
The overarching finite symmetry group of Kummer

surfaces in the Mathieu group M24

(Version published in Journal of High Energy Physics (2013) 10.1007/JHEP08(2013)125)

Anne Taormina∗ and Katrin Wendland†

∗Centre for Particle Theory & Department of Mathematical Sciences,

Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K.
†Mathematics Institute, Albert-Ludwigs-Universität Freiburg,

Eckerstraße 1, Freiburg im Breisgau, D-79104, Germany.

Abstract

In view of a potential interpretation of the role of the Mathieu group M24 in the con-
text of strings compactified on K3 surfaces, we develop techniques to combine groups of
symmetries from different K3 surfaces to larger ‘overarching’ symmetry groups. We con-
struct a bijection between the full integral homology lattice of K3 and the Niemeier lattice
of type A24

1 , which is simultaneously compatible with the finite symplectic automorphism
groups of all Kummer surfaces lying on an appropriate path in moduli space connecting
the square and the tetrahedral Kummer surfaces. The Niemeier lattice serves to express
all these symplectic automorphisms as elements of the Mathieu group M24, generating the
‘overarching finite symmetry group’ (Z2)4oA7 of Kummer surfaces. This group has order
40320, thus surpassing the size of the largest finite symplectic automorphism group of a
K3 surface by orders of magnitude. For every Kummer surface this group contains the
group of symplectic automorphisms leaving the Kähler class invariant which is induced
from the underlying torus. Our results are in line with the existence proofs of Mukai
and Kondo, that finite groups of symplectic automorphisms of K3 are subgroups of one
of eleven subgroups of M23, and we extend their techniques of lattice embeddings for all
Kummer surfaces with Kähler class induced from the underlying torus.

1 Introduction

M24 is the largest in a family of five sporadic groups - amongst the 26 appearing in the
classification of finite simple groups - that has rekindled interest in the mathematical physics
community following an intriguing remark published by Eguchi, Ooguri and Tachikawa [1].
This remark stems from an expression for the elliptic genus of a K3 surface that uses knowledge
of 2-dimensional N = 4 superconformal field theory and Witten’s construction of elliptic
genera [2, 3]. That the K3 elliptic genus, which is a weak Jacobi form of weight 0 and
index 1, may be expanded in a linear combination of N = 4 superconformal characters is
not surprising. Indeed in the context of superstring theory, it has long been established that
compactification on a K3 surface, which is a hyperkähler manifold, yields a world-sheet theory
that is invariant under N = 4 superconformal transformations. The K3 elliptic genus may be
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calculated as a specialisation of the corresponding partition function, which is a sesquilinear
expression in the N = 4 characters [4].

What is surprising and remains to be fully understood, is that the coefficients of the non-BPS
N = 4 characters in the elliptic genus decomposition coincide with the dimensions of some
irreducible and reducible representations of the sporadic group M24. Actually, on the basis
of the information encoded in the K3 elliptic genus alone, the dimensions could be those of
representations of the Mathieu group M23, the stabilizer in M24 of an element in the set
I = {1, 2, ..., 24}, when viewing M24 as the group of permutations of 24 elements preserving
the extended binary Golay code G24. It turns out that this Mathieu group information is
encoded in the K3 elliptic genus in the form of a weakly holomorphic mock modular form
of weight 1

2 on SL(2,Z), suggesting the existence of a “Mathieu Moonshine” phenomenon
[5, 7, 6, 8].

Yet, an interpretation of the appearance of M24 as a symmetry group within a theory of
strings compactified on K3 is lacking. One difficulty is that the M24 sporadic group does not
act in a conventional way on the string states. Rather, the symmetry manifests itself when
a specific subset of BPS states is considered. Another particularity is that by nature, the
elliptic genus is an invariant on each irreducible component of the moduli space of N = (2, 2)
superconformal field theories. The moduli space of superconformal theories on K3 is such
an irreducible component. Hence, the M24-information the elliptic genus carries is unaltered
when surfing the K3 moduli space between generic points and isolated points with enhanced
symmetry, of which Gepner models are the main examples. This suggests that M24, in a
sense yet to be uncovered, ‘overarches’ the symmetries associated with all superconformal
field theories in the K3 moduli space.

Although we have, at this stage, little new to say regarding the interpretation of an M24-action
within the framework of strings compactified on K3 surfaces, we show here how an overar-
ching symmetry, smaller than M24, emerges when considering the finite groups of symplectic
automorphisms of all K3 surfaces of a particular type. Namely, we consider symmetry groups
of Kummer surfaces, by which we mean the groups of those symplectic automorphisms that
preserve the Kähler class induced by that of the underlying complex torus. The results pre-
sented in this work should be regarded as an attempt to set the scene for further investigations
pinning down an ‘overarching’ M24-action as alluded to above. We revisit the results obtained
by Mukai in [9], stating that any finite group of symplectic automorphisms of a K3 surface
is isomorphic to a subgroup of the Mathieu group M23 which has at least 5 orbits on the set
I of 24 elements. We develop a technique which allows to combine the symmetry groups of
several different Kummer surfaces. With this technique, we obtain the group (Z2)4 o A7 of
order 27 ·32 ·5 ·7 = 40320, which is a maximal subgroup of M23. This group contains as proper
subgroups all symplectic automorphism groups of Kummer surfaces preserving the induced
Kähler class. In this sense, we find an ‘overarching’ symmetry group of all Kummer surfaces.

In [10], Kondo rederives Mukai’s result, using ingenious lattice techniques. The framework
we set up here is in this spirit. We use the Niemeier lattice of type A24

1 , denoted N hereafter,
as a device which for all Kummer surfaces encodes the action of the symmetry groups as au-
tomorphisms of the extended binary Golay code, represented by permutations on 24 elements
belonging to M24. This encoding is linked to the construction of a bijection θ between the full
integral homology lattice H∗(X,Z) of a Kummer surface X and the negative definite version
of the Niemeier lattice N , denoted N(−1). Here, the lattice H∗(X,Z) is identified with the
standard unimodular lattice of the appropriate signature by an isometry which is induced
by the Kummer construction and thus is naturally fixed and compatible with all Kummer
surfaces. Although in general, the bijection θ between H∗(X,Z) and N(−1) depends on the
complex structure and Kähler class of the Kummer surface considered, we are able to con-
struct a unique bijection Θ, up to a few choices of signs, which for two specific Kummer

2



surfaces denoted X0 and XD4 yields an action of their distinct symmetry groups, T64 and T192

respectively, on the same Niemeier lattice N . Moreover, Θ is compatible with the generic
symmetry group Gt ∼= (Z2)4 of Kummer surfaces. In fact, we argue that we are naturally

working in a smooth connected cover M̃hk of the moduli space of hyperkähler structures on
K3. Namely, the symplectic automorphism group of a K3 surface which preserves a given
Kähler class solely depends on the hyperkähler structure determined by the invariant complex
structure and Kähler class. The choice of an isometric identification of H∗(X,Z) with a fixed

standard lattice amounts to the transition to the smooth connected cover M̃hk of the moduli
space. We show that our bijection Θ is compatible with the symmetry group of all K3 sur-
faces along a particular path which connects X0 and XD4 in M̃hk. Indeed, there exists such
a path consisting of Kummer surfaces, all of whose symmetry groups away from beginning
and end of the path restrict to the generic one, Gt ∼= (Z2)4. Our bijection Θ therefore effec-
tively reveals the presence of a larger, overarching and somehow hidden symmetry that could
manifest itself in an unsuspected way within string theories compactified on K3 surfaces. In
our eyes, the significance of our result is that it provides a framework allowing to pin down
overarching symmetry groups that transcend known symmetry groups of K3 surfaces given
by distinct points in our moduli space. In the specific case of M̃hk, one ultimately wishes the
overarching symmetry group to be M24, in accordance with the information encoded in the
K3 elliptic genus. Although the overarching symmetry group (Z2)4 oA7 we find is two orders
of magnitude larger than the biggest finite symplectic automorphism group of a K3 surface,
it is still by orders of magnitude smaller than the Mathieu group M24. In order to obtain
M24, further techniques and different lattices are required, and this is beyond the scope of
the present work.

Mathematically, one of our main results is the following theorem, which holds for all Kummer
surfaces and which we prove in section 3, see theorem 3.3.7:

Theorem. Let X denote a Kummer surface with underlying torus T , equipped with the
complex structure and Kähler class which are induced from T . By E~a,~a ∈ F4

2, we denote
the classes in H2(X,Z) obtained in the Kummer construction by blowing up the 16 singular
points of T/Z2. Let G denote the group of symplectic automorphisms of X which preserve the

Kähler class. With LG =
(
H∗(X,Z)G

)⊥ ∩H∗(X,Z) and υ0 ∈ H0(X,Z), υ ∈ H4(X,Z) such
that 〈υ0, υ〉 = 1, and e := 1

2

∑
~a∈F4

2
E~a, the lattice MG(−1) with

MG := LG ⊕ spanZ {e, υ0 − υ}

can be primitively embedded in the Niemeier lattice N of type A24
1 .

The theorem generalizes Kondo’s proof [10] to Mukai’s theorem [9] in the following sense: For
a K3 surface X, Kondo proves that there exists some Niemeier lattice Ñ , such that the lattice
LG can be primitively embedded in Ñ(−1). Although Kondo primitively embeds a lattice
LG⊕〈−2〉, the additional direction 〈−2〉 is not identified geometrically within H∗(X,Z). Our
first contribution thus is the natural geometric interpretation 〈−2〉 = spanZ{υ0−υ}. Second,
for every Kummer surface with induced Kähler class, our theorem shows that in Kondo’s proof,
the special Niemeier lattice N of type A24

1 can always be used1. Third, the lattice MG which
we embed contains Kondo’s lattice LG and obeys rk (MG) = rk (LG) + 2. This embedding is
the restriction to MG of the bijection Θ between H∗(X,Z) and N(−1) described above. The
construction of such a bijection is an application of the “gluing techniques” due to Nikulin
[11, 12] that build on previous work by Witt [13] and Kneser [14]. Our specific bijection Θ
isometrically identifies two different primitive sublattices MT192 and MT64 in H∗(X,Z) with
their images. Furthermore, we force these embeddings to be equivariant with respect to the
two corresponding symmetry groups G = T192 and G = T64, thus obtaining natural actions

1This nicely ties in with Mukai’s result [10, Appendix] that there exists a symplectic action on the special
Niemeier lattice N for each group G in Mukai’s classification.
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of these two groups on N . This allows us to view N as a device which carries both these
group actions, and in fact the actions of all symmetry groups along an appropriate path in
moduli space, which combine to the action of a larger, overarching group. Interestingly, the
resulting group already gives the overarching symmetry group of all Kummer surfaces. Since
our techniques confine us to the study of symmetries of Kummer surfaces, the fact that we
can generate the entire overarching symmetry group of Kummer surfaces may very well mean
that on transition to more general techniques, employing the Leech lattice instead of the
Niemeier lattice N , say, one could obtain the entire group M24. We are currently working on
such a generalisation.

Our techniques were originally designed to study non-classical symmetries of superconformal
field theories compactified on K3 surfaces, particularly to develop a device which could maybe
distinguish between those symmetries which play a role for “Mathieu Moonshine” and those
that don’t. Indeed2, in the beautiful work [15] it is proved that the symmetry groups of
superconformal field theories on K3 in general are not subgroups of M24, but instead that
they are all contained in the Conway group Co1. Our findings could in fact indicate that the
classical symmetries of K3 are the only ones that play a role for “Mathieu Moonshine”.

The paper is organised as follows.

Section 2 starts with a short review of Nikulin’s lattice gluing prescription and illustrates
it in two cases of direct interest to us: the gluing of the Kummer lattice to the lattice
stemming from the underlying torus of a given Kummer surface, including an extension of
this technique to recover the full integral homology, as well as the reconstruction of the
Niemeier lattice N associated with the root lattice of A24

1 through the gluing of two different
pairs of sublattices. This construction of the integral K3-homology provides an isometric
identification of the homology lattice H∗(X,Z) with a standard lattice which is induced by
the Kummer construction and which is used throughout this work. Built in this section
is proposition 2.3.3, stating and proving that the Niemeier lattice N possesses a rank 16
primitive sublattice Π̃ which, up to a total reversal of signature, is isometric to the Kummer
lattice Π. That the primitive embedding of the Kummer lattice in N(−1) is unique up to
automorphisms of N is proven in proposition 2.3.5. Moreover, an explicit realisation of the
primitive sublattice Π̃ that proves extremely useful in our construction is provided via the
map (2.14). These properties of the Niemeier lattice N of type A24

1 , to our knowledge, had
not been noticed before.

After reviewing basic albeit crucial aspects of complex structures, Kähler forms and symplectic
automorphisms of K3 surfaces, we argue that by our assumptions, we are in fact working on
the smooth connected cover M̃hk of the moduli space of hyperkähler structures on K3. Next,
after providing a summary of the results obtained by Mukai and Kondo that are important
for our analysis, Section 3 generalizes Kondo’s results to the full integral homology lattice
to fit our purpose. Moreover, it introduces the lattice MG ) LG that is so crucial for our
construction, and proves that this lattice, after a total reversal of signature, may be embedded
primitively in the Niemeier lattice N , as stated in theorem 3.3.7 and as discussed above.

Section 4 builds on the previous sections to bring to light the overarching symmetry that is
at the centre of this work. This is achieved by constructing a linear bijection Θ that extends
the isometry between the Kummer lattice and Π̃(−1) to the full integral homology H∗(X,Z),
which as mentioned above is explicitly identified with a fixed standard lattice by means of
the Kummer construction, and N(−1). We start in subsection 4.1 with the discussion of the
translational automorphism group that is a normal subgroup of all symplectic automorphism
groups of Kummer surfaces which preserve the induced Kähler class, and show how its action
on X induces an action of (Z2)4 on N . Subsections 4.2 and 4.3 are dedicated to the tetrahedral

2We are grateful to Rob Curtis for explaining to us in April 2010 that the well-known symmetry group
C3

4 o S4 of the Gepner model (2)4 is not a subgroup of M24.
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Kummer surface XD4 with symmetry group T192 ⊂ M24, and to the Kummer surface X0

obtained from the square torus T0, whose symmetry group is T64 ⊂ M24. In subsection
4.4 we prove that these two Kummer surfaces enjoy the same ‘overarching’ linear bijection
Θ: H∗(X,Z) −→ N(−1), leading to the concept of overarching symmetry. Moreover, we

construct a smooth path from X0 to XD4 in the smooth connected cover M̃hk of the moduli
space of hyperkähler structures on K3 such that the symmetry group of every K3 surface
along the path is compatible with Θ.

We end by giving our conclusions and interpretations of our results, including some evidence
for the expectation that our techniques may eventually show Mathieu moonshine to be linked
to the group M24 rather than M23. Appendix A provides a brief review of some of the notions
and techniques we borrowed from group theory in the course of our work, while appendix B
gathers notations for most lattices introduced and used in the main body of the text.

2 Lattices: Gluing and primitive embeddings

In this work, we investigate certain finite groups of symplectic automorphisms of Kummer
surfaces in terms of subgroups of the Mathieu group M24. As we explain below, due to the
Torelli Theorem 3.1.1 for K3 surfaces, on the one hand, and the natural action of M24 on the
Niemeier lattice N of type A24

1 by proposition 2.3.2, on the other hand, both group actions
are naturally described in terms of lattice isometries. Therefore, some of the main techniques
of our work rest on lattice constructions, which shall be recalled in this section. As a guide to
the reader, table 1 in appendix B lists a number of lattices that we introduce in this section
and that we continue to use throughout this work.

Let us first fix some standard terminology (see for example [12, 16]):

Definition 2.0.1 Consider a d-dimensional real vector space V with scalar product 〈·, ·〉 of
signature (γ+, γ−).

1. A lattice Γ in V is a free Z-module Γ ⊂ V together with the symmetric bilinear form
induced by 〈·, ·〉 on Γ. Its discriminant disc(Γ) is the determinant of the associated
bilinear form on Γ. The lattice Γ is non-degenerate if disc(Γ) 6= 0, and it is uni-
modular if |disc(Γ)| = 1. By Γ(N) with N an integer we denote the same Z-module
as Γ, but with bilinear form rescaled by a factor of N .

2. A lattice Γ in V is integral if its bilinear form has values in Z only. It is even if
the associated quadratic form has values in 2Z only.

3. If Γ is a non-degenerate even lattice in V , then there is a natural embedding Γ ↪→
Γ∗ = Hom(Γ,Z) by means of the bilinear form on Γ. Thus there is an induced Q-
valued symmetric bilinear form on Γ∗. The discriminant form qΓ of Γ is the map
qΓ : Γ∗/Γ → Q/2Z together with the symmetric bilinear form on the discriminant
group Γ∗/Γ with values in Q/Z, induced by the quadratic form and symmetric bilinear
form on Γ∗, respectively.

4. A sublattice Λ ⊂ Γ of a lattice Γ in V is a primitive sublattice if Γ/Λ is free.

By this definition, we can view every sublattice Λ ⊂ Γ of Γ ⊂ V as a lattice in the vector
space Λ⊗R with the induced quadratic form. In fact, since V = Γ⊗R for non-degenerate Γ,
we can dispense with the mention of the vector space that any of our lattices is constructed
in. Note that Λ is a primitive sublattice of Γ if and only if Λ = (Λ⊗Q) ∩ Γ. Moreover, for
every non-degenerate even lattice Γ we have | disc(Γ)| = |Γ∗/Γ|, hence such Γ is unimodular
if and only if Γ = Γ∗. The classification of even unimodular lattices is known to some extent:
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Theorem 2.0.2 Let V denote a d-dimensional real vector space with scalar product 〈·, ·〉 of
signature (γ+, γ−) with d = γ+ + γ− > 0.

1. An even unimodular lattice Γ ⊂ V exists if and only if γ+ − γ− ≡ 0 mod 8.

2. If γ+ > 0 and γ− > 0 and γ+ − γ− ≡ 0 mod 8, then up to lattice isometries, there
exists a unique even unimodular lattice Γ ⊂ V .

3. If d = 24 and γ− = 0, then there are 24 distinct isometry classes of even unimodular
lattices Γ ⊂ V . Each of these isometry classes is uniquely determined by the sublattice

R := spanZ {δ ∈ Γ | 〈δ, δ〉 = 2} (2.1)

which has rank 0 or 24 and is isometric to the root lattice of some semi-simple complex
Lie algebra.

Part 1. and 2. of the above theorem are known as Milnor’s theorem (see [17] and [18,
Ch. 5], [19, Ch. 2] for a proof), while the classification 3. of positive definite even unimodular
lattices of rank 24 is due to Niemeier [20], and such lattices are named after him:

Definition 2.0.3 A Niemeier lattice is a positive definite even unimodular lattice Γ of
rank 24. Its root sublattice (2.1) is the lattice R ⊂ Γ that is generated by those elements
of Γ on which the quadratic form yields the value 2. If R is isometric to the root lattice of
the semi-simple Lie algebra g, then we say that Γ is a Niemeier lattice of type g.

In our applications, we often find ourselves in a situation where a primitive sublattice Λ ⊂ Γ
of an even unimodular lattice Γ is well understood, and where we need to deduce properties of
the lattice Γ from those of Λ. In such situations, gluing techniques as well as criteria for
primitivity of sublattices that were developed by Nikulin in [11, 12] prove tremendously
useful, see also [16]. We recall these techniques in the next subsection.

2.1 Even unimodular lattices from primitive sublattices

If Γ is an even unimodular lattice and Λ ⊂ Γ is a primitive sublattice, then according to [11,
Prop. 1.1] the discriminant forms qΛ and qV of Λ and its orthogonal complement V := Λ⊥ ∩Γ
obey qΛ = −qV . Moreover,

Proposition 2.1.1 Let Γ denote an even unimodular lattice and Λ ⊂ Γ a non-degenerate
primitive sublattice. Then the embedding Λ ↪→ Γ is uniquely determined by an isomorphism
γ : Λ∗/Λ→ V∗/V, where V ∼= Λ⊥∩Γ and the discriminant forms obey qΛ = −qV◦γ. Moreover,

Γ ∼=
{

(λ, v) ∈ Λ∗ ⊕ V∗ | γ(λ) = v
}
, (2.2)

where for L a non-degenerate even lattice, l denotes the projection of l ∈ L∗ to L∗/L.

Note that (2.2) allows us to describe Γ entirely by means of its sublattices Λ and Λ⊥∩Γ along
with the isomorphism γ.

Example: Recall the hyperbolic lattice, i.e. the even unimodular lattice of signature (1, 1)
with quadratic form (

0 1
1 0

)
(2.3)

with respect to generators υ0, υ over Z. We generally denote the hyperbolic lattice by U . As
a useful exercise, the reader should convince herself that the gluing procedure described above
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allows a reconstruction of U from the two definite sublattices A± generated by a± := υ0 ± υ,
respectively, with

U =
{

1
2(n+a+ + n−a−)

∣∣n± ∈ Z, n+ + n− ∈ 2Z
}

by (2.2).

To apply proposition 2.1.1 one needs to know that the lattice Λ can be primitively embedded
in some even, unimodular lattice. Nikulin has also developed powerful techniques which
determine whether or not this is the case for abstract non-degenerate lattices Γ and Λ. To
recall this, we need some additional terminology:

Definition 2.1.2 Consider a finite abelian group A. The minimum number of generators of
A is called the length `(A) of A. If A = Aq carries a quadratic form q : Aq → Q/2Z, then
for every prime p let Aqp denote the Sylow p-group in Aq, that is, Aqp ⊂ Aq is the maximal
subgroup whose order is a power of p. Then by qp we denote the restriction of q to Aqp.

