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Abstract. We introduce a new class of active contour models that hatétgoromise for region and shape
modelling, and we apply a special case of these models toxtinacéon of road networks from satellite and
aerial imagery. The new models are arbitrary polynomiatfiomals on the space of boundaries, and thus greatly
generalize the linear functionals used in classical canemergies. While classical energies are expressed as
single integrals over the contour, the new energies incatpamultiple integrals, and thus describe long-range
interactions between different sets of contour points. Asrperms, they describe families of contours that
share complex geometric properties, without making refeeeo any particular shape, and they require no pose
estimation. As likelihood terms, they can describe muttiap interactions between the contour and the data. To
optimize the energies, we use a level set approach. Thesfderésed from the new energies are non-local however,
thus necessitating an extension of standard level set methietworks are a shape family of great importance in
a number of applications, including remote sensing imagerynodel them, we make a particular choice of prior
guadratic energy that describes reticulated structuresaagment it with a likelihood term that couples the data
at pairs of contour points to their joint geometry. Pronmgsaxperimental results are shown on real images.

Keywords: active contour, shape prior, geometric, higher-orderymaial, quadratic, road network, remote
sensing

1. Introduction

The task of image processing algorithms is to assert proposiabout images, propositions
that typically concern not the images themselves, but thens’ of which the image is a
representation. Amongst the many varieties of propostione can make, one of the most
common consists of those formed using the predicate ‘Thenwelthat projects to regioR
in the image domain has properti&s Examples of properties include labels naming entities
in the scene (person, John, car, road, forest, buildinghgsipal parameters of those entities
(depth, illumination, reflectance). In real applicatiowg possess significant prior knowledge
K about bothR and P, and their relationship to the image. Examplegoihclude knowledge
of the smoothness or specific form of the depth map; knowlefigee textural and reflectance
properties of the entity, and hence its appearance in thgdmand, of particular interest
here, knowledge of the likely shape of the region occupiethénimage by an entity with a
given label. The central quantity of interest is then théphulity distribution P¢(R, P)|I, K)
over these propositions given the image datnd all prior knowledgds'. This distribution
describes our knowledge of the propositions, from whichiedquired, point estimates @t
and P can be extracted. The informatid is typically crucial for solving real problems, so
that as much knowledge as possible should be encoded, botih Aland P (as prior terms
Pr((R, P)|K)) and about their relations to the data (as likelihood term{$|PR, P), K)).
Attempts to assert such propositions thus have to constifughly implicitly, probability
distributions on the space of regions( R}, which may depend on other, known or unknown
parameters, and the data.

One way of implicitly constructing such distributions isopided by active contours. An
‘energy’ functional is defined on the space of regions, ard thinimized. With some reserva-
tions, this can be regarded as the computation of a MAP egtiosing the negative logarithm
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of the probability density. Previous active contour modea be divided into two classes,
which are reviewed in sections 1.1.1 and 1.1.2. The firssaladudes only relatively trivial
information abouiR: in the prior terms only its boundary length and area entedt @metimes
integrals of curvature), whereas in the likelihood ternesdhta is coupled to the geometry at
one point only. In the second class, more information isohiiced in the prior terms: specific
shapes are modelled by defining a ‘mean’ shape and typidaltiesns around it.

In this paper, we introduce a new class of active contour models that substhe first
class of energy functionals as special cases (and perhapsettond as well), and greatly
generalizes them. The new models allow the incorporatiorophisticated prior informa-
tion about region geometry, and the construction of likadith terms that describe complex
interactions between the geometry of the region and the ddia is achieved by a large
generalization of the space of energy functionals consitleln a way to be made precise,
previous functionals arknear on a certain space containing the space of curves:; they are
expressed in terms of single integrals over the contourtlamican incorporate only local in-
teractions between contour points and hence only very weakipformation K about region
geometryR or the relation of this geometry to the data. In contrastpine functionals consist
of arbitrary polynomialson this space; they include multiple integrals over the contThese
functionals can describe arbitrarily long-range intaracd between subsets of points in the
boundary, or between subsets of points and the data: qiadrergies describe interactions
between pairs of points, cubic energies between triples,sanon. In the case of quadratic
energies, for example, there are two integrals, which mtraidor every pair of points there
is a contribution to the energy that depends on the geomairy perhaps the data) at those
two points. Equation 1 shows an Euclidean invariant quadeaiergy term:

E(C) = / / dp dpl T(p) - E0) W) - CR)) - 1)

Here,p andp’ are coordinates odom C, the domain of the curve’; t(p) = C’(p) is the
tangent vector ta” at p; |x — y| is the Euclidean distance between pointsind y in the
image domairf?; and the function weights the interactions between different points of the
curve according to their distance, and must be chosen dgreifuce it defines the geometrical
content of the model.

It is clear from equation (1) that even in the quadratic cteeyse of higher-order energies
opens up a much wider range of modelling possibilities thavipusly possible. Only two
Euclidean invariant linear terms exist if curvature is mutluded: length and area. In contrast,
equation 1 shows that there is a whole function space fulluaflilean invariant quadratic
terms, and higher-order Euclidean invariant add a gredtrdeee flexibility. Due to their in-
herent invariance, these obviate the necessity for poseatiin involved in the second class
mentioned above, yet they can describe families of contaitts complex shape properties.
We will describe the general framework of the new models atise 2.

