mode(8, 1, 1).
Either the circles are not separated or the region vanigiegsom: the results using the ‘gas
of circles’ model(2, 1, 5,4.0, 8,8). All the circles are segmented correctly.

5 Conclusion

Higher-order active contours allow the inclusion of sofib&ed prior information

in active contour models. HOACs are particularly well agaib cases in which the
topology is unknowra priori. In this paper, we have shown via a stability analysis
that a HOAC energy can be constructed that describes a ‘gasctds’, that is, it
favours regions composed of arpriori unknown number of circles of a certain
radius. The requirement that circles be stabée)ocal minima of the energy, fixes
one of the prior parameters and constrains the others.

The ‘gas of circles’ model has many uses in computer visi@hiaage processing.
Combined with a suitable likelihood, we have applied it te fhroblem of tree

crown extraction from aerial images of plantations. It paris better than simpler
techniques such as maximum likelihood and classical actméours. In particular,

it is better able to separate trees that appear joined indteettlan is a classical
active contour model.

The model is not without its issues, however. First, the oatiajoon time is too
long. We are currently working on a phase field HOAZ3|[version of the ‘gas
of circles’ model that we hope will significantly reduce thie. Second, there
are two significant error modes, as shown in the noise exeartisrof sectior.4:

circles are found where the data does not ostensibly sufipanrt (‘phantom cir-
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cles’), and two circles may be joined into a dumbbell shapk reever separated.
We discuss these in turn.

The first issue is that of ‘phantom’ circles. Circles of regiy are local minima of
the prior energy. It is the effect of the data that converthstonfigurations into
global minima. Were we able to find the global minimum of thergsy, this would
be fine. However, gradient descent finds only a local minimlims can create
problems in areas where the data does not support the ecestéircles because
a circle, once formed during gradient descent, cannot gesapunless there is an
image force acting on it. We thus find that circles can appedrramain even
though there is no data to support them.

The second issue is that of joined circles, discussed imosetb. Although the cur-
rent HOAC model is better able to separate circles than aicksactive contour,
it still fails to do so in a number of cases, leaving a bridgeveen the circles. The
issue here is a delicate balance between the parametect) mhst be adjusted so
that the sides of the bridge attract one another, thus brgdke bridge, and so that
nearby circles repel one another at close range, so thatittgeldoes not re-form.
Again, this is at least in part an algorithmic issue. Evehd two separated circles
have a lower energy than the joined circles, separation reegrrbe achieved due
to a local minimum caused by the bridge.

We propose to solve the first problem via a more detailed gimad analysis of the
circle energy that will allow us to remove the local minimaisimg the problem,

and the second via an in-depth analysis of the energy of timbdHall configuration.

Both these studies should lead to further constraints opain@meters, which is a
desirable goal in itself.
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A Detailsof stability computations

In this appendix, we give most of the steps involved in reagleiquation3.5). The
equation of the region boundary is

V(1) = 0(t) + 07(t) = (r(1),0(t)) = (ro(t) +or(t), 6o(t)) , (A1)
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wherevyy(t) = (ro(t), 00(t)) = (ro,t), or(t) = Sp are™*, andk € {m/ry: m €
Z}. The components of are

o(t) =1 and i(t) = or(t) =Y agiroke™ . (A.2)
k

The tangent vector field is given by

7(t) = 7(t)8, + 0(t)dy . (A.3)
Al Linear terms

To compute the length, we need the magnitude taf second order. The metric in
polar coordinates igs* = dr? + r?d6?, so we have that-(¢)|* = 7(t)* + r(t)? by
equationsA.2). Substituting from equatiorA(1) and A.2) gives

IT()]? =15 + 210 > are™ " + 3 apap e F TN — p2Ek) (A.4)
2 o k!

Taking the square root, expanding it@$ + z ~ 1 + %x — éxz, and keeping terms
to second order in the, then gives

) 1 ) /
I7(t)| = ro {1 +>° %ew’“ b S arap kK et tE >t} : (A.5)
k

0 kK’

Using equationA.5), the boundary length is then given to second order by

™ 1
L) = [t (o) :2wr0{1+?+52k2|ak|2} ,
. , T2l

where we have used the reality ®f to seta_;, = a;, wherex indicates complex
conjugation, and orthonormality of the Fourier basis eletse

We can write the interior area of the region as
™ r(0) , T 1 9
A(y):/ d@/ drr:/ a0 5r°(0)
- 0 —7

Thus, using equationg\(1), and again using orthonormality, we have that

A(y) =g + 2mroag + Y _|ak]* (A.6)
k
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A.2 Quadraticterms

To compute the expansion of the quadratic term in equafid) for E,, we need
the expansions aof(t) - 7(t') and®(R(t,t')).
A.2.1 Inner product of tangent vectors

The tangent vector is given by equatioh §), but we must take care ast) and
7(t') live in different tangent spaces, att) and~(t') respectively. It is easiest to
convert the tangent vectors to the Euclidean coordinates,b3s = cos(0)d, +
sin(6)0, andg, = —rsin(#)0, + r cos(#)0, as these basis vectors are preserved by
parallel transport. Taking the inner product then gives