Note that for every finite abelian group A and for every prime p, there exists a unique Sylow
p-group in A. Moreover, if A = Aq carries a quadratic form q with values in Q/2Z, then q
decomposes into an orthogonal direct sum of all the qp with prime p. As a special case of [12,
Thm. 1.12.2] used in precisely this form in Kondo’s proof of [10, Lemma 5], we now have:

Theorem 2.1.3 Let Λ denote a non-degenerate even lattice of signature (l+, l−) and Aq =
Λ∗/Λ its discriminant group, equipped with the induced quadratic form q with values in Q/2Z.
Furthermore assume that all the following conditions hold for the integers γ+, γ− with γ+ ≡ γ−
mod 8:

1. γ+ ≥ l+ and γ− ≥ l−,

2. `(Aq) ≤ γ+ + γ− − l+ − l−,

3. i. q2 = (1
2) ⊕ q′2, where (1

2) is the quadratic form on the discriminant of a root lattice
Z(2) of type A1 and q′2 is an arbitrary quadratic form with values in Q/2Z
or ii. `(Aq2) < γ+ + γ− − l+ − l−,

4. for every prime p 6= 2, `(Aqp) < γ+ + γ− − l+ − l−.

Then Λ can be primitively embedded in some even unimodular lattice Γ of signature (γ+, γ−).

2.2 Example: The K3-lattice for Kummer surfaces

A classical application of the gluing technique summarized in proposition 2.1.1 is the de-
scription of the integral homology of a Kummer surface in terms of the integral homology of
its underlying torus and the contributions from the blow-up of singularities. We review this
construction in the present subsection, following [21, 22]. First recall the definition of K3
surfaces:

Definition 2.2.1 A K3 surface is a compact complex surface with trivial canonical bundle
and vanishing first Betti number.

By a seminal result of Kodaira’s [23, Thm. 19], as real four-manifolds all K3 surfaces are
diffeomorphic. The integral homology of a K3 surface X has the following properties (see
e.g. [17, 24]): First, H2(X,Z) has no torsion, and equipped with the intersection form it is
an even unimodular lattice of signature (3, 19). By theorem 2.0.2 this means that H2(X,Z)
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is uniquely determined up to isometry. In fact, H2(X,Z) ∼= U3 ⊕ E2
8(−1), where U is the

hyperbolic lattice with quadratic form (2.3) and E8 is isometric to the root lattice of the
Lie algebra e8. The lattice U3 ⊕ E2

8(−1) is often called the K3-lattice. Furthermore,
H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) is an even unimodular lattice of signature (4, 20)
and thus H∗(X,Z) ∼= U4 ⊕ E2

8(−1) by theorem 2.0.2 and the above. A choice of isometries
H2(X,Z) ∼= U3⊕E2

8(−1), H∗(X,Z) ∼= U4⊕E2
8(−1) is called a marking of our K3 surface X.

Such a marking is specified by fixing a standard basis of H2(X,Z), H∗(X,Z), which does not
necessarily need to exhibit the structure of U3 ⊕ E2

8(−1), U4 ⊕ E2
8(−1) in the first instance.

Let us now recall the Kummer construction, which yields a K3 surface by a Z2-orbifold
construction from every complex torus T of dimension 2. Let T = T (Λ) = C2/Λ, with
Λ ⊂ C2 a lattice of rank 4 over Z, and with generators ~λi, i = 1, . . . , 4. The group Z2 acts
naturally on C2 by (z1, z2) 7→ (−z1,−z2) and thereby on T (Λ). Using Euclidean coordinates
~x = (x1, x2, x3, x4), where z1 = x1 + ix2 and z2 = x3 + ix4, points on the quotient T (Λ)/Z2

are identified according to

~x ∼ ~x+

4∑
i=1

ni~λi, ni ∈ Z,

~x ∼ −~x.

Hence T (Λ)/Z2 has 16 singularities of type A1, located at the fixed points of the Z2-action.
These fixed points are conveniently labelled by the hypercube F4

2
∼= 1

2Λ/Λ, where F2 = {0, 1}
is the finite field with two elements, as

~F~a :=

[
1
2

4∑
i=1

ai ~λi

]
∈ T (Λ)/Z2, ~a = (a1, a2, a3, a4) ∈ F4

2. (2.4)

It is known that the complex surface obtained by minimally resolving T (Λ)/Z2 is a K3 surface
(see e.g. [22]):

Definition 2.2.2 Let T = T (Λ) denote a complex torus of dimension 2 with underlying
lattice Λ ⊂ C2. The Kummer surface with underlying torus T is the complex surface
X obtained by minimally resolving each of the singularities ~F~a, ~a ∈ F4

2
∼= 1

2Λ/Λ, of T/Z2

given in (2.4). The blow-up of ~F~a yields an exceptional divisor whose class in H2(X,Z) we
denote by E~a. The natural rational map of degree 2 from T to X, which is defined outside the
fixed points of Z2 on T , is denoted π : T 99K X, and the linear map it induces on homology is
denoted π∗ : H2(T,Z)→ H2(X,Z), π∗ : H2(T,R)→ H2(X,R), respectively.

Note that by definition, the Kummer surface X with underlying torus T (Λ) = C2/Λ carries
the complex structure which is induced from the universal cover C2 of T (Λ). Moreover, the
integral classes E~a ∈ H2(X,Z) with ~a ∈ F4

2 arise from blowing up singularities of type A1 and
thus represent rational two–cycles on X. Hence by construction, they generate a sublattice of
H2(X,Z) of type A16

1 (−1), i.e. a sublattice of rank 16 with quadratic form diag(−2, . . . ,−2).
This lattice, however, is not primitively embedded in H2(X,Z). Instead, by [21, 22] we have

Proposition 2.2.3 Let X denote a Kummer surface with underlying torus T as in definition
2.2.2. Furthermore, let Π denote the smallest primitive sublattice of H2(X,Z) containing all
the E~a,~a ∈ F4

2, and let K := π∗(H2(T,Z)). Then the following holds:

1. The lattice Π is the Kummer lattice

Π = spanZ

{
E~a with ~a ∈ F4

2; 1
2

∑
~a∈H

E~a with H ⊂ F4
2 an affine hyperplane

}
. (2.5)

The embedding of Π in H2(X,Z) is unique up to automorphisms of H2(X,Z).
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2. The lattice K is a primitive sublattice of H2(X,Z) with K ∼= U3(2) and K = Π⊥ ∩
H2(X,Z).

Note that K ∼= U3(2) follows by construction, since H2(T,Z) ∼= U3 and π has degree 2.
Moreover, each element of K represents the image of a two–cycle on the torus which is in
general position and thus does not contain any fixed points of the Z2-action, hence K ⊥ Π.
Then K = Π⊥ ∩H2(X,Z) since K is a primitive sublattice of Π⊥ ∩H2(X,Z) of same rank
6 = 22− 16.

For the remainder of this work, we continue to use the notations introduced in definition 2.2.2
and proposition 2.2.3 above. According to this proposition, K and Π are orthogonal comple-
ments of one another in the even unimodular lattice H2(X,Z). By the gluing construction of
proposition 2.1.1, H2(X,Z) can therefore be reconstructed from its sublattices K and Π.

Indeed, one first checks K∗/K ∼= Π∗/Π ∼= (Z2)6: With3

λij := λi ∨ λj ∈ H2(T,Z) for i, j ∈ {1, 2, 3, 4}, (2.6)

standard generators of K∗/K and the discriminant form with respect to these generators are
given by

1
2π∗λij , ij = 12, 34, 13, 24, 14, 23, qK =

(
0 1

2
1
2 0

)3

.

Analogously, with

Pij :=
{
~a = (a1, a2, a3, a4) ∈ F4

2 | ak = 0 ∀ k 6= i, j
}

for i, j ∈ {1, 2, 3, 4}, (2.7)

standard generators of Π∗/Π and the discriminant form with respect to these generators are
given by

1
2

∑
~a∈Pij

E~a, ij = 12, 34, 13, 24, 14, 23, qΠ = −
(

0 1
2

1
2 0

)3

.

The bilinear forms associated with qK , qΠ take values in Q/Z and thus qK = −qK , qΠ = −qΠ.
Hence we obtain a natural isomorphism γ between the two discriminant groups which obeys
qK = −qΠ ◦ γ:

γ : K∗/K −→ Π∗/Π, γ
(

1
2π∗λij

)
:= 1

2

∑
~a∈Pij

E~a. (2.8)

Now proposition 2.1.1 implies that the K3-lattice H2(X,Z) is generated by the π∗λij ∈
π∗(H2(T,Z)), the elements of the Kummer lattice Π, and two–cycles of type 1

2π∗λij+
1
2

∑
~a∈Pij

E~a ∈
K∗⊕Π∗. In this case, the gluing procedure can be visualised geometrically as follows: Consider
a real 2-dimensional subspace of C2 which on the torus T yields a Z2-invariant submanifold κ
containing the four fixed points labelled by a plane P ⊂ F4

2. Then κ→ κ/Z2 is a 2 :1 cover of
an S2 with branch points ~F~a, ~a ∈ P , which under blow-up are replaced by the corresponding

exceptional divisors representing the E~a ∈ H2(X,Z). Hence
(
κ \ {~F~a | ~a ∈ P}

)
is a 2 :1 un-

branched covering of a two–cycle on the Kummer surface X representing π∗[κ]−
∑
~a∈P E~a ∈

H2(X,Z). In other words, 1
2π∗[κ]∓ 1

2

∑
~a∈P E~a ∈ H2(X,Z). Indeed, note that for P as above

and P ′ ⊂ F4
2 a plane parallel to P , 1

2

∑
~a∈P E~a ∓

1
2

∑
~a∈P ′ E~a ∈ Π according to (2.5).

For later use, instead of restricting our attention to the K3-lattice H2(X,Z) of a Kummer
surface X, we need to work on the full integral homology H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕
H4(X,Z). Since H0(X,Z) ⊕ H4(X,Z) ∼= U is an even unimodular lattice, we can use the
gluing prescription (2.8) either replacing K by K ⊕ U with (K ⊕ U)∗/(K ⊕ U) ∼= K∗/K, or
replacing Π by Π⊕U with (Π⊕U)∗/(Π⊕U) ∼= Π∗/Π. However, yet another option will turn

3The generators ~λi, i = 1, . . . , 4, of the lattice Λ are naturally identified with generators λi, i = 1, . . . , 4, of
H1(T,Z), such that H2(T,Z) is generated by the λi ∨ λj .
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out to be even more useful: We combine the gluing prescription (2.8) with the exercise posed
in section 2.1 to obtain, as another application of proposition 2.1.1,

Proposition 2.2.4 Consider a Kummer surface X with underlying torus T and notations as
in definition 2.2.2 and proposition 2.2.3. Furthermore, let υ0 ∈ H0(X,Z) and υ ∈ H4(X,Z)
denote generators of H0(X,Z) ⊕H4(X,Z) ∼= U such that the quadratic form with respect to
υ0, υ is (2.3). Let

K := K ⊕ spanZ{υ0 + υ}, P := Π⊕ spanZ{υ0 − υ}.

Then K∗/K ∼= P∗/P ∼= (Z2)7 under an isomorphism g with

g : K∗/K −→ P∗/P, g(κ) := γ(κ) ∀κ ∈ K∗, g(1
2(υ0 + υ)) := 1

2(υ0 − υ);

H∗(X,Z) ∼= {(κ, π) ∈ K∗ ⊕ P∗ | g(κ) = π} .

By the above, the Kummer construction yields a natural marking H2(X,Z) ∼= U3 ⊕E2
8(−1),

H∗(X,Z) ∼= U4 ⊕ E2
8(−1). Indeed, the λij , i, j ∈ {1, . . . , 4}, i < j, form a basis of H2(T,Z),

where each of the pairs {λ12, λ34}, {λ13, λ24}, {λ14, λ23} generates a sublattice which is iso-
metric to the hyperbolic lattice U . Furthermore, (2.5) gives an abstract construction of the
Kummer lattice Π in terms of the roots E~a,~a ∈ F4

2, with 〈E~a, E~b〉 = −2δ
~a,~b

. Then the

above gluing prescription of H2(X,Z) from the lattices π∗H2(T,Z) and Π specifies an isom-

etry between H2(X,Z) for X = T̃/Z2 with a standard even, unimodular lattice of signature
(3, 19) (though not written in the form U3 ⊕ E2

8(−1)). Denoting generators of H0(X,Z)
and H4(X,Z) by υ0, υ, respectively, where 〈υ0, υ〉 = 1 as in proposition 2.2.4, we obtain
H∗(X,Z) ∼= U4 ⊕ E2

8(−1).

In all examples studied below, we use this fixed marking, as it is natural for all Kummer
surfaces. Note that the marking allows us to smoothly vary the generators ~λ1, . . . , ~λ4 of the

defining lattice Λ ⊂ C2 of T = T (Λ) for X = ˜T (Λ)/Z2; the marking is thus compatible with
the deformation of any Kummer surface into any other one.

2.3 Example: The Niemeier lattice of type A24
1

A second example for the application of Nikulin’s gluing techniques from proposition 2.1.1,
which we find extremely useful, involves the Niemeier lattice N of type A24

1 (see theorem 2.0.2
and definition 2.0.3). In other words, N is the Niemeier lattice with root sublattice R ⊂ N
of rank 24, where R has quadratic form diag(2, . . . , 2). Since N is unimodular, we have

R ⊂ N ⊂ R∗,

where R∗ = 1
2R and thus R∗/R ∼= F24

2 . Hence N/R can be viewed as a subspace of F24
2 , and

in fact N/R ∼= G24, the extended binary Golay code [25, Ch. 16, 18]. Up to isometry,
the extended binary Golay code is uniquely determined by the fact that it is a 12-dimensional
subspace of F24

2 over F2 such that every v ∈ G24 has weight4 zero, 8 (octad), 12 (dodecad),
16 (complement octad), or 24. For further details concerning the extended binary Golay
code, which for brevity we simply call the Golay code from now on, see appendix A.

In terms of the Golay code G24 ⊂ F24
2 , the Niemeier lattice N can be constructed from its

root sublattice R as a sublattice of R∗ = 1
2R:

4that is, the number of non-zero entries
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Proposition 2.3.1 Consider the Niemeier lattice of type A24
1 , which for the remainder of

this work is denoted by N , and its root sublattice R. Then

N = {v ∈ R∗ | v ∈ G24} ,

where v denotes the projection of v ∈ R∗ to F24
2
∼= R∗/R.

As stated in theorem 2.0.2, every Niemeier lattice Ñ is uniquely determined by its root
sublattice R̃ up to isometry. In fact, if R̃ has rank 24, then Ñ can always be constructed
from R̃ analogously to proposition 2.3.1. In this paper, the Niemeier lattice N of type A24

1

plays a special role, though, since the Mathieu group M24 acts so naturally on it5. Namely,
M24 is the automorphism group of the Golay code [27, 28, 29], and thus we determine the
automorphisms of N in accord with [25, Ch. 4.3, 16.1]:

Proposition 2.3.2 Consider the Niemeier lattice N of type A24
1 with root sublattice R gen-

erated by the roots f1, . . . , f24. The automorphism group of N is

Aut(N) = (Z2)24 oM24,

where the action of the nth factor of (Z2)24 is induced by fn 7→ −fn, while the Mathieu
group M24 is viewed as a subgroup of the permutation group S24 on 24 elements whose
action on N is induced by permuting the roots f1, . . . , f24.

Proof: Since every non-trivial codeword in the Golay code has at least weight 8, from propo-
sition 2.3.1 we see that the set ∆ of roots in N is

∆ = {δ ∈ N | 〈δ, δ〉 = 2} = {±f1, . . . ,±f24} . (2.9)

Hence every lattice isometry γ ∈ Aut(N) acts as a permutation on ∆. Proposition 2.3.1
implies N ⊂ 1

2R and thus that γ is uniquely determined by its action on ∆. Thus γ = ι ◦ α
with ι ∈ (Z2)24 ⊂ Aut(N) induced by a composition of involutions fn 7→ −fn, and with
α ∈ Aut(N) induced by a permutation of f1, . . . , f24. Now proposition 2.3.1 implies that α
induces an action on F24

2
∼= R∗/R by permuting the binary coordinates of F24

2 , which must
leave the Golay code G24 ⊂ F24

2 invariant. In other words, α ∈ M24. Vice versa, every invo-
lution fn 7→ −fn and every permutation of the binary coordinates of F24

2 which preserves the
Golay code induces an automorphism of N . From this the claim follows. �

The above proposition allows us to view the Niemeier lattice N as a device which yields a
geometric interpretation of the Mathieu group M24. On the other hand, this lattice turns
out to share a number of properties with the integral homology of Kummer surfaces that we
discussed in section 2.2. First we observe

Proposition 2.3.3 The Niemeier lattice N of type A24
1 possesses a primitive sublattice Π̃ ⊂

N which up to a total reversal of signature is isometric to the Kummer lattice (2.5).

No other Niemeier lattice possesses such a sublattice.

Proof: Given the Kummer lattice Π of (2.5), consider the lattice Π̃ := Π(−1). We first show
that Π̃ can be primitively embedded in some Niemeier lattice Ñ by applying theorem 2.1.3
to the lattice Λ = Π̃.

Recall from definition 2.0.3 that a Niemeier lattice is an even unimodular lattice of signature
(γ+, γ−) = (24, 0). Furthermore, by proposition 2.2.3 and the explanations following it, the

5By giving an extensive list of examples, in [26] Nikulin emphasizes that all 24 Niemeier lattices are impor-
tant for the study of K3 surfaces; while this may be true, our objective is the clarification of the role of the
Mathieu group M24, justifying our preference for the lattice N .
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lattice Π̃ is a non-degenerate even lattice with signature (l+, l−) = (16, 0) and discriminant
group Aq = Π̃∗/Π̃ ∼= (Z2)6. In particular, the length of this group is `(Aq) = 6, and for the
reductions modulo primes we find `(Aq2) = 6 and `(Aqp) = 1 for all primes p 6= 2. Since
γ+ + γ− − l+ − l− = γ+ − l+ = 8 > 6 > 1, the conditions 1., 2., 3.ii. and 4. of theorem 2.1.3
hold, and thus Π̃ can be primitively embedded in some Niemeier lattice Ñ .

For every Niemeier lattice Ñ , the root lattice R̃ is known (see e.g. [25, Ch. 16.1]), and one
checks that the Niemeier lattice N of type A24

1 is the only one containing 16 pairwise per-
pendicular roots that generate a sublattice R of type A16

1 , such that (R⊗Q)∩N contains no

further roots, as Π̃ does. From this the claim follows. �

In [26, Case 23], Nikulin remarks that N is the only Niemeier lattice which can contain a
primitive sublattice that up to a total signature reversal is isomorphic to the Kummer lattice.6

For our investigations, we need an explicit realisation of a primitive sublattice Π̃
as in proposition 2.3.3. Our construction of the lattice Π̃ and its orthogonal complement
K̃ in N depends on the choice of an arbitrary special octad in the Golay code, i.e. a
vector of weight 8 in G24. For historical reasons, our choice of special octad is the codeword
o9 := (0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1) ∈ G24 whose non-zero entries are
the binary coordinates with labels {3, 5, 6, 9, 15, 19, 23, 24} ⊂ I with I := {1, . . . , 24}. For
ease of notation, we regularly denote a codeword v ∈ G24 ⊂ F24

2 of the Golay code by listing
the set Av ⊂ I of coordinate labels with non-zero entries. With this notation, calculating the
sum of codewords v, w ∈ G24 ⊂ F24

2 amounts to taking the symmetric difference of sets
Av +Aw = (Av \Aw) ∪ (Aw \Av). Our special octad o9 is thus described by

O9 := {3, 5, 6, 9, 15, 19, 23, 24} , (2.10)

o9 = (0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1) ∈ G24 ⊂ F24
2 .

This is the octad corresponding to the standard MOG configuration described in appendix A,
where the two first columns have entries 1, and the others are 0. We now claim the following

Proposition 2.3.4 Consider the Niemeier lattice N of type A24
1 with root sublattice R gen-

erated by roots f1, . . . , f24. With our choice (2.10) of a special octad O9 let

K̃ := {ν ∈ N | ∀n 6∈ O9 : 〈ν, fn〉 = 0} , Π̃ := {ν ∈ N | ∀n ∈ O9 : 〈ν, fn〉 = 0} . (2.11)

Then K̃ and Π̃ are primitive sublattices of N which are orthogonal complements of one an-
other. Moreover, Π̃(−1) is isometric to the Kummer lattice Π as in (2.5).

Proof: That K̃ and Π̃ are primitive sublattices of N follows immediately from (2.11). For
n ∈ I, by construction, fn ∈ K̃ if and only if n ∈ O9, while fn ∈ Π̃ if and only if n 6∈ O9.
Thus K̃ has rank at least 8 and Π̃ has rank at least 16 with K̃⊥∩N ⊂ Π̃, Π̃⊥∩N ⊂ K̃. Thus
8 + 16 = 24 = rk (N) implies that these lattices are orthogonal complements of one another.