In order to minimize the new energies, we use a level set apgprd he implementation of
level sets for the new energies requires an extension adatdnechniques, however, because
the forces derived from the new energies are non-local: geed of a point in the boundary
depends on the whole of the boundary and not just on its iefimtal neighbourhood. The
resulting algorithms are described in section 3.

! Portions of this work were published if)(
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Networks constitute a specific family of shapes that shamgbex qualitative and quantita-
tive properties and are of great importance to image prowgpsoblems in many domains, for
example in remote sensing (road and hydrographic netwark)medical imaging (vascular
and other physiological networks). We apply a specific imstaof the new models to the
problem of road network extraction in section 4, where we ascuss previous work on
this problem. We construct a prior energy in the new classdbscribes network shapes, and
likelihood terms in the new class that describe more compations between the contour
and the data than previously possible. We conclude in gebtio

1.1. RREVIOUS WORK

In this section, we review previous work, dividing it intoettwo classes mentioned in the
Introduction, linear energies and shape modelling, antnguthe emphasis on the type of
prior information included.

1.1.1. Linear energies

The original paper on active contours was DY?). The energy defined there is parame-
terization dependent, but if the parameterization is takehe arc length, then the energy
used is the sum of boundary length and the integral of boynclawature, plus the negative
of the integral of image gradient magnitude. ‘Balloon f&'céa constant pressure, which
can be viewed as generated by adding the region area to thgypmneere introduced by
? (?) to improve the stability of results by ‘pushing’ the regibaundary past shallow local
minima caused by weak image gradients. ‘Geometric’ or ‘gsad] active contoursX ?; ?; ?)
removed the parameterization dependence of the early sbglaising as energy the length
of the boundary in a non-Euclidean metric @ndetermined by the image. Most of these
energies were written as the integrals of functions ovebthendary of the region, b (?),

? (?), and? (?), among others, introduced integrals of functions overittkerior to facilitate
the description of region properties and to reduce serigitiy noise and clutter.

All the energy functionals used in the above work, both pednd likelihood terms, are
representable as algebraic combinations of single integker the boundary of the region or
over its interior. Such functionals are ‘linear’, for reasdo be explained in section 2. The
limitation of such functionals is that they incorporateyoldcal interactions. In the case of a
finite-dimensional vector spackg, this is clear. Linear functionals- a, z € X, a € X*, lead
to exponential probability distributions, @1a) « exp(—z - a). In any basis, this takes the
formexp(— 3, #'a;) = [[, exp(—z'a;). Thusz® andz’ are independent for all£ ;.

For linear functionals on the space of curves, the situasasimilar. Linear functionals
incorporate only local interactions, where local meansstroisted from derivatives of the
curve at each point. This notion of locality is closely rethto the property of Markovianity.
In the discrete case, the dependence on derivatives meatrigtdractions take place within
fixed size neighbourhoods, as in a Markov random field. Intamdibecause the degree of
the derivatives involved is typically small, the neighboamds are small.

The result of this limitation is impoverished modellingpesially in the prior terms. If we
only allow first derivatives, then the only two Euclideananant terms are length and area.
Thus any two boundaries that share length and area are ehalpe from the point of view
of these models. The limitation imposes itself equally &ellhood terms, although there the
lack of Euclidean invariance allows a wider variety. Neleléss, such terms can only express
the likely configurations of the data given the geometry angls point of the curve.
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1.1.2. Shape modelling

In order to get around this limitation on prior terms, vasapproaches have been taken to
the incorporation of more sophisticated informati®r?) represent shapes as signed distance
functions, and use a Gaussian distribution on the prina@patponents of variation around
the mean distance function acquired from training data asages prior.? (?) modify the
Mumford-Shah functional to incorporate statistical sh&pewledge. They use an explicit
parameterization of the contour as a closed spline cuna,l@arn a Gaussian probability
distribution for the spline control point vectors. The wttital prior restricts the contour
deformations to the subspace of learned deformati@n(®) propose a functional that can
account for the global and local shape properties of thestasbject. A prior shape model
is built using aligned training examples. A probabilistiarhework uses the shape image and
the variability of shape deformations as unknown variablégy seek a global transformation
and a level set representation that maximizes the posteridrability given the prior shape
model.? (?) define an energy functional depending on the gradient amd\thrage shape of
the target object. The prior shape term evaluates the sitpilaf the shape of the contour
to that of the reference shape through the computation oftardie function using the Fast
Marching method of? (?). ? (?) define shape descriptors with Legendre moments and intro-
duce a geometric prior in the framework of region-basedvaatontours, with a quadratic
distance function between the set of moments of the contoditize set of moments of the
reference object. In an interesting piece of wi?K?) use a regularized inverse diffusion to
exaggerate the properties of given shapes.

What the above models have in common, is that they are lodking single instance
of a specific shape in an image. Given one or more training plesnand a shape repre-
sentation, a ‘mean’ shape is computed. The evolution of ¢motir is then constrained by
this ‘mean’ shape and the possible deformations aroundskigipe. This is effective in some
circumstances, but these approaches rapidly becomectiestiif there are several instances
of the shape to detect in the image, or if the regions to beetdd cannot be defined as small
variations around a ‘mean’ shape. Consider ‘network’ shapéiese possess complex geo-
metric properties in common (they are composed of ‘armsbafhly parallel sides, perhaps
of varying width, joined together in various ways), but thariability cannot be reduced to
perturbations of a template shape parameterized by a femtitiga. Nevertheless it is clearly
important from a modelling point of view to incorporate theognetrical properties that they
share; what might be called their ‘family resemblance’.

