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Abstract

We define two transforms between minimal surfaces with non-circular ellipse of cur-
vature in the 5-sphere, and show how this enables us to construct, from one such
surface, a sequence of such surfaces. We also use the transforms to show how to
associate to such a surface a corresponding ruled minimal Lagrangian submanifold of
complex projective 3-space, which gives the converse of a construction considered in
a previous paper, and illustrate this explicitly in the case of bipolar minimal surfaces.
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1 Introduction

Let f : S → S5(1) be a minimal immersion of a surface S into the unit 5-sphere. The
image of the unit circle in the tangent space under the second fundamental form of f is
a central planar ellipse E in the normal space of f called the ellipse of curvature. Let
0 ≤ θ ≤ π/2 be such that cos θ is the ratio of the lengths of the minor and major axes
of E. The geometrical significance of θ lies in the fact that if Rθ is the rotation of the
normal space through angle θ about the minor axis of E then the orthogonal projection of
Rθ(E) onto the plane containing E is a circle. If N is the unit vector in the normal space
orthogonal to the plane containing E, then the transform we will consider is obtained by
applying Rθ to N . Of course, there are certain choices of sign and orientation to be made
here, and the various choices available give two essentially different transforms. We shall
show that these transformed surfaces are also minimal, and that the two transforms are
mutual inverses. This enables us to define a sequence {fp : p ∈ Z} of minimal immersions
into S5(1) with f 0 = f , and we instigate an investigation of this sequence.

The transforms described above are natural generalisations of the polar construction
[10] for superconformal minimal surfaces in S3(1) and S5(1) (although when the ambient
space is S3(1) the polar is simply the unit normal to the immersion). In the latter situation,
the ellipse of curvature is a circle, the angle of rotation θ is zero, and in both situations the
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sequence of minimal immersions is periodic with period two. Our motivation for discovering
and studying these transforms comes from [3], where we showed how to associate two
minimal surfaces in S5(1) to a ruled minimal Lagrangian submanifold of complex projective
3-space. We showed that these minimal surfaces were related by the above transforms. In
the present paper we show that the construction described in [3] may be reversed, thus
showing that all minimal surfaces in S5(1) whose ellipse of curvature is not a circle may
be constructed using the methods of [3]. We then illustrate this explicitly in the case of
bipolar minimal surfaces [10] in S5(1).

2 Minimal surfaces in S5(1)

For the rest of the paper, f : S → S5(1) will denote a minimal immersion of an oriented
surface S into S5(1). We use the orientation and induced metric to give S the structure
of a Riemann surface in such a way that f is a conformal immersion. If II denotes the
second fundamental form of f in S5(1) we recall that for each p ∈ S the subset E(p) of
the first normal space of S at p given by

E(p) = {II(X,X) | X is a unit tangent vector to S at p}

is a (possibly degenerate) central ellipse called the ellipse of curvature of S at p.
In this section, we assume that S has non-circular non-degenerate ellipse of curvature

at every point. We show how to associate a complex moving frame to such an immersion,
and obtain the moving frame equations and integrability conditions. The approach we use
is based on the theory of harmonic sequences, which is described in [5] for the more general
situation of minimal surfaces in Sm(1) or CPm(4).

Let z = x + iy be a local complex coordinate on S, and denote ∂
∂z

by ∂ and ∂
∂z̄

by ∂̄.
We introduce C6-valued functions f0, f1, f2 by

f0 = f, (1)

f1 = ∂f, (2)

f2 = II(∂, ∂), (3)

where II now denotes the complex bilinear extension of the second fundamental form of
f in S5(1). If ( , ) is the complex bilinear extension of the standard inner product on
R6, it follows that (f0, f1) = 0 while conformality of f is equivalent to

(f1, f1) = 0. (4)

Thus f0, f1, f̄1 are mutually orthogonal and f2 is the component of ∂f1 orthogonal to f0,
f1, f̄1. We note that, by Takahashi’s Lemma [12], the minimality of f is equivalent to
∂∂̄f0 = µf0 for some real-valued function µ.

If f2 = a− ib where a, b are R6-valued functions, it follows from conformality of f that
the ellipse of curvature is homothetic to the image of the map

ψ 7→ II(cosψ ∂
∂x

+ sinψ ∂
∂y
, cosψ ∂

∂x
+ sinψ ∂

∂y
) = 2(a cos 2ψ + b sin 2ψ). (5)
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Since the ellipse of curvature is not a circle we see that (f2, f2) 6= 0. As noticed by Hopf,
the function (f2, f2) is holomorphic, so that [4] there exists a complex coordinate z (which
we will call an adapted complex coordinate for f), defined up to rotations by π

2
, such that

(f2, f2) = −1. In this case

−1 = (f2, f2) = (a, a)− (b, b)− 2i(a, b),

so that
(a, a)− (b, b) = −1, (a, b) = 0. (6)

It now follows from (5) that a lies along the minor axis and b the major axis of E. It
follows from (6) that there is a non-negative function φ such that

|a| = sinhφ, |b| = coshφ, (7)

so that the eccentricity e of E is given by

e =
√

1− |a|2
|b|2 = sechφ. (8)

At points where the ellipse of curvature is non-degenerate, a and b are linearly independent,
and φ is positive. Thus f2 and f̄2 are also linearly independent, and we complete our com-
plex moving frame for f by letting N be a real unit vector orthogonal to {f0, f1, f̄1, f2, f̄2}.

It is then straightforward to check that if F = {f0, f1, f̄1, f2, f̄2, N} and if ω = log |f1|2,
then the matrix A of complex bilinear inner products of the frame vectors of F is given by

A =


1 0 0 0 0 0
0 0 eω 0 0 0
0 eω 0 0 0 0
0 0 0 −1 cosh 2φ 0
0 0 0 cosh 2φ −1 0
0 0 0 0 0 1

 . (9)

We now write down the moving frame equations for F . A straightforward computation
using (9) shows that if α = (∂f2, N), then the moving frame equations for F may be
written in terms of ω, φ, α as follows:

∂f0 = f1,

∂f1 = f2 + ∂ω f1,

∂f̄1 = −eωf0,

∂f2 = e−ωf̄1 + 2∂φ coth 2φ f2 + 2∂φ csch 2φ f̄2 + αN,

∂f̄2 = −e−ω cosh 2φ f̄1,

∂N = −α csch2 2φ (f2 + cosh 2φ f̄2).