To prove that Π̃(−1) is isometric to the Kummer lattice Π given in (2.5), first observe that
there is a 5-dimensional subspace of the Golay code G24, defined as the space of all those
codewords which have no intersection with the octad O9. A basis of this space is

H1 := {1, 2, 4, 12, 13, 14, 17, 18},
H2 := {1, 2, 8, 11, 14, 16, 17, 22},
H3 := {1, 8, 10, 11, 13, 17, 18, 21},
H4 := {1, 4, 11, 13, 14, 16, 20, 21},
H5 := {2, 7, 8, 10, 12, 17, 18, 22}.

(2.12)

6Nikulin however fails to mention that the existence of a primitive sublattice Π̃ in N as in proposition 2.3.3
was first observed and proved in our first installment arXiv:1008.0954 of this work. In fact he fails to observe
that existence needs to be proved, whatsoever.
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Hence we have

Π̃ = spanZ

{
fn, n 6∈ O9; 1

2

∑
n∈Hi

fn, i = 1, . . . , 5

}
. (2.13)

Now consider the map I : I \ O9 −→ F4
2 with

I :


1 7→ (0, 0, 0, 0), 8 7→ (1, 0, 0, 1), 13 7→ (0, 1, 0, 0), 18 7→ (0, 1, 0, 1),
2 7→ (0, 0, 1, 1), 10 7→ (1, 1, 0, 1), 14 7→ (0, 0, 1, 0), 20 7→ (1, 1, 1, 0),
4 7→ (0, 1, 1, 0), 11 7→ (1, 0, 0, 0), 16 7→ (1, 0, 1, 0), 21 7→ (1, 1, 0, 0),
7 7→ (1, 1, 1, 1), 12 7→ (0, 1, 1, 1), 17 7→ (0, 0, 0, 1), 22 7→ (1, 0, 1, 1).

(2.14)
Under this map, the elements of Hi with i = 1, . . . , 4 correspond to the hypercube points
~a = (a1, a2, a3, a4) ∈ F4

2 with ai = 0, while the hypercube points corresponding to elements
of H5 are obtained from those corresponding to H4 by a shift by (1, 1, 1, 1) ∈ F4

2. In other
words, in terms of the hypercube labels, each Hi contains the labels corresponding to an affine
hyperplane Hi ⊂ F4

2, such that every hyperplane in F4
2 can be obtained from H1, . . . ,H5 by

means of symmetric differences. Hence (2.5) and (2.13) show that the map fn 7→ EI(n) for

n 6∈ O9 induces an isometry of lattices Π̃(−1) −→ Π. �

To our knowledge, the relation of the Golay code to the Kummer lattice found in proposition
2.3.4 is a new observation. It is certainly crucial for our analysis below. Our map I in (2.14)
induces the structure of a 4-dimensional vector space over F2 on the 16 labels of the Golay code
in I\O9. This linear structure is known to group theorists7: In [29, Thm. 2.10], Conway proves
the previously known fact (see e.g. [30]) that the general linear group L4(2) = PSL(4,F2) =
GL(4,F2) of F4

2 is isomorphic to the permutation group A8 of even permutations on 8 elements.
In our notations, the crucial step in the proof identifies the action of the stabilizer subgroup
of O9 ∪ {7} in M24 with the action of a subgroup of L4(2) on the 4-dimensional subspace of
G24 generated by the octads H1, . . . ,H4 as in (2.12). By our construction, this vector space
is the dual of our hypercube F4

2 built on I \ O9. The vector space structure of the latter, to
our knowledge, is first mentioned by Curtis in [31]. Hence altogether our proposition 2.3.4
gives a novel geometric meaning in terms of Kummer geometry to the known vector space
structure on I \ O9.

Note that both lattices K̃ and Π̃ in proposition 2.3.4 are contained in the Q-span of their root
sublattices. The gluing techniques of proposition 2.1.1 apply and allow us to reconstruct the
Niemeier lattice N from these lattices. Indeed, first note that K̃∗/K̃ ∼= Π̃∗/Π̃ ∼= (Z2)6 with
associated discriminant forms obeying q

K̃
= −q

Π̃
. Namely, as representatives qij ∈ K̃∗ of a

minimal set of generators of K̃∗/K̃ we identify, for example,

q12 := 1
2 (f3 + f6 − f15 − f19) , q34 := 1

2 (f6 + f9 − f15 − f19) ,

q13 := 1
2 (−f6 + f15 − f23 + f24) , q24 := 1

2 (−f15 + f19 + f23 − f24) ,

q14 := 1
2 (f3 − f9 − f15 + f24) , q23 := 1

2 (f3 − f9 − f15 + f23) ,

(2.15)

where the choices of signs at this stage are arbitrary but will come useful later on. The
resulting quadratic form is thus calculated to

q
K̃

=

(
0 1

2
1
2 0

)3

(2.16)

with the associated bilinear form taking values in Q/Z. An analogous analysis yields repre-
sentatives pij ∈ Π̃∗ of generators of Π̃∗/Π̃ which are glued to the qij under an appropriate
isomorphism

γ̃ : K̃∗/K̃ −→ Π̃∗/Π̃, γ̃(qij) = pij , (2.17)

7as we learned after the previous installment of our work arXiv:1107.3834
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such that q
K̃

= −q
Π̃
◦ γ̃ for the associated quadratic forms. In fact, we can use

p12 := 1
2 (f1 + f11 + f13 + f21) , p34 := 1

2 (f1 + f2 + f14 + f17) ,

p13 := 1
2 (f1 + f11 + f14 + f16) , p24 := 1

2 (f1 + f13 + f17 + f18) ,

p14 := 1
2 (f1 + f8 + f11 + f17) , p23 := 1

2 (f1 + f4 + f13 + f14) .

(2.18)

Denoting by P̃ij ⊂ I the sets of labels such that

pij = 1
2

∑
n∈P̃ij

fn ∈ Π̃∗

in (2.18) above, we find that the map I of (2.14) maps P̃ij to the plane Pij ⊂ F4
2 given in

(2.7). In other words, the isometry between Π and Π̃(−1) induced by I is compatible with
the gluing prescriptions described in section 2.2 and above.

As to uniqueness of the embedding of the Kummer lattice in the Niemeier lattice N(−1), we
have

Proposition 2.3.5 Consider the Niemeier lattice N of type A24
1 . The primitive embedding

of the Kummer lattice Π in N(−1) found in proposition 2.3.3 is unique up to automorphisms
of N .

Proof: Assume that i : Π ↪→ N(−1) is a primitive embedding of the Kummer lattice Π in
N(−1). Then from (2.5) we deduce that the i(E~a), ~a ∈ F4

2, yield 16 pairwise perpendicular

vectors in Π̂ := i(Π) ⊂ N(−1) on which the quadratic form takes value −2. Hence by (2.9)
and with the notations used there, for every n ∈ I \ O9 we find some Î(n) ∈ I such that
i(EI(n)) = ±f

Î(n)
∈ Π̂, where I is the map (2.14) and the indices Î(n) are pairwise distinct.

In particular, i induces the hypercube structure of F4
2 on the labels {Î(n) | n ∈ I \ O9}, and

the map induced by i(EI(n)) 7→ fn for all n ∈ I \ O9 is an isometry Π̂ ∼= Π̃.

Again by (2.5) we have e := 1
2

∑
~a∈F4

2
E~a ∈ Π and thus 1

2

∑
n∈I\O9

f
Î(n)
∈ N . However, by

proposition 2.3.1 this implies that Ǒ := {Î(n) | n ∈ I \ O9} gives a codeword of the Golay
code. It follows that O := I \ Ǒ is an octad in the Golay code. This means that the lattice
K̂ := Π̂⊥ ∩N is isometric to the lattice K̃ defined in (2.11). Note that K̂ is generated by the
fn with n ∈ O along with 1

2

∑
n∈O fn.

Using proposition 2.1.1 we can recover N either from gluing K̂ to Π̂, or from gluing K̃ to
Π̃. On the level of discriminant groups, our isometry Π̂ ∼= Π̃ together with the respective
gluing isometries yields an isometry of the discriminant groups K̂∗/K̂ −→ K̃∗/K̃. We need
to show that this isometry can be lifted to an isometry K̂ −→ K̃ in order to yield the isometry
K̂ ⊕ Π̂ ∼= K̃ ⊕ Π̃ compatible with gluing. This can be done by explicit calculation:

Given the quadratic form (2.16) on our discriminant groups, it follows from the gluing pre-
scription (2.17) that the preimages under K̂∗/K̂ −→ K̃∗/K̃ of the qij with qij given by (2.15)

are of the form 1
2

∑
n∈Q̂ij

fn, where 1
2

∑
n∈Q̂ij

fn ∈ K̂∗ is glued to 1
2

∑
n∈P̂ij

fn ∈ Π̂∗ with

P̂ij = Î(P̃ij) and I(P̃ij) = Pij ⊂ F4
2 in (2.7). In other words, Q̂ij ⊂ O is a quadruplet of

labels such that P̂ij ∪ Q̂ij is an octad in the Golay code. Since O is an octad, by replacing

Q̂ij by O \ Q̂ij where necessary, we may assume that all Q̂ij share a common label, say a.
Comparing to the Qij ⊂ O9 which in (2.15) yield qij = 1

2

∑
n∈Qij

(±fn), we map fa 7→ f15.

By means of symmetric differences, for example P̂12 + P̂13 + Q̂12 + Q̂13 must yield an octad,
where P̂12 + P̂13 = Î(P̃12 + P̃13) is a quadruplet of labels. Thus Q̂12 and Q̂13 share precisely
two entries, a, b, say. Again comparing to (2.15), we map fb 7→ f6. Continuing in this fashion
one obtains the desired isometry K̂ −→ K̃ which by construction induces K̂∗/K̂ −→ K̃∗/K̃.
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In other words, it is compatible with gluing and we obtain an isometry K̂⊕ Π̂ ∼= K̃⊕ Π̃ which
can be extended to a lattice automorphism α of N . Then α ◦ i gives the primitive embedding
of the Kummer lattice Π in N(−1) found in proposition 2.3.3. �

Finally, we give yet another description of the Niemeier lattice N in terms of the gluing tech-
niques of proposition 2.1.1, which resembles the description of the full integral K3-homology
in proposition 2.2.4:

Proposition 2.3.6 Consider the Niemeier lattice N of type A24
1 with root sublattice R gen-

erated by roots f1, . . . , f24. With our choice (2.10) of a special octad O9 let n0 ∈ O9 and

K̃n0 := {ν ∈ N | ∀n 6∈ O9 \ {n0} : 〈ν, fn〉 = 0} ,

P̃n0 := {ν ∈ N | ∀n ∈ O9 \ {n0} : 〈ν, fn〉 = 0} .

Then K̃n0 is a root lattice of type A7
1 and P̃n0 = Π̃⊕ spanZ{fn0}. Both lattices are primitive

sublattices of N which are orthogonal complements of one another. Furthermore, K̃∗n0
/K̃n0

∼=
P̃∗n0

/P̃n0
∼= (Z2)7 under an isomorphism g̃n0 : K̃∗n0

/K̃n0−→P̃∗n0
/P̃n0 with

g̃n0(qij) := γ̃(qij) for ij = 12, 34, 13, 24, 14, 23,

g̃n0(1
2

∑
n∈O9\{n0}

fn) := 1
2fn0 ;

P̃n0
∼= P(−1), N ∼=

{
(k, p) ∈ K̃∗n0

⊕ P̃∗n0
| g̃n0(k) = p

}
(2.19)

with notations as in (2.15)–(2.18).

Proof: The lattices K̃n0 , P̃n0 are perpendicular primitive sublattices of N of rank 7 and 17
and thus orthogonal complements of one another by construction.

By proposition 2.3.1 the lattice K̃n0 ⊂ K̃ is generated by the fn with n ∈ O9 \{n0} along with
linear combinations 1

2

∑
n∈A fn, if A ⊂ O9\{n0} corresponds to a codeword of the Golay code.

However, since O9 \ {n0} contains only 7 elements, while the shortest non-trivial codeword in
the Golay code has weight 8, we find K̃n0 = spanZ{fn | n ∈ O9 \{n0}}, which is a root lattice
of type A7

1 as claimed.

Similarly, by (2.11) the lattice P̃n0 is generated by the elements of Π̃ along with fn0 and any
linear combination 1

2

∑
n∈A fn with A ∩ O9 = {n0}, if A ⊂ I corresponds to a codeword of

the Golay code. However, since O9 corresponds to a codeword in the Golay code, any two
codewords of which intersect in an even number of labels, no such A can exist. In other
words, P̃n0 = Π̃ ⊕ spanZ{fn0}, and thus P̃n0

∼= P(−1) by proposition 2.3.4 along with the
very definition of P in proposition 2.2.4.

Using proposition 2.1.1, the Niemeier lattice N can be glued from K̃n0 and P̃n0 as claimed in
(2.19). �

3 The complex geometry and the symmetries of K3 surfaces

In the preceding section 2.2, we have already addressed some properties of K3 surfaces and in
particular of Kummer surfaces. Recall that the objective of this work is the investigation of
finite groups of symplectic automorphisms of Kummer surfaces, and the role of the Mathieu
group M24 in their realisation. We need a number of additional techniques to describe and
investigate symplectic automorphisms of Kummer surfaces. This section reviews some of
these techniques and introduces new ones.
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3.1 Complex structures and dual Kähler classes

Recall from definition 2.2.1 that we view a K3 surface X as a complex surface, which thus
in particular comes with a choice of complex structure. Moreover, X has trivial canonical
bundle and hence there exists a holomorphic (2, 0)-form on X which never vanishes and which
represents a Hodge-de Rham class Ω̂ ∈ H2(X,C). Having worked in homology, so far, we
introduce the 2-cycle Ω ∈ H2(X,C) which is Poincaré dual to Ω̂. By construction, it obeys
Ω ∨ Ω = 0, and H4(X,R) 3 Ω ∨ Ω is positive with respect to the intersection form 〈·, ·〉 on
H∗(X,R). Decomposing Ω into its real and its imaginary part,

Ω = Ω1 + iΩ2, Ωk ∈ H2(X,R),

the above conditions on Ω immediately imply

〈Ω1,Ω2〉 = 0, 〈Ω1,Ω1〉 = 〈Ω2,Ω2〉 > 0.

In other words, Ω1, Ω2 ∈ H2(X,R) form an orthogonal basis of a positive definite oriented 2-
dimensional subspace of H2(X,R), which is traditionally denoted by Ω, too. While the choice
of complex structure on X obviously determines the position of Ω relative to the lattice of
integral homology H2(X,Z), it is a deep theorem, which is equivalent to the global Torelli
theorem for K3 surfaces [32, 33, 34, 35, 36], that the converse is also true:

Theorem 3.1.1 (Torelli Theorem) Consider a K3 surface X and the 2-dimensional ori-
ented subspace Ω of H2(X,R) whose basis is represented by the real and imaginary part of
the Poincaré dual of a holomorphic (2, 0)-form on X which vanishes nowhere. The complex
structure of X is uniquely determined by the position of Ω relative to the lattice H2(X,Z) of
integral homology.

By the Torelli Theorem 3.1.1, the moduli space Mcpx of complex structures on a K3 surface

is the Grassmannian M̃cpx of positive definite oriented 2-dimensional subspaces Ω of R3,19 =(
U3 ⊕ E2

8(−1)
)
⊗ R, modulo the action of the automorphism group of U3 ⊕ E2

8(−1). This
moduli space is equipped with its natural topology, which however does not have the Hausdorff
property [37]. By choosing a marking H2(X,Z) ∼= U3⊕E2

8(−1), H∗(X,Z) ∼= U4⊕E2
8(−1), we

work in the smooth connected cover M̃cpx of the moduli space. This allows us to explicitly
specify the complex structure of a given K3 surface in our applications by writing out the
basis Ω1, Ω2 of Ω in terms of lattice vectors in H2(X,Z). Indeed, thereby we specify the very
location of Ω relative to H2(X,Z) and thus the complex structure, by theorem 3.1.1.

In terms of local holomorphic coordinates z1, z2, the procedure works as follows: Locally, a
holomorphic (2, 0)-form representing Ω̂ has the form dz1 ∧ dz2, which with respect to real
coordinates ~x = (x1, x2, x3, x4), z1 = x1 + ix2, z2 = x3 + ix4, as before, yields

dz1 ∧ dz2 = [dx1 ∧ dx3 − dx2 ∧ dx4] + i [dx1 ∧ dx4 + dx2 ∧ dx3] =: Ω̂1 + iΩ̂2. (3.1)

Here, the real valued two-forms Ω̂1, Ω̂2 represent the Poincaré duals of Ω1, Ω2. Hence with
respect to standard real coordinate vector fields ~e1, . . . , ~e4, the latter are readily identified as

Ω1 = e1 ∨ e3 − e2 ∨ e4, Ω2 = e1 ∨ e4 + e2 ∨ e3. (3.2)

Recall from definition 2.2.2 that a Kummer surface X with underlying torus T (Λ) carries
the complex structure induced from the universal cover C2 ∼= R4 of T (Λ). Moreover, as
remarked at the end of section 2.2, the Kummer construction provides us with a natural
marking H2(X,Z) ∼= U3 ⊕ E2

8(−1), H∗(X,Z) ∼= U4 ⊕ E2
8(−1), which we use throughout

our discussion of Kummer surfaces. In other words, by the above-mentioned procedure we
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calculate the complex structure of the Kummer surface X = ˜T (Λ)/Z2 in terms of the lattice
data Λ ⊂ C2 ∼= R4, where the generators ~λ1, . . . , ~λ4 of Λ are part of the data. Indeed,
~λ1, . . . , ~λ4 are expressed in terms of the standard basis vectors ~e1, . . . , ~e4 of R4. Thus we obtain
expressions for the Poincaré duals of dx1∧dx3−dx2∧dx4 and dx1∧dx4 +dx2∧dx3 in terms of
the λij = λi∨λj , our standard generators of H2(T (Λ),Z). Now recall from definition 2.2.2 the
linear map π∗ : H2(T (Λ),R) −→ H2(X,R) which is induced by the rational map π : T (Λ) 99K
X. The images of the Poincaré duals of dx1 ∧ dx3 − dx2 ∧ dx4 and dx1 ∧ dx4 + dx2 ∧ dx3

under π∗ yield the two–cycles Ω1, Ω2 specifying the complex structure of the Kummer surface
X. One thus immediately obtains expressions for the Ωk in terms of the lattice H2(X,Z),
uniquely specifying the complex structure of X. Note that this procedure allows us to vary
the underlying lattice Λ of T (Λ) = C2/Λ and thereby the induced complex structure of

X = ˜T (Λ)/Z2, giving the relative position of Ω = spanR{Ω1,Ω2} in H2(X,R) = H2(X,Z)⊗R
in terms of H2(X,Z) with our choice of marking. Here, the lattice H2(X,Z) remains fixed,
while the position of Ω varies with Λ, thus describing a path in the smooth connected cover
M̃cpx of the moduli space of complex structures on K3.

Example: Consider the standard square torus T0 := T (Z4) = C2/Z4, where we simply have
~ei = ~λi, i = 1, . . . , 4, and thus Ω1 = π∗λ13−π∗λ24, Ω2 = π∗λ14 +π∗λ23 ∈ H2(X,Z). Hence the
Kummer surface X0 with underlying torus T0 has the special property that the 2-dimensional
space Ω ⊂ H2(X0,R) which specifies its complex structure contains a sublattice of H2(X0,Z)
of (the maximal possible) rank 2. For such K3 surfaces, by a seminal result of Shioda and Inose
[38], the quadratic form of the transcendental lattice Ω ∩ H2(X,Z) already uniquely
determines the complex structure of X. In other words, the complex structure of the Kummer
surface X0 with underlying torus T0 is uniquely determined by the following quadratic form
of its transcendental lattice: (

4 0
0 4

)
. (3.3)

According to the final remark of [38], this means that X0 agrees with the so–called elliptic
modular surface of level 4 defined over Q

(√
−1
)

of [39, p. 57].

By a deep result due to Siu [35], every K3 surface is Kähler. In fact, in addition to a complex
structure Ω ⊂ H2(X,R), we always fix a Kähler class on each of our K3 surfaces X. By
definition, a Kähler class is the cohomology class of the two-form which is associated to a
Kähler metric on X. By [40] this amounts to choosing a real, positive, effective element of
H1,1(X,C). Under Poincaré duality, this translates into the choice of some ω ∈ Ω⊥∩H2(X,R)
with 〈ω, ω〉 > 0, ensuring effectiveness by replacing ω by −ω if necessary.

Definition 3.1.2 Consider a K3 surface X, and let Ω ⊂ H2(X,R) denote the oriented 2-
dimensional subspace which specifies the complex structure of X according to the Torelli The-
orem 3.1.1. A choice of dual Kähler class on X is the choice of some ω ∈ Ω⊥∩H2(X,R)
with 〈ω, ω〉 > 0. If the dual Kähler class obeys ω ∈ H2(X,Z), then ω is called a polarization
of X.

If X is a Kummer surface with underlying torus T (Λ), let ωT denote the Poincaré dual of the
standard Kähler class induced from the standard Euclidean metric on C2. Then with π∗ as in
definition 2.2.2, we call π∗ωT ∈ Ω⊥ ∩H2(X,R) the induced dual Kähler class on X.