2. New models. general framework

With the aim of modelling such families, and of extending theressive power of active
contour models more generally by introducing a coherent t@agonstruct functionals of
increasing complexity, we introduce a new class of activié@mar models. These have been
described at an intuitive level in section 1. In this sectiwa present the new class of energies
in detail. In section 2.1, we formalize the notion of lindaras it applies to the energies of
section 1.1.1. In section 2.2, we use this notion to definbdrigrder polynomial function-
als, with the aim both of demonstrating the degree to whiehribw functionals generalize
the linear models, and of providing a language for the canstn of higher-order models.
In section 2.4, we discuss a particular example of a high#eroenergy and illustrate its
properties.



2.1. LINEAR FUNCTIONALS

As already stated, the energy functionals of section lat€elrepresentable as algebraic com-
binations of single integrals over the boundary of the negibover its interior. Such integrals
representinear or twisted linearfunctionals on the spaces bfboundaries and-chains ).
Chains are equivalence classes of formal linear combimata differentiable embeddings
of rectangles..g. the interval {-chains) or the unit square-Chains). ‘Boundaries’ in a
generalized sense are then defined by the action of a boungaratord taking n-chains

to (n — 1)-chains. In the planel-boundaries {-chains in the image af) are equivalent to
closedl-chains (those in the kernel of and thus without boundary). Consequently, we will
reserve the term ‘boundary’ for the geometric boundary @fggon, and use the word ‘closed’
to indicate boundaries in this generalized sense.

The utility of these formal objects is to characterize prépe of curves and curve func-
tionals in algebraic terms. A functional on chains is ‘liriga the standard sense: given a
linear combination of chainaC; + C5, the value of the functional is given by the same
linear combination of the values of the two chains:

E(aCy + BCh) = aE(Cy) + BE(Cy) . (2)

Note that by definition two embeddings andC; with the same domai® represent the
same chain itCs = Cie, for some diffeomorphisma : D — D. Functionals defined on the
space of embeddings must therefore be invariant undeodiibephisms in order to project to
well-defined functionals on chains. This invariance regmient means that differential forms
are the natural language in which to represent such furad8ohinear functionals oh-chains
thus take the form

E(C) = /BRA:/domcC*A:/dp tp)- A, (3)

where A is al-form on); v - A denotes the evaluation (‘inner product’) of thdorm A on
the vectorv; andC* is pullback byC;

Using the generalized Stokes theorem, such functionaldbearwritten as integrals over
R. Equally importantly, since in two dimensions everjorm is closed and in the plane every
closed form is exact because the cohomology is trivial, #vense is true. For eve+form
F there exists a-form Ar such thatt’ = dAr, meaning that every energy of the fo[fp F,
whereR is a region, or more generally2achain, can be rewritten as

/RF:/RdAF:/aRAF. @)

The area of the interior of a closéechain provides one example of this process. In this case,
F = %41, wherel is the function identically equal to one everywhegeis a metric onf2,
andx, is the Hodge operator that converts function2#orms. In an Euclidean metric, this
becomes

E(C) = %/dp t(p) x C(p) = /dp g—;y(c(p)) ; (5)

where(z, y) are Euclidean coordinates. In consequence of equatiofindds energies of the
form (3) encompass all the forms of region energies in tleeditire. They are also used By
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(?) as part of a ‘ratio energy’, and %/(?) to find ‘flux maximizing flows’, while? (?) show
the relation between certain instances of such energies@and common edge detectors.

Rather than define twisted linear functionals in generalsiwmly give the form appropri-
ate to our context:

E(C) = /d wcrg C°F = / ap [Ew)ly F(CW)) - (6)

Here, f is a function (-form) on€2; C*g is the metric onlom C' induced byC'; and|v|, is the
norm of the vectow in the metricg. The form of functional in equation (6) encompasses the
remainder of the models mentioned above, including geacretid geodesic active contours,
and most others that have appeared in the literature. Acpatiexample is boundary length,
in the metricg, which is given byf = 1.

In the particular case of prior terms, much more can be saidr Brms should be Eu-
clidean invariant in general. This forcgsto be constanty to be Euclidean, and to calcu-
late the interior area. Thus there are only two linear piomis compatible with Euclidean
invariance: length and area.

2.2. HGHER-ORDER FUNCTIONALS

The new, higher-order models that are the subject of thispagake use of the linear structure
of the chain space to go beyond linear functionals to polyabfanctionals in a clear and
structured way. This can be thought of as a coherent way argéng functionals of increas-
ing complexity, or as the expansion of an arbitrary funalomhe power of this approach
can be seen in the fact that an arbitrary functional can sspebitrary information about the
geometry of a region.