Of course, the corresponding ∂̄ equations may be found by taking the conjugates of the
above. It follows from uniqueness of solutions of linear differential equations and the inte-
grability conditions ∂∂̄F = ∂̄∂F that a minimal surface with non-circular non-degenerate
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ellipse of curvature in S5(1) is determined, up to O(6)-congruence, by functions ω, φ > 0,
α satisfying the following system of differential equations:

∂̄α = −2ᾱ∂φ csch 2φ,

∂̄∂ω = −eω + e−ω cosh 2φ,

2∂̄∂φ = αᾱ csch 2φ− e−ω sinh 2φ.

(10)

The functions α, ω and φ have geometrical significance: α is analogous to the torsion of a
space curve in that it is a measure of the rate at which the surface is pulling away from the
great 4-sphere which contains its tangent and first normal space, the metric on the surface
is given by 2eω|dz|2, and φ is a measure of the eccentricity of the ellipse of curvature.

Remark 1 The above equation for φ may be used to show that every compact minimal
surface S in S4(1) contains at least one point at which the ellipse of curvature is a point, a
line segment or a circle. Otherwise, φ would be a smooth globally defined positive function
on S satisfying the two-dimensional sinh-Gordon equation.

3 The transforms

In this section we assume that f : S → S5(1) is a minimal immersion with non-circular
ellipse of curvature at every point. We show how to associate to f two other minimal
immersions of the Riemann surface S into S5(1) which both induce the same conformal
strucure on S as that induced by f , and also have non-circular ellipse of curvature at
every point. We further show that an adapted complex coordinate z for f is also an
adapted complex coordinate for our new minimal immersions. We first consider the open
subset of S on which the ellipse of curvature is non-degenerate. Then, as mentioned in the
introduction, our new minimal immersions are obtained by rotating N in the normal space
through a geometrically significant angle θ about the minor axis of the ellipse of curvature.
So, let z be an adapted complex coordinate for f and let cos θ = |a|/|b| = tanhφ. Then,
applying rotations of ±θ to ±N gives the four possibilities

± 1
cosh φ

b
|b| ± tanhφN.

For definiteness, we take N to be such that {f0,
∂f0

∂x
, ∂f0

∂y
, II(∂f0

∂x
, ∂f0

∂x
), II(∂f0

∂x
, ∂f0

∂y
), N}

is a positively oriented orthogonal moving frame of R6, and the two transforms we will
consider are those given by

f+ = − 1
cosh φ

b
|b| + tanhφN, (11)

f− = − 1
cosh φ

b
|b| − tanhφN. (12)

Thus if we orient the normal space by taking {II(∂f0

∂x
, ∂f0

∂x
), II(∂f0

∂x
, ∂f0

∂y
), N} to be posi-

tively oriented, then the (+)transform f+ is obtained from f by the (+)construction which
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is given by (11) and consists of rotating N about the minor axis of the ellipse of curvature
through the angle θ anticlockwise, while the (−)transform f− is obtained from f by the
(−)construction which is given by (12) and consists of rotating −N about the minor axis
through the angle θ clockwise.

We note that b = 1
2
II(∂f

∂x
, ∂f

∂y
) is a nowhere zero vector, so the orientation of S induces

an orthogonal complex structure J on the orthogonal complement of {f, ∂f
∂x
, ∂f

∂y
, b} in R6.

An alternative description of f ε is then given by

f ε = − 1
|b|

(
b
|b| + εJ II(∂f

∂x
, ∂f

∂x
)
)
.

This description is valid and differentiable at points where the ellipse of curvature degen-
erates to a line segment, and hence we may define our transforms at these points also. We
note that f(S) is contained in a totally geodesic S3(1) in S5(1) if and only if it is totally
geodesic or the ellipse of curvature degenerates to a line segment on the complement of an
isolated set of points (where the second fundamental form may vanish), and in this latter
case the transforms simply give the unit normal of f(S) in S3(1). From now on, we assume
that we are not in this situation, so that the ellipse of curvature is non-degenerate on an
open dense subset of S.

We note the following for later use. Let vol denote the complexification of the standard
volume form of R6. Since detA = e2ω sinh2 2φ, we see that vol(f0, f1, f̄1, f2, f̄2, N) =
±eω sinh 2φ. However,

vol(f0, f1, f̄1, f2, f̄2, N) = −1
4
vol

(
f0,

∂f0

∂x
, ∂f0

∂y
, II(∂f0

∂x
, ∂f0

∂x
), II(∂f0

∂x
, ∂f0

∂y
), N

)
,

so that
vol(f0, f1, f̄1, f2, f̄2, N) = −eω sinh 2φ. (13)

We now show that f+ and f− both induce the same conformal structure on S as that
induced by f . In order to do this, we first define

f ε
1 = ∂f ε.

Here and subsequently, we use ε as a superscript taking value + or −, and use ε = ±1 in
the corresponding equations as appropriate. Then, using (11), (12) and the moving frame
equations for F , we find that

f ε
1 = −ie−ωf̄1 − 1

2
(αε+ 2i∂φ) sech2φ

(
csch 2φ f2 + coth 2φ f̄2 + εiN

)
. (14)

From this, a computation using (9) shows that

(f ε
1, f

ε
1) = 0, (15)

|f ε
1|2 = e−ω + 1

2
|αε+ 2i∂φ|2 sech2φ. (16)

Thus the maps f ε define conformal immersions of S into S5(1), so that if z = x+ iy then
(x, y) are isothermal coordinates not only for the original immersion f but also for the two
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newly constructed immersions f ε. We note that the metric induced on S by f ε is given by
2eωε |dz2|, where ωε = log |f ε

1|2.
We now show that each f ε is minimal. By Takahashi’s lemma, it is sufficient to check

that ∂∂̄f ε is a multiple of f ε. We first note that it follows quickly from (14) that

(∂∂̄f ε, f0) = 0,

(∂∂̄f ε, f1) = 0,

while a straightforward computer calculation shows that

(∂∂̄f ε, f2) = −i(e−ω + 1
2
|αε+ 2i∂φ|2 sech2φ),

(∂∂̄f ε, N) = −ε tanhφ (e−ω + 1
2
|αε+ 2i∂φ|2 sech2φ).