77 = cos(0 — O)[rg + rodr + 167" + Srér’ + 5'7"5'7",]
+ sin(f' — 9)[7"05'7"/ — rodr + 8ror — oror'] .

where unprimed quantities are evaluated atd primed quantities at

A.2.2 Interaction function

First, we expand?(t, t'). The squared distance betweg') and~(t) is given by

[y (t") — (1)
= [(ro+67") cos(8') — (1o +97) cos(0)]> 4 [(ro +7") sin(0') — (ro +07) sin(9)]? ,

which after expansion gives

1 5r% + 6r"? — 2 cos(At)dror’
2 no__ 201 _ !
R(t,t") = 2ri(1 cos(At)){l + - (0r +o0r") + 22(1 — cos(AD) ;

whereAt = 0" — 0 =t — t. Expandingy/1 + z ~ 1 + %x — éxz to second order
and collecting terms, we then find

A(AY)

To

R(t,t') = 2ro|sin(At/2)| + [sin(At/2)|(or + or') + (6r —or')? , (A7)

whereA(z) = cos?(z/2)|sin(z/2)|7L.

Expanding®(z) in a Taylor series to second order, and then substitutiftgt’) for
z using the approximation in equatioA.{), and keeping only terms up to second
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order iny~ then gives

B(R(t, 1)) = B(Xo) + |sin %’ &' (Xo)(6r + 61

+ %A(At)@’(XO)(M — ) % sin2<%)<1>”(Xo)(5r L5, (A8)

To

whereX, = 2rg|sin(At/2)].
A.3 Combining terms

Using the above equations gives

G(t,t) =
12 cos(At)P(X,)

Foo, even

+ (07 + 01" rocos(88) { @(Xo) + 79

sin %‘ (ID'(XO)}

F1p, even
+ (87 = 67) ro sin(AH)®(Xo)
F11, odd
+ (512 + 61") ry cos(At) {iA(At)@’(XO) + %ro sin’ (%) &"(X,) + |sin %‘ (I)’(XO)}

Fs0, even

A 1 A
+ (8r6r") cos(At) {cI)(XO) + 21y |sin 7t‘ @' (Xo) — SroA(AN(Xo) + 13 sin? <7t> <I>”(X0)}

Fy1, even

sin Tt sin( A (Xo)

+ (57"5/ — 57"5'7") 0

F>s, 0dd

+ (57“5'7“/ — 0r'6r) sin(At) {@(Xo) + 7o [sin %‘ @’(XO)}

F237 odd
+ (8767 ) cos(At)B(X,) -
—_— ——m———

Fsy, even

where thel';; denote the functions appearing in the term&oénd ‘odd’ and ‘even’
refer to parity under exchange oandt'. Each line, and henag, is symmetric in

t andt’, as it should be. We can now substitute the expression&-fanddr in
terms of their Fourier coefficients, and calcul#fé_dtdt’ G(t,t"). We note that in
the terms involvingFg, Fi1, Fo, Fye, and Fy3, the presence of the symmetric or
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antisymmetric factors iar andor’ simply leads to a doubling of the value of the
integral for one of the terms in these factors, due to theesponding symmetry or
antisymmetry of ther” functions. We therefore only need to evaluate one of these
integrals for the relevant terms.

Because thd’s depend only om\¢, the resulting integrals can be reduced, via a
change of variables = At, to integrals ovep. For I, and Fo, we have

//_7r dt dt’ Foo(t' —t) = //_7r dp dt’ Fy(p) = 27T/_7r dp Foo(p) ,

and

/ " dt dt’ or(t) Fio(t' —t) = / / " dt dt’ > age™M Fio(t —t)
- —r P

— Z ay //7T dp dt’ erok=p+t) Fio(p)
k, -

_ Zak /ﬂ dt/ 6ir0kt’ /7r dp 6—imkp FlO(p)
k, — —

= ap2mi(k) /7r dp e~k By (p)
k, -

= 2may /_: dp Fip(p) -

The calculations for the other terms proceed in a very smféahion, using the

same change of variable and the orthonormality of the Fohasis. We merely list
the results (full details may be found i24]):

//W dt dt' or(t) Fiy(t' —t) =0
[ drat 5r2() Bl — ) =20 Slanl? [ dp Fan()
- 3 -7
/ " dt dt or(t)or(t') Fu(t' —t) = 2w |ag|® / ! dp e By (p)
—r 3 -7

/_ﬂ dt dt' 5r(t)or(t) Fas(t' —t) = 0

/ / "t dt or(8)or(t) Fas(t —t) = —21 S |ag Pirok / " dp e g (p)
—T7 k —T

/ / "t dt Sr(t)or(t) Fau(t —t) = 21 Y |an*r2k? / " dp e Fy(p) .
—r & —7

Using these results then gives equati@), which in combination with equa-
tions 3.2 and @.3), gives equationd.5).
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