To construct polynomial functionals, it suffices to constrmonomials. By definition, a
monomial function of order. on a vector spac¥ is the composition of three maps:

Ap

1% yr_®.yen E R (7)

where:A,, is the diagonal map frorir to its n-fold Cartesian produdt’™; ® is the projection
from this latter space to the-fold tensor product of/, V®"; andE is a linear functional on
the latter. Note that setting = R gives normal monomialgx™, x € R. In our contextV =
C1(92), the space of-chains inf2, and our task boils down to constructing linear functionals
E on tensor products df, (Q2) with itself. Fortunately(; (2)*™ is a subspace df,,(Q"), the
space ofn-chains inQ2"™, so that a linear functional on the latter is also a linearcfiomal
on the former. Linear functionals on the latter are easy éater however. One can proceed
in several ways, one of which is analogous to equation (6)lewdnother is analogous to
equation (3). We do not describe both possibilities herdafck of space, but instead focus on
the latter. Given am-form F on Q", we pull it back to the domain af'®” and integrate it,
using the analogue of equation (3):

— _ RN\ *
B(C) = /(8 )nF_/(domc>n(C VE ®)

What is then required is an-form on Q". In what follows, we will focus on the quadratic
casen = 2, both for clarity and because this is what we will use in theligation later in the
paper.



2.3. QUADRATIC ENERGIES

In the caser = 2, equation (8) becomes

BO) = /(81‘%)2 b= /(domC)2 (C ®ONE - ®)

The product structures 6f® C and(dom C')? mean that this functional can always be written
(in terms of coordinate, p’) on (dom C)?) as

B(C) = / / dp dp E(p) - F(C(p), C(0)) - E() | (10)

whereF (z, 2'), for each(z, z') € 2, is a matrix. The operataF allows us to model a non-
trivial interaction between different contour points. Bahat this interaction is not Markov,
even if the value ofF" tends to zero rapidly with increasing distance betweenrgaraents.
Since the interaction is mediated by the embedding ratlzer the embedded space, interac-
tions can occur between arbitrarily separated pieces afdhtour if they approach each other
in €.

For prior terms, when the-form F' does not depend on the image, we require the energy
to be Euclidean invariant. This results in the form given quation 1. Note that unlike the
shape models described in section 1.1.2, the new energiegporate Euclidean invariance
naturally without requiring the estimation of position atation, since they are not mixture
models over these variables. Note also, however, that tieés dot constrain the minimum
energy configurations to be Euclidean invariant, althounghsiet of such minima will be; the
symmetry is ‘broken’ in general.

2.4. AN EXAMPLE OF A GEOMETRIC QUADRATIC ENERGY

In this section, we study a particular case of an Euclideaariant quadratic energy. We will
use this particular case later on to model road networksyeutise it here to illustrate the
possibilities inherent in higher-order energies.

The energy is a combination of two linear terms (length am@)ato which are added a
quadratic term characteristic of the new class of enertfiéskes the form

Ey(C) = L(C) + aA(C) — B / / dp dp £ W(R(p.p)) | (11)

where, is the length of the boundary in the Euclidean metri€pmn energy of the form (6);
and A is the area of its interior, an energy of the form (B(p,p’) = |C(p) — C(p')|

is the Euclidean distance betweél{p) and C(p’). The length term acts as a regularizer.
The area term is introduced to control the expansion of thmmne The Euclidean invariant
quadratic term, of the form (1), introduces the interaidfe choose the following form for
the functionV:

1 if z<dym—¢ s
U(r) = < 0 if 2>dunnte, (12)
11— Z=dmin L gip(r2=dmin))  otherwise .
This function is shown in figure 1, where the parametgyg, ande are also illustrated. A
point p on the contour interacts with other points within a certagtathced,,;,, + ¢, measured
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Figure 1. The function¥

in €. The function¥ is always positive, and so from equation (11), the quadnasid of
the energy is a minimum when the points interacting with amatltzer have parallel tangent
vectors. The quadratic energy thus favours straight baigglaOn the other hand, for pairs
of points with antiparallel tangent vectors, the quadrptic of the energy is zero unless the
points approach closer than a distancel@f, + €, when it starts to increase rapidly. The
quadratic energy therefore acts as a softened ‘hard-cotehpal, preventing the points from
approaching much closer thag,;, by making such points mutually repelling.

The energy in equation (11) is minimized using gradient €lescThus the contour evolu-
tion is determined by

oC OF

rre —@(C) ) (13)
where dE/5C' is the functional derivative of2 with respect toC. The resulting descent
equation is then

n-C(p) = —~(p) —a+2ﬁ/dp’ (R(p,p) - a(p')) V' (R(p,p)) , (14)

whereR(p, p') = (C(p)—C(p'))/|C(p)—C(p')]. The component adC/dt along the normal
has been taken, movement along the tangent direction bgungaéent to a diffeomorphism
of the domain ofC, and thus irrelevant.

The precise behaviour of this energy depends on the paranates, and in particular
on the size of the parametgrdescribing the strength of the quadratic term. By making thi
parameter large, we can exaggerate the effect of the newiteorder to make clear the
information contained in it. Figure 2 shows examples of etiohs starting from a circle using
equation (14). All the evolutions show the formation of firggkstructures with parallel-sided
arms of constant width. The width is controlled by the paramé,.;, in the ¥ function,
and the first three rows of figure 2 show evolutions for différealues of this parameter
(dmin = 3,5, 7); the fingers formed are indeed of the correct width. Thetlastrows illustrate
the role of the parameter. In the fourth row,c. = 0.05, while o« = 0.1 in the fifth row. The
larger the value ofi, the fewer the number of arms that form at the beginning oéttodution.