By the above, a choice of a dual Kähler class is equivalent to the choice of a Kähler structure
on X, and the choice of a polarization is equivalent to the choice of a Kähler structure which
is represented by an integral Kähler form. It is known that a K3 surface X is algebraic,
that is, X can be viewed as a complex subvariety of some complex projective space PN , if
and only if it admits the choice of a polarization (see e.g. [41, pp. 163, 191]).
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We equip all Kummer surfaces with the dual Kähler class induced from its underlying torus.
That this special type of dual Kähler class has been chosen is an important assumption which
we make throughout our work. Without loss of generality we are also assuming a coordinate
description for all our tori T = T (Λ) = C2/Λ where the dual Kähler class ωT of T is induced
from the standard Kähler structure of C2. The Kähler class dual to π∗ωT is actually located
on a wall of the Kähler cone of X. In other words, it represents a degenerate (or orbifold
limit of a) Kähler metric on X. In this sense, the induced (dual) Kähler classes on our
Kummer surfaces yield degenerate Kähler structures.

For later convenience, note that in terms of the standard local holomorphic coordinates on
T (Λ) = C2/Λ the standard Kähler class is represented by

1

2i
(dz1 ∧ dz1 + dz2 ∧ dz2) = dx1 ∧ dx2 + dx3 ∧ dx4 (3.4)

and hence
ω = π∗ωT = e1 ∨ e2 + e3 ∨ e4 (3.5)

with notations as above. The induced dual Kähler class on the Kummer surface obtained
from T (Λ) can thus be immediately calculated in terms of the lattice H2(X,Z) and our fixed
marking, given the lattice Λ of the underlying torus.

Example: For our square torus T0 = T (Z4) above we argued that we have ω = π∗ωT =
π∗λ12 + π∗λ34 ∈ H2(X0,Z) for the associated Kummer surface X0. Hence this Kummer
surface is algebraic. The real 3-dimensional subspace Σ of H2(X0,R) containing Ω and ω
has the property that Σ ∩H2(X0,Z) yields a lattice of (the maximal possible) rank 3, with
quadratic form  4 0 0

0 4 0
0 0 4

 . (3.6)

If X denotes a K3 surface with complex structure specified by Ω ⊂ H2(X,R) as in the
Torelli Theorem 3.1.1 and with dual Kähler class ω according to definition 3.1.2, then the
oriented 3-dimensional subspace Σ of H2(X,R) containing Ω and ω uniquely determines a
real Einstein metric on X, up to its volume, or equivalently a hyperkähler structure on X (see
for example [42, 43] for a review). Vice versa, Σ is uniquely determined by such a hyperkähler
structure. The moduli space Mhk of hyperkähler structures on X is thus the Grassmannian
M̃hk of positive definite oriented 3-dimensional subspaces Σ of R3,19 =

(
U3 ⊕ E2

8(−1)
)
⊗ R,

modulo the action of the automorphism group of U3 ⊕ E2
8(−1). This moduli space carries a

natural Hausdorff topology. By choosing a fixed marking, as we are doing in this work, we
are effectively working in the smooth connected cover M̃hk of this moduli space. A smooth

variation of the generators ~λ1, . . . , ~λ4 of the underlying lattice Λ for Kummer surfaces ˜T (Λ)/Z2

thus amounts to the description of a smooth path in M̃hk, which we simply call a Kummer
path.

3.2 Holomorphic symplectic automorphisms of K3 surfaces

In this subsection, we consider a K3 surface X with a complex structure that is encoded
in terms of a real 2-dimensional oriented positive definite subspace Ω ⊂ H2(X,R) according
to the Torelli Theorem 3.1.1. We discuss the notion of symplectic automorphisms8 and
holomorphic symplectic automorphisms of X:

8Here, we follow the slightly misleading terminology which has become standard, by now. Note however
that in Nikulin’s original work such automorphisms are called algebraic [11, Def. 0.2], and that the definition
of symplectic automorphisms does not refer to a symplectic structure on X.
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Definition 3.2.1 Consider a K3 surface X. A map f : X −→ X of finite order is called
a symplectic automorphism if and only if f is biholomorphic and the induced map
f∗ : H∗(X,R) −→ H∗(X,R) leaves the complex structure Ω ⊂ H∗(X,R) invariant.

If ω is a dual Kähler class on X and f∗ω = ω, then f is a holomorphic symplectic
automorphism with respect to ω.

When a dual Kähler class ω on X has been specified, then the group of holomorphic symplectic
automorphisms of X with respect to ω is called the symmetry group of X.

Consider a map f : X −→ X of finite order which is bijective, such that both f and f−1 respect
the complex structure of X. The induced linear map f∗ on H∗(X,R) restricts to a lattice
automorphism on H2(X,Z) and, according to our description of complex structures by means
of the Torelli Theorem 3.1.1, it acts as a multiple of the identity on Ω. By definition 3.2.1, f
is a symplectic automorphism if and only if f∗ acts as the identity on Ω. In fact, by another
version of the Torelli Theorem (see e.g. [11, Thm. 2.7′]) the restriction of f∗ to H2(X,Z) (also
denoted f∗) uniquely determines the symplectic automorphism f . The following version of
the Torelli Theorem is most adequate for our applications to symplectic automorphisms, and
it is obtained from [11, Thms. 2.7′&4.3] in conjunction with [32] and [44, Prop. VIII.3.10]:

Theorem 3.2.2 (Torelli Theorem) Consider a K3 surface X and a lattice automorphism
α of H2(X,Z), i.e. a linear map which respects the intersection form. Assume that after
linear extension to H2(X,R), α leaves Ω invariant.

Then α is induced by a symplectic automorphism of X if and only if the following holds: α
preserves effectiveness for every E ∈ Ω⊥∩H2(X,Z) with 〈E,E〉 = −2, the invariant sublattice
Lα := H2(X,Z)α = {v ∈ H2(X,Z) |αv = v} has a negative definite orthogonal complement
Lα := (Lα)⊥ ∩H2(X,Z), and for all v ∈ Lα, 〈v, v〉 6= −2.

In this case the symplectic automorphism f with α = f∗ is uniquely determined.

This theorem allows us to carry out the entire discussion of symplectic automorphisms of
a K3 surface X in terms of lattice automorphisms on H∗(X,Z). To treat finite symplectic
automorphism groups, we

Remark 3.2.3 If G is a finite group of symplectic automorphisms of a K3 surface X, let
LG := (LG)⊥ ∩ H2(X,Z) denote the orthogonal complement of the lattice LG ⊂ H∗(X,Z)
which is pointwise invariant under the induced action of G on H∗(X,Z), generalizing the
lattice Lα in the above version of the Torelli Theorem 3.2.2. By [11, Lemma 4.2], the lattice
LG is negative definite. To see why this only follows when G is finite, note that the proof
given in [11] uses the resolution of the quotient X/G. Indeed, by our assumptions on G, all
singularities of X/G are isolated, and the minimal resolution of all its singularities yields a
K3 surface Y . Moreover, in [11] Nikulin proves LG ⊗Q ∼= MY ⊗Q with MY the sublattice of
H2(Y,Z) generated by the exceptional classes in the resolution. Since MY is negative definite
by [45], the claim follows.

Now the restriction to finite symplectic automorphism groups of K3 surfaces conveniently
translates into the restriction to symplectic automorphism groups which preserve some dual
Kähler class:

Proposition 3.2.4 Consider a K3 surface X, and denote by G a non-trivial group of sym-
plectic automorphisms of X.

Then G is finite if and only if X possesses a dual Kähler class which is invariant under G.
Equivalently, the sublattice LG ⊂ H∗(X,Z) which is pointwise invariant under the induced
action of G on H∗(X,Z) has signature (4,m−) with m− ∈ N and m− ≥ 1.
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If X is an algebraic K3 surface, then G is finite if and only if X possesses a polarization
which is invariant under G.

Proof: Consider the Picard lattice Pic(X) := Ω⊥∩H2(X,Z) of rank ρ ∈ N, 0 ≤ ρ ≤ 20, and
its orthogonal complement TX := Pic(X)⊥ ∩H2(X,Z). Then by [11, Lemma 4.2], the lattice
H0(X,Z)⊕ TX ⊕H4(X,Z) is a sublattice of LG, so in particular Ω ⊂

(
LG ∩H2(X,Z)

)
⊗ R.

Assume first that G is finite. Then by Remark 3.2.3, the lattice obtained as LG :=
(
LG
)⊥ ∩

H2(X,Z) is negative definite, such that LG is a lattice of signature (4,m−) for some m− ∈ N.
Since H0(X,Z)⊕H4(X,Z) ⊂ LG, we have m− ≥ 1 as claimed.

Next assume that LG has signature (4,m−) with m− ≥ 1. Recall from the above that
Ω ⊂

(
LG ∩H2(X,Z)

)
⊗R, where H0(X,Z)⊕H4(X,Z) ⊂ LG implies that LG ∩H2(X,Z) has

signature (3,m− − 1), while Ω is positive definite of dimension 2. Hence there exists some
ω ∈

(
LG ∩H2(X,Z)

)
⊗ R with ω ∈ Ω⊥ and 〈ω, ω〉 > 0. In other words, X possesses a dual

Kähler class which is invariant under G.

Conversely, assume that X possesses a dual Kähler class ω which is invariant under G. Hence
the induced action of G on H∗(X,R) leaves the 3-dimensional vector space Σ ⊂ H∗(X,R)
generated by Ω and ω invariant. Thus the non-trivial action of G on H∗(X,Z) amounts to an
action on the negative definite lattice Σ⊥ ∩H2(X,Z). It is therefore given by a permutation
group on every set of vectors of same length in that lattice, a finite set for every length.
Thus G is represented on H∗(X,R) by the action of a finite group. Moreover, the uniqueness
statement in the Torelli Theorem 3.2.2 implies that G acts faithfully on H∗(X,R). It follows
that G is finite.

Now assume that X is algebraic. Since by definition 3.1.2 every polarization of X is a dual
Kähler class, it remains to be shown that there exists a polarization ω fixed by G if LG has
signature (4,m−) with m− ≥ 1. Indeed, if X is algebraic, then Pic(X) has signature (1, ρ−1)
with 1 ≤ ρ ≤ 20, and thus its orthogonal complement TX has signature (2, 20−ρ). Moreover,
by the above the lattice H0(X,Z)⊕ TX ⊕H4(X,Z) of signature (3, 21− ρ) is a sublattice of
LG. Hence for LG of signature (4,m−), m− ≥ 1, there exists some ω ∈ LG with 〈ω, ω〉 > 0
and ω ∈ T⊥X ∩ H2(X,Z) ⊂ Ω⊥. In other words, there exists a polarization of X which is
invariant under G. �

In this work, we restrict our attention to the investigation of finite symplectic automorphism
groups of K3 surfaces X. Hence by theorem 3.2.4 there exists a dual Kähler class ω of X which
is invariant under the action of G. Once a complex structure Ω and dual Kähler class ω of
our K3 surface have been chosen, the group G of all holomorphic symplectic automorphisms
with respect to ω is uniquely determined. By the above, it solely depends on the relative
position of the 3-dimensional space Σ ⊂ H∗(X,R) generated by Ω and ω with respect to the
lattice H∗(X,Z). As explained at the end of section 3.1, Σ uniquely determines a hyperkähler
structure on X and is uniquely determined by such a hyperkähler structure. Working with
a fixed marking, our study of finite symplectic automorphism groups of K3 surfaces thus is
naturally carried out on the smooth connected cover M̃hk of the moduli space of hyperkähler
structures on K3.

Mukai shows in [9] that the action of a finite symplectic automorphism group G on H∗(X,Q)
is a Mathieu representation, that is: The character µ of this representation is given by

µ(g) = 24

ord(g)
∏

p|ord(g)

(
1 +

1

p

)−1

∀ g ∈ G.

Furthermore, with M23 ⊂M24 the stabilizer group in the Mathieu group M24 of one label in
I = {1, . . . , 24}, Mukai found the following seminal result [9]:
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Theorem 3.2.5 Consider a K3 surface X, and a finite group G of symplectic automor-
phisms of X. Then G is isomorphic to a subgroup of one of those 11 subgroups of M23 which
decompose I into at least five orbits.

Following Mukai, two further independent proofs of the above theorem were given, namely
by Xiao [46] and by Kondo [10], see also [47]. We use a number of ideas from Kondo’s proof
throughout this work. Therefore, we briefly review its main steps, adjusting it slightly to fit
our purposes:

Proof (sketch): Assume that X is a K3 surface and that G is a non-trivial finite group acting
as symplectic automorphism group on X. Let LG ⊂ H∗(X,Z) denote the invariant sublattice

of the integral homology9 of X and LG :=
(
LG
)⊥ ∩ H∗(X,Z). By proposition 3.2.4, LG is

negative definite of rank at most 19, while LG has at least rank 5. Moreover, denoting by
υ0, υ a choice of generators of H0(X,Z), H4(X,Z) with 〈υ0, υ〉 = 1, we have a lattice vector
υ0 − υ ∈ LG on which the quadratic form takes value −2.

As an application of theorem 2.1.3, Kondo proves that a lattice NG ⊕ 〈2〉 isometric to (LG ⊕
〈−2〉)(−1) can be primitively embedded in some Niemeier lattice Ñ (see definition 2.0.3),
where 〈2〉 denotes a lattice of rank 1 with quadratic form (2) on a generator f , and 〈−2〉 =
〈2〉(−1). In fact, since G acts trivially on LG, it acts trivially on the discriminant group
(LG)∗/LG. This in turn implies a trivial action of G on the discriminant group of LG, since
H∗(X,Z) is obtained by the gluing techniques of proposition 2.1.1 from LG and LG. Hence on
the Niemeier lattice Ñ , which can be obtained by the gluing techniques from NG

∼= LG(−1)
and its orthogonal complement NG := (NG)⊥ ∩ Ñ , the action of G on NG

∼= LG(−1) can
be extended to Ñ , leaving NG invariant (see [11, Prop. 1.1]). Note that in particular, by
construction, the invariant sublattice NG of Ñ has rank rk (NG) = rk (LG) ≥ 5, and it
contains the vector f on which the quadratic form takes value 2. While NG and LG in
general have little in common, apart from their ranks and their discriminant groups, note
that we can naturally identify10 f ∈ NG with υ0 − υ ∈ LG ⊂ H∗(X,Z).

Next, for each Niemeier lattice Ñ with root sublattice R̃, Kondo shows that the induced
action on Ñ/R̃ gives an injective image of the G-action and that it yields an embedding of
G in M23. The latter is readily seen in the case of the Niemeier lattice N of type A24

1 : Here,
N/R ∼= G24 ⊂ F24

2 with G24 the Golay code by proposition 2.3.1. Hence the action of G yields
a group of automorphisms of the Golay code. Since M24 is the automorphism group of G24,
this yields an embedding of G in the Mathieu group M24. Moreover, the invariant part NG

of N by construction contains the root f . Hence the induced action of G on the Golay code
stabilizes the corresponding label in I. Therefore, Kondo’s construction indeed embeds G in
the subgroup M23 ⊂M24 which stabilizes that label. �

In fact, by Mukai’s appendix to Kondo’s paper, the Niemeier lattice N of type A24
1 can be

used to construct a symplectic action of each of the 11 groups G in Mukai’s classification.
Note that this does not imply that the Niemeier lattices Ñ can be replaced by N within the
above proof. Mukai also proves in [9] that each of the 11 groups in his classification actually
occurs as the symplectic automorphism group of some algebraic K3 surface. The largest of
these subgroups of M23 is the polarization-preserving symplectic automorphism group M20

of a particular deformation of the Fermat quartic, a group of order 960.

9Here, we slightly modify Kondo’s conventions: First, we work in homology instead of cohomology, which
by Poincaré duality is equivalent. Second, instead of restricting to H2(X,Z) we consider the total integral K3-
homology, such that our lattice LG differs from the one in Kondo’s work by a summand H0(X,Z)⊕H4(X,Z) ∼=
U , a hyperbolic lattice. Since the latter is unimodular, the arguments carry through identically.

10To obtain such an interpretation for f , our modification of Kondo’s conventions is crucial.
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3.3 Holomorphic symplectic automorphisms of Kummer surfaces

Throughout this subsection we assume that X is a Kummer surface with underlying torus
T = T (Λ), Λ ⊂ C2. According to definition 2.2.2, X carries the complex structure which is
induced from the universal cover C2 of T . Furthermore, according to definition 3.1.2, we use
the induced dual Kähler class on X. We are interested in the group of holomorphic symplectic
automorphisms of X with respect to that dual Kähler class. It is important to keep in mind
that we are making a very special choice of dual Kähler class, which severely restricts the types
of symmetry groups that are accessible to our methods. In this subsection, we determine the
generic structure of such holomorphic symplectic automorphism groups of Kummer surfaces.
While the description of these groups themselves, which we give in proposition 3.3.4, along
with the ideas that lead to it are known to the experts, our observation about their action on
the K3-homology in theorem 3.3.7 is new.

We begin by specifying a group of holomorphic symplectic automorphisms that all our Kum-
mer surfaces share:

Proposition 3.3.1 Consider a Kummer surface X with underlying torus T , equipped with
the induced dual Kähler class. Let G denote the holomorphic symplectic automorphism group
of X with respect to that dual Kähler class. Then G contains an abelian subgroup Gt which
is isomorphic to (Z2)4. With notations as in definition 2.2.2 and proposition 2.2.3,

Gt =
{
t
~b | ~b ∈ F4

2

}
,

where each α
~b := t

~b
∗ acts trivially on K = π∗(H2(T,Z)), and its action on the Kummer lattice

Π is induced by E~a 7→ E
~a+~b

for all ~a ∈ F4
2.

Proof: From proposition 2.2.3 it immediately follows that the action of each α
~b described

above induces a lattice automorphism on H∗(X,Z), such that for the sublattice Lα
~b

of

H2(X,Z) which is invariant under α
~b we have Lα

~b ⊃ K. It follows that L
α~b

:= (Lα
~b
)⊥ ∩

H2(X,Z) obeys L
α~b
⊂ Π. Thus L

α~b
is negative definite. Moreover, by construction α

~b pre-

serves effectiveness, and since e := 1
2

∑
~a∈F4

2
E~a ∈ Lα

~b
and L

α~b
= (Lα

~b
)⊥ ∩ Π, 〈v, v〉 6= −2

for all v ∈ L
α~b

. Hence by the Torelli Theorem 3.2.2, α
~b is indeed induced by a uniquely

determined holomorphic symplectic automorphism t
~b of X. �

With T = T (Λ), recall from (2.4) and definition 2.2.2 that each E~a, ~a ∈ F4
2, is obtained

by blowing up a singular point ~F~a in T/Z2. Hence for every lattice vector ~λ ∈ Λ, the shift
symmetry ~x 7→ ~x+ 1

2
~λ for ~x ∈ R4 induces a symmetry on T/Z2 which permutes the singular

points by the corresponding shift on the hypercube F4
2. If λ =

∑4
i=1 bi

~λi with generators
~λ1, . . . , ~λ4 of Λ as in (2.4) and bi ∈ {0, 1} for all i, then this symmetry induces the holomorphic

symplectic automorphism t
~b of the above proposition. This motivates our terminology of

Definition 3.3.2 Consider a Kummer surface X with underlying torus T , equipped with
the induced dual Kähler class. We call the group Gt ∼= (Z2)4 of holomorphic symplectic

automorphisms t
~b, ~b ∈ F4

2, obtained in proposition 3.3.1 the translational automorphism
group of X.

We now proceed to determine the structure of the symmetry group G of a Kummer surface.
First, the action of G preserves the special structure of the homology of Kummer surfaces
that we described in proposition 2.2.3; the statements of the following proposition follow
immediately from the results of [22]:
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Proposition 3.3.3 Consider a Kummer surface X with underlying torus T , equipped with
the induced dual Kähler class. Let f denote a holomorphic symplectic automorphism of X
and α := f∗ its induced action on H∗(X,Z).

With notations as in definition 2.2.2 and proposition 2.2.3, for the Kummer lattice Π we have
α(Π) = Π, and for K = π∗(H2(T,Z)) we have α(K) = K.

There is an affine linear map A on F4
2 such that the action of α on Π is induced by α(E~a) =

EA(~a), ~a ∈ F4
2. In fact, A uniquely determines f .

Note that the translational automorphisms t
~b, ~b ∈ F4

2, found in proposition 3.3.1 are precisely
the holomorphic symplectic automorphisms of a Kummer surface which are given by trans-
lations A(~a) = ~a +~b on the hypercube F4

2 according to proposition 3.3.3. We are now ready

to describe the generic form of every symmetry group of a Kummer surface. As mentioned
above, this description along with the ideas which lead to it are known to the experts. How-
ever, for the reader’s convenience and since we have not found an appropriate reference in
the literature, we recall its derivation:

Proposition 3.3.4 Consider a Kummer surface X with underlying torus T = T (Λ), equipped
with the induced dual Kähler class. Let G denote its symmetry group. Then the following
holds:

1. The group G is a semi-direct product Gt oGT with Gt the translational automorphism
group of definition 3.3.2 and GT the group of those symplectic automorphisms of X that
are induced by the holomorphic symplectic automorphisms of T that fix 0 ∈ C2/Λ = T .
In other words11, GT ∼= G′T /Z2 with G′T the group of non-translational holomorphic
symplectic automorphisms of T .

2. The group G is isomorphic to a subgroup of (Z2)4 o A7 with A7 the group of even
permutations on 7 elements.

Proof: Throughout this proof we use the notations introduced in definition 2.2.2 and propo-
sition 2.2.3.

1. Let f ∈ G and α := f∗ as before. Proposition 3.3.3 implies that α induces an automor-
phism of K = π∗(H2(T,Z)) ∼= H2(T,Z)(2) and thus an automorphism α′T of H2(T,Z).
Then α′T acts as a Hodge isometry on H2(T,Z), since α does so on H2(X,Z) and com-
plex structure and dual Kähler class of X are induced by those on T . Hence by the
global Torelli Theorem for complex tori, this means that α′T = (f ′T )∗ for some holo-
morphic symplectic automorphism f ′T of T . Let fT ∈ GT denote the automorphism
which f ′T induces on X (see for example the proof of [22, Thm. 2]). We claim that

f = t
~b ◦ fT for some ~b ∈ F4

2 and t
~b ∈ Gt as in proposition 3.3.1. Indeed, by construction,

t∗ := α ◦ ((fT )∗)
−1 acts trivially on K = π∗(H2(T,Z)). Under gluing Π to K according

to proposition 2.1.1, this trivial action must be compatible with the action of t∗ on Π.
In particular, t∗ must induce an action on the hypercube F4

2 of labels ~a of the E~a which
maps every affine plane in F4

2 to a parallel plane. One checks that this implies that
t∗ ∈ Gt.
The uniqueness of the decomposition f = t

~b ◦ fT with t
~b ∈ Gt and fT ∈ GT and then

G ∼= Gt oGT now follow from proposition 3.3.3.

11The notion of holomorphic symplectic automorphisms on complex tori is defined completely analogously
to our definition for K3 surfaces.
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2. Since we already know that G ∼= Gt o GT with Gt ∼= (Z2)4, it remains to show that
GT ⊂ A7. However, this immediately follows from Fujiki’s classification of holomorphic
symplectic automorphism groups of complex tori [48, Lemma 3.1&3.2]. Indeed, Fujiki
proves that G′T is isomorphic to a subgroup of one of the following groups: The cyclic
groups Z4 or Z6 with Z4/Z2

∼= Z2 and Z6/Z2
∼= Z3, the binary dihedral groups O or

D of orders 8 or 12 with O/Z2
∼= Z2 × Z2 and D/Z2

∼= S3 (the permutation group on
3 elements), or the binary tetrahedral group T with T /Z2

∼= A4 (the group of even
permutations on 4 elements). Hence GT is isomorphic to a subgroup of A6, the group
of even permutations on 6 elements. With A6 ⊂ A7 the claim follows.

�

Note that by our proof of proposition 3.3.4, every holomorphic symplectic automorphism
group of a Kummer surface is in fact isomorphic to a subgroup of (Z2)4 o A6. However, for
reasons that will become clear later, we prefer working with the bigger group (Z2)4oA7. The
proposition implies that the translational group Gt ∼= (Z2)4 is the symmetry group of generic
Kummer surfaces with induced (dual) Kähler class.

Definition 3.3.5 We call the group (Z2)4 oA7, where A7 denotes the group of even permu-
tations on 7 elements, the overarching finite symmetry group of Kummer surfaces.

Let us now take a closer look at the lattices that are involved in the action of a symmetry
group of a Kummer surface (see table 2 for a snapshot of lattices used in the following):

Proposition 3.3.6 Consider a Kummer surface X with underlying torus T , equipped with
the induced dual Kähler class. Let G denote its symmetry group. Then the following holds,
with notations as in proposition 2.2.4:

1. For the Kummer lattice Π and the induced action of G on it,

ΠG = Π ∩H∗(X,Z)G = spanZ{e} with e :=
1

2

∑
~a∈F4

2

E~a.

2. Let LG :=
(
H∗(X,Z)G

)⊥ ∩H∗(X,Z) as before and υ0 ∈ H0(X,Z), υ ∈ H4(X,Z) such
that 〈υ0, υ〉 = 1. With G′T the group of holomorphic symplectic automorphisms of T
that fix 0 ∈ C2/Λ, the lattice

MG := LG ⊕ spanZ {e, υ0 − υ}

is the orthogonal complement of the lattice M ′G := π∗(H2(T,Z)G
′
T )⊕ spanZ {υ0 + υ} in

H∗(X,Z).

Proof:

1. This follows immediately from the fact that G contains the translational group Gt ∼=
(Z2)4 by proposition 3.3.1 along with proposition 3.3.3.

2. From propositions 3.3.3 and 3.3.4 it follows that H2(X,Z)G is obtained by gluing
π∗(H2(T,Z)G

′
T ) and ΠG according to proposition 2.1.1. Hence the claim follows from

H∗(X,Z)G = H2(X,Z)G⊕spanZ{υ0, υ} together with ΠG = spanZ{e} along with propo-
sition 2.1.1.

�

We are now ready to prove and appreciate the following result, which is crucial to our inves-
tigations:
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Theorem 3.3.7 Let X denote a Kummer surface with underlying torus T , equipped with the
complex structure and dual Kähler class which are induced from T . Let G denote the symmetry

group of X. With notations as in proposition 3.3.6, in particular LG =
(
H∗(X,Z)G

)⊥ ∩
H∗(X,Z) and υ0 ∈ H0(X,Z), υ ∈ H4(X,Z) such that 〈υ0, υ〉 = 1, and e := 1

2

∑
~a∈F4

2
E~a, the

lattice MG(−1) with
MG := LG ⊕ spanZ {e, υ0 − υ}

can be primitively embedded in the Niemeier lattice N of type A24
1 .

Proof: We apply Nikulin’s theorem 2.1.3 to the lattice Λ := MG(−1) of signature (`+, `−)
and to the pair of integers (γ+, γ−) = (24, 0). Throughout the proof we use the notations
introduced in definition 2.2.2, proposition 2.2.3 and proposition 3.3.6.

Notice first that by proposition 3.3.6 our lattice MG contains the lattice

M̂G := K̂G ⊕Π⊕ spanZ{υ0 − υ}

with K̂G := π∗

((
H2(T,Z)G

′
T

)⊥
∩H2(T,Z)

)
.

In fact property 2. in proposition 3.3.6 implies rk (MG) = rk (M̂G). Hence the lattice MG(−1)
has signature (l+, l−) = (17 + k, 0), where 17 = rk (Π⊕ spanZ{υ0 − υ}) and k := rk (K̂G). In
particular, we have k ≤ 3, since H2(T,R)G

′
T = H2(T,Z)G

′
T ⊗ R contains the positive definite

3-dimensional subspace ΣT ⊂ H2(T,R) yielding complex structure and dual Kähler class of
T , such that H2(T,Z)G

′
T has at least rank 3. Hence condition 1. in theorem 2.1.3 holds.

By condition 2. in proposition 3.3.6, MG is the orthogonal complement of the primitive
sublattice M ′G = π∗(H2(T,Z)G

′
T )⊕spanZ {υ0 + υ} in the unimodular lattice H∗(X,Z). Hence

in particular Aq = (MG)∗/MG
∼= (M ′G)∗/M ′G and

`(Aq) = `((M ′G)∗/M ′G) ≤ rk (M ′G) = 7− k = γ+ + γ− − l+ − l−,

proving condition 2. of theorem 2.1.3.

Since MG(−1) contains the lattice spanZ{υ0−υ}(−1) of type A1 as direct summand, condition
3.i. of Nikulin’s theorem is also immediate.

It hence remains to be shown that

`(Aqp) < 7− k = γ+ + γ− − l+ − l− for every prime p 6= 2. (3.7)

Using M̂G ⊂MG ⊂M∗G ⊂ M̂∗G, we find M∗G/MG
∼= (M∗G/M̂G)/(MG/M̂G) and therefore

Aq = M∗G/MG ⊂
(
M̂∗G/M̂G

)
/
(
MG/M̂G

)
.

Since M̂∗G/M̂G = K̂∗G/K̂G × (Z2)7 with `(K̂∗G/K̂G) ≤ rk (K̂G) ≤ 3, for every prime p 6= 2 this
implies

`(Aqp) ≤ rk (K̂G) ≤ 3 < 7− k = γ+ + γ− − l+ − l−.

Equation (3.7) is proved, so the assumptions of Nikulin’s theorem 2.1.3 hold, which implies
that MG(−1) can be primitively embedded into some Niemeier lattice Ñ . By the above,

Π(−1) ⊂ M̂G(−1) ⊂MG(−1) and thus Ñ ∼= N by proposition 2.3.3. �

To fully appreciate the theorem, note that it immediately implies the following

Corollary 3.3.8 Let X denote a Kummer surface with underlying torus T , equipped with the
induced dual Kähler class. Let G denote the symmetry group of X. Then in Kondo’s proof
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of Mukai’s theorem 3.2.5, one can use the Niemeier lattice N of type A24
1 . Moreover, there is

an isometry iG of a primitive sublattice MG of H∗(X,Z) to a primitive sublattice of N(−1)
which is equivariant with respect to the natural actions of G, where MG contains the lattice

LG =
(
H∗(X,Z)G

)⊥ ∩H∗(X,Z), the Kummer lattice Π of X, and the vector υ0 − υ. Here,
G-equivariance of iG means that iG(g∗(v)) = g∗(iG(v)) for every g ∈ G and v ∈MG.

This means that our theorem 3.3.7 offers an improvement of Kondo’s techniques for all Kum-
mer surfaces with induced dual Kähler class, since our lattice MG contains the sublattice LG
which Kondo identifies in his Niemeier lattices and has rank rk (MG) = rk (LG) + 2.

Recall that by means of the Kummer construction, we are using a fixed marking for all our
Kummer surfaces, as was explained at the end of section 2.2. In particular, we may smoothly
vary the generators ~λ1, . . . , ~λ4 of the underlying lattice Λ ⊂ C2 of T (Λ) and thus vary between

distinct Kummer surfaces ˜T (Λ)/Z2. This amounts to a variation along a Kummer path in

the smooth connected cover M̃hk of the moduli space of hyperkähler structures, as was
explained at the end of section 3.1. Along a generic such path, both the symmetry group
G and the lattice MG change, but as G varies all the lattices MG share the same sublattice
Π ⊕ spanZ{υ0 − υ}. Since according to proposition 2.3.5 the Kummer lattice Π allows a
unique primitive embedding Π ↪→ N(−1) up to automorphisms of N , we can always find an
embedding iG : MG ↪→ N(−1) as in theorem 3.3.7 such that (iG)|Π is induced by E~a 7→ fI−1(~a)

for all ~a ∈ F4
2 with I as in (2.14). For brevity, we say that we choose iG with constant

iG(Π) = Π̃ along Kummer paths in M̃hk. Let us briefly discuss some properties of
iG(Π) ↪→ MG ↪→ N(−1). To this end we remark that the only automorphisms γ ∈ Aut(N)
which act as the identity on the sublattice Π̃ ⊂ N in (2.11) are compositions of sign flips
fn 7→ −fn with n ∈ O9. Indeed, without loss of generality assume that γ acts as permutation
on {f1, . . . , f24}. Then γ|Π̃ = id

Π̃
implies that γ is induced by an element of the maximal

subgroup (Z2)4 o A8 of M24 which stabilizes the octad O9. This group acts as Aff(F4
2) =

(Z2)4 o GL4(F2) ∼= (Z2)4 o A8 on the hypercube F4
2 underlying the complement octad of O9

(see [29, Thm. 2.10]), thus in particular its induced action on Π̃ is faithful. Hence γ|Π̃ = id
Π̃

implies γ = id. As a consequence, we cannot expect iG (Π⊕ spanZ{υ0 − υ}) ⊂ N(−1) to be

constant along Kummer paths in M̃hk. In other words, iG(υ0 − υ) cannot be chosen freely
among the roots ±fn with n ∈ O9. We will come back to this observation in the next section
and in the conclusions.

4 The overarching finite symmetry group of Kummer surfaces

By Mukai’s theorem 3.2.5, certain comparatively small subgroups G of the Mathieu group
M24 occur as holomorphic symplectic automorphism groups of K3 surfaces X. The correlation
with M24 is made more explicit by Kondo’s proof of this theorem, by which for the smallest
primitive sublattice LG ⊂ H∗(X,Z) with the property that G acts trivially on (LG)⊥ there
also exists a primitive embedding of LG into some Niemeier lattice Ñ(−1), such that the
embedding is equivariant with respect to a natural action of G on Ñ . Restricting our attention
to Kummer surfaces with their induced dual Kähler classes, our theorem 3.3.7 allows us to
replace the lattice LG by a lattice MG of higher rank (namely, rk (MG) = rk (LG)+2), and to
replace the Niemeier lattice Ñ , which is not further specified by Kondo’s construction, by the
Niemeier lattice N of type A24

1 . In other words, a part of the K3-homology can be isometrically
identified with a sublattice of the Niemeier lattice N(−1), where the group M24, whose role we
would like to understand better, acts naturally (see proposition 2.3.2). This section is devoted
to developing a technique by which we extend this identification even further, namely to a
linear bijection between the two lattices H∗(X,Z) and N(−1). This bijection identifies two
different primitive sublattices MT192 and MT64 of rank 20 in H∗(X,Z), corresponding to two
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distinct Kummer surfaces, isometrically with their images. Moreover, these embeddings are
equivariant with respect to the actions of the respective symmetry groups T192 on MT192 and
T64 on MT64 , which allows us to combine these groups to a bigger one, yielding the overarching
finite symmetry group of Kummer surfaces (see definition 3.3.5). This group is by orders of
magnitude larger than the largest holomorphic symplectic automorphism group of any K3
surface. In fact, we find a Kummer path in M̃hk with constant iG(Π) = Π̃ along it, which
connects the two above mentioned Kummer surfaces smoothly and such that Θ restricts to a
G-equivariant isometry iG : MG ↪→ N(−1) for each Kummer surface along the path.

4.1 The translational automorphism group Gt
∼= (Z2)

4

As a first step of our construction, we consider the translational automorphism group Gt of
definition 3.3.2, which all Kummer surfaces share. We proceed analogously to Kondo’s proof
of Mukai’s theorem 3.2.5.

If G = Gt is the symmetry group of a Kummer surface X with underlying torus T , then with
notations as in proposition 2.2.3 and theorem 3.3.7, in particular K = π∗(H2(T,Z)), we have

H∗(X,Z)G = H0(X,Z)⊕K ⊕ spanZ{e} ⊕H4(X,Z)

and thus MG = Π⊕ spanZ{υ0−υ}, which can be primitively embedded in N(−1) by theorem
3.3.7. In fact, by proposition 2.2.4, we have MG = P, where we know how to glue H∗(X,Z)
from the lattices P and K = P⊥ ∩H∗(X,Z), and (2.19) shows P ∼= P̃n0(−1) for a primitive
sublattice P̃n0 of N , n0 ∈ O9 arbitrary, along with the relevant gluing prescription for N . By
the proof of proposition 2.3.4, an isometry P −→ P̃n0(−1) can be induced by E~a 7→ fI−1(~a)

for every ~a ∈ F4
2, with I as in (2.14), along with υ0 − υ 7→ fn0 . Since Gt acts on P by

automorphisms, we obtain an induced action of Gt ∼= (Z2)4 on P̃n0 by enforcing our isometry
P −→ P̃n0(−1) to be Gt-equivariant. By construction, Gt acts trivially on P∗/P ∼= P̃∗n0

/P̃n0 ,
and thus the action can be extended to one onN acting trivially on the orthogonal complement
of P̃n0 (see [11, Prop. 1.1]). The construction yields the following

Proposition 4.1.1 Consider a Kummer surface X with underlying torus T , equipped with
the induced dual Kähler class. Let G denote the symmetry group of X and Gt ⊂ G the
translational automorphism group according to proposition 3.3.1.

There exists a primitive embedding iG : MG ↪→ N(−1) of the lattice MG ⊂ H∗(X,Z) defined
in theorem 3.3.7 into the Niemeier lattice N(−1) of type A24

1 with the following properties:

Consider the lattices P and P̃n0 with the notations of propositions 2.2.4 and 2.3.6, where
P ⊂MG by corollary 3.3.8. Then

iG : E~a 7−→ fI−1(~a) for every ~a ∈ F4
2,

where I is the map (2.14), and iG(P) = P̃n0(−1) for some n0 ∈ O9.

Moreover, by means of the embedding iG : MG ↪→ N(−1) the action of the translational auto-
morphism group Gt on X induces an action of (Z2)4 ⊂ M24 on N which is generated by the
following four involutions:

ι1 := (1, 11)(2, 22)(4, 20)(7, 12)(8, 17)(10, 18)(13, 21)(14, 16),

ι2 := (1, 13)(2, 12)(4, 14)(7, 22)(8, 10)(11, 21)(16, 20)(17, 18),

ι3 := (1, 14)(2, 17)(4, 13)(7, 10)(8, 22)(11, 16)(12, 18)(20, 21),

ι4 := (1, 17)(2, 14)(4, 12)(7, 20)(8, 11)(10, 21)(13, 18)(16, 22),

(4.1)

where as in proposition 2.3.2 the elements of M24 are viewed as permutations in S24 whose
action on N is induced by a permutation of the f1, . . . , f24.
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Proof: With notations as above, theorem 3.3.7 implies the existence of a primitive embedding
i : MG ↪→ N(−1). In particular, we find a primitive sublattice P̂(−1) ⊂ i(MG) such that P̂
is isometric to any P̃n0 with n0 ∈ O9. By proposition 2.3.6 we have P̃n0 = Π̃ ⊕ spanZ {fn0}
with Π̃ ∼= Π(−1) for the Kummer lattice Π of (2.5). Since the ±fn are the only vectors in
N on which the quadratic form takes value 2 by (2.9), this implies P̂ = Π̂ ⊕ spanZ {fn̂0

}
with Π̂ ∼= Π(−1) and for some n̂0 ∈ I. Our uniqueness result in proposition 2.3.5 implies
that there is a lattice automorphism α of N with α(Π̂) = Π̃ and α(i(EI(n))) = fn for every
n ∈ I \O9. In other words, α ◦ i gives a primitive embedding of MG in N(−1) which embeds
the lattice Π as claimed. Moreover, α ◦ i(υ0 − υ) = ±α(fn̂0

) = ±fn0 for some n0 ∈ O9

due to (2.9) and υ0 − υ ∈ Π⊥. Hence α ◦ i or its composition with the automorphism of N
induced by fn0 7→ −fn0 (see proposition 2.3.2) yields an embedding iG : MG ↪→ N(−1) with
the properties claimed.

We now apply the methods described before the statement of our proposition to induce an ac-
tion ofGt ∼= (Z2)4 onN with respect to which the embedding iG is equivariant. In other words,
with ~b1, . . . ,~b4 the standard basis of F4

2, for each k ∈ {1, . . . , 4} we impose I(ιk(n)) = I(n)+~bk
for all n ∈ I \ O9, where I is the map (2.14). This uniquely determines the permutations
ι1, . . . , ι4 of (4.1), which as one confirms as a cross-check12 are elements of M24. �

The precise form of the permutations in (4.1) depends on our specific choice of primitive
embedding for the Kummer lattice Π in N(−1), described in proposition 2.3.4 and in its
proof. Indeed, the image Π̃(−1) of Π under the primitive embedding solely depends on the
choice of the special octad O9 used in (2.11). The isometry from Π to Π̃(−1) induced by
this embedding then solely depends on the choice of the octads H1, . . . ,H5 in (2.12). As
explained in the discussion of proposition 2.3.4, the subspace of the Golay code generated
by H1, . . . ,H4 is dual to the hypercube F4

2 built on I \ O9 by means of our map I. Then
the choice of H1, . . . ,H5 amounts to the choice of an affine basis of the underlying affine
4-dimensional space.

Note that in general, the symmetry group G of a Kummer surface contains the translational
automorphism group Gt as a proper subgroup. The primitive embedding of MG in N(−1)
found in proposition 4.1.1, where P̃n0(−1) is a primitive sublattice of the image of MG,
can then be used to induce a faithful G-action on the Niemeier lattice N by enforcing the
embedding iG : MG ↪→ N(−1) to be G-equivariant, by the very same ideas that lead to
proposition 4.1.1.

We claim that the embedding iG : MG ↪→ N(−1) can be extended to a linear bijection θ
between the K3-homology H∗(X,Z) and N(−1). Indeed, H∗(X,Z) can be glued from P and
its orthogonal complement K, while N can be glued from P̃n0 and its orthogonal complement
K̃n0 , by means of propositions 2.2.4 and 2.3.6, respectively. Since P is already isometrically
identified with P̃n0(−1), the extension to a bijection θ : H∗(X,Z) −→ N(−1) amounts to the
construction of a bijection K → K̃n0(−1) which induces an isometry from MG∩K to its image,
and which is compatible with gluing. The latter in turn amounts to compatibility with the
isometries (up to signature inversion) g : K∗/K −→ P∗/P and g̃n0 : K̃∗n0

/K̃n0 −→ P̃∗n0
/P̃n0

which are so fundamental to the gluing procedure, and which in particular, by means of
P ∼= P̃n0(−1), yield an isometry K∗/K −→ K̃∗n0

/K̃n0 . In other words, we need to find a lift

of K∗/K −→ K̃∗n0
/K̃n0 to a bijection K∗ → K̃∗n0

(−1) which induces a G-equivariant isometry
from MG ∩K to its image. This is always possible, and our compatibility conditions severely
restrict the number of choices. Indeed, by construction MG∩K can be isometrically identified
with (M̃G ∩ K̃n0)(−1), where M̃G denotes the image of MG under its primitive embedding

12See appendix A for a definition of the extended binary Golay code G24 and for the description of a technique
that may be used to prove that a given permutation of I preserves G24, for instance by verifying that its action
on the Golay code basis (A.2) yields Golay codewords.
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into N . This determines the lift on a sublattice whose rank 7 − rG depends on the group
G. Hence we only need to extend the isometry MG ∩ K −→ (M̃G ∩ K̃n0)(−1) to a lift of
K∗/K −→ K̃∗n0

/K̃n0 . Since K∗/K ∼= (Z2)7 according to proposition 2.2.4, and thus K∗/K can
be generated by no less than 7 elements, while the lattice K has rank 7 as well, we are certain
to find rG = rk

(
(MG)⊥ ∩ K

)
compatibility conditions for the lift to (MG)⊥ ∩ K. Since the

translational group Gt ∼= (Z2)4 is the symmetry group of a generic Kummer surface, any
bijection θ as above is compatible with the generic symmetry group of Kummer surfaces.

In our construction we work with the tetrahedral Kummer surface where G = T192, a group
of order 192 (see section 4.2), and with the Kummer surface associated to the square torus
where G = T64, a group of order 64 (see section 4.3). In both cases, the lattice (MG)⊥ ∩ K,
on which our lift is not uniquely determined up to lattice automorphisms by imposing that
it induces iG : MG ↪→ N(−1), has the minimal possible rank rG = 4.

Let us discuss the compatibility conditions for our bijection θ : H∗(X,Z) −→ N(−1) which
already arise from the construction so far, imposing equivariance only with respect to the
translational automorphism group Gt. In other words, let us discuss possible lifts of K∗/K −→
K̃∗n0

/K̃n0 to K∗. Recall from proposition 2.2.4 that K∗/K is generated by the 1
2π∗λij along

with 1
2(υ0 + υ) which under the composition of g : K∗/K −→ P∗/P with the map induced by

our isometry P ∼= P̃n0(−1) are mapped to the 1
2

∑
n∈P̃ij

fn and 1
2fn0 , respectively. Here, P̃ij

is the quadruplet of labels in I which under the map I corresponds to the plane Pij ⊂ F4
2 in

(2.7). Taking preimages under the map g̃n0 : K̃∗n0
/K̃n0 −→ P̃∗n0

/P̃n0 of proposition 2.3.6, we

find that K∗/K −→ K̃∗n0
/K̃n0 is given by

1
2π∗λij 7→ qij for ij = 12, 34, 13, 24, 14, 23, 1

2(υ0 + υ) 7→ 1
2

∑
n∈O9\{n0}

fn,

where the qij can be represented, for example, by the qij of (2.15). We impose the addi-
tional constraint that the 1

2π∗λij and 1
2(υ + υ0) should map to representatives of elements in

K̃∗n0
/K̃n0 of minimal length under our lift. This is an aesthetic choice which is not required

mathematically. If this constraint is not imposed, then in equation (4.2) we have to add terms
of the form 2∆ij with ∆ij ∈ K̃n0 on the right hand side. We will see that in the examples
studied in this work, it is possible to impose ∆ij = 0 for all i, j, and then lifting to a bijection

K∗ → K̃∗n0
amounts to implementing

K 3 π∗λij 7→
∑
n∈Qij

(±fn) ∈ K̃, υ0 + υ 7→
∑

n∈O9\{n0}

(±fn), (4.2)

where 1
2

∑
n∈Qij

(±fn) = qij ∈ K̃∗/K̃ and thus 1
2

∑
n∈Qij

(±fn) can be glued to 1
2

∑
n∈P̃ij

fn

in N . In other words, Qij ⊂ O9 must be a quadruplet of labels such that Qij ∪ P̃ij gives an
octad in the Golay code G24. In fact, each such quadruplet Qij must form an octad of the
Golay code with every quadruplet of labels which under I corresponds to a hypercube plane
parallel to Pij . This turns out to leave a choice of two complementary quadruplets in O9 for
each label ij:

Q12 = {3, 6, 15, 19} or {5, 9, 23, 24},
Q13 = {6, 15, 23, 24} or {3, 5, 9, 19},
Q14 = {3, 9, 15, 24} or {5, 6, 19, 23},
Q23 = {3, 9, 15, 23} or {5, 6, 19, 24},
Q24 = {15, 19, 23, 24} or {3, 5, 6, 9},
Q34 = {6, 9, 15, 19} or {3, 5, 23, 24},

(4.3)
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where
K∗/K

∼=−→ K̃∗/K̃, 1
2π∗λij 7→

1
2

∑
n∈Qij

fn. (4.4)

Note that in (2.15) we have chosen the first quadruplet listed in (4.3) for the Qij , throughout.
In the following subsections, we show that with this choice, surprisingly, the resulting bijection
Θ induces isometric embeddings of the lattices MG for two distinct Kummer surfaces, the
tetrahedral Kummer surface XD4 with G = T192 and the Kummer surface X0 of the square
torus with G = T64. Our choice of the Qij , up to a few choices of signs, is in fact unique
with the property that for both groups G, the bijection Θ induces a G-equivariant isometric
embedding of MG in N(−1).

4.2 The tetrahedral Kummer surface

By the above, we are looking for a linear bijection Θ: H∗(X,Z) −→ N(−1) which induces an
isometry between as large sublattices of H∗(X,Z) and of N(−1) as possible. By theorem 3.3.7,
for a Kummer surface X with its induced dual Kähler class and with symmetry group G, we
already know that a primitive sublattice MG of H∗(X,Z), with rk (MG) = rk (LG) + 2 for the
lattice LG found by Kondo, can be primitively embedded in N(−1). Note that rk (MG1) ≥
rk (MG2) if G1 ⊇ G2. Our construction therefore sets out from the study of the Kummer
surface whose holomorphic symplectic automorphism group has maximal order among all
Kummer surfaces with their induced dual Kähler classes. According to proposition 3.3.4, this
amounts to a Kummer surface whose underlying torus T = T (Λ) has the largest group G′T
of non-translational holomorphic symplectic automorphisms. By Fujiki’s results [48, Lemma
3.1&3.2], this is the torus T (ΛD4) which we call the D4-torus, whose associated Kummer
surface XD4 we call the tetrahedral Kummer surface for reasons to be explained below.
Its group of holomorphic symplectic automorphisms13 is the finite group T192 := (Z2)4 oA4,
with A4 the group of even permutations on 4 elements.

This subsection is devoted to the investigation of the tetrahedral Kummer surface XD4 . In
particular, we describe its symmetry group T192 as a subgroup of F384, one of the 11 subgroups
of M24 which have the property that every finite group of symplectic automorphisms of a K3
surface is isomorphic to a subgroup of one of them by Mukai’s theorem 3.2.5. Moreover, we
construct a linear bijection Θ: H∗(X,Z) −→ N(−1) which induces an isometry of the lattice
MT192 of theorem 3.3.7 with its image which is equivariant with respect to T192.

4.2.1 The D4-torus and the tetrahedral Kummer surface

As already mentioned above, we have the

Definition 4.2.1 Consider the lattice ΛD4 ⊂ C2 which is generated by the four vectors

~λ1 = (1, 0), ~λ2 = (i, 0), ~λ3 = (0, 1), ~λ4 = 1
2(i+ 1, i+ 1) ∈ C2. (4.5)

We call ΛD4 the D4-lattice, and T = T (ΛD4) is the D4-torus. Moreover, we call the
Kummer surface XD4 with underlying torus T = T (ΛD4), equipped with the induced dual
Kähler class, which in fact yields a polarization, the tetrahedral Kummer surface.

Note that the D4-lattice is isomorphic to the root lattice of the simple Lie algebra d4, thus
our terminology. For the tetrahedral Kummer surface XD4 our terminology is motivated by
its symmetry group. Namely, according to [48, Table 9] we have

13Note that the full symplectic automorphism group of the tetrahedral Kummer surface (disregarding the
dual Kähler class) is infinite, see e.g. [38].
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Proposition 4.2.2 The group T of holomorphic symplectic automorphisms of the D4-torus
has the maximal order 24 among all translation-free groups of holomorphic symplectic auto-
morphisms of complex Kähler tori. The group T is the binary tetrahedral group, and
its action on the universal cover C2 of T (ΛD4) with standard complex coordinates (z1, z2) is
generated by

γ1 : (z1, z2) 7→ (iz1,−iz2),

γ2 : (z1, z2) 7→ (−z2, z1),

γ3 : (z1, z2) 7→ i+1
2 (i(z1 − z2),−(z1 + z2)).

(4.6)

Note that the binary tetrahedral group T is a Z2-extension of the group A4 of orientation
preserving symmetries of a regular tetrahedron in R3. Indeed, the group A4 of even permu-
tations on 4 elements acts as a subgroup of SO(3), and T is its lift to the universal cover
SU(2) of SO(3). Clearly, γ1 and γ2 in (4.6) have order 4, while γ3 has order 3, and as a
cross-check one confirms that the standard holomorphic (2, 0)-form Ω̂ = dz1 ∧ dz2 and the
standard Kähler form ω̂T = 1

2i(dz1∧dz̄1 +dz2∧dz̄2) of T (ΛD4) as in (3.1), (3.4) are invariant
under T . Hence indeed, T acts as a holomorphic symplectic automorphism group on T (ΛD4).
Since γ2

1 = γ2
2 , for example, yields the Z2-orbifold action (z1, z2) 7→ (−z1,−z2) used in the

Kummer construction of definition 2.2.2, the action of T on T (ΛD4) induces a symplectic ac-
tion of the tetrahedral symmetry group A4 = T /{±1} on the corresponding Kummer surface

XD4 = ˜T (ΛD4)/Z2, thus our terminology. Moreover, ω̂T induces the polarization ω of this
K3 surface. We have the following

Proposition 4.2.3 Consider the tetrahedral Kummer surface XD4 of definition 4.2.1 with
its induced polarization, and with notations as in definition 2.2.2.

The symmetry group of XD4 is the group T192 := (Z2)4 o A4, where A4 denotes the group of
even permutations on 4 elements.

By means of the Torelli Theorem 3.1.1 and with respect to our usual marking described at the
end of section 2.2, the complex structure of XD4 is specified by the 2-dimensional oriented
subspace Ω ⊂ H2(XD4 ,R) with orthonormal basis

Ω1 = −π∗λ12 + π∗λ13 + π∗λ23 − 2π∗λ24,

Ω2 = −π∗λ12 − π∗λ13 + π∗λ23 + 2π∗λ14,

where λij = λi ∨ λj as in (2.6) with generators λ1, . . . , λ4 of H1(TD4 ,Z) represented by the
~λ1, . . . , ~λ4 of (4.6). Furthermore, the induced polarization is

ω = π∗λ12 + π∗λ13 + π∗λ23 + 2π∗λ34 ∈ H2(XD4 ,Z).

Proof: By proposition 4.2.2, the group G′D4
of holomorphic symplectic automorphisms of

T (ΛD4) that fix 0 ∈ C2/ΛD4 is the binary tetrahedral group G′D4
= T with GT = G′D4

/Z2 =
A4 by the above. Hence proposition 3.3.4 shows that T192 = (Z2)4 o A4 is the holomorphic
symplectic automorphism group of the tetrahedral Kummer surface. One checks that this
group has order 192, thus the notation.

As explained in section 3.1, in terms of local coordinates the complex structure and polariza-
tion ofXD4 are determined by Ω1, Ω2, ω ∈ H2(XD4 ,R) as given in (3.2), (3.5), where ~e1, . . . , ~e4

are the standard Euclidean coordinate vectors of R4 ∼= C2. Here, indeed, we may use standard
coordinates on the universal cover of T (ΛD4) to induce local coordinates on T (ΛD4)/Z2 away
from the singular points. The generators (4.5) of the lattice ΛD4 are ~λ1 = ~e1, ~λ2 = ~e2, ~λ3 = ~e3

and ~λ4 = 1
2(~e1 + ~e2 + ~e3 + ~e4). Inserting these expressions in (3.2), (3.5), one obtains the

formulas for Ω1,Ω2, ω in terms of the images π∗λij ∈ H2(XD4 ,Z) of the λij as claimed. �
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By proposition 4.2.3, we in particular have Ω1, Ω2, ω ∈ H2(XD4 ,Z), such that analogously
to the example of the Kummer surface X0 with underlying torus T0 = C2/Z4 discussed in
section 3.1, the results of Shioda and Inose [38] apply: The quadratic form associated to the
transcendental lattice Ω ∩H2(XD4 ,Z) of XD4 uniquely determines the complex structure of
this Kummer surface. Since generators of this lattice are given by

I1 := 1
2(Ω1 + Ω2) = −π∗λ12 + π∗λ14 + π∗λ23 − π∗λ24,

I2 := 1
2(Ω1 − Ω2) = π∗λ13 − π∗λ14 − π∗λ24,

(4.7)

the relevant quadratic form is 〈Ii, Ij〉 = 4δij , in agreement with (3.3). In other words, XD4

and the Kummer surface X0 constructed from the square torus T0 share the same complex
structure, and according to the final remark of [38], they agree with the elliptic modular
surface of level 4 defined over Q

(√
−1
)

of [39, p. 57]. However, our tetrahedral Kummer
surface comes equipped with the polarization ω, which is invariant under the action of the
group T192 described in proposition 4.2.3. With Σ := spanR{Ω1,Ω2, ω}, the lattice Σ ∩
H2(XD4 ,Z) has generators I1, I2 as above and

I3 := 1
2(Ω2 + ω) = π∗λ14 + π∗λ23 + π∗λ34, (4.8)

such that the associated quadratic form is 4 0 2
0 4 −2
2 −2 4

 ,

in contrast to (3.6). In other words, the Kummer surfaces X0 and XD4 carry different induced
polarizations.

For later convenience we note that the following three vectors generate the lattice Σ⊥ ∩
π∗(H2(T (ΛD4),Z)) of rank 3:

I⊥1 := π∗λ14 + π∗λ24 − π∗λ23,

I⊥2 := π∗λ13 + π∗λ24 + π∗λ34,

I⊥3 := −π∗λ12 + π∗λ14 + π∗λ34.

(4.9)

4.2.2 The holomorphic symplectic automorphism group of the tetrahedral Kum-
mer surface as a subgroup of M24

As was explained in section 4.1, our theorem 3.3.7 implies that the holomorphic symplectic
automorphism group T192 of our tetrahedral Kummer surface XD4 also acts faithfully on the
Niemeier lattice N of type A24

1 . In the following, we calculate this action, and thereby we
identify T192 as a subgroup of the Mathieu group M24. Throughout, we use the same notations
as in theorem 3.3.7.

Recall that the action of T192 on N can be induced by a primitive embedding of the lattice
MT192 in N(−1) such that its image M̃T192 contains one of the lattices P̃n0 of proposition
2.3.6, n0 ∈ O9. Such an embedding exists according to proposition 4.1.1, which in particular
states that we may require that the embedding of the Kummer lattice Π ⊂ MT192 in N(−1)
is induced by EI(n) 7→ fn for every n ∈ I \ O9, by means of the map I of (2.14). Moreover,
according to that proposition, the involutions ι1, . . . , ι4 ∈ M24 of (4.1) then yield the action
which the translational automorphism group Gt ∼= (Z2)4 in T192 induces on N , if we impose
equivariance of our embedding iT192 : MT192 ↪→ N(−1) with respect to T192. By proposition
4.2.3, the symplectic action of the group T192 on the tetrahedral Kummer surface is generated
by this translational automorphism group along with a symplectic action of A4, which is
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induced by the symplectic action of the binary tetrahedral group T on T (ΛD4). With respect
to standard Euclidean coordinates on R4 ∼= C2, by (4.6) the generators of the latter group are

γ1(x1, x2, x3, x4) = (−x2, x1, x4,−x3)

γ2(x1, x2, x3, x4) = (−x3,−x4, x1, x2)

γ3(x1, x2, x3, x4) = 1
2([−x1 − x2 + x3 + x4], [x1 − x2 − x3 + x4],

[−x1 + x2 − x3 + x4], [−x1 − x2 − x3 − x4]).

(4.10)

On the generators ~λ1, . . . , ~λ4 of ΛD4 given in (4.5) we thus have

γ1 : ~λ1 7→ ~λ2, ~λ2 7→ −~λ1, ~λ3 7→ −2~λ4 + ~λ1 + ~λ2 + ~λ3,

~λ4 7→ −~λ4 + ~λ2 + ~λ3,

γ2 : ~λ1 7→ ~λ3, ~λ2 7→ 2~λ4 − ~λ1 − ~λ2 − ~λ3,

~λ3 7→ −~λ1, ~λ4 7→ ~λ4 − ~λ1 − ~λ2,

γ3 : ~λ1 7→ ~λ2 − ~λ4, ~λ2 7→ ~λ3 − ~λ4,

~λ3 7→ ~λ1 − ~λ4, ~λ4 7→ −2~λ4 + ~λ1 + ~λ2 + ~λ3.

(4.11)

These transformations induce permutations of the singular points in T (ΛD4)/Z2 and thus
affine linear maps [γ1], [γ2], [γ3] on the hypercube F4

2 which labels the E~a ∈ Π of proposition
2.2.3. For the induced permutations γ̂k on I \ O9, imposing equivariance of our embedding
iT192 then amounts to the condition γ̂k(n) = [γk](I(n)) for all n ∈ I \ O9. We obtain

γ̂1 = (2, 8)(7, 18)(10, 22)(11, 13)(12, 17)(14, 20),

γ̂2 = (2, 18)(7, 8)(10, 17)(11, 14)(12, 22)(13, 20),

γ̂3 = (2, 12, 13)(4, 16, 21)(7, 17, 20)(8, 22, 14)(10, 11, 18).

(4.12)

These permutations must be accompanied by appropriate permutations σk, k ∈ {1, 2, 3}, of
the labels in O9 in order to yield automorphisms of the Niemeier lattice N or equivalently of
the Golay code G24. However, one checks that for each γ̂k, there exists a unique permutation
σk of O9 yielding γk := σk ◦ γ̂k ∈M24. Altogether we obtain

Proposition 4.2.4 Consider the tetrahedral Kummer surface XD4 of definition 4.2.1 with
its induced polarization. Let iT192 : MT192 ↪→ N(−1) denote a primitive embedding of the type
constructed in proposition 4.1.1. This embedding is equivariant with respect to the holomorphic
symplectic automorphism group T192, where the action of this group on N is generated by

ι1 = (1, 11)(2, 22)(4, 20)(7, 12)(8, 17)(10, 18)(13, 21)(14, 16),

ι2 = (1, 13)(2, 12)(4, 14)(7, 22)(8, 10)(11, 21)(16, 20)(17, 18),

ι3 = (1, 14)(2, 17)(4, 13)(7, 10)(8, 22)(11, 16)(12, 18)(20, 21),

ι4 = (1, 17)(2, 14)(4, 12)(7, 20)(8, 11)(10, 21)(13, 18)(16, 22),

γ1 = (2, 8)(7, 18)(9, 24)(10, 22)(11, 13)(12, 17)(14, 20)(15, 19),

γ2 = (2, 18)(7, 8)(9, 19)(10, 17)(11, 14)(12, 22)(13, 20)(15, 24),

γ3 = (2, 12, 13)(4, 16, 21)(7, 17, 20)(8, 22, 14)(9, 19, 24)(10, 11, 18).

(4.13)

In particular, since fn0 is invariant under the action of T192, we find n0 ∈ {3, 5, 6, 23}.

The above proposition identifies T192 as a subgroup of M24 which leaves the octad O9 =
{9, 5, 24, 19, 23, 3, 6, 15} invariant. This group may be constructed as a succession of stabilizers

33



of the Mathieu group M24, starting with the stabilizer in M24 of the element 5 ∈ I, which is
M23, followed by the stabilizer in M23 of the element 3 ∈ I, which is M22. The next step is
to construct the stabilizer in M22 of the element 6 ∈ I, which is PSL(3, 4), and the stabilizer
in PSL(3, 4) of the element 23 ∈ I, whose structure is (Z2)4 o A5, and finally to obtain the
stabilizer in that group of the set {9, 15, 19, 24}. This last stabilizer group has order 192 and
coincides with the copy of T192 generated above. Equivalently, one obtains T192 from M23, the
stabilizer of 5 ∈ I, by first stabilizing the set O9. This yields the maximal subgroup (Z2)4oA7

of M23 which we will recover in section 4.4. Then successively stabilizing 3, 6, 23 ∈ I in that
group one obtains the (maximal) subgroups (Z2)4 o A6, (Z2)4 o A5, (Z2)4 o A4 = T192 of
M22, PSL(3, 4), (Z2)4 oA5, respectively.

We remark that the Mathieu group M24 may be generated from the set of 7 permutations
given in (4.13), augmented by one extra involution, for instance

ι5 = (1, 9)(2, 5)(3, 19)(4, 15)(6, 22)(7, 18)(8, 20)(10, 17)(11, 12)(13, 16)(14, 24)(21, 23).

This involution is one of the 7 involutions that are seen on the Klein map, and that generate
M24 according to [49].

Now recall our discussion in section 4.1 leading to (4.2)–(4.4), the consistency conditions for
an extension of the Gt-equivariant embedding iT192 of MT192 in N(−1) to a linear bijection
Θ: H∗(X,Z) −→ N(−1). By proposition 4.2.4, the embedding iT192 is actually equivariant
with respect to the larger group T192 and imposes an isometry of MT192 ∩ K with its image.
This amounts to the condition that the map (4.2) is equivariant with respect to the action
of A4 induced by (4.6) on the π∗λij ∈ H2(XD4 ,Z) and by the γk of (4.13) on our choices of
Qij from (4.3). Thus, next we need to determine the action of each γk induced from (4.11)
on the λij : 

γ1(λ12)
γ1(λ13)
γ1(λ14)
γ1(λ23)
γ1(λ24)
γ1(λ34)

 =



1 0 0 0 0 0
−1 0 0 1 −2 0
0 0 0 1 −1 0
−1 −1 2 0 0 0
−1 −1 1 0 0 0
1 1 −1 0 1 1





λ12

λ13

λ14

λ23

λ24

λ34

 ,



γ2(λ12)
γ2(λ13)
γ2(λ14)
γ2(λ23)
γ2(λ24)
γ2(λ34)

 =



0 1 0 1 0 2
0 1 0 0 0 0
0 1 0 1 0 1
−1 −1 2 0 0 0
0 −1 1 −1 1 −1
1 0 −1 0 0 0





λ12

λ13

λ14

λ23

λ24

λ34

 ,



γ3(λ12)
γ3(λ13)
γ3(λ14)
γ3(λ23)
γ3(λ24)
γ3(λ34)

 =



0 0 0 1 −1 1
−1 0 1 0 −1 0
−1 0 1 1 −1 1
0 −1 1 0 0 −1
0 −1 1 −1 1 −1
1 1 −1 0 1 1





λ12

λ13

λ14

λ23

λ24

λ34

 .

The task now is to make a choice for each Qij in (4.3) such that in the map (4.2) there exists
a choice of signs making it equivariant under γ1, γ2, γ3. A first step towards a solution to
this task, though not uniquely determined at this stage, is

Proposition 4.2.5 The following choices in (4.3) yield a map I(π∗λij) := Qij with I(λ +
λ′) := I(λ) + I(λ′) by means of symmetric differences of sets which for each k = 1, 2, 3 obeys
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I(π∗γk(λij)) = γk(Qij) for all labels ij:

Q12 = {3, 6, 15, 19}, Q34 = {6, 9, 15, 19},
Q13 = {6, 15, 23, 24}, Q24 = {15, 19, 23, 24},
Q14 = {3, 9, 15, 24}, Q23 = {3, 9, 15, 23}.

(4.14)

All these Qij avoid the label n0 := 5 ∈ O9.

In section 4.4 we shall show that there exists a linear bijection Θ: H∗(X,Z) −→ N(−1)
which is compatible with the overarching finite symmetry group (Z2)4 o A7 of definition
3.3.5 in the following sense: On two distinct sublattices MG of rank 20 of H∗(X,Z) the
map Θ restricts to isometric embeddings MG ↪→ N(−1) that are equivariant with respect to
appropriate holomorphic symplectic automorphism groups G that generate (Z2)4oA7. Under
both groups G, the vector υ0 − υ ∈ MG is invariant. It follows that in order for such a map
Θ to exist, there must be a label n0 ∈ O9 which occurs in none of the Qij . Indeed, fn0 is the
image of υ0−υ under the embedding iT192 . Since the symmetry group of our Kummer surface
stabilizes the generators υ0 and υ of H0(X,Z) and H4(X,Z), and since iT192 is equivariant
with respect to T192, the root fn0 must be stabilized by T192. If fn0 is stabilized by the induced
action of the entire overarching finite symmetry group, then fn0 cannot occur in any of the
qij . In other words, the label n0 ∈ O9 cannot occur in any of the Qij .

4.2.3 A linear bijection between even unimodular lattices

For the tetrahedral Kummer surface XD4 of definition 4.2.1 with holomorphic symplectic
automorphism group T192, in the following we shall show that the primitive embedding
iT192 : MT192 ↪→ N(−1) of proposition 4.1.1, which yields E~a 7→ fI−1(~a) for each ~a ∈ F4

2

and υ0−υ 7→ fn0 , can be extended to a linear bijection Θ: H∗(X,Z) −→ N(−1) which obeys
(4.2) with the choices of proposition 4.2.5 and with n0 = 5.

First, by proposition 4.2.5 the map I yields

I(π∗λ12 + π∗λ34 + π∗λ14) = {15, 24},

I(π∗λ12 + π∗λ34 + π∗λ23) = {15, 23},

I(π∗λ13 + π∗λ24 + π∗λ12) = {3, 15},

I(π∗λ13 + π∗λ24 + π∗λ34) = {9, 15},

I(π∗λ14 + π∗λ23 + π∗λ13) = {6, 15},

I(π∗λ14 + π∗λ23 + π∗λ24) = {15, 19}.

(4.15)

Therefore, if a map Θ exists as claimed, then it obeys Θ: π∗λ12±π∗λ34±π∗λ14 7→ ±f15±f24,
etc., with four signs to be chosen for each such identification. If we need to relax the constraint
posed in (4.2), namely that every 1

2π∗λij is mapped to a representative of an element in

K̃∗n0
/K̃n0 of minimal length, then additional summands of the form 2∆ with ∆ ∈ K̃ may

occur. Our choices of signs are severely restricted by imposing (4.2), and one checks that the
following yields a lift of (4.4) which is consistent with all gluing prescriptions, with (4.2) as
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well as the above (4.15)

I⊥3 = −π∗λ12 + π∗λ34 + π∗λ14 7−→ f24 − f15,

J⊥1 − I⊥3 = π∗λ12 − π∗λ34 − π∗λ23 7−→ f15 − f23,

−J⊥3 + I⊥2 = π∗λ13 + π∗λ24 + π∗λ12 7−→ f3 − f15,

I⊥2 = π∗λ13 + π∗λ24 + π∗λ34 7−→ f9 − f15,

J⊥2 − I⊥1 = −π∗λ14 + π∗λ23 + π∗λ13 7−→ f15 − f6,

I⊥1 = π∗λ14 − π∗λ23 + π∗λ24 7−→ f19 − f15,

(4.16)

(see (4.9) and (4.21) for the definitions of the I⊥k and J⊥k ), or equivalently

Θ: π∗λ12 7−→ 2q12 = f3 + f6 − f15 − f19,

Θ: π∗λ34 7−→ 2q34 = f6 + f9 − f15 − f19,

Θ: π∗λ13 7−→ 2q13 = −f6 + f15 − f23 + f24,

Θ: π∗λ24 7−→ 2q24 = −f15 + f19 + f23 − f24,

Θ: π∗λ14 7−→ 2q14 = f3 − f9 − f15 + f24,

Θ: π∗λ23 7−→ 2q23 = f3 − f9 − f15 + f23,

(4.17)

where 2qij =
∑

n∈Qij
(±)fn in accord with (4.2) and (4.14). In (4.20) we will see that this

choice of signs allows us to isometrically identify the lattice generated by I⊥1 , I
⊥
2 , I

⊥
3 ∈MT192

with its image in N(−1). In particular, the choices of signs on the left hand side of (4.16)
are already fixed by enforcing this property together with (4.2). Similarly, in (4.27) we will
see that our choice of signs also allows us to isometrically identify the lattice generated by
J⊥1 , J

⊥
2 , J

⊥
3 ∈ MT64 with its image in N(−1). Our choice of signs is unique with these

properties, up to the freedom for each n ∈ I to replace fn by −fn everywhere, which induces
an isometry of N according to proposition 2.3.2. This freedom of choice is in accord with
the fact that we are actually interested in M24, where by proposition 2.3.2 we have M24 =
Aut(N)/(Z2)24, with (Z2)24 implementing precisely the freedom of choice of replacing any fn
by −fn everywhere.

Finally, with our choice n0 = 5 from proposition 4.2.5, Θ(υ0 − υ) = f5, and (4.2) lifts to

Θ: υ0 + υ 7−→ f3 + f6 + f9 − f15 − f19 − f23 − f24.

The signs on the right hand side are arbitrary, up to the fact that the right hand side together
with the qij in (4.17) must generate the lattice K̃n0 of proposition 2.3.6 with n0 = 5, K̃5 =
spanZ {f3, f6, f9, f15, f19, f23, f24} (see the proof of proposition 2.3.6). We thus have

Θ: υ0 7−→ 1
2 (f3 + f5 + f6 + f9 − f15 − f19 − f23 − f24) ,

Θ: υ 7−→ 1
2 (f3 − f5 + f6 + f9 − f15 − f19 − f23 − f24) .

(4.18)

Collecting the various ingredients, we claim

Theorem 4.2.6 Consider the tetrahedral Kummer surface XD4 of definition 4.2.1 with its
induced polarization and the symmetry group T192.

There exists a linear bijection Θ: H∗(X,Z) −→ N(−1) which is induced by (4.17) and (4.18)
along with the map I of (2.14) which induces

Θ: E~a 7−→ fI−1(~a) for every ~a ∈ F4
2. (4.19)

The map Θ isometrically embeds the lattice MT192 of theorem 3.3.7 into N(−1), such that
the restriction iT192 of Θ to MT192 yields an embedding iT192 : MT192 ↪→ N(−1) of the type
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constructed in proposition 4.1.1. Moreover, iT192 is equivariant with respect to the group
T192, where on H∗(X,Z) the action of T192 is induced by its action on XD4 as holomorphic
symplectic automorphism group, and on the Niemeier lattice N of type A24

1 its action is
generated by ι1, . . . , ι4, γ1, γ2, γ3 as in (4.13). The lattice MT192 has rank 20.

Proof: We first need to show that (4.17), (4.18), (4.19) can be extended to a linear bijection
Θ: H∗(X,Z) −→ N(−1). With notations as in proposition 2.3.6 and using (4.16) along with
(4.18) we see that Θ(K) = K̃5. Similarly, (4.19) implies Θ(Π) = Π̃ according to the proof of
proposition 2.3.4, and since Θ(υ0 − υ) = f5 by (4.18) we find Θ(P) = P̃5. By proposition
2.2.4 we can now glue H∗(X,Z) from the sublattices K and P, while by proposition 2.3.6 we
can glue N from the sublattices K̃5 and P̃5. By the discussion following proposition 4.1.1,
the linear bijection Θ: K ⊕ P −→ K̃5 ⊕ P̃5(−1) is compatible with this gluing if and only if
it respects (4.2). We have ensured that this is the case by construction, namely by (4.17)
and (4.18). Hence under gluing, Θ extends to a linear bijection Θ: H∗(X,Z) −→ N(−1) as
claimed.

Next we claim that Θ induces a primitive embedding iT192 : MT192 ↪→ N(−1) of the type
constructed in proposition 4.1.1. By proposition 3.3.6, the lattice MT192 is the orthogonal
complement of the lattice π∗(H2(T (ΛD4),Z)T )⊕ spanZ{υ0 + υ}, where T is the binary tetra-
hedral group acting as non-translational holomorphic symplectic automorphism group of the
D4-torus. By proposition 4.2.3 together with (4.7), (4.8), the lattice π∗(H2(T (ΛD4),Z)T ) is
generated by I1, I2, I3 as defined there. Hence MT192 consists of

spanZ

{
I⊥1 , I

⊥
2 , I

⊥
3

}
⊕ P,

with I⊥k , k = 1, 2, 3 as in (4.9), along with the appropriate rational combinations of contri-
butions from K and Π obtained by our gluing for generic Kummer surfaces. In particular,
MT192 has rank 20. We need to show that Θ maps this lattice isometrically to a primitive
sublattice of N(−1). We already know that Θ(P) = P̃5(−1) isometrically, due to the above
and the proof of proposition 2.3.4. Since we also know that Θ is compatible with the gluing
of H∗(X,Z) and N from P and P̃5 and their orthogonal complements, it suffices to show that
the lattice generated by the I⊥k , k ∈ {1, 2, 3}, is isometric to the lattice generated by the three
vectors Θ(I⊥k ), k ∈ {1, 2, 3}, up to an inversion of signature. In fact, note that by (4.16) we
have

I⊥1 7−→ f19 − f15, I⊥2 7−→ f9 − f15, I⊥3 7−→ f24 − f15,

yielding the quadratic form of the corresponding lattices with respect to these generators as −4 −2 −2
−2 −4 −2
−2 −2 −4

 7−→

 4 2 2
2 4 2
2 2 4

 (4.20)

on both sides, as required.

Finally, equivariance with respect to T192 follows by construction for the isometric embedding
iT192 : MT192 ↪→ N(−1) obtained by restricting Θ to MT192 , see proposition 4.2.4. �

Note that the comparison of the quadratic forms in (4.20) uniquely determines the relative
signs in front of f15 in the formulas for the I⊥k , k ∈ {1, 2, 3}, in (4.16). Note furthermore that
the remaining choices of signs in (4.16) amount to choosing one sign for each fn separately in
the formulas for the I⊥k as well as in the identifications

J⊥1 := π∗λ14 − π∗λ23 7−→ f24 − f23,

J⊥2 := π∗λ13 + π∗λ24 7−→ f19 − f6,

J⊥3 := π∗λ34 − π∗λ12 7−→ f9 − f3.

(4.21)
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We wish to emphasize that our gluing strategy leading to theorem 4.2.6 differs from that used
by Kondo in [10], which was explained in section 3.2. Indeed, due to our theorem 3.3.7, instead
of basing our construction on the lattices LG and NG which Kondo uses, we can work with
the lattice MG which contains LG and exceeds it by rank 2. In particular, MG contains the
Kummer lattice Π, which simplifies our analysis greatly. Since the vector e = 1

2

∑
~a∈F4

2
E~a ∈ Π

is invariant under every holomorphic symplectic automorphism of our Kummer surface (with
its induced dual Kähler class), the Kummer lattice can never be contained in Kondo’s lattice
LG. In this sense, our techniques improve Kondo’s construction for all Kummer surfaces with
induced dual Kähler class.

4.3 The square Kummer surface

Let us now carry out a similar analysis as for the tetrahedral Kummer surface XD4 for another
example of an algebraic Kummer surface:

Definition 4.3.1 We call the standard torus T0 = T (Λ0) = C2/Λ0 the square torus,
where the generators of the lattice Λ0 are given by

~λ1 = (1, 0), ~λ2 = (i, 0), ~λ3 = (0, 1), ~λ4 = (0, i). (4.22)

The Kummer surface with underlying torus T0 is denoted by X0 := T̃0/Z2, and we call it the
square Kummer surface.

In the example discussed around (3.3) and (3.6) we already found

Proposition 4.3.2 Consider the square Kummer surface X0 of definition 4.3.1, where we
are working with our usual marking described at the end of section 2.2.

The real homology classes Ω1, Ω2, ω which determine the complex structure of X0, by means
of the Torelli Theorem 3.1.1, and the induced dual Kähler class, which in fact yields a polar-
ization, are given by

Ω1 = π∗λ13 − π∗λ24, Ω2 = π∗λ14 + π∗λ23, ω = π∗λ12 + π∗λ34 ∈ H(X0,Z).

Furthermore, the 3-dimensional subspace Σ of H2(X0,R) containing these three 2-cycles yields
a lattice Σ ∩H2(X0,Z) of (the maximal possible) rank 3, with quadratic form 4 0 0

0 4 0
0 0 4

 .

One checks that the group of non-translational holomorphic symplectic automorphisms of
the standard torus T0 is the binary dihedral group O of order 8 mentioned in the proof of
proposition 3.3.4, which is generated by the symmetries

α1 : (z1, z2) 7→ (iz1,−iz2),

α2 : (z1, z2) 7→ (−z2, z1)

on the universal cover C2 of T0, and which induces an action of (Z2)2 = O/Z2 on the Kummer
surface X0 obtained from T0 (see [48, Table 9] or e.g. [50, Thm.7.3.12]). By proposition
3.3.4 it then follows that the holomorphic symplectic automorphism group of X0 is the group
Gto(Z2)2 of order 64, where Gt ∼= (Z2)4 is the translational automorphism group of definition
3.3.2.
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Note that in terms of standard Euclidean coordinates of C2, the symmetries α1 and α2 agree
with γ1, respectively γ2 in (4.6). However, the induced actions on the lattice H2(T0,Z)
and thereby on H∗(X0,Z) are different, since the defining lattices of the underlying tori are
different. Indeed, one immediately checks that the induced actions of α1 and α2 on the
generators ~λ1, . . . , ~λ4 of Λ0 as in (4.22) are the following:

α1 : ~λ1 7→ ~λ2, ~λ2 7→ −~λ1, ~λ3 7→ −~λ4, ~λ4 7→ ~λ3,

α2 : ~λ1 7→ ~λ3, ~λ2 7→ ~λ4, ~λ3 7→ −~λ1, ~λ4 7→ −~λ2.
(4.23)

We therefore obtain

Proposition 4.3.3 Consider the square Kummer surface X0 of definition 4.3.1, equipped
with the induced polarization.

The symmetry group of X0 is the group T64 := Gt o (Z2)2 of order 64, where Gt ∼= (Z2)4

is the translational automorphism group of definition 3.3.2. The induced action of the non-
translational quotient group (Z2)2 on H2(T0,Z) with respect to the basis λij of (4.17) is gen-
erated by 

α1(λ12)
α1(λ13)
α1(λ14)
α1(λ23)
α1(λ24)
α1(λ34)

 =



1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 1





λ12

λ13

λ14

λ23

λ24

λ34

 , (4.24)



α2(λ12)
α2(λ13)
α2(λ14)
α2(λ23)
α2(λ24)
α2(λ34)

 =



0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0





λ12

λ13

λ14

λ23

λ24

λ34

 . (4.25)

We now investigate the compatibility of the linear bijection Θ of theorem 4.2.6 with the
symmetry group T64 of X0:

Proposition 4.3.4 Consider the square Kummer surface X0 with its holomorphic symplectic
automorphism group T64 according to proposition 4.3.3. Let MT64 denote the sublattice of
H∗(X,Z) introduced in theorem 3.3.7, and let iT64 : MT64 −→ N(−1) denote the restriction of
the map Θ of theorem 4.2.6 to MT64.

The map iT64 is equivariant with respect to the symmetry group T64, where the action of
ι1, . . . , ι4 on N is given by (4.1), and the generators α1, α2 act by

α1 = (4, 8)(6, 19)(10, 20)(11, 13)(12, 22)(14, 17)(16, 18)(23, 24),

α2 = (2, 21)(3, 9)(4, 8)(10, 12)(11, 14)(13, 17)(20, 22)(23, 24).
(4.26)

Proof: The equivariance of iT64 with respect to ι1, . . . , ι4 follows immediately from proposition
4.1.1.

For the generators α1, α2 of T64, we find that the transformations (4.23) induce permutations
[αk] on the singular points of T0/Z2 and thus on the elements of our hypercube F4

2. For the
induced permutations α̂k on I \ O9, imposing equivariance of iT64 amounts to the condition
α̂k(n) = [αk](I(n)) for all n ∈ I \ O9, where I is the map (2.14). We obtain

α̂1 = (4, 8)(10, 20)(11, 13)(12, 22)(14, 17)(16, 18),

α̂2 = (2, 21)(4, 8)(10, 12)(11, 14)(13, 17)(20, 22).
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From (4.24) we obtain the induced action of α1 on the π∗λij , such that equivariance of
(4.2) implies that the induced action of α1 on the Qij must fix Q12 and Q34 and yield
Q13 ↔ Q24, Q14 ↔ Q23. Given our choices for the Qij of proposition 4.2.5 which lead to
(4.17), this action amounts to the permutation τ1 := (6, 19)(23, 24).

Similarly, (4.25) implies that α2 must fix Q13 and Q24 and must induce Q12 ↔ Q34, Q14 ↔
Q23, which amounts to the permutation τ2 := (3, 9)(23, 24). One now checks that the per-
mutations αk := α̂k ◦ τk, which agree with the permutations α1, α2 in our claim (4.26), are
elements of the Mathieu group M24. �

We actually arrive at the surprising results of

Theorem 4.3.5 Consider the square Kummer surface X0 of definition 4.3.1 with its holo-
morphic symplectic automorphism group T64. Let MT64 denote the sublattice of H∗(X,Z)
introduced in theorem 3.3.7, and let iT64 denote the restriction of the map Θ of theorem 4.2.6
to MT64.

The map iT64 yields an isometric embedding iT64 : MT64 ↪→ N(−1) of the type constructed
in proposition 4.1.1. Moreover, iT64 is equivariant with respect to the group T64, where on
H∗(X,Z) the action of T64 is induced by its action on X0 as holomorphic symplectic au-
tomorphism group, and on the Niemeier lattice N of type A24

1 its action is generated by
ι1, . . . , ι4, α1, α2 as in (4.1) and (4.26). The lattice MT64 has rank 20.

Proof: By proposition 3.3.6, the lattice MT64 is the orthogonal complement of the lattice
π∗(H2(T0,Z)O)⊕spanZ{υ0+υ}, where O is the binary dihedral group of order 8 acting as non-
translational holomorphic symplectic automorphism group of the square torus. By proposition
4.3.2 the lattice π∗(H2(T0,Z)O) is generated by J1 := π∗λ13−π∗λ24, J2 := π∗λ14+π∗λ23, J3 :=
π∗λ12 + π∗λ34. Hence the lattice MT64 consists of

spanZ

{
J⊥1 , J

⊥
2 , J

⊥
3

}
⊕ P,

with J⊥k , k = 1, 2, 3 as in (4.21), along with the appropriate rational combinations of contri-
butions from K and Π obtained by our gluing for generic Kummer surfaces. In particular,
MT64 has rank 20.

We need to show that Θ maps this lattice isometrically to a primitive sublattice of N(−1).
We already know that Θ(P) = P̃5(−1) isometrically, due to the proof of theorem 4.2.6.
Since we also know that Θ is compatible with the gluing of H∗(X,Z) and N from P and
P̃5 and their orthogonal complements by that same proof, it suffices to show that the lattice
generated by the J⊥k , k ∈ {1, 2, 3}, is isometric to the lattice generated by the three vectors
Θ(J⊥k ), k ∈ {1, 2, 3}, up to an inversion of signature. In fact, note that by (4.16) we have

J⊥1 7−→ f24 − f23, J⊥2 7−→ f19 − f6, J⊥3 7−→ f9 − f3,

yielding the quadratic form of the corresponding lattices with respect to these generators as −4 0 0
0 −4 0
0 0 −4

 7−→

 4 0 0
0 4 0
0 0 4

 (4.27)

on both sides, as required.

Finally, equivariance with respect to T64 now follows from proposition 4.3.4. �

Summarising, we have confirmed the surprising fact that the same bijection Θ of theorem
4.2.6 is compatible with the symmetry groups of two distinct Kummer surfaces, namely the
tetrahedral Kummer surface and the square Kummer surface.
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4.4 Generating the overarching finite symmetry group of Kummer surfaces

Let us now discuss the consequences of theorems 4.2.6 and 4.3.5, which state that our map Θ
induces two isometric embeddings MT192 ↪→ N(−1) and MT64 ↪→ N(−1). We can view Θ as
an overarching bijection for these two embeddings. Theorems 4.2.6 and 4.3.5 also show
that Θ is compatible with enforcing equivariance on each iTk , k ∈ {64, 192}, with respect
to the symmetry group Tk, inducing actions of these groups on the Niemeier lattice N of
type A24

1 as subgroups of the Mathieu group M24. Hence the lattice N serves as a device
which carries both these actions simultaneously, allowing us to make sense of combining these
groups to a bigger group:

Theorem 4.4.1 Consider the subgroup MΠ of the Mathieu group M24 which is obtained by
the combined actions of T192 and T64 of theorems 4.2.6 and 4.3.5 on the Niemeier lattice N
of type A24

1 . This group is isomorphic to the overarching finite symmetry group (Z2)4 oA7 of
Kummer surfaces of definition 3.3.5.

If X is an arbitrary Kummer surface with induced dual Kähler class and holomorphic sym-
plectic automorphism group G, let iG : MG ↪→ N(−1) denote an isometric embedding of the
lattice MG of theorem 3.3.7 according to proposition 4.1.1 such that iG(P) = P̃n0(−1) with
n0 ∈ O9. By enforcing G-equivariance on iG, the group G acts faithfully on the Niemeier
lattice N . If n0 = 5, then this realises G as a subgroup of the group MΠ. If n0 6= 5, then G is
a subgroup of a conjugate of MΠ within the subgroup (Z2)4 o A8 of M24 which stabilizes the
octad O9. In this sense, (Z2)4 oA7 contains the holomorphic symplectic automorphism group
of every Kummer surface with induced dual Kähler class.

Proof: By theorems 4.2.6 and 4.3.5, the group MΠ is generated by ι1, . . . , ι4, γ1, γ2, γ3 as in
(4.13) and α1, α2 as in (4.26). Clearly, the permutations ι1, . . . , ι4 generate a faithful action of
(Z2)4 on I = {1, . . . , 24} which leaves the labels in the special octad O9 invariant pointwise.
Furthermore, one readily sees that γ1, γ2, γ3, α1, α2 induce a faithful action of A7 on O9\{5}.
Hence MΠ ⊃ (Z2)4 oA7.

On the other hand, by construction both our groups T192 and T64 act on N as subgroups
of the stabilizer subgroup of M24 of our special octad O9. According to [28] this group is a
maximal subgroup of M24, and it is isomorphic to (Z2)4 o A8, where A8 is realised as the
group of permutations undergone by the 8 points of O9. Since in addition, both our groups
T192 and T64 stabilize the label 5 = n0 ∈ O9, we find that both of them are subgroups of the
corresponding maximal subgroup (Z2)4 o A7 of M23. In particular, MΠ ⊂ (Z2)4 o A7, thus
by the above MΠ

∼= (Z2)4 o A7 is isomorphic to the overarching finite symmetry group of
Kummer surfaces, as claimed.

Consider a Kummer surface X with induced dual Kähler class and holomorphic symplectic
automorphism group G, and the corresponding lattice MG that was constructed in theorem
3.3.7. Let iG : MG ↪→ N(−1) denote the isometric embedding with iG(P) = P̃n0(−1) accord-
ing to proposition 4.1.1, where n0 ∈ O9. Assume first that n0 = 5. Then the action of G
on N obtained by enforcing G-equivariance on iG maps K̃5 = P̃⊥5 ∩ N onto itself. By the

proof of proposition 2.3.6 we know that K̃5 = spanZ {f3, f6, f9, f15, f19, f23, f24}. Hence G
stabilizes the special octad O9 = {3, 5, 6, 9, 15, 19, 23, 24} and fixes n0 = 5. Thus, by the
above, G is a subgroup of the maximal subgroup MΠ

∼= (Z2)4 o A7 of M23. If n0 6= 5, then
analogously one finds G ⊂ M ′Π

∼= (Z2)4 o A7 where M ′Π is the subgroup of M24 containing
those automorphisms that stabilize the special octad O9 and that fix n0. Using the structure
of the stabilizer group of O9 described above, one finds that M ′Π is obtained from MΠ by
conjugation within the subgroup (Z2)4 oA8 of M24 which stabilizes the octad O9. �

The group MΠ
∼= (Z2)4 o A7 obtained in theorem 4.4.1 has order 40320. By the results of

the theorem it is also the largest group we can possibly obtain by combining several holomor-
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phic symplectic automorphism groups of Kummer surfaces through equivariant embeddings
overarched by some linear bijection H∗(X,Z) −→ N(−1) like our map Θ of theorem 4.2.6.

The construction of an overarching map Θ: H∗(X,Z) −→ N(−1) for the two primitive em-
beddings iGk

: MTk ↪→ N(−1) makes sense, since we are choosing a fixed marking to identify
H∗(X,Z), H2(X,Z) with standard unimodular lattices of signatures (4, 20), (3, 19), which
is induced by the Kummer construction, as was explained at the end of section 2.2. Ac-
cording to our remarks at the end of section 3.1, this marking allows us to construct Kum-
mer paths in the smooth connected cover M̃hk of the moduli space of hyperkähler struc-
tures. Recall that each hyperkähler structure is represented by the 3-dimensional subspace
Σ ⊂ H2(X,R) = H2(X,Z)⊗R generated by the 2-dimensional Ω ⊂ H2(X,R), which specifies
the complex structure according to the Torelli Theorem 3.1.1, and the dual Kähler class ω.
Along Kummer paths, each complex structure and (degenerate) dual Kähler class is induced
from the universal cover C2 of an underlying torus T (Λ) = C2/Λ, Λ = spanZ{~λ1, . . . , ~λ4},
for a Kummer surface ˜T (Λ)/Z2. Smooth variation of the generators ~λ1, . . . , ~λ4 of the un-
derlying lattice Λ ⊂ C2 yields a smooth variation between the hyperkähler structures of any
two Kummer surfaces. Our marking allows us to view the lattice H∗(X,Z) (with generators
υ0, υ; 1

2π∗λij + 1
2

∑
~a∈Pij

ε~aE~a+~b
, ij ∈ {12, 34, 13, 42, 14, 23}, ~b ∈ F4

2, ε~a ∈ {±1}) as fixed,
while the 3-dimensional space Σ generated by e1∨e3−e2∨e4, e1∨e4 +e2∨e3, e1∨e2 +e3∨e4

(see (3.2), (3.5)) varies, since the expressions of each ei in terms of ~λ1, . . . , ~λ4 vary with Λ. In
view of this remark it is natural to ask whether our overarching map Θ is compatible with the
embeddings iGs : MGs ↪→ N(−1) of proposition 4.1.1 along some Kummer path connecting
the tetrahedral and the square Kummer surface. Indeed, this is the case:

Theorem 4.4.2 There exists a smooth path in the smooth connected cover M̃hk of the moduli
space of hyperkähler structures of K3 with the following properties:

Let Σs denote the positive definite oriented 3-dimensional subspace of H2(X,R) generated by
the 2-dimensional Ωs, which specifies the complex structure according to the Torelli Theorem
3.1.1, and ωs, the dual Kähler class, at time s ∈ [0, 1] along the path. These data are specified
by their relative positions with respect to the lattice H2(X,Z) which is given in terms of
the even unimodular lattice of signature (3, 19) arising from the Kummer construction, as
explained at the end of section 2.2. Then for each s ∈ [0, 1]:

• Ωs, ωs give the complex structure and (degenerate) dual Kähler class of a Kummer

surface ˜T (Λs)/Z2 and are induced from the standard structures on C2, the universal
cover of T (Λs) = C2/Λs.

• Ω0, ω0 give the complex structure and (degenerate) dual Kähler class of the square Kum-
mer surface X0.

• Ω1, ω1 give the complex structure and (degenerate) dual Kähler class of the tetrahedral
Kummer surface XD4.

• Let Gs denote the symmetry group of the Kummer surface with data Ωs, ωs and MGs ⊂
H∗(X,Z) the lattice of theorem 3.3.7. Then for the map Θ: H∗(X,Z) −→ N(−1) con-
structed in theorem 4.2.6, iGs := Θ|MGs : MGs ↪→ N(−1) is an isometric, primitive
embedding. Enforcing Gs-equivariance, Gs acts as subgroup of the overarching symme-
try group MΠ

∼= (Z2)4 oA7 ⊂M24 on N which was found in theorem 4.4.1.

In particular, s 7→ Σs, s ∈ [0, 1] describes a Kummer path along which iG(Π) = Π̃ is constant.

Proof: We show that there exists a Kummer path s 7→ Σs, s ∈ [0, 1], in M̃hk which connects
the square Kummer surface X0 with the tetrahedral Kummer surface XD4 such that for every
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s ∈ (0, 1), the only holomorphic symplectic automorphisms are the translational ones, i.e.
Gs ∼= (Z2)4, MGs = Π⊕ spanZ{υ0− υ}. Then the claims immediately follow by construction,
since compatibility with the translational group Gs = Gt ∼= (Z2)4 is incorporated at the
beginning of our construction of Θ in section 4.1.

Since the desired path is a Kummer path, we must ensure Σs ⊂ π∗H2(T,R) for all s ∈
[0, 1] with the notations of section 2.2. Proposition 3.3.4 implies that Gs = Gt ∼= (Z2)4

if
(
H2(X,Z)G

s)⊥ ∩ H2(X,Z) = Π or equivalently
(
H2(X,Z)G

s)⊥ ∩ π∗H2(T,Z) = {0}. In

general, Σs ⊂ H2(X,Z)G
s ⊗ R and thus (Σs)

⊥ ⊃
(
H2(X,Z)G

s)⊥
; hence it suffices to ensure

(Σs)
⊥ ∩ π∗H2(T,Z) = {0} for all s ∈ (0, 1). Using the I⊥k and J⊥k of (4.9) and (4.21) we set

Σ⊥T,s := spanR
{
I⊥1,s, I

⊥
2,s, I

⊥
3,s

}
⊂ π∗H2(T,R),

I⊥k,s :=

{
(1− s)J⊥k + sI⊥k + 2sδk · π∗λ12 if s ∈ [0, 1

2 ],

(1− s)J⊥k + sI⊥k + 2(1− s)δk · π∗λ12 if s ∈ [1
2 , 1],

with sufficiently small δ1, δ2, δ3 ∈ R, such that Σ⊥T,s is negative definite, which are linearly

independent over Q. One checks that I⊥k,0 = J⊥k and I⊥k,1 = I⊥k for k ∈ {1, 2, 3}, and

Σ⊥T,s ∩ π∗H2(T,Z) = {0} for all s ∈ (0, 1). Hence Σs :=
(

Σ⊥T,s

)⊥
∩ π∗H2(T,R) defines a

Kummer path from the square Kummer surface to the tetrahedral Kummer surface with the
desired properties. �

Although we have not discussed the detailed proof of this statement here, it is worthwhile
mentioning that our map Θ is almost uniquely determined by the requirement that it induces
isometric embeddings of the type constructed in proposition 4.1.1 for both lattices MT192
and MT64 . Our explicit formulas, of course, first of all depend on our choice of O9 as our
special octad, and more precisely on the particular embedding of the Kummer lattice Π in
the Niemeier lattice N(−1) of type A24

1 that we constructed in the proof of proposition 2.3.4.
However, by proposition 2.3.5 any other embedding of Π is related to the one used by us by
an automorphism of the Niemeier lattice N . On the level of subgroups of the Mathieu group
M24, this amounts to conjugating by some element of M24.

Once our embedding of Π in N(−1) has been chosen, our requirements on Θ turn out to
enforce the choices (4.14) for the quadruplets Qij in our special octad O9. Concerning the
choices of signs in (4.2), as mentioned in the discussion of equation (4.17), these are unique
up to the freedom for each n ∈ I to replace fn by −fn everywhere, and up to some choices
of signs in the image of υ0 + υ.

Now recall once again that the involutions on the Niemeier lattice N of type A24
1 induced

by fn 7→ −fn should not play a role in describing symmetries of Kummer surfaces, or in
fact their associated superconformal field theories: On the one hand, by proposition 2.3.2
the Mathieu group M24, which we are interested in, is obtained as factor group of Aut(N)
by the normal subgroup (Z2)24 generated by these involutions. On the other hand, consider
a symplectic automorphism of a K3 surface X whose induced action on H∗(X,Z) is given
by the lattice automorphism α. We claim that α(E) 6= −E for every E ∈ H∗(X,Z) with
〈E,E〉 = −2. Indeed, α(v) = −v for some v ∈ H∗(X,Z) immediately implies v ⊥ Lα• ,
where Lα• := H∗(X,Z)α is the sublattice of H∗(X,Z) which is invariant under α. Since
Lα• = H0(X,Z)⊕ Lα ⊕H4(X,Z) with Lα := H2(X,Z)α, this implies that v ∈ Lα := (Lα• )⊥ ∩
H∗(X,Z) = (Lα)⊥ ∩ H2(X,Z). Hence by the very Torelli Theorem 3.2.2, 〈v, v〉 6= −2. By
arguments analogous to those used for symplectic automorphisms of K3 surfaces, one may
deduce the following from the definition of symmetries of non-linear σ-models on K3
preserving the N = (4, 4) superconformal algebra given in [15]: Firstly, any such
symmetry induces a lattice automorphism α on H∗(X,Z), which in turn uniquely determines
the symmetry. Furthermore, α(E) 6= −E for every E ∈ H∗(X,Z) with 〈E,E〉 = −2. In
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particular, an involution of the Niemeier lattice N induced by fn 7→ −fn can never correspond
to a symplectic automorphism of a K3 surface or to a symmetry of a non-linear σ-model on
K3 which preserves the N = (4, 4) superconformal algebra.

5 Conclusions and outlook

This work gives a novel perspective on holomorphic symplectic automorphisms of Kummer
surfaces whose dual Kähler class is induced by the underlying complex torus. While finite
symplectic automorphism groups of K3 surfaces, in general, have been classified and described
by Mukai and Kondo in their seminal works [9, 10], we improve their description in the case
of Kummer surfaces through an identification of lattice automorphisms. This provides a
concrete representation in terms of permutations of 24 elements which are symmetries of the
binary extended Golay code, and thus in terms of subgroups of the Mathieu group M24.

For a K3 surface X with holomorphic symplectic automorphism group G and LG ⊂ H∗(X,Z)
the orthogonal complement of the G-invariant part of the K3-homology, one finds by the
results of Kondo [10] a Niemeier lattice Ñ , which carries a faithful G-action, such that LG
can be primitively and G-equivariantly embedded in Ñ(−1). We improve this result for all
Kummer surfaces whose dual Kähler class is induced from the underlying complex torus:
We prove that in this case the Niemeier lattice Ñ , which is not further specified in Kondo’s
construction, can be replaced by the Niemeier lattice N of type A24

1 . Moreover, the lattice
LG can be replaced by a lattice MG with rk (MG) = rk (LG) + 2 which contains LG, that
is, MG can be primitively and G-equivariantly embedded in N(−1). We deduce that for
every Kummer surface whose dual Kähler class is induced from the underlying torus, one
can construct a Z-linear bijection θ : H∗(X,Z) −→ N(−1) whose restriction to MG yields an
isometric, G-equivariant primitive embedding.

We explicitly construct a map Θ with the above-mentioned properties for the tetrahedral
Kummer surface XD4 with holomorphic symplectic automorphism group T192 of order 192.
The nature of this map depends on the details of the complex structure and dual Kähler class,
and its analog for other Kummer surfaces must therefore be constructed case by case, but is
not difficult to obtain in the framework set up in our work.

Our construction uses a description of the lattice H∗(X,Z) by means of lattice generators
naturally arising in the Kummer construction. This provides us with a common, fixed marking
for all Kummer surfaces. Varying the generators ~λ1, . . . , ~λ4 of the defining lattice of the
underlying torus then amounts to a deformation along a path in the smooth connected cover
of the moduli space of hyperkähler structures on K3. In particular, having fixed a common,
natural marking for all Kummer surfaces allows us to simultaneously study distinct Kummer
surfaces. Surprisingly, our map Θ, apart from restricting to an isometric, T192-equivariant
embedding of MT192 in N(−1), also restricts to an isometric, G-equivariant embedding of MG

in N(−1) for a different Kummer surface X0, namely the one obtained from the square torus
T0. The holomorphic symplectic symmetry group G = T64 of X0 has order 64. We find a
smooth path in the smooth connected cover of the moduli space of hyperkähler structures
on K3 between these two Kummer surfaces, such that Θ is compatible with the symmetries
of all Kummer surfaces along the path. The latter have the translational group Gt ∼= (Z2)4

as symmetry group, except for the Kummer surfaces at the endpoints, which have symmetry
groups T64 and T192 as explained above. The translational group Gt ∼= (Z2)4, which is
compatible with Θ by construction, is the symmetry group of generic Kummer surfaces.

By construction, the lattice MG is negative definite for every Kummer surface. Both for
XD4 and for X0 it turns out to have the maximal possible rank 20. The smallest primitive
sublattice of H∗(X,Z) containing both lattices MT192 and MT64 is H2(X,Z)⊕ spanZ{υ0− υ},
where υ0 ∈ H0(X,Z) and υ ∈ H4(X,Z) with 〈υ0, υ〉 = 1.
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Our map Θ thus yields an action of the groups T192 and T64 on the Niemeier lattice N ,
realising each of them as a subgroup of the Mathieu group M24. Again, the nature of the
respective permutations depends on the details of the complex structure and dual Kähler
class, and their analog for other Kummer surfaces can be worked out similarly. There are
further Kummer surfaces whose symmetries are consistently described by our specific map Θ.
For example, the Z3-symmetric torus T(3) = C2/Λ(3) with Λ(3) generated by

~λ1 = (1, 0), ~λ2 = (i, 0), ~λ3 = (1
2 ,
√

3
2 ), ~λ4 = (− i

2 ,
i
√

3
2 ) ∈ C2 (5.1)

yields a Kummer surface whose holomorphic symplectic automorphism group G is also com-
patible with our map Θ, if for the two-cycles yielding complex structure and polarization one
uses

Ω̃1 = e1 ∨ e2 + e3 ∨ e4, Ω̃2 = −e1 ∨ e4 − e2 ∨ e3, ω̃ = e1 ∨ e3 − e2 ∨ e4.

In this case our map Θ restricts to a primitive G-equivariant map from MG to N(−1), which
however is not isometric.

While Θ is by no means compatible with all the symmetries of all Kummer surfaces, the
surprising observation is the fact that it yields a device which allows to simultaneously re-
alise several finite symplectic automorphism groups of different Kummer surfaces in terms of
subgroups of M23 acting on N . The combined action of these groups yields the overarching
finite symmetry group (Z2)4 o A7 of Kummer surfaces, which contains every holomorphic
symplectic automorphism group of a Kummer surface with induced dual Kähler class as a
subgroup, and it is the maximal group that our techniques can describe, so far.

Although we do not present the proof in this work, we remark that for the above-mentioned
Z3-symmetric torus T(3) we can show that no isometric embedding MG ↪→ N(−1) exists which

maps υ0−υ to f5 = Θ(υ0−υ). It follows that along a path from X0, say, to T̃(3)/Z2, starting
with the embedding MG0 ↪→ N(−1) constructed in this work, υ0 − υ must change its image.
This probably implies that an extension of our techniques to more general paths in moduli
space will yield subgroups of M24 rather than M23, as will be explained in [51].

A crucial observation which underlies our construction is the fact that the Niemeier lattice
N of type A24

1 contains a primitive sublattice Π̃ which is isometric to the Kummer lattice Π,
up to a total inversion of signature. This observation – though not very hard to prove – is
new, and it gives a geometric meaning to a fact known to group theorists, namely that the
complement of an octad in the extended binary Golay code naturally carries the structure of
a 4-dimensional vector space over F2. In fact, the Kummer lattice Π is a primitive sublattice
of our lattice MG for every Kummer surface, while Π can never be a sublattice of the lattice
LG ⊂ MG used by Kondo in his construction. Our lattