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Abstract

We present a model of a ‘gas of circles’: regions in the image domain composed of a un-
known number of circles of approximately the same radius. The model has applications
to medical, biological, nanotechnological, and remote sensing imaging. The model is con-
structed using higher-order active contours (HOACs) in order to include non-trivial prior
knowledge about region shape without constraining topology. The main theoretical contri-
bution is an analysis of the local minima of the HOAC energy that allows us to guarantee
stable circles, fix one of the model parameters, and constrain the rest. We apply the model
to tree crown extraction from aerial images of plantations.Numerical experiments both
confirm the theoretical analysis and show the empirical importance of the prior shape in-
formation.

Key words: tree, crown, extraction, aerial image, higher-order, active contour, gas of
circles, prior, shape

1 Introduction

Forestry is a domain in which image processing and computer vision techniques
can have a significant impact. Resource management and conservation require in-
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formation about the current state of a forest or plantation.Much of this information
can be summarized in statistics related to the size and placement of individual tree
crowns (e.g. mean crown area and diameter, density of the trees). Currently, this
information is gathered using expensive field surveys and time-consuming semi-
automatic procedures, with the result that partial information from a number of
chosen sites frequently has to be extrapolated. An image processing method capa-
ble of automatically extracting tree crowns from high resolution aerial or satellite
images and computing statistics based on the results would greatly aid this domain.

The tree crown extraction problem can be viewed as a special case of a general
image understanding problem: the identification of the regionR in the image do-
mainΩ corresponding to some entity or entities in the scene. In order to solve this
problem in any particular case, we have to construct, even ifonly implicitly, a prob-
ability distribution on the space of regions P(R|I,K). This distribution depends on
the current image dataI and on any prior knowledgeK we may have about the re-
gion or about its relation to the image data, as encoded in thelikelihood P(I|R,K)
and the prior P(R|K) appearing in the Bayes’ decomposition of P(R|I,K) (or
equivalently in their energies− lnP(I|R,K) and− lnP(R|K)). This probability
distribution can then be used to make estimates of the regionwe are looking for.

In the automatic solution of realistic problems, the prior knowledgeK, and in par-
ticular prior knowledge about the ‘shape’ of the region, as described by P(R|K), is
critical. The tree crown extraction problem provides a goodexample: particularly
in plantations,R takes the form of a collection of approximately circular connected
components of similar size. There is thus a great deal of prior knowledge about the
region sought. The question is then how to incorporate such prior knowledge into
a model forR. If the model does not include enough prior knowledge, it will be
necessary for the user to provide it.

The simplest prior information concerns the smoothness of the region boundary.
For example, the Ising model and many active contour models [1, 2, 3] use a com-
bination of region boundary length and region area as their prior energies, but cur-
vature can be used too [1]. Such models are integrals over the region boundary of
a function of various derivatives of the boundary. In consequence, they capture lo-
cal differential geometric information, corresponding tolocal interactions between
boundary points, but can say nothing more global about the shape of the region.
To go further, one must introduce longer range interactions. There are two princi-
pal ways to do this: one is to introduce hidden variables, given which the original
variables of interest are (more or less) independent. Marginalizing over the hidden
variables then introduces interactions between the original variables. Another is to
include explicit long-range interactions between the original variables.

The first approach has been much investigated, in the form of template shapes and
their deformations. Here a probability distribution or an energy is defined based
on a distance measure of some kind between regions. One region, the template,
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is fixed, while the other is the variableR. Template regions may be learned from
examples [4, 5, 6, 7, 8, 9] or fixed by hand [10]; similarly the distance function
maybe based, for example, on the learned covariance of a Gaussian distribution [5,
6, 7, 8, 9], or chosena priori [4, 10, 11]. The most sophisticated methods use the
kernel trick to define the distance as a pullback from a high-dimensional space,
thereby allowing more complex behaviours [12]. Multiple templates may also be
used, corresponding to a mixture model [12, 13].

These methods assign high probability to regions ‘close’ tocertain points in the
space of regions. The set of regions with high probability isthus in some sense
bounded. As such, it is difficult to construct models of this type that favour regions
for which the topology, and in particular the number of connected components, is
unknowna priori, because the set of regions in this case is unbounded, and cannot
be described as variations around one or more templates. There are many problems,
however, for which the topology is unknowna priori, for example, the extraction
of networks, or the extraction of an unknown number of objects of a particular type
from astronomical, biological, medical, or remote sensingimages. For this type of
prior knowledge, a different type of model is needed. Higher-order active contours
(HOACs) are one such category of models.

HOACs [14] take the second approach mentioned above. They introduce explicit
long-range interactions between region boundary points via energies that contain
multiple integrals over the boundary, thus avoiding the useof template shapes.
HOAC energies can be made intrinsically Euclidean invariant, and, as required by
the above analysis, incorporate sophisticated prior information about region shape
without necessarily constraining region topology. As withother methods incorpo-
rating significant prior knowledge, it is not necessary to introduce extra knowledge
via an initialization close to the target region: a generic initialization suffices, thus
rendering the method quasi-automatic. [14] applied the method to road extraction
from satellite and aerial images using a prior which favoursnetwork-like objects.

In this paper, we describe a HOAC model of a ‘gas of circles’: the model favours
regions composed of ana priori unknown number of circles of a certain radius.
For such a model to work, the circles must be stable to small perturbations of their
boundaries,i.e. they must be local minima of the HOAC energy, for otherwise a
circle would tend to ‘decay’ into other shapes. The main theoretical contribution of
this paper is an analysis of the stability of local minima of the HOAC energy that
allows us to ensure that circles of a given radius are stable.In addition, it allows
us to fix one of the model parameters in terms of the others, andto constrain the
rest. The type of calculation has wide applicability to other active contour models
and to other shapes. For example, it shows that no stable circle is possible using
a classical active contour model containing only boundary length and interior area
terms. The calculation proceeds by performing a functionalTaylor expansion of the
HOAC energy around a circle (or more generally, any shape), and then demanding
that the first order term be zero for all perturbations, and that the second order term
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be positive semi-definite. Gradient descent experiments using the HOAC energy,
with parameters fixed using the stability calculations, produce stable circles of the
expected radii, thereby demonstrating empirically the coherence between the sta-
bility calculations and the numerical computations used inpractice to minimize the
energy.