The growth away from a circle towards a labyrinthine streetwith elongated ‘arms’ can
be understood in two stages. A linear analysis of the statifithe circle to small sinusoidal
perturbations shows that fgt larger than a certain threshold, the circle becomes a saddle
point of the energy (11). For certain ranges of angular feegy, small perturbations, rather
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than being damped back to zero as in the linear case, arefeuplihe maximally unstable
angular frequency controls the motion away from the initiedle. Thus instead of smoothing
all irregularities, as in the linear case, this energy atl@eme of them to develop, and hence
encourages complex shapes. It is important to note thatflregliencies are still damped, and
thus there is no development of uncontrolled noise on thé&oconas would be the case with
evolution according to a negative length term, for exampituitively this can be seen by
realizing that the ‘bumps’ corresponding to two peaks ingimeisoid cannot approach closer
thand,;, due to their mutual repulsion.

The second stage occurs when fledgling arms have develop#dthé/value of5 used in
these experiments, each unit length of arm adds a negativardraf energy to the total. The
arms, once created, thus elongate. The parallel sides afthe are stable to small perturba-
tions, but their tips, which are roughly semicircular, pEsssthe same kinds of instability as
the original circle, and can thus branch, with a branchingloer again controlled by. Since
the arms possess a negative energy, in an infinite domaimtreyeis not bounded below,
and the arms will continue to grow and to ramify indefinitdly.a finite domain such as an
image, this cannot happen due to the repulsion between the and stable configurations
are eventually reached.

In the absence of data, and with the parameter values useduire f2, it is deviations
from exact circularity caused by the discretization drilve &volution away from the initial
conditions, and it is clear that small changes in the int@iditions (perhaps caused by the
discretization) will result in convergence to possibly yelifferent shapes, although these
shapes will have many qualitative and quantitative prégeih common. The latter is a con-
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sequence of the large amount of symmetry built into the grobiThe energy is invariant under
rotations and translations, but it is clear that there is algigh degree of local symmetry: one
can contort the arms in many ways and leave the energy unetdangis is as it should be:
road networks (or any other type of network) have a large rarmabconfigurations that while
differing in their detail, are equally reasonable as neksar priori. The prior energy quite
properly does not distinguish amongst these possibiliaesl with these parameter values,
small perturbations effectively choose amongst them.

While the experiments serve to illustrate the greater cerigyl of information contained
within quadratic energies as compared to linear energigstaashow that the specific energy
in equation (11) is well-suited to modelling network sturess, it is very important to note
that the value of3 used in these experiments is not the same as that used intthetian
of road networks. In the experimental results that we shder,|& is adjusted so that each
unit length of an arm adds a small but positive amount to tkeeggn and so that the circle is
marginally stable. The result is that the data drives thelgetion, growth, and branching of
arms, the effect of the prior term being to favour such armd, reetwork shapes in general,
with respect to other shapes by reducing the energy of nkteanfigurations.

However, even with the parameter values set similarly ta¢hased to generate figure 2,
in the presence of data, the situation changes dramatiddily data now defines ‘preferred
directions’ with a strength that far outweighs any perttidres produced by the discretization
or otherwise. Indeed perturbations that do not fit the dathbeirapidly damped (although
of course this is dependent on the relative magnitudes dlikbkthood and prior terms). In
fact, the presence of the higher-order terms now has thestppeffect: far from increasing
the sensitivity of the minimum found to the initial conditi®, the higher-order terms reduce it,
precisely because the incorporation of more sophisticptent knowledge eliminates many
local minima.

3. Minimization of the energy

Although the linear space of chains is useful for constngcand describing functionals, the
minimization of the energy takes place not over the spacelo$éd)1-chains, but over the
space of region boundaries. In order to minimize the ensvgyise gradient descent, evolv-
ing the contour using the level set framework introduced?l{®). This framework, and its
advantages for contour evolution are by now well known. heggust note that if the contour
propagates along the outward normal direction with spgide. i - C(p) = F[C](p), then
the level set function on the contour must obey

¢ = —Vo - Fa=FV¢-V¢/|[Ve|=F|Vg| . (15)

In principle, we would likeg to evolve as a signed distance function, to which it is uguall
initialized, but this is hard to guarantee in general. Hogvegince the exact evolution gf
off the contour is of no consequence provided it is well efolbighaved, it can be chosen for
convenience, reinitializing every so often if necessargesiore the signed distance function.
A typical choice is to apply the expression fBrto each level set, and evolve the functign
accordingly.

As can be seen from equation (14), the evolution equatiorigedisfrom quadratic energies
contain nonlocal terms, and this creates new difficultieiowing the procedure of applying
the expression foF’ to every level set is impractical, since it means extractivglevel set
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belonging to each point of the discretized versionfand integrating over it. In order to
construct the speed at all points @ffrom the speed on the contour, we therefore use the
technique of ‘extension velocities?). The level set function is thus evolved in four steps.
First ¢ is (re)initialized (section 3.1), then the zero level seexsracted and the speed on
the contour computed (section 3.2). The speed is then eadlefndm the zero level set
(section 3.3), and finally is updated (section 3.4).

3.1. (RE)INITIALIZATION

In order to (re)initializep as a signed distance function, we use the approach desded
(?), where the PDE

¢ = sign(¢o) (1 —[Ve[) , with ¢(p,0) = ¢o (16)

is solved for this purpose. We found, however, that the zevellset moved during the nu-
merical solution of this equation, an effect which maniesttself as a loss of area when
we attempted to simulate an area-preserving flow for exaniplis is a recognized problem,
to which ? (?) have proposed a solution. A local area conservation cinstis imposed by
modifying equation (16) in each cell;; of Q) to

o1 = sign(¢o) (1 —[Vo|) + A H'(6)|V] , (17)
where

~ Jo, H'(@)sigNe0) (1 - V)
Jo, HGPIV

The initial condition for equation (17) is the current vahfep, except for the initialization
of the evolution, whem is set to+1 inside the contour and 1 outside.

Aij = (18)

3.2. CONTOUR EXTRACTION AND COMPUTATION OFF ON THE CONTOUR

In order to compute accurately the spdéan the zero level set, we first locate the intersec-
tions of this set with the grid using ENO interpolatidd).(After interpolation, the boundary is
extracted using the contour tracing algorithm shown ingalfP). At each step, we start from
the current point and consider six possible directionsHerriext point. These directions are
adapted to the different possible configurations, as shawigire 3. We obtain an ordered
set of points{C'(p;); i = 1,...,n} representing the boundary.

In fact, the situation is more complicated than this, beeawmmne configurations are am-
biguous, as shown in figure 3. To deal with these, it is necg$eadopt a convention: either
the interior or the exterior, but not both, can have subtaliwidth. We choose the former.

Having extracted the boundary, and after interpolatingiheessary values from the grid,
we compute the spedd for each extracted point by performing a numerical intégrabver
the contour.

3.3. COMPUTATION OF F' ON ALL POINTS OF THE DOMAIN

The speed is needed for all pointstafAs mentioned at the beginning of this section, in order
to do this efficiently, we use the method of ‘extension velesi, as proposed by (?). To
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Table I. Tracing algorithm.

1. Choose a starting point in a set of pointsk. Set current poinC' = A and search directiof = 6.
2. While C is different fromA or first= 1, do steps 3 to 9.
3. found= 0.

4 Whilefound= 0, do steps 5 to 8, at most 3 times.
5. If B, the neighbou(S — 1) of CisinR; C = B, S = S — 2, found= 1.
6. Else, if B, the neighbousS of C'isin R, C = B andfound= 1.
7 Else, if B, the neighbou(S + 1) of C'isin R, C' = B andfound= 1.
8. ElseS = S + 2.
9. first= 0.
©>0 @<
2 3- 1+ . ‘ N
’, ’ '\.
. ‘ N
s ! 3+ 2 1- . ’ \\
C : \
3 1 o 4 c o \,\
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Figure 3. Leftmost three: configurations encountered in the contoaging algorithm. Right: an ambiguous
configuration.

initialize the process, the grid points closest to the extdhboundary inherit the speed of the
closest extracted boundary point. We then solve the PDE

F. + sign(qs)E -VF =0 .

V¢l
with initial condition F' = 0 except at these points. Note that on the contour, when 0,
the forcel” does not change, thus preserving the boundary conditiorthEdmplementation,
this translates into conservation of the value$'aft these nearby grid points. At convergence,
whenF. = 0, the solution satisfie¥ ¢ - VF = 0, which means that’ is constant along the
normals to the level sets. Every level set then evolves wighsme speed, meaning that the
distance between each level set is preserved in princhpls, reventingy from being badly
behaved.

3.4. EVOLUTION OF ¢

In practice, it is not necessary to compute the evolutiomeiével set function over the whole
of Q0. Computational efficiency can be increased by restrictmmgpmutation to a band around
the zero level set, known as the ‘Narrow Ban@),(defined by|¢(z,y)| < ¢, wheret is a
threshold. When the zero level set comes too close to theafdfge Narrow Band, the level
set function is reinitialized as described above, and thedMaBand is reconstructed.
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4. Application: line network extraction

The extraction of line networks, and especially road nek&ofrom remote sensing imagery
has been studied for the last twenty years at least, and avaitkty of methods have been
developed to attack this problem. Despite all this attenttbe automatic extraction of line
networks remains a challenge because of the great vatyatiiihe objects concerned, and the
consequent difficulty in their characterization. The isignof a road can vary significantly
from one road to another, for example, while the presenceeaistand buildings in high
resolution data can obscure the network; junctions can ¢p@yhcomplex; networks do not
possess exactly the same properties in rural and urbarn arehso on.

Previous work can be characterized in a number of ways. Soetlkauls extract the net-
work as a one-dimensional object, whereas others extrachétwork as a region. Some
restrict the network topologies that can be found, genetallinear structures with no junc-
tions. Some are semi-automatic, and require informati@uttihe road location in the image
as initialization (endpoints, or initialization very c$o the road). Others aim at being fully
automatic, although to our knowledge there is no fully atiemmethod: parameters at least
always need to be set.

Methods that restrict the topology and find 1D structurehiohe those that find an optimal
path between two endpoint8. (?), for example, combine the results of applying several
specially designed operators into an array of costs inlyerséated to the likelihood of the
presence of a road, and then find an optimal path through ittag. & (?) define a path cost
depending on the contrast, grey-level and curvature algaglabetween two endpoints, and
then minimize the cost using dynamic programmifd?) propose a tree search method for
road tracking (i.e. only a start point need be given) basegtducing as much as possible the
uncertainty in the road position.

Methods that do not restrict the topology, but find 1D streetuinclude MRF and marked
point process model® (?) first generate a number of candidate line segments using two
different line detectors. The segments are then conneotgethter using a Markov random
field defined on a graph with vertices the segments, thus @gpaomplex topologies? (?)
and? (?) model thin networks, including roads, as ensembles ofdemments embedded in
the image domain. Marked point processes (with line segmasitmarks) control network
parameters such as connectivity and curvature via inieracbetween the segments.

All these methods find a connected set of points or segmauttdptnot extract the borders
of the road (althougl? (?) consider a model that includes segment width as a variaiMith
increase of image resolution, the width of networks can fmrsignificant, and it then makes
more sense to consider the network as a redtdf) propose an automatic approach that first
finds MAP estimates of the road configuration in small windogisg dynamic programming,
and then combines these window estimates, again using dymaogramming. The model
used explicitly includes the road borders.

Active contour methods also find regions, but all previousliaptions of active contours
to road network extraction find only linear structures, aeguire initialization very close to
the road to be found (?) introduce ‘ziplock snakes’. From an initial and a final gofiorces
derived from the image are progressively used to adjust dsi&ipn of the active contour.
The endpoints are positioned on either side of the road, atid torders of the road are
extracted.? (?) and? (?) model roads using ‘ribbon snakes’, active contours withedain
width associated to each point.
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Figure 4. The two configurations favoured by the quadratic image term.

In contrast, the higher-order active contour models desdrihere find regions, with no
restriction on the topology, and can be initialized in a generay without reference to the
true road position.

4.1. RROPOSED MODEL

The model has to take into account two fundamental aspedteantity to be detected: the
geometry and the radiometry, corresponding to prior arglilikod terms. The energy thus
contains two parts:

E(C) = E4C)+ \E;(C) (19)

where\ balances the contributions of the geometric ggytand the data pat;. The geo-
metric partE, is given by equation (11), and is described in section 2.4.ifffage party; is
composed of two terms:

Ei(C) = /ém*dl_ /(8R)2(\IIOR)(dI*dI)

= /dp ﬁ-w—//dp dp' t-t (VI-VI') W(R(p,p)) , (20)

where we use primed and unprimed variables to designatditigsuevaluated at points (or
C(p)) andp’ (or C(p")) respectively. The first, linear term has the form (3), witile quadratic
term takes the general form (9).

The linear term favours situations in which the outward raris opposed to the image
gradient, or in other words, in which the road is lighter tlitarenvironment. When this is the
case, it also favours larger gradients under the contowr.sElcond term is an example of a
quadratic likelihood term: it describes a relation betwtencontour and the data that cannot
be incorporated into a linear functional. Its effect is tedar the two situations illustrated
in figure 4. First, it favours configurations in which pairs mdints whose tangent vectors
are parallel and that are not too distant from each othergoints on the same side of a
road) lie on image gradients that point in the same dirediwh are large. Second, it favours
configurations in which pairs of points whose tangent vectoe antiparallelife. points on
opposite sides of a road) lie on image gradients that poiopposite directions and are large.
This latter is important, as it allows the model to captumejtint behaviour exhibited by the
opposing sides of a road.

The energy in equation (19) is minimized using gradient eissamplemented via level
sets as described in section 3. The resulting descent eguati

oC

oo = —/i—a—)\V2[+2)\/dp/ (VI'-VVI-d) U(R(p,p))
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Figure 5. Gradient descent on the two SPOT satellite images in thecbifgmn.

49 / i (R-8)(B+ \VI-VI') U(R(p.p)) . 21)

4.2. FARAMETERS AND INITIALIZATION

The above models have parameters, but as with all varidtroethods, there exist no good
ways of assigning values to most of these parameters. Ixgregienents below, the parameters
were all set empirically to optimize the results, with theeption ofd.,;, ande, which have
clear physical meanings and can be set using the resolutithe éimage and an examination
of the roads it contains.

Initialization is an important issue for gradient descemtimods. The results may depend
heavily on the initialization chosen, and indeed a numbén@Mmethods used for the detection
of roads rely on an initialization very close to the netwdrk.all the results shown below,
however, the region used to initialize the gradient desees a rounded rectangle lying
just insidef2. This is possible because the greater specificity of the halaeinates many
candidate contours from consideration, thus removing macg! minima. All experiments
were run until convergence.

4.3. EXPERIMENTAL RESULTS WITH THE FIRST MODEL

We tested the above model on real satellite and aerial imdgessuch images are shown in
the first column of figure 5. The images present several diffesu There are regions of high

gradient corresponding to the borders of fields rather tbamads, and fields also exhibit

parallel sides. In the first image, there is a discontinuitythie road. The gradient descent
procedure and results are shown in the second to fifth colafrfigure 5. In both images, the

roads are perfectly extracted.

Figure 6 shows another result on a larger, more complex piEitee same satellite image.
The result is not perfect but very encouraging. We are abdietect both straight and ‘windy’
portions of the network, and areas where the road width sarie

The likelihood term, although it takes into account someseatspof the appearance of road
networks in images, can nevertheless be improved. Fomiostasolated edges are occasion-
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Figure 6. Result on a larger piece of the SPOT image.

ally detected. In the next section, we add another image terour model, more specific to
the radiometry of a line network.

4.4, AMORE SPECIFIC IMAGE TERM

Consider a functior? on 2 that is representative of the entity to detect, in our caeditte
network. For instance, it could be the log probability thatte point ofQ2 belongs to the
network. Then one can define the following energy of the fajrafid (4):

E(C):—/*G:—/ Agz—/ C*Aq , (22)
R OR dom C
wheredAs = *G. The functional derivative is given by
oF
——— =G(C(p))n . 23
5C0) (C(p))a(p) (23)

In the following subsections, we describe two ways of camcting G. The first method
uses oriented filtering, while the second uses hypothesis. te

4.4.1. Oriented filtering
Define the function

Fo = (Vo-V)*N, ,

where N, is a rotationally symmetric Gaussian with standard demmati, andvy is the unit
vector in directiord. ThendG is given by

Gla) = Qlmin(Fy+ () .

wherex indicates convolution. The rotations are chosen from thése- {0, Breee %T}
The function@ maps the values into the intenvat1, 1)
1 if o <81,
Qr) = ¢ 1-2" ifsi <z <sy (24)

-1 if x> s9
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bl| b2 | b3

Figure 7. Mask for Student tests.

wheres; ands, are two thresholds, chosen empirically.

4.4.2. Hypothesis tests
? (?) used Student t-tests for line network detection. Here wapttheir approach to our
context. We suppose that roads are homogeneous and cedtvatt respect to their environ-
ment. A t-test on sets of pixels from inside a potential rodtitest the homogeneity criterion,
while a t-test on sets of pixels from inside and outside arg@tkroad will test the contrast
criterion. In order to compute the test, we use the mask shiodigure 7.

The Student t-test computes

t-tes(l‘7 y) = Y

where-, o andn represent respectively the mean, the standard deviatmhth& number of
observations. When the result of the test is above a cehtestiold, we can consider that the
two sets of pixels belong to different populations (impliciGaussian with different means
and variances). Given a mask location and orientatjond), we test the homogeneity and
contrast criteria by computing the quantity

Ty(z) = Q <$>

where

Hy = t-test(b;, b d Hy = min [t-test(R}, S
' j,ke{ll,r..l%},j;«ék[ est(bj, by)] and Hp len{lllg}[ est(Ry, 5)]

The functionG is then defined by

Omax(7) = argmax [Ty(z)| and G(z) = Ty, () (T) -
0cO

Both functions act as simple linear structure detectorsipg up elongated structures for
which the interior has an average intensity different td tifathe exterior neighbourhood,
but the second is more subtle. The first essentially caksildifferences of means, while the
second compares these differences to the data variances.



18

Figure 9. Results of extraction with the two functios

4.5. EXPERIMENTAL RESULTS WITH THE SECOND MODEL

We add this new energy (22) to the model (19), and test the hoodbe high-resolution aerial
image shown in figure 8. The image presents several diffesuliecause of high gradients that
do not correspond to sides of roads and because of occludi@t® the presence of trees next
to the road network. We obtain two extraction results cquoesling to the two functioné/
above. The results are similar, and are shown in figure 9.

The main part of the network is extracted, and field bordes @her geometric noise
are eliminated. In the top-right in one result, a road etiogca house is extracted as a solid
area. This happens because ‘holes’ cannot form in the cehtaeregion with the current
formulation. The main problem, however, is that occlusiduoe to trees disrupt the network.
We are currently addressing this issue using a quadratiggtieat causes two road ‘tips’ to
attract one another, and thus close such gaps.

5. Conclusions

We have introduced a new class of active contour energyibumads that greatly generalizes
the energies used in previous work. Previous energiesrearlon the space dfchains, being
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expressed as single integrals over the contour. The newgieseaire arbitrary polynomials
on the space of-chains, adding multiple integrals to the linear terms. Tiegv energies
describe arbitrarily long-range interactions betwees sétontour points, and thus can incor-
porate both sophisticated prior geometric information eachplex multi-point interactions
between the contour and the data. The prior terms can easilpdule Euclidean invariant,
thus obviating the need for pose estimation usual for activeour shape models.

We studied a particular form of quadratic energy that dbscrietworks’: structures com-
posed of ‘arms’ of roughly parallel sides, perhaps of vagyiridth, joined together in various
ways. Using this energy as a base, we designed an energjofuaddhcluding both quadratic
prior and likelihood terms and applied it to the extractidmaad networks from satellite and
aerial imagery. Simulations prove the efficacy of the model Hustrate the effect of the in-
corporation of non-trivial geometrical interactions beem points of the contour and between
the contour and the data. The enhanced specificity of the @ifninates many local minima,
thus enabling an automatic initialization step. Algorifbally, these models presented new
challenges also, in particular the need for a maximum ofigi@t in the calculation of the
speed and the evolution of the contour.

Immediate future work is focused on the solution of the peotd mentioned in connection
with figure 8, where occlusions disrupted the network. Weehdesigned a quadratic ‘gap
closure’ force that overcomes the repulsion introducedhieyeixisting quadratic term in cer-
tain circumstances, leading road ‘tips’ to attract one lagoand fill in gaps in the network,
something that is impossible using classical techniquasorporating such a force into an
energy framework is challenging, as it involves highereorderivatives that create numerical
difficulties. We are currently working on resolving these.

Many open questions and research directions remain to Heregp the most important
being the construction of a functional for a given family dbpes. Others include: higher-
than-quadratic functionals; the extension to surfacesphabilistic formulation; improving
computational efficiency; and applications to other dorsamparticular to medical imagery.
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