However, it follows from (7), (9), (11) and (12) that

(f ε, f0) = 0, (17)

(f ε, f1) = 0, (18)

(f ε, f2) = i, (19)

(f ε, N) = ε tanhφ, (20)

and hence, using (16),
∂∂̄f ε = −|f ε

1|2f ε,

showing that ∂∂̄f ε is indeed a multiple of f ε, so that each f ε is a minimal immersion of S
into S5(1).

Finally in this section, we show that z is also an adapted complex coordinate for f ε. If
IIε denotes the second fundamental form of f ε, we put

f ε
2 = IIε(∂, ∂) = aε − ibε.

As in the moving frame equations for F , if ωε = log |f ε
1|2, then

f ε
2 = ∂f ε

1 − ∂ωεf ε
1. (21)

It follows from (11), (12) and the moving frame equations for F that

∂f ε
1 = if0 + e−ω

(
i∂ω + tanhφ (αε+ 2i∂φ)

)
f̄1 + 2ν csch42φ sinh2φ f2

+ (1/2)ν coth 2φ csch 2φ sech2φ f̄2 + iεν csch2 2φ tanhφ N,
(22)

where

ν = 2αε∂φ(−2 + cosh 2φ) + 8i sinh2φ (∂φ)2

− ε∂α sinh 2φ+ iα2 − 2i sinh 2φ ∂∂φ,

so that, using (9),
(∂f ε

1, ∂f
ε
1) = −1.

Equations (15) and (21) now imply that (f ε
2, f

ε
2) = −1, so that z is also an adapted complex

coordinate for each f ε. In particular, each f ε has non-circular ellipse of curvature.
Summarizing the above, we have the following theorem:
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Theorem 1 Let f : S → S5(1) be a minimal immersion with non-circular ellipse of
curvature at every point. Then the (+)transform f+ and the (−)transform f− of f are
both minimal immersions of S into S5(1) which induce the same conformal structure on S
as that induced by f . Moreover, both f+ and f− have non-circular ellipse of curvature at
every point and an adapted complex coordinate for f is also an adapted complex coordinate
for f+ and f−.

Remark 2 The final statement of the above theorem is equivalent to saying that f , f+

and f− all have the same U2,−2 invariant (see [5] for the definition of this and related
invariants).

4 A symmetric adapted moving frame

In this section we assume that f has non-circular ellipse of curvature at each point and is
not contained in a totally geodesic S3(1). We begin the study of f and its transforms by
constructing a moving frame B which gives equal prominence to f and f ε. We also obtain
the moving frame equations and integrability conditions for B.

So, let B = {f0, f1, f̄1, f̄ ε
1, f

ε
1, f

ε
0}. It follows quickly from (9) and the moving frame

equations for F that the matrix B of complex bilinear inner products of elements of B is
given by

B =


1 0 0 0 0 0
0 0 eω 0 −i 0
0 eω 0 i 0 0
0 0 i 0 eωε

0
0 −i 0 eωε

0 0
0 0 0 0 0 1

 , (23)

from which we see that
detB = (eω+ωε − 1)2, (24)

implying that the vectors in B are linearly independent as long as ω + ωε 6= 0.

Lemma 1 We have that ω + ωε > 0 on an open dense subset U of S.

Proof: It follows from (16) that ω + ωε ≥ 0, and that ω + ωε = 0 on an open set if and
only if α = −2iε∂φ. Taking the derivative of this expression with respect to ∂̄ and using
the integrability conditions (10) for the moving frame equations for F it then follows that

−4iε csch 2φ ∂φ∂̄φ = e−ωiε csch 2φ (sinh22φ− 4eω∂φ∂̄φ).

Simplifying the above equation then yields the contradiction 0 = e−ω sinh 2φ.

The advantage of the above condition is that on the open dense subset U we can
investigate the original immersion f and the new immersion f ε with respect to the frame
B = {f0, f1, f̄1, f̄ ε

1, f
ε
1, f

ε
0}.
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It follows from (24) that vol(f0, f1, f̄1, f̄ ε
1, f

ε
1, f

ε
0) = ±(eω+ωε − 1). In order to determine

the sign we compute the volume explicitly. A straightforward calculation using (13) and
(14) yields that

vol(f0, f1, f̄1, f̄ ε
1, f

ε
1, f

ε) = ε csch22φ tanhφ |αε+ 2i∂φ|2vol (f0, f1, f̄1, f2, f̄2, N)

= −εeω csch 2φ tanhφ |αε+ 2i∂φ|2

= −ε1
2
sech2φ eω|αε+ 2i∂φ|2.

Thus, using (16),
vol(f0, f1, f̄1, f̄ ε

1, f
ε
1, f

ε
0) = −ε(eω+ωε − 1). (25)

We now intoduce the function γε by

γε = (∂f1, f
ε
1), (26)

and use (23) to write down the moving frame equations for B in terms of ω, ωε, γε as
follows.

∂f0 = f1,

∂f1 = −iγε+∂ωeω+ωε

eω+ωε−1
f1 + eω(γε+i∂ω)

eω+ωε−1
f̄ ε

1 + if ε
0,

∂f̄1 = −eωf0,

∂f̄ ε
1 = −eωε

f ε
0,

∂f ε
1 = if0 − eωε

(γε−i∂ωε)

eω+ωε−1
f̄1 + iγε+∂ωεeω+ωε

eω+ωε−1
f ε

1,

∂f ε
0 = f ε

1.

As before, the corresponding ∂̄ equations may be found by taking the conjugates of the
above. The integrability conditions of the above system of equations are

∂̄γε = i(eω − eωε

),

∂∂̄ω = −2 sinhω + 1
eω+ωε−1

|γε + i∂ω|2,
∂∂̄ωε = −2 sinhωε + 1

eω+ωε−1
|γε − i∂ωε|2.

(27)

As before, solutions of (27) correspond up to O(6) congruence to a minimal surface and
its ε-transform.

5 The (+) and (−) constructions are mutual inverses

In this section we use the frame B introduced in the previous section to prove the following.

Theorem 2 Let f : S → S5(1) be a minimal immersion with non-circular ellipse of
curvature at every point. Then the (+)construction and the (−)construction are mu-
tual inverses in the sense that both f+ and f− have non-circular ellipse of curvature and
(f+)− = (f−)+ = f .
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Proof: The theorem is clearly true if f(S) is contained in a totally geodesic S3(1), so we
assume otherwise and work on the open dense subset U of S on which ω + ω+ > 0. We
denote by pε̃(f

ε
0), where ε̃ε = −1, the image of f ε

0 by the ε̃ construction. So, by (11) and
(12), we have that

pε̃(f
ε
0) = − 1

cosh φε
bε

|bε| + ε̃ tanhφεN ε = − bε

cosh2φε + ε̃ tanhφεN ε. (28)

Now let
v = bε

cosh2φε + f0.

It follows from the ε-analogue of (9) and from (23) that v is orthogonal to f ε
0 and f ε

1, while,
using the ε-analogues of (6) and (7), we see that

(v, f ε
2) = ( bε

cosh2 φε , f
ε
2) + (f0, f

ε
2)

= −i |bε|2
cosh2 φε + (f0, ∂f

ε
1)

= −i− (∂f0, f
ε
1)

= −i− (f1, f
ε
1)

= −i+ i = 0,

so that v is a scalar multiple of N ε. We now use the moving frame equations for B to
determine this scalar multiple as follows. First note that

vol(f ε
0, f

ε
1, f̄

ε
1, f

ε
2, f̄

ε
2, v) = vol(f ε

0, f
ε
1, f̄

ε
1, f

ε
2, f̄

ε
2, f0)

= vol(f ε
0, f

ε
1, f̄

ε
1, ∂f

ε
1, ∂̄f̄

ε
1, f0)

= − e2ωε

(eω+ωε−1)2
|γε − i∂ωε|2vol(f0, f1, f̄1, f̄ ε

1, f
ε
1, f

ε)

= ε e2ωε

(eω+ωε−1)
|γε − i∂ωε|2,

where the final equality above is obtained using (25).
However, it follows from (27) and the ε-analogue of (10) that

eωε

(eω+ωε−1)
|γε − i∂ωε|2 = 2 sinh2φε, (29)

so that
vol(f ε

0, f
ε
1, f̄

ε
1, f

ε
2, f̄

ε
2, v) = 2εeωε

sinh2φε.

We next note that the ε-analogue of (13) gives

vol(f ε
0, f

ε
1, f̄

ε
1, f

ε
2, f̄

ε
2, N

ε) = −eωε

sinh 2φε,

so it follows that v = −ε tanhφεN ε.
Thus, from (24) we have that

pε̃(f
ε
0) = −v + f0 + ε̃ tanhφεN ε

= (ε̃+ ε) tanhφεN ε + f0 = f0,
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implying that the (+)construction and the (−)construction are mutual inverses.

The above theorem shows that we may associate to a minimal immersion f : S → S5(1)
with non-circular ellipse of curvature a sequence {fp : p ∈ Z} of such minimal immersions
with f 0 = f and, for each p, fp+1 = (fp)+ and fp−1 = (fp)−. Moreover, each element of the
sequence induces the same conformal structure on S, and an adapted complex coordinate
z for any fp is an adapted complex coordinate for each element of the sequence.

6 The geometry of the invariants

In the previous section we showed that we may associate to a minimal immersion f :
S → S5(1) with non-circular ellipse of curvature a sequence {fp : p ∈ Z} of such minimal
immersions with f 0 = f . For the remainder of the paper we will assume that f(S) is not
contained in a totally geodesic S3(1). We use the superfix p to denote objects connected
with fp. For instance, with each immersion fp we associate as before the invariants ωp, φp

and αp. Moreover with each (+)construction, fp → fp+1, we associate the invariants ωp,
ωp+1 and γp+1 = (∂fp

1 , f
p+1
1 ), while with each (−)construction we associate the invariants

ωp, ωp−1 and δp−1 = (∂fp
1 , f

p−1
1 ). Thus, γ1 is equal to the invariant γ+ used in previous

sections, while δ−1 is equal to γ−. Since, from (23), we have that (fp
1 , f

p+1
1 ) = −i, it is

clear that δp = −γp+1.
As already mentioned, the geometrical meaning of the invariants ωp is clear, since they

give the metric induced on S by fp. Also, the final moving frame equation for F implies
that αp = 0 if and only if fp is not linearly full. In this section we look more closely at
this situation, and also obtain a geometrical characterisation of the condition γp+1 = 0.

We begin with a useful lemma.

Lemma 2 Let A be an orientation reversing isometry of R6. Then

(Af)− = A(f+) , (Af)+ = A(f−) .

In fact, more generally, for each integer p we have that (Af)p = A(f−p).

Proof: As A is an orientation reversing isometry, if N is the normal vector associated to
f as in equations (11) and (12), then the corresponding normal associated to Af is −AN .
The first result is now clear from the definitions of the (+) and (−)constructions given in
(11) and (12). The second may be proved in a similar manner, and the final statement
follows by induction.

Theorem 3 Let f : S → S5(1) be a minimal immersion, not contained in a totally geodesic
S3(1), with non-circular ellipse of curvature at every point. Let {fp} be the sequence of
minimal immersions into S5(1) determined by f . For each integer q, the following three
statements are equivalent:

1. αq = 0 on an open subset of S,
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2. f q is not linearly full,

3. there exists an orientation reversing isometry A ∈ O(6) such that f q+1 = A(f q−1).

Moreover, in this case, for every integer r we have that f q−r and f q+r are congruent via
reflection in the great 4-sphere containing f q.

Proof: We have already noted the equivalence of the first two statements. Now suppose
that condition 3 holds. Taking the (−)construction of this, we may use Lemma 2 to see
that f q = A(f q). Since A has at least one eigenvalue equal to −1, it now follows that f q

is not linearly full and that A is reflection in the great 4-sphere containing f q.
Conversely suppose that f q is contained is a totally geodesic S4(1). In this case N q is

a constant vector, so it is clear from (11) and (12) that f q−1 and f q+1 are congruent via
reflection in the totally geodesic S4(1) containing f q. The final statement of the theorem
now follows from Lemma 2.

A similar characterisation also exists for γq+1 = 0. We show in Section 9 that this
situation can actually arise; in this case f q is a bipolar surface in the sense of Lawson [10].

Theorem 4 Let f : S → S5(1) be a minimal immersion, not contained in a totally geodesic
S3(1), with non-circular ellipse of curvature at every point. Let {fp} be the sequence of
minimal immersions into S5(1) determined by f . For each integer q, γq+1 = 0 if and
only if there exists an orientation reversing isometry A ∈ O(6) such that f q+1 = A(f q).
Moreover, in this case, A is reflection in a great subsphere of S5(1) and for every integer
r we have that f q+1+r = A(f q−r).

Proof: Assume that f q+1 = A(f q). Then,

γq+1 = (∂f q
1 , f

q+1
1 )

= (∂A(f q
1 ), A(f q+1

1 )).

However,
A(f q

1 ) = A∂f q = ∂A(f q) = ∂f q+1 = f q+1
1 ,

while, using Lemma 2,

A(f q+1
1 ) = A(∂f q+1) = ∂A(f q+1) = ∂((A(f q))−) = ∂((f q+1)−) = ∂f q = f q

1 .

Thus
γq+1 = (∂f q+1

1 , f q
1 ) = −(f q+1

1 , ∂f q
1 ) = −γq+1,

so that γq+1 = 0.
Conversely suppose that γq+1 = 0. It then follows from the integrability conditions

(27) that ωq = ωq+1. Since the set B is a basis for C6 we may define, for each z, a unique
linear map A(z) by

Af q
0 = f q+1

0 , Af q
1 = f q+1

1 , Af̄ q
1 = f̄ q+1

1 ,

Af q+1
0 = f q

0 , Af q+1
1 = f q

1 , Af̄ q+1
1 = f̄ q

1 .
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However, it follows from the moving frame equations for B that A does not depend on z,
while (23) may be used to show that A is an isometry. It is clear from the definition that
A has determinant −1 and A2 is the identity, so it follows that A is a reflection. As in the
previous theorem, the final statement follows from Lemma 2.

In the previous two theorems we have considered two situations which led to the con-
clusion that two elements in a sequence {fp} are congruent via an orientation reversing
isometry. An easy application of Lemma 2 quickly leads to the following theorem, which
shows that the above situations are the only ones for which this can happen.

Theorem 5 Let f : S → S5(1) be a minimal immersion, not contained in a totally geodesic
S3(1), with non-circular ellipse of curvature at every point. Let {fp} be the sequence of
minimal immersions into S5(1) determined by f . Suppose that two elements f q and f r

of the sequence are congruent via an orientation reversing isometry. Then there are two
possibilities, depending on the parity of q − r. Either

1. there exists an integer s for which αs = 0 on an open subset of S, or

2. there exists an integer s for which γs+1 = 0.

Finally in this section, we note that if two elements of a sequence {fp} are related by
an orientation preserving isometry then the sequence is periodic in a natural sense. This
situation can actually arise, and we plan to investigate this further at a later date.

7 Minimal surfaces and ruled Lagrangian submani-

folds

In a previous paper [3], we studied minimal Lagrangian submanifolds of complex projective
3-space CP 3(4) which admit a foliation by asymptotic curves. Such submanifolds can be
divided in to three types.

1. Those which additionally satisfy Chen’s equality [8]. These were studied and charac-
terized in [1], [2], and are closely related to minimal immersions of surfaces in S5(1)
with ellipse of curvature a circle.

2. Those for which the unit tangent vectors to the asymptotic curves form a Killing
vector field. It is shown in [3] that these are related to minimal surfaces in S3(1),
and classification theorems are obtained in [7].

3. All the rest. In [3] we showed how to construct, starting from such a submanifold,
a pair of minimal immersions of a surface S into S5(1) with non-circular ellipse of
curvature which are related by the (+) and (−)constructions.

12



In this section we deal with the converse of the construction described in [3]. We show
how to associate to a minimal immersion f of a surface in S5(1) with non-circular ellipse
of curvature a Lagrangian submanifold of CP 3(4) belonging to the third type. We will
then show that the construction given in [3] associates to this Lagrangian submanifold
the immersion f and its (+)transform. We first briefly describe the construction given
in [3]. Let M be a minimal Lagrangian submanifolds of CP 3(4) which admits a foliation
by asymptotic curves. We construct an orthonormal moving frame {e1, e2, e3} along M
such that e1 is tangential to the asymptotic curves and e2, e3 are eigenvectors of the second
fundamental form AJe1 ofM with respect to the normal Je1 with corresponding eigenvalues
±λ (λ > 0). Since M is Lagrangian in CP 3(4), there is a horizontal lift E0 : M → S7(1)
of M to the unit 7-sphere of the Hopf fibration π : S7(1) → CP 3(4) [11]. By setting
Ej = dE0(ej) for j = 1, 2, 3, we then define a map E = (E0, . . . ,E3) : M → U(4),
where U(4) denotes the unitary group, but, by choosing a suitable horizontal lift, we may
assume that the image of E is contained in the special unitary group SU(4). Composing
E with a suitable standard double cover of the orthogonal group SO(6) by SU(4) gives a
map U = (U1, . . . ,U6) : M → SO(6). It turns out that U2 and U4 are constant along
the asymptotic curves of M , and their images are minimal surfaces in S5(1). If M is a
Lagrangian submanifold of the third type mentioned at the beginning of this section, then
it is shown in [3] that the ellipse of curvature of these surfaces is not a circle, and the
surfaces are related by the transforms discussed in the current paper.

We will use the notation and terminology of [3], and work throughout on the open
subset U of S on which ω + ω+ > 0. In order to simplify the notation, we denote the
immersion of S into S5(1) by f and let g be the (+)transform of f . As usual, we let z be
an adapted complex coordinate, put f0 = f , f1 = ∂f , g0 = g and g1 = ∂g.

We will show that, for a suitable interval I of real numbers, M = I×U may be realised
as a minimal Lagrangian submanifold of CP 3(4) of type 3 such that if {e1, e2, e3} is an
orthonormal frame along M of the type described above and in [3], then the corresponding
map U = (U1, . . . ,U6) : M → SO(6) has

U2(t, z) = g0(z), U4(t, z) = f0(z), (30)

where t is the standard real coordinate on I.
In fact, we use the invariants ω, ω+ and γ+ to construct a map U = (U1, . . . ,U6) :

M → SO(6) satisfying (30), with the property that if Ω = U−1dU then Ω has the form of
(33) of [3] for suitable functions z2

21, z
3
12, z

3
22, z

3
32, λ, a and b on M , and linearly independent

1-forms ω1, ω2, ω3 on M . Having done this, it is straightforward to deduce that we may
reverse the construction given in [3] in order to construct from such a map U our required
Lagrangian submanifold of CP 3(4), with the orthonormal basis {e1, e2, e3} being the basis
of vectors dual to {ω1, ω2, ω3}.

We begin by noting from (42) of [3] that in order for (30) to hold we require that

dU2(e2 − ie3) = 2θ1

√
λ g1, (31)
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where θ1 is a fourth root of unity. In fact, we may assume that θ1 = 1 by rotating our
adapted complex coordinate z through a suitable multiple of π/2. In a similar manner,

dU4(e2 − ie3) = 2θ2

√
λ f1, (32)

for some fourth root of unity θ2.
We next note that for (34) and (35) of [3] to hold we must have that

dU2(e2 − ie3) = (z3
12 − 1− iz2

21)(U1 + iU3)− λ(U5 + iU6),

and
dU4(e2 − ie3) = iλ(U1 − iU3) + i(1 + z3

12 − iz2
21)(U5 − iU6),

so that, from (31) and (32),

2
√
λ g1 = (z3

12 − 1− iz2
21)(U1 + iU3)− λ(U5 + iU6), (33)

2θ2

√
λ f1 = iλ(U1 − iU3) + i(1 + z3

12 − iz2
21)(U5 − iU6). (34)

However, it follows from (23) that −i = (f1, g1), so orthonormality of U requires that

−4θ2λi = 2iλ(z3
12 − 1− iz2

21)− 2iλ(1 + z3
12 − iz2

21)

= −4iλ,

so that θ2 = 1. Therefore, in order to construct U , it is necessary to determine real-
valued functions z3

12(t, z), z
2
21(t, z), λ(t, z), and orthonormal vector fields U1(t, z), U3(t, z),

U5(t, z), U6(t, z) in R6 satisfying (33) and (34) (with θ2 = 1 in this latter equation).
However, as (f1, f̄1) = eω and (g1, ḡ1) = eω+

we see that

2λeω+

= (z3
12 − 1)2 + (z2

21)
2 + λ2,

2λeω = (1 + z3
12)

2 + (z2
21)

2 + λ2.

Thus
z3
12 = 1

2
λ(eω − eω+

), (35)

and

(z2
21)

2 +
(
1− 1

2
λ(eω + eω+

)
)2

= λ2(eω+ω+ − 1).

As λ and (eω+ω+ − 1) are both positive, we may define z2
21 and λ by taking

λ = 2

eω+eω+
+2 cos t

√
eω+ω+−1

, (36)

z2
21 = λ sin t

√
eω+ω+ − 1. (37)

We restrict t to lie on a suitable subinterval I of (0, π), in order to ensure that λ is well
defined and z2

21 > 0.
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We have now obtained, through (35), (36) and (37), formulae for z3
12, λ and z2

21 in terms
of ω, ω+ and γ+. We next obtain U1, U3, U5 and U6 as the solutions to (33) and (34).
In the next section we will discuss a particular special case of the construction detailed in
this section, so we will write down the solution to (33) and (34) and verify their properties
explicitly (for which we used Mathematica), although the properties we obtain may be
deduced directly from (33) and (34).

So, if

C =
√

λ

eω+ω+−1
,

we find from (33) and (34) that

U1 + iU3 = −C
(
(
√
eω+ω+ − 1 + e−it+ω)g1 + ie−itf̄1

)
, (38)

U5 + iU6 = C
(
e−itg1 + i(

√
eω+ω+ − 1 + e−it+ω+

)f̄1

)
. (39)

It is now a straightforward computation using (23) to verify that U1 up to U6 defined by
(30),(38) and (39) are orthonormal vectors and that, using (25),

vol(U1, . . . ,U6) = − 1

eω+ω+−1
vol(f0, f1, f̄1, ḡ1, g1, g0)

= 1.

Thus U = (U1, . . . ,U6) : M → SO(6), so that Ω = U−1dU is a skew symmetric matrix
whose second and fourth columns have the correct form.

It remains to find the linearly independent 1-forms ω1, ω2, ω3 on M , and real valued
functions z3

22, z
3
32, a and b on M such that the entries of Ω = U−1dU are as given in (33)

of [3].
Since dU2(∂/∂t) = 0, for (33) of [3] to hold we need that ω2(∂/∂t) = ω3(∂/∂t) = 0.

Also, from (31) with θ1 = 1, we have

dU2(e2) =
√
λ dg(∂/∂x) =

√
λ dU2(∂/∂x),

dU2(e3) =
√
λ dg(∂/∂y) =

√
λ dU2(∂/∂y),

from which it follows that e2 −
√
λ ∂/∂x and e3 −

√
λ ∂/∂y are multiples of ∂/∂t. Thus

ω2 = 1√
λ
dx, ω3 = 1√

λ
dy, (40)

which also ensures that (34) holds with θ2 = 1.
We now consider the columns of Ω other than the second and fourth. These have the

correct form if and only if we have that, modulo U2 and U4,

d(U1 + iU3) ≡ i
(
(1 + z3

12)ω1 + z3
22ω2 + z3

32ω3

)
(U1 + iU3)

+ (cλ−
1
2dz − iλω1)(U5 + iU6), (mod U2,U4),

(41)

d(U5 + iU6) ≡ −(c̄λ−
1
2dz̄ + iλω1)(U1 + iU3)

− i
(
(z3

12 − 1)ω1 + z3
22ω2 + z3

32ω3

)
(U5 + iU6), (mod U2,U4),

(42)
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where c = −b− ia. In particular, ω1 must satisfy(
d(U1 + iU3),U1 − iU3

)
+

(
d(U5 + iU6),U5 − iU6

)
= 4iω1. (43)

Computing the lefthand side explicitly using (38) and (39), we see that (43) holds if and
only if

ω1(
∂
∂t

) = −1
2
, (44)

ω1(∂̄) = −1
4
i2i γ++eω+ω+

∂̄(ω−ω+)

eω+ω+−1
. (45)

We use these expressions to define ω1, in which case (40), implies that ω1, ω2 and ω3 are
linearly independent 1-forms on M .

A straightforward computation using (38) and (39) now shows that(
d(U1 + iU3),U5 − iU6

)
( ∂

∂t
) = iλ,(

d(U1 + iU3),U1 − iU3

)
( ∂

∂t
)−

(
d(U5 + iU6),U5 − iU6

)
( ∂

∂t
) + 2iz3

12 = 0,(
d(U1 + iU3),U5 − iU6

)
(∂̄) = −1

2
λ2i γ++eω+ω+

∂̄(ω−ω+)

eω+ω+−1
= −2iλω1(∂̄),

so it only remains to define the complex-valued function c on M and the real valued
functions z3

22 and z3
32 in such a way that (41) and (42) hold. This may be done explicitly

and uniquely by calculating
(
d(U1 + iU3),U5 − iU6

)
(∂),

(
d(U1 + iU3),U1 − iU3

)
( ∂

∂x
),

and
(
d(U1 + iU3),U1 − iU3

)
( ∂

∂y
). We have thus proved the following theorem.

Theorem 6 Let f : S → S5(1) be a minimal immersion, not contained in a totally geodesic
S3(1), with non-circular ellipse of curvature at every point. Then there exists a minimal
Lagrangian submanifold of CP 3(4), admitting a foliation by asymptotic curves, for which
the construction described in [3] yields f and its (+)transform on an open dense set.

We remark that, since we have shown in the previous section that such minimal surfaces
are part of a sequence, minimal Lagrangian submanifolds of type 3 also form a sequence.
However, up to now, we do not know geometrically (without using this detour over minimal
surfaces) how to associate one with its successor.

In the next section we will give an example in which we can explicitly describe the
reverse construction detailed in this section.

8 Lawson’s bipolar surfaces

Let f : S → S5(1) be a minimal immersion with non-circular ellipse of curvature, which is
not contained in a totally geodesic S3(1). As usual, we will work on the open dense subset
U of S on which ω + ω+ is non-zero, and let z be an adapted complex coordinate for f .
Using the notation of the previous section, we will consider the special case in which the
invariant γ+ = (∂f1, g1) is identically zero. We will show that, in this case, f is the bipolar
surface in the sense of Lawson [10] of a minimal surface in S3(1).
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We begin by noting that if γ+ = 0 then (27) implies that ω = ω+ while (27) and Lemma
1 imply that ω is a positive solution of the following partial differential equation:

∂∂̄ω = −2 sinhω + 1
e2ω−1

|∂ω|2. (46)

Conversely given a positive solution of the above differential equation, there exists a cor-
responding minimal surface in S5(1) with non-circular non-degenerate ellipse of curvature
and induced metric 2eω|dz|2.

It is convenient to rewrite the above differential equation by making the substitution
eω = cosh η. A short calculation shows that ω satisfies (46) if and only if the function η
satisfies the sinh-Gordon equation

∂∂̄η = − sinh η. (47)

We recall [9] that a solution η of the sinh-Gordon equation determines an S1-family of
non-totally geodesic minimal immersions in S3(1) whose induced metric is eη|dz|2, and we
will see that f is the bipolar in S5(1) of the minimal immersion in this family for which
the coordinate curves are the lines of curvature.

Specialising the formulae of the previous section to the case γ+ = 0, we obtain

λ = 1
cosh η+cos t sinh η

,

z2
21 = sin t sinh η

cosh η+cos t sinh η
,

z3
12 = 0,

ω1 = −1
2
dt,

ω2 = 1√
λ
dx,

ω3 = 1√
λ
dy,

b = 1
2
λ3/2ηy sin t,

a = 1
2
λ3/2ηx sin t,

z3
32 = 1

2
λ3/2ηx(cos t cosh η + sinh η),

z3
22 = −1

2
λ3/2ηy(cos t cosh η + sinh η).

(48)

In particular, ∂/∂t = −1
2
e1, ∂/∂x = 1√

λ
e2, and ∂/∂y = 1√

λ
e3.

Substituting these expressions into (25) of [3] we see that the horizontal lift F to S7(1)
of the minimal Lagrangian immersion into CP 3(4) corresponding to f satisfies the following

17



system of differential equations:

Ftt = −F/4, (49)

Ftx = −(i+sin t sinh η)
2 (cosh η+cos t sinh η)

Fx, (50)

Fty = i−sin t sinh η
2(cosh η+cos t sinh η)

Fy, (51)

Fxx = −(cosh η + cos t sinh η)F + 2(sin t sinh η − i)Ft

+ ηx (cos t cosh η+i sin t+sinh η)
2 (cosh η+cos t sinh η)

Fx − ηy (cos t cosh η−i sin t+sinh η)

2 (cosh η+cos t sinh η)
Fy,

(52)

Fxy = ηy (cos t cosh η+i sin t+sinh η)

2 (cosh η+cos t sinh η)
Fx + ηx (cos t cosh η−i sin t+sinh η)

2 (cosh η+cos t sinh η)
Fy, (53)

Fyy = −(cosh η + cos t sinh η)F + 2(i+ sin t sinh η)Ft

− ηx (cos t cosh η+i sin t+sinh η)
2 (cosh η+cos t sinh η)

Fx + ηy (cos t cosh η−i sin t+sinh η)

2 (cosh η+cos t sinh η)
Fy.

(54)

It follows from (49) that we may write

F (t, u, v) = G1(x, y) cos t
2

+ iG2(x, y) sin t
2
, (55)

for suitable C4-valued functions G1 and G2. Substituting this into (50) and carrying out
significant but elementary simplification we find that

(G2)x = −e−η(G1)x, (56)

while similar reasoning using (51) gives that

(G2)y = e−η(G1)y. (57)

Using (56) and (57) we find, after some calculation, that (52), (53) and (54) are equivalent
to

(G1)xx = 1
2
ηx(G1)x − 1

2
ηy(G1)y +G2 − eηG1,

(G1)xy = 1
2
ηy(G1)x + 1

2
ηx(G1)y,

(G1)yy = −1
2
ηx(G1)x + 1

2
ηy(G1)y −G2 − eηG1.

(58)

We now note that since |F | = 1, (55) implies that |G1| = |G2| = 1 and that G1 is
real orthogonal to G2. The horizontality of F further shows that G1 and G2 are unitarily
orthogonal.

The coefficients in the system (58) are all real, so the real subspace spanned by G1, G2,
(G1)x and (G1)y is constant. We identify this subspace with R4 by picking an orthonormal
basis. But the system (58) is exactly that of a minimal surface G1 in S3(1) with unit
normal G2, induced metric ds2 = eη|dz|2 with the complex coordinate chosen such that the
second fundamental form ĨI of G1 satisfies (ĨI(∂, ∂), ĨI(∂, ∂)) = 1/4. In particular, since
ĨI(∂/∂x, ∂/∂y) = 0, we see that the coordinate curves of G1 are the lines of curvature.

Applying now the definition of U4 of [3] and the expressions for ω1, ω2 and ω3 obtained
in (48), we get that

f = 1
i
√

2
(F ∧ (−2Ft)− λFx ∧ Fy) ⊂ Λ2C4.
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An easy calculation using (55) now shows that

f = 1√
2
(ie−ηG1x ∧G1y −G1 ∧G2). (59)

According to Lawson in [10], the bipolar surface of the minimal surface G1 in S3(1)
with unit normal G2 is the surface in S5(1) given by G1 ∧ G2 in Λ2R4 = R6. This is a
minimal surface in S5(1). If we include Λ2R4 in Λ2C4 via v 7→ (1/

√
2)(v − i ? v), where ?

denotes the Hodge star operator on Λ2R4, then it follows immediately from (59) that f is
the bipolar of G1.

Conversely, let G1(z) be a non-totally geodesic minimal immersion in S3(1), other than
the Clifford torus, with unit normal G2(z). By restricting to an open dense subset if
necessary, we may assume that z is such that the induced metric is ds2 = eη|dz|2, where
η is a positive function satisfying (47), and that the second fundamental form ĨI of G1

satisfies (ĨI(∂, ∂), ĨI(∂, ∂)) = 1/4. Then G1 and G2 will satisfy the system (58), so if we
define F using (55) then F is horizontal in S7(1) and satisfies the system (49)-(54). In
particular, we have that z3

12 = 0 and ω1(∂̄) = 0. If we apply the construction of [3] to the
projection of F to CP 3, then we will obtain the bipolar f(z) of G1(z). It then follows from
(35) that ω = ω+, so that (45) gives that γ+ = 0. Hence, using Theorem 4, we obtain the
following.

Theorem 7 Let f : S → S5(1) be a minimal immersion, not contained in a totally geodesic
S3(1), with non-circular ellipse of curvature at every point. Then, on an open dense subset
of S, the following three statements are equivalent:

1. γ+ = 0,

2. f is the bipolar surface of a non-totally geodesic minimal surface in S3(1) which is
not the Clifford torus,

3. the (+)transform f+ is the reflection of f in a great subsphere of S5(1).

References

[1] J. Bolton, C. Scharlach, L. Vrancken and L. M. Woodward. From certain minimal
Lagrangian submanifolds of the 3-dimensional complex projective space to minimal
surfaces in the 5-sphere. Proceedings of the Fifth Pacific Rim Geometry Conference,
Tohoku University. Tohoku Mathematical Publication No. 20, 23–31, 2001.

[2] J. Bolton, C. Scharlach and L. Vrancken. From surfaces in the 5-sphere to 3-manifolds
in complex projective 3-space. Bull. Austral. Math. Soc. 66, 465–475, 2002.

[3] J. Bolton and L. Vrancken. Ruled minimal Lagrangian submanifolds of complex pro-
jective 3-space. Asian J. Math. 9, 45 – 56, 2005.

19



[4] J. Bolton, L. Vrancken and L.M. Woodward. Totally real minimal surfaces with non-
circular ellipse of curvature in the nearly Kähler S6. J. London Math. Soc (2), 56,
625–644, 1997.

[5] J. Bolton and L.M. Woodward. Congruence theorems for harmonic maps from a Rie-
mann surface into CP n and Sn. J. London Math. Soc (2), 45, 363–376, 1992.

[6] R.L. Bryant. Second order families of special Lagrangian 3-folds. In Perspectives in
Riemannian geometry, CRM Proc. Lecture Notes 40, 63–98, American Mathematical
Society, 2006.

[7] I. Castro and L. Vrancken. Minimal Lagrangian submanifolds in CP 3 and the sinh-
Gordon equation. Dedicated to Shiing-Shen Chern on his 90th birthday. Results Math.
40 no. 1-4, 130–143, 2001.

[8] B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken. Totally real submanifolds of
CP n satisfying a basic equality. Arch. Math. 63, 553–564, 1994.

[9] D. Ferus, F. Pedit, U. Pinkall and I. Sterling. Minimal tori in S4. J. reine angew. Math.
429, 1–47, 1992.

[10] H.B. Lawson. Complete minimal surfaces in S3. Annals of Mathematics 92, 335–374,
1970.

[11] H. Reckziegel Horizontal lifts of isometric immersions into the bundle space of a
pseudo-Riemannian submersion. In Global Differential Geometry and Global Analysis
(1984), Lecture Notes in Mathematics 1156, 264–279, Springer Verlag, 1985.

[12] T. Takahashi. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan
18, 380–385, 1966.

J. Bolton, Dept of Mathematical Sciences, University of Durham, Durham DH1 3LE, UK.
E-mail: john.bolton@durham.ac.uk
L. Vrancken, LAMATH, ISTV2, Université de Valenciennes, Campus du Mont Houy,
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