The model has many potential applications, to medical, biological, physical, and re-
mote sensing imagery in which the entities to be identified are circular. We choose
to apply it to the problem of extracting tree crowns from aerial imagery, using the
‘gas of circles’ model as a prior energy, and an appropriate likelihood. We will see
that the extra prior knowledge included in the ‘gas of circles’ model permits the
separation of trees that cannot be separated by simpler methods, such as maximum
likelihood or classical active contours. We focus on imagesof plantations and or-
chards, for which the model is well adapted. The case of general forests is much
harder, and will be left for future work.

In the next section, we present a brief introduction to HOACs. In section3, we
describe the ‘gas of circles’ HOAC model, the stability analysis, and the results
of geometric experiments. In section4, we apply the new model to tree crown
extraction. We describe a likelihood energy for trees, and then present experimental
results on synthetic data and on aerial images. We conclude in section5, and discuss
some open issues with the model.

2 Higher order active contours

HOAC models, like all active contour models, represent a regionR by its boundary,
∂R, a closed1-chainγ in the image domainΩ ([15] is a useful reference for the
following discussion). Although region boundaries correspond to a special subset
of closed1-chains known as domains of integration, active contour energies them-
selves are defined for general1-chains. It is convenient to use this more general
context to distinguish HOAC energies from classical activecontours, because it al-
lows for notions of linearity to be used to characterize the complexity of energy
functionals.

Using this representation, HOAC energies can be defined as follows [14]. Let γ be
a 1-chain inΩ, and domγ be its domain. Thenγn : (domγ)n → Ωn is ann-chain
in Ωn. We define a class of(n − p)-forms onΩn that are1-forms with respect to
(n − p) factors and0-forms with respect to the remainingp factors (by symmetry,
it does not matter whichp factors). These forms can be pulled back to(domγ)n by
γn. The Hodge duals of thep 0-form factors with respect to the induced metric on
domγ can then be taken independently on each such factor, thus converting them
to 1-forms, and rendering the whole form ann-form on(domγ)n. Thisn-form can
then be integrated on(domγ)n.
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In the(n, p) = (n, 0) cases, we are simply integrating a generaln-form on the im-
age ofγn in Ωn, thus defining a linear functional on the space ofn-chains inΩn,
and hence annth-order monomial on the space of1-chains inΩ. Taking arbitrary
linear combinations of such monomials then gives the space of polynomial func-
tionals on the space of1-chains. By analogy we refer to the general(n, p) cases
as ‘generalizednth-order monomials’ on the space of1-chains inΩ, and to arbi-
trary linear combinations of the latter as ‘generalized polynomial functionals’ on
the space of1-chains inΩ. HOAC energies are generalized polynomial functionals.
Standard active contour energies are generalizedlinear functionals on1-chains in
this sense, hence the term ‘higher-order’.

The(1, 1) case is simply the boundary length in some metric. The(1, 0) case gives
the region area in some metric. An interesting application of the(2, 2) case to topol-
ogy preservation is described by [16]. We specialize to the(2, 0) case. LetF be an
2-form onΩn. Using the antisymmetry ofF together with the symmetry ofγ2, we
can write the energy functional in this case as

E(γ) =
∫

(∂R)2
F =

∫

(domγ)2
(γ×γ)∗F =

∫∫

(domγ)2
dtdt′ τ(t) ·F (γ(t), γ(t′)) ·τ(t′) ,

(2.1)

whereF (x, x′), for each(x, x′) ∈ Ω2, is a2× 2 matrix,t is a coordinate on domγ,
andτ = γ̇ is the tangent vector toγ.

By imposing Euclidean invariance on this term, and adding linear terms, [14] de-
fined the following higher-order active contour prior:

Eg(γ) = λCL(γ) + αCA(γ)−
βC

2

∫∫

dt dt′ τ(t′) · τ(t) Φ(R(t, t′)) , (2.2)

whereL is the boundary length functional,A is the interior area functional and
R(t, t′) = |γ(t)−γ(t′)| is the Euclidean distance betweenγ(t) andγ(t′). [14] used
the following interaction functionΦ:

Φ(z) =







1
2

(

1− z−d
ǫ

− 1
π
sin π(z−d)

ǫ

)

|z − d| < ǫ ,

H(d− z) else.
(2.3)

In this paper, we use this same interaction function withd = ǫ, but other monoton-
ically decreasing functions lead to qualitatively similarresults.
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3 The ‘gas of circles’ model

For certain ranges of the parameters involved, the energy (2.2) favours regions in
the form of networks, consisting of long narrow arms with approximately parallel
sides, joined together at junctions, as described by [14]. It thus provides a good
prior for network extraction from images. This behaviour does not persist for all
parameter values, however, and we will exploit this parameter dependence to create
a model for a ‘gas of circles’, an energy that favours regionscomposed of ana priori
unknown number of circles of a certain radius.

For this to work, a circle of the given radius must be stable, that is, it must be a
local minimum of the energy. In section3.1, we show that stable circles are indeed
possible provided certain constraints are placed on the parameters. More specifi-
cally, we expand the energyEg in a functional Taylor series to second order around
a circle of radiusr0. The constraint that the circle be an energy extremum then re-
quires that the first order term be zero, while the constraintthat it be a minimum
requires that the operator in the second order term be positive semi-definite. These
requirements constrain the parameter values. In subsection 3.2, we present numer-
ical experiments usingEg that confirm the results of this analysis.

3.1 Stability analysis

We denote a member of the equivalence class of maps representing the1-chain
defining the circle byγ0, and a small perturbation byδγ. To second order,

Eg(γ) = Eg(γ0 + δγ) = Eg(γ0) + 〈δγ|δEg

δγ
〉γ0 +

1

2
〈δγ|δ

2Eg

δγ2
|δγ〉γ0 . (3.1)

where〈·|·〉 is a metric on the space of1-chains.

Sinceγ0 represents a circle, it is easiest to express it in terms of polar coordinates
r, θ on Ω. For a suitable choice of coordinate onS1, a circle of radiusr0 centred
on the origin is then given byγ0(t) = (r0(t), θ0(t)), wherer0(t) = r0, θ(t) = t,
andt ∈ [−π, π). We are interested in the behaviour of small perturbationsδγ =
(δr, δθ). Because the energyEg is defined on1-chains, tangential changes inγ do
not affect its value. We can therefore setδθ = 0, and concentrate onδr.

On the circle, using the arc length parameterizationt, the integrands of the different
terms inEg are functions oft− t′ only; they are invariant to translations around the
circle. In consequence, the second derivativeδ2Eg/δγ(t)δγ(t

′) is also translation
invariant, and this implies that it can be diagonalized in the Fourier basis of the
tangent space atγ0. It is thus easiest to perform the calculation by expressingδr in
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terms of this basis:δr(t) =
∑

k ake
ir0kt, wherek ∈ {m/r0 : m ∈ Z}. Below, we

simply state the resulting expansions to second order in theak for the three terms
appearing in equation (2.2). Details can be found in appendixA.

The boundary length and interior area of the region are givento second order by

L(γ) =
∫ π

−π
dt |τ(t)| = 2πr0

{

1 +
a0
r0

+
1

2

∑

k

k2|ak|2
}

(3.2)

A(γ) =
∫ π

−π
dθ

∫ r(θ)

0
dr′ r′ = πr20 + 2πr0a0 + π

∑

k

|ak|2 . (3.3)

Note that there are no stable solutions using these terms alone. For the circle to be
an extremum, we requireλC2π + αC2πr0 = 0, which tells us thatαC = −λC/r0.
The criterion for a minimum is, for eachk, λCr0k

2 + αC ≥ 0. We must have
λC > 0 for stability at high frequencies. Substituting forαC , the condition becomes
λC(r0k

2 − r−1
0 ) ≥ 0. Substitutingk = m/r0, gives the conditionm2 − 1 ≥ 0: the

zero frequency perturbation is never stable.

The quadratic term can be expressed to second order as

∫∫ π

−π
dt dt′ G(t, t′) = 2π

∫ π

−π
dp F00(p) + 4πa0

∫ π

−π
dp F10(p)

+
∑

k

2π|ak|2
{[

2
∫ π

−π
dp F20(p) +

∫ π

−π
dp e−ir0kpF21(p)

]

−
[

2ir0k
∫ π

−π
dp e−ir0kpF23(p)

]

+
[

r20k
2
∫ π

−π
dp e−ir0kpF24(p)

]}

, (3.4)

whereG(t′, t′) = τ(t′) · τ(t) Φ(R(t, t′)). TheFij are functionals ofΦ (and hence
of d), and functions ofr0, as well as ofp.

Combining equations (3.2), (3.3), and (3.4), we find, up to second order:

Eg(γ0 + δγ) = e0(r0) + a0e1(r0) +
1

2

∑

k

|ak|2e2(k, r0) , (3.5)

where

e0(r0) = 2πλCr0 + παCr
2
0 − πβCG00(r0)

e1(r0) = 2πλC + 2παCr0 − 2πβCG10(r0)

e2(k, r0) = 2πλCr0k
2 + 2παC

− 2πβC

[

2G20(r0) +G21(k, r0)− 2ir0kG23(k, r0) + r20k
2G24(k, r0)

]

,
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whereGij =
∫ π
−π dp e

−ir0(1−δ(j))kpFij(p). Note that there are no off-diagonal terms
linking ak andak′ for k 6= k′: the Fourier basis diagonalizes the second order term.

3.1.1 Parameter constraints

Note that a circle of any radius is always an extremum for non-zero frequency
perturbations (ak for k 6= 0), as these Fourier coefficients do not appear in the
first order term (this is also a consequence of invariance to translations around the
circle). The condition that a circle be an extremum fora0 as well (e1 = 0) gives
rise to a relation between the parameters:

βC(λC , αC , r̂0) =
λC + αC r̂0
G10(r̂0)

, (3.6)

where we have introduced̂r0 to indicate the radius at which there is an extremum,
to distinguish it fromr0, the radius of the circle about which we are calculating the
expansion (3.1). The left hand side of figure1 shows a typical plot of the energye0
of a circle versus its radiusr0, with theβC parameter fixed using the equation (3.6)
with λC = 1.0, α = 0.8, and r̂0 = 1.0. The energy has a minimum atr0 = r̂0
as desired. The relationship betweenr̂0 andβC is not quite as straightforward as it
might seem though. As can be seen, the energy also has a maximum at some radius.
It is nota priori clear whether it will be the maximum or the minimum that appears
at r̂0. If we graph the positions of the extrema of the energy of a circle againstβC

for fixed αC , we find a curve qualitatively similar to that shown in figure2 (this
is an example of a fold catastrophe). The solid curve represents the minimum, the
dashed the maximum. Note that there is indeed a uniqueβC for a given choice of̂r0.
Denote the point at the bottom of the curve by(β

(0)
C , r̂

(0)
0 ). Note that atβC = β

(0)
C ,

the extrema merge and forβC < β
(0)
C , there are no extrema: the energy curve is

monotonic because the quadratic term is not strong enough toovercome the shrink-
ing effect of the length and area terms. Note also that the minimum cannot move
belowr0 = r

(0)
0 . This behaviour is easily understood qualitatively in terms of the

interaction function in equation (2.3). If 2r0 < d−ǫ, the quadratic term will be con-
stant, and no force will exist to stabilize the circle. In order to use equation (3.6)
then, we have to ensure that we are on the upper branch of figure2.

Equation (3.6) gives the value ofβC that provides an extremum ofe0 with respect
to changes of radiusa0 at a givenr̂0 (e1(r̂0) = 0), but we still need to check that
the circle of radiuŝr0 is indeed stable to perturbations with non-zero frequency,
i.e. thate2(k, r̂0) is non-negative for allk. Scaling arguments mean that in fact the
sign ofe2 depends only on the combinationsr̃0 = r0/d andα̃C = (d/λC)αC . The
equation fore2 can then be used to obtain bounds onα̃C in terms ofr̃0. (Details of
these calculations and bounds can be found in [17].) The right hand side of figure1
shows a plot ofe2(k, r̂0) against̂r0k for the same parameter values used for the left
hand side, showing that it is non-negative for allr̂0k.
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Fig. 1. Plots ofe0 againstr0 and e2 againstr̂0k. Left: the energy of a circlee0 plotted
against radiusr0 for λC = 1.0, α = 0.8, andβC = 1.39 calculated from equation (3.6)
with r̂0 = 1.0. (The parameters ofΦ are d = 1.0 and ǫ = 1.0, but note that it is not
necessary in general thatd = r̂0.) The function has a minimum atr0 = r̂0 as desired.
Right: the second derivative ofEg, e2, plotted against̂r0k for the same parameter values.
The function is non-negative for all frequencies.

β
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C
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0
(0)) 

Fig. 2. Schematic plot of the positions of the extrema of the energy of a circle versusβC .

We call the resulting model, the energyEg with parameters chosen according to the
above criteria, the ‘gas of circles’ model.

3.2 Geometric experiments

To illustrate the behaviour of ‘gas of circles’ model, in this section we show the re-
sults of some experiments usingEg (there are no image terms). Figure3 shows the
result of gradient descent usingEg starting from various different initial regions.
(For details of the implementation of gradient descent for higher-order active con-
tour energies using level set methods, see [14].) In the first column, four different
initial regions are shown. The other three columns show the final regions, at conver-
gence, for three different sets of parameters. In particular, the three columns have
r̂0 = 15.0, 10.0, and5.0 respectively.
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In the first row, the initial shape is a circle of radius32 pixels. The stable states,
which can be seen in the other three columns, are circles withthe desired radii
in every case. In the second row, the initial region is composed of four circles
of different radii. Depending on the value ofr̂0, some of these circles shrink and
disappear. This behaviour can be explained by looking at figure1. As already noted,
the energy of a circlee0 has a maximum at some radiusrmax. If an initial circle has
a radius less thanrmax, it will ‘slide down the energy slope’ towardsr0 = 0, and
disappear. If its radius is larger thanrmax, it will finish in the minimum, with radius
r̂0. This is precisely what is observed in this second experiment. In the third row, the
initial condition is composed of four squares. The squares evolve to circles of the
appropriate radii. The fourth row has an initial condition composed of four differing
shapes. The nature of the stable states depends on the relation between the stable
radius,r̂0, and the size of the initial shapes. Ifr̂0 is much smaller than an initial
shape, this shape will ‘decay’ into several circles of radius r̂0.

(Initial) (r̂0 = 15) (r̂0 = 10) (r̂0 = 5)

Fig. 3. Experimental results using the geometric term: the first column shows the initial
conditions; the other columns show the stable states for various choices of the radius.

4 Likelihood energy and experiments

In this section, we apply the ‘gas of circles’ model to the extraction of trees from
aerial images. We give a brief state of the art for tree crown extraction, and then
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present the likelihood energy we use in section4.2. In section4.3, we describe tree
crown extraction experiments on aerial images and compare the results to those
found using a classical active contour model. In section4.4, we examine the ro-
bustness of the method to noise using synthetic images. Thisilluminates the prin-
cipal failure modes of the model, which will be further discussed in section5, and
which point the way for future work. In section4.5, we illustrate the importance of
prior information via tree crown separation experiments onsynthetic images, and
compare the results to those obtained using a classical active contour model.

4.1 Previous work

The problem of locating, counting, or delineating individual trees in high resolution
aerial images has been studied in a number of papers. For example, [18] observes
that trees are brighter than the areas separating them. Local minima of the image
are found using a3 × 3 filter, and the ‘valleys’ connecting them are then found
using a5 × 5 filter. The tree crowns are subsequently delineated using a five-level
rule-based method designed to find circular shapes, but withsome small variations
permitted. While the method is quite effective in separating trees, the size of the
filters results in an significant overestimation of the size of the trees. [19] concen-
trates on spruce tree detection using a template matching method. The 3D shape of
the tree is modelled using a generalized ellipsoid, while illumination is modelled
using the position of the sun and a clear-sky model. Templatematching is used to
calculate a correlation measure between the tree image predicted by the model and
the image data. The local maxima of this measure are treated as tree candidates,
and various strategies are then used to eliminate false positives. This method pro-
vides 3D information about the trees, but requires specific models for each species
of tree, as well as knowledge of a number of extraneous parameters, for example,
illumination. [20] decompose an image into multiple scales, and then define tree
crown boundary candidates at each scale as zero crossings with convex grey-scale
curvature. Edge segment centres of curvature are then used to construct a candidate
tree crown region at each scale. These are then combined overdifferent scales and
a final tree crown region is grown.

The above methods use a series ofad hoc steps rather than a single unified model,
which makes identifying the assumptions behind the method difficult. Closer in
spirit to the present work is that of [21], which models the collection of tree crowns
by a marked point process, where the marks are circles or ellipses. An energy is
defined that penalizes, for example, overlapping shapes, and controls the param-
eters of the individual shapes. Compared to the work described in this paper, the
method has the advantage that overlapping trees can be represented as two separate
objects, but the disadvantage that the tree crowns are not precisely delineated due
to the small number of degrees of freedom for each mark.
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4.2 Likelihood energy and gradient descent

In order to couple the region modelEg to image data, we need a likelihood, P(I|R,K).
The images we use for the experiments are coloured infrared (CIR) images. Orig-
inally they are composed of three bands, corresponding roughly to green, red,
and near infrared (NIR). Analysis of the one-point statistics of the image in the
region corresponding to trees and the image in the background, shows that the
‘colour’ information does not add a great deal of discriminating power compared
to a ‘greyscale’ combination of the three bands, or indeed the NIR band on its own.
We therefore model the latter.

The image resolution is∼ 0.5m/pixel, and tree crowns have diameters of the order
of ten pixels. Little dependence remains between the pixelsat this resolution, which
means, when combined with the paucity of statistics within each tree crown, that
pixel dependencies (i.e. texture) are very hard to use for modelling purposes. We
therefore model the interior of tree crowns using a Gaussiandistribution with mean
µ and covarianceσ2δR, whereδA is the identity operator on images onA ⊂ Ω.

The background is very varied, and thus hard to model in a precise way. We use
a Gaussian distribution with mean̄µ and variancēσ2δR̄. In general,µ > µ̄, and
σ < σ̄; trees are brighter and more constant in intensity than the background. The
boundary of each tree crown has significant inward-pointingimage gradient, and
although the Gaussian models should in principle take care of this, we have found
in practice that it is useful to add a gradient term to the likelihood energy. Our
likelihood thus has three factors:

P(I|R,K) = Z−1 gR(IR) gR̄(IR̄) f∂R(I∂R) .

whereIR andIR̄ are the images restricted toR andR̄ respectively, andgR andgR̄
are proportional to the Gaussian distributions already described,i.e.

− ln gR(IR) =
∫

R
d2x

1

2σ2
(IR(x)− µ)2 (4.1)

and similarly forgR̄. The functionf∂R depends on the gradient of the image∂I on
the boundary∂R:

− ln f∂R(I∂R) = λi

∫

domγ
dt n(t) · ∂I(t) (4.2)

wheren is the unnormalized outward normal toγ. The normalization constantZ is
thus a function ofµ, σ, µ̄, σ̄, andλi.Z is also a functional of the regionR. To a first
approximation, it is a linear combination ofL(∂R) andA(R). It thus has the effect
of changing the parametersλC andαC in Eg. However, since these parameters are
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essentially fixed by hand (the criteria described in section3.1.1only allow us to fix
βC and constrainαC), knowledge of the normalization constant does not change
their values, and we ignore it once the likelihood parameters have been learnt.

The full model is then given byE(R) = Ei(I, R) + Eg(R), where

Ei(I, R) = − ln gR(IR)− ln gR̄(IR̄)− ln f∂R(I∂R) .

The energy is minimized by gradient descent. The functionalderivatives of all
terms except the quadratic term inEg are standard. The functional derivative of
the quadratic term gives rise to a gradient descent force given by

n̂ · ∂γ
∂τ

(t) = β
∫

domγ
dt′ R̂(t, t′) · n(t′)Φ̇(R(t, t′)) , (4.3)

whereR̂(t, t′) = (γ(t) − γ(t′))/|γ(t) − γ(t′)|. To evolve the region we use the
level set framework of [22] extended to the demands of nonlocal forces such as
equation (4.3) [14].

The computational complexity of the algorithm is unknown without a bound on the
number of iterations. However, the complexity of one iteration is easily analysed.
Equation (4.3) involves an integration over the contour for each contour point. The
worst case complexity is thusO(L2), whereL is the length of the contour. The
implementation however, only integrates over those pointswithin interaction range
(i.e. d+ ǫ), and so the complexity depends on the average lengthl of contour within
interaction range of a point, becomingO(Ll). Typically l is a local quantity that
does not depend on the size of the image. In our application,L, on the other hand,
is proportional to the number of trees, which is in turn proportional to the size of
the image,n. So the complexity of one iteration isO(n).

4.3 Tree crown extraction from aerial images

In this section, we present the results of the application ofthe above model to50
cm/pixel colour infrared aerial images of poplar stands located in the ‘Saône et
Loire’ region in France. The images were provided by the French National Forest
Inventory (IFN). As stated in section4.2, we model only the NIR band of these
images, as adding the other two bands does not increase discriminating power. The
tree crowns in the images are∼ 8–10 pixels in diameter,i.e. ∼ 4–5m.

In the experiments, we compare our model to a classical active contour model
(βC = 0). The parametersµ, σ, µ̄, andσ̄ were the same for both models, and were
learned from hand-labelled examples in advance. The classical active contour prior
model thus has three free parameters (λi, λC andαC), while the ‘gas of circles’
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model has six (λi, λC , αC , βC , d andr0). We fixedr0 based on our prior knowledge
of tree crown size in the images, andd was then set equal tor0. OnceαC andλC

have been fixed,βC is determined by equation (3.6). There are thus three effective
parameters for the HOAC model. In the absence of any method tolearnλi, αC

andλC , they were fixed by hand to give the best results, as with most applications
of active contour models. The values ofλi, λC andαC were not the same for the
classical active contour and HOAC models; they were chosen to give the best pos-
sible result for each model separately. The initial region in all experiments was a
rounded rectangle slightly bigger than the image domain. The image values in the
region exterior to the image domain were set toµ̄ to ensure that the region would
shrink inwards.

Figure4 illustrates the first experiment. On the left is the data, showing a regularly
planted poplar stand. The result is shown on the right. We applied the algorithm to
the central part of the image only, for reasons that will be explained in section5.

Figure5 illustrates a second experiment. On the left is the data. Theimage shows a
small piece of an irregularly planted poplar forest. The image is difficult because the
intensities of the crowns are varied and the gradients are blurred. In the middle is the
best result we could obtain using a classical active contour. On the right is the result
we obtain with the ‘gas of circles’ model.1 Note that in the classical active contour
result several trees that are in reality separate are mergedinto single connected
components, and the shapes of trees are often rather distorted, whereas the prior
geometric knowledge included whenβ 6= 0 allows the separation of almost all the
trees and the regularization of their shapes.

Figure6 illustrates a third experiment. Again the data is on the left, the best result
obtained with a classical active contour model is in the middle, and the result with
the ‘gas of circles’ model is on the right. The trees are closer together than in
the previous experiment. Using the classical active contour, the result is that the
tree crown boundaries touch in the majority of cases, despite their separation in
the image. Many of the connected components are malformed due to background
features. The HOAC model produces more clearly delineated tree crowns, but there
are still some joined trees. We will discuss this further in section5.

Figure7 shows a fourth experiment. Again the data is on the left, the best result ob-
tained with a classical active contour model is in the middle, and the result with the
‘gas of circles’ model is on the right. Again, the ‘gas of circles’ model better delin-
eates the tree crowns and separates more trees, but some joined trees remain also.

1 Unless otherwise specified, in the figure captions the valuesof the parameters learned
from the image are shown when the data is mentioned, in the form (µ, σ, µ̄, σ̄).
The other parameter values are shown when each result is mentioned, in the form
(λi, λC , αC , βC , d, r0), truncated if the parameters are not present. All parametervalues
are truncated to two significant figures. Unless otherwise specified, images were scaled to
take values in[0, 1]. The region boundary is shown in white.
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Figure CD % FP % FN % CD % FP % FN %

Figure5 85 0 15 97 0 3

Figure6 96.2 2.8 1.9 97.7 0 2.3

Figure7 89.4 5 5.6 95.5 0.6 3.9
Table 1
Results on real images using a classical active contour model (left) and the ‘gas of circles’
model (right). CD: correct detections; FP: false positives; FN: false negatives (two joined
trees count as one false negative).

The HOAC model selects only objects of the size chosen, so that false positives
involving small objects do not occur.

Fig. 4. Left: real image with a planted forestc©IFN (0.3, 0.06, 0.05, 0.05). Right: the result
obtained using the ‘gas of circles’ model(529, 5.88, 5.88, 5.64, 4, 4).

Table1 shows the percentages of correct tree detections, false positives and false
negatives (two joined trees count as one false negative), obtained with the classi-
cal active contour model and the ‘gas of circles’ model in theexperiments shown
in figures5, 6, and7. The ‘gas of circles’ model outperforms the classical active
contour in all measures, except in the number of false negatives in the experiment
in figure6.

The typical runtime of the ‘gas of circles’ model in these experiments (image size
O(100) pixels) is of the order of ten minutes on a normal personal computer. In our
implementation, this is approximately ten times slower than using classical active
contours.

4.4 Noisy synthetic images

In this section, we present the results of tests of the sensitivity of the model to noise
in the image. Fifty synthetic images were created, each withten circles with radius
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Fig. 5. From left to right: image of poplarsc©IFN (0.73, 0.11, 0.23, 0.094); the best re-
sult with a classical active contour(880, 13, 73); result with the ’gas of circles’ model
(100, 6.7, 39, 31, 4.2, 4.2).

Fig. 6. From left to right: image of poplarsc©IFN (0.71, 0.075, 0.18, 0.075); the best result
with a classical active contour(24000, 100, 500); result with the ’gas of circles’ model
(1500, 25, 130, 100, 3.5, 3.5).

Fig. 7. From left to right: image of poplarsc©IFN (0.71, 0.075, 0.18, 0.075); the best result
with a classical active contour(35000, 100, 500); result with the ’gas of circles’ model
(1200, 20, 100, 82, 3.5, 3.5).

8 pixels and ten circles with radius3.5 pixels, placed at random but with overlaps
rejected. Six different levels of white Gaussian noise, with image variance to noise
power ratios from−5 dB to 20 dB, were then added to the images to generate300
noisy images. Six of these, corresponding to noisy versionsof the same original
image, were used to learnµ, σ, µ̄, andσ̄. The model used was the same as that used
for the aerial images, except thatλi was set equal to zero. The parameters were
adjusted to give a stable radius of8 pixels.
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(0.90, 0.028, 0.11, 0.028, 100, 100, 170) (0.85, 0.043, 0.16, 0.043, 33, 33, 58) (0.78, 0.061, 0.23, 0.062, 13, 13, 22)

(0.71, 0.081, 0.31, 0.081, 4, 4, 6.9) (0.65, 0.098, 0.37, 0.099, 1.4, 1.4, 2.5) (0.60, 0.11, 0.43, 0.11, 0.51, 0.51, 0.89)

Fig. 8. One of the synthesized images, with six different levels of added white Gaussian
noise. Reading from left to right, top to bottom, the image variance to noise power ratios
are20, 15, 10, 5, 0,−5 dB. Parameter values in the form(µ, σ, µ̄, σ̄, λC , αC , βC) are shown
under the six images. The parametersd andr0 were fixed to8 throughout.

The results obtained on the noisy versions of one of the fifty images are shown
in figure8. Table2 shows the proportion of false negative and false positive circle
detections with respect to the total number of potentially correctly detectable circles
(500 = 50× 10), as well as the proportion of ‘joined circles’, when two circles are
grouped together (an example can be seen in the bottom right image of figure8).
Detections of one of the smaller circles (which only occurred a few times even at
the highest noise level) were counted as false positives. The method is very robust
with respect to all but the highest levels of noise. The first errors occur at5 dB,
where there is a2% false positive rate. At0 dB, the error rate is∼ 10%, i.e. one
of the ten circles in each image was misidentified on average.At −5 dB, the total
error rate increases to∼ 30%, rendering the method not very useful.

Note that the principal error modes of the model are false positives and joined
circles. There are good reasons why these two types of error dominate. We will
discuss them further in section5.
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Noise (dB) 20 15 10 5 0 -5

FP % 0 0 0 2 6.4 27.6

FN % 0 0 0 0 4 3.6

J % 0 0 0 0 0 23
Table 2
Results on synthetic noisy images. FP, FN, J: percentages offalse positive, false negative,
and joined circle detections respectively, with respect tothe potential total number of cor-
rect detections.

4.5 Circle separation: comparison to classical active contours

In a final experiment, we simulated one of the most important causes of error in
tree crown extraction, and examined the response of classical active contour and
HOAC models to this situation. The errors, which involve joined circles similar to
those found in the previous experiment, are caused by the fact that in many cases
nearby tree crowns in an image are connected by regions of significant intensity
with significant gradient with respect to the background, thus forming a dumbbell
shape. Calling the bulbous extremities, the ‘bells’, and the join between them, the
‘bar’, the situation arises when the bells are brighter thanthe bar, while the bar is in
turn brighter than the background, and most importantly, the gradient between the
background and the bar is greater than that between the bar and the bells.

The first row of figure9 shows a sequence of bells connected by bars. The inten-
sity of the bar varies along the sequence, resulting in different gradient values. We
applied the classical active contour and ‘gas of circles’ models to these images.

The middle row of figure9 shows the best results obtained using the classical active
contour model. The model was either unable to separate the individual circles, or
the region completely vanished. The intuition is that if there is insufficient gradient
to stop the region at the sides of the bar, then there will alsobe insufficient gradient
to stop the region at the boundary between the bar and the bells, so that the region
will vanish. On the other hand, if there is sufficient gradient between the bar and
the background to stop the region, the circles will not be separated, and a ‘bridge’
will remain between the two circles.2

The corresponding results using the ‘gas of circles’ model are shown in the bottom
row of figure9. All the circles were segmented correctly, independent of the gray
level of the bar. Encouraging as this is, it is not the whole story, as we indicated in
section4.4. We make a further comment on this issue in section5.

2 ‘Bar’ and ‘bell’ refer to image properties; we use ‘bridge’ and ‘circle’ to refer to the
corresponding pieces of a dumbbell-shaped region.
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Fig. 9. Results on circle separation comparing the HOAC ‘gasof circles’ model to the
classical active contour model. Top: original images. The intensity of the bar takes values
equally spaced between48 and128 from left to right; the background is255; the bells are
0. In the middle: the best results obtained using the classical active contour model(8, 1, 1).
Either the circles are not separated or the region vanishes.Bottom: the results using the ‘gas
of circles’ model(2, 1, 5, 4.0, 8, 8). All the circles are segmented correctly.

5 Conclusion

Higher-order active contours allow the inclusion of sophisticated prior information
in active contour models. HOACs are particularly well adapted to cases in which the
topology is unknowna priori. In this paper, we have shown via a stability analysis
that a HOAC energy can be constructed that describes a ‘gas ofcircles’, that is, it
favours regions composed of ana priori unknown number of circles of a certain
radius. The requirement that circles be stable,i.e. local minima of the energy, fixes
one of the prior parameters and constrains the others.

The ‘gas of circles’ model has many uses in computer vision and image processing.
Combined with a suitable likelihood, we have applied it to the problem of tree
crown extraction from aerial images of plantations. It performs better than simpler
techniques such as maximum likelihood and classical activecontours. In particular,
it is better able to separate trees that appear joined in the data than is a classical
active contour model.

The model is not without its issues, however. First, the computation time is too
long. We are currently working on a phase field HOAC [23] version of the ‘gas
of circles’ model that we hope will significantly reduce thistime. Second, there
are two significant error modes, as shown in the noise experiments of section4.4:
circles are found where the data does not ostensibly supportthem (‘phantom cir-
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cles’), and two circles may be joined into a dumbbell shape and never separated.
We discuss these in turn.

The first issue is that of ‘phantom’ circles. Circles of radius r̂0 are local minima of
the prior energy. It is the effect of the data that converts such configurations into
global minima. Were we able to find the global minimum of the energy, this would
be fine. However, gradient descent finds only a local minimum.This can create
problems in areas where the data does not support the existence of circles because
a circle, once formed during gradient descent, cannot disappear unless there is an
image force acting on it. We thus find that circles can appear and remain even
though there is no data to support them.

The second issue is that of joined circles, discussed in section4.5. Although the cur-
rent HOAC model is better able to separate circles than a classical active contour,
it still fails to do so in a number of cases, leaving a bridge between the circles. The
issue here is a delicate balance between the parameters, which must be adjusted so
that the sides of the bridge attract one another, thus breaking the bridge, and so that
nearby circles repel one another at close range, so that the bridge does not re-form.
Again, this is at least in part an algorithmic issue. Even if the two separated circles
have a lower energy than the joined circles, separation may never be achieved due
to a local minimum caused by the bridge.

We propose to solve the first problem via a more detailed theoretical analysis of the
circle energy that will allow us to remove the local minima causing the problem,
and the second via an in-depth analysis of the energy of the dumbbell configuration.
Both these studies should lead to further constraints on theparameters, which is a
desirable goal in itself.
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A Details of stability computations

In this appendix, we give most of the steps involved in reaching equation (3.5). The
equation of the region boundary is

γ(t) = γ0(t) + δγ(t) = (r(t), θ(t)) = (r0(t) + δr(t), θ0(t)) , (A.1)
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whereγ0(t) = (r0(t), θ0(t)) = (r0, t), δr(t) =
∑

k ake
ir0kt, andk ∈ {m/r0 : m ∈

Z}. The components oḟγ are

θ̇(t) = 1 and ṙ(t) = δ̇r(t) =
∑

k

akir0ke
ir0kt . (A.2)

The tangent vector field is given by

τ(t) = ṙ(t)∂r + θ̇(t)∂θ . (A.3)

A.1 Linear terms

To compute the length, we need the magnitude ofτ to second order. The metric in
polar coordinates isds2 = dr2 + r2dθ2, so we have that|τ(t)|2 = ṙ(t)2 + r(t)2 by
equations (A.2). Substituting from equation (A.1) and (A.2) gives

|τ(t)|2 = r20 + 2r0
∑

k

ake
ir0kt +

∑

k,k′

akak′e
ir0(k+k′)t(1− r20kk

′) . (A.4)

Taking the square root, expanding it as
√
1 + x ≈ 1+ 1

2
x− 1

8
x2, and keeping terms

to second order in theak then gives

|τ(t)| = r0






1 +

∑

k

ak
r0
eir0kt − 1

2

∑

k,k′

akak′kk
′eir0(k+k′)t






. (A.5)

Using equation (A.5), the boundary length is then given to second order by

L(γ) =
∫ π

−π
dt |τ(t)| = 2πr0

{

1 +
a0
r0

+
1

2

∑

k

k2|ak|2
}

,

where we have used the reality ofδr to seta−k = a∗k, where∗ indicates complex
conjugation, and orthonormality of the Fourier basis elements.

We can write the interior area of the region as

A(γ) =
∫ π

−π
dθ

∫ r(θ)

0
dr′ r′ =

∫ π

−π
dθ

1

2
r2(θ) .

Thus, using equations (A.1), and again using orthonormality, we have that

A(γ) = πr20 + 2πr0a0 + π
∑

k

|ak|2 . (A.6)
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A.2 Quadratic terms

To compute the expansion of the quadratic term in equation (2.2) for Eg, we need
the expansions ofτ(t) · τ(t′) andΦ(R(t, t′)).

A.2.1 Inner product of tangent vectors

The tangent vector is given by equation (A.3), but we must take care asτ(t) and
τ(t′) live in different tangent spaces, atγ(t) andγ(t′) respectively. It is easiest to
convert the tangent vectors to the Euclidean coordinate basis, ∂r = cos(θ)∂x +
sin(θ)∂y and∂θ = −r sin(θ)∂x+ r cos(θ)∂y as these basis vectors are preserved by
parallel transport. Taking the inner product then gives

τ · τ ′ = cos(θ′ − θ)[r20 + r0δr + r0δr
′ + δrδr′ + δ̇rδ̇r

′

]

+ sin(θ′ − θ)[r0δ̇r
′ − r0δ̇r + δrδ̇r

′ − δ̇rδr′] .

where unprimed quantities are evaluated att and primed quantities att′.

A.2.2 Interaction function

First, we expandR(t, t′). The squared distance betweenγ(t′) andγ(t) is given by

|γ(t′)− γ(t)|2
= [(r0+δr′) cos(θ′)−(r0+δr) cos(θ)]2+[(r0+δr′) sin(θ′)−(r0+δr) sin(θ)]2 ,

which after expansion gives

R2(t, t′) = 2r20(1− cos(∆t))

{

1 +
1

r0
(δr + δr′) +

δr2 + δr′2 − 2 cos(∆t)δrδr′

2r20(1− cos(∆t))

}

,

where∆t = θ′ − θ = t′ − t. Expanding
√
1 + x ≈ 1 + 1

2
x − 1

8
x2 to second order

and collecting terms, we then find

R(t, t′) = 2r0|sin(∆t/2)|+ |sin(∆t/2)|(δr + δr′) +
A(∆t)

4r0
(δr − δr′)2 , (A.7)

whereA(z) = cos2(z/2)|sin(z/2)|−1.

ExpandingΦ(z) in a Taylor series to second order, and then substitutingR(t, t′) for
z using the approximation in equation (A.7), and keeping only terms up to second
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order inδγ then gives

Φ(R(t, t′)) = Φ(X0) +

∣
∣
∣
∣sin

∆t

2

∣
∣
∣
∣Φ

′(X0)(δr + δr′)

+
1

4r0
A(∆t)Φ′(X0)(δr − δr′)2 +

1

2
sin2

(
∆t

2

)

Φ′′(X0)(δr + δr′)2 , (A.8)

whereX0 = 2r0|sin(∆t/2)|.

A.3 Combining terms

Using the above equations gives

G(t, t′) =

r20 cos(∆t)Φ(X0)
︸ ︷︷ ︸

F00, even

+ (δr + δr′) r0 cos(∆t)
{

Φ(X0) + r0

∣
∣
∣
∣sin

∆t

2

∣
∣
∣
∣Φ

′(X0)
}

︸ ︷︷ ︸

F10, even

+ (δ̇r
′ − δ̇r) r0 sin(∆t)Φ(X0)

︸ ︷︷ ︸

F11, odd

+ (δr2 + δr′2) r0 cos(∆t)
{
1

4
A(∆t)Φ′(X0) +

1

2
r0 sin

2
(
∆t

2

)

Φ′′(X0) +
∣
∣
∣
∣sin

∆t

2

∣
∣
∣
∣Φ

′(X0)
}

︸ ︷︷ ︸

F20, even

+ (δrδr′) cos(∆t)
{

Φ(X0) + 2r0

∣
∣
∣
∣sin

∆t

2

∣
∣
∣
∣Φ

′(X0)−
1

2
r0A(∆t)Φ′(X0) + r20 sin

2
(
∆t

2

)

Φ′′(X0)
}

︸ ︷︷ ︸

F21, even

+ (δr′δ̇r
′ − δrδ̇r) r0

∣
∣
∣
∣sin

∆t

2

∣
∣
∣
∣ sin(∆t)Φ′(X0)

︸ ︷︷ ︸

F22, odd

+ (δrδ̇r
′ − δr′δ̇r) sin(∆t)

{

Φ(X0) + r0

∣
∣
∣
∣sin

∆t

2

∣
∣
∣
∣Φ

′(X0)
}

︸ ︷︷ ︸

F23, odd

+ (δ̇rδ̇r
′

) cos(∆t)Φ(X0)
︸ ︷︷ ︸

F24, even

.

where theFij denote the functions appearing in the terms ofG, and ‘odd’ and ‘even’
refer to parity under exchange oft andt′. Each line, and henceG, is symmetric in
t and t′, as it should be. We can now substitute the expressions forδr and δ̇r in
terms of their Fourier coefficients, and calculate

∫∫ π
−π dt dt

′ G(t, t′). We note that in
the terms involvingF10, F11, F20, F22, andF23, the presence of the symmetric or
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antisymmetric factors inδr andδr′ simply leads to a doubling of the value of the
integral for one of the terms in these factors, due to the corresponding symmetry or
antisymmetry of theF functions. We therefore only need to evaluate one of these
integrals for the relevant terms.

Because theF ’s depend only on∆t, the resulting integrals can be reduced, via a
change of variablesp = ∆t, to integrals overp. ForF00 andF10, we have

∫∫ π

−π
dt dt′ F00(t

′ − t) =
∫∫ π

−π
dp dt′ F00(p) = 2π

∫ π

−π
dp F00(p) ,

and

∫∫ π

−π
dt dt′ δr(t) F10(t

′ − t) =
∫∫ π

−π
dt dt′

∑

k

ake
ir0kt F10(t

′ − t)

=
∑

k

ak

∫∫ π

−π
dp dt′ eir0k(−p+t′) F10(p)

=
∑

k

ak

∫ π

−π
dt′ eir0kt

′

∫ π

−π
dp e−ir0kp F10(p)

=
∑

k

ak2πδ(k)
∫ π

−π
dp e−ir0kp F10(p)

= 2πa0

∫ π

−π
dp F10(p) .

The calculations for the other terms proceed in a very similar fashion, using the
same change of variable and the orthonormality of the Fourier basis. We merely list
the results (full details may be found in [24]):

∫∫ π

−π
dt dt′ δ̇r(t) F11(t

′ − t) = 0
∫∫ π

−π
dt dt′ δr2(t) F20(t

′ − t) = 2π
∑

k

|ak|2
∫ π

−π
dp F20(p)

∫∫ π

−π
dt dt′ δr(t)δr(t′) F21(t

′ − t) = 2π
∑

k

|ak|2
∫ π

−π
dp e−ir0kp F21(p)

∫∫ π

−π
dt dt′ δr(t)δ̇r(t) F22(t

′ − t) = 0
∫∫ π

−π
dt dt′ δr(t)δ̇r(t′) F23(t

′ − t) = −2π
∑

k

|ak|2ir0k
∫ π

−π
dp e−ir0kp F23(p)

∫∫ π

−π
dt dt′ δ̇r(t)δ̇r(t′) F24(t

′ − t) = 2π
∑

k

|ak|2r20k2
∫ π

−π
dp e−ir0kp F24(p) .

Using these results then gives equation (3.4), which in combination with equa-
tions (3.2) and (3.3), gives equation (3.5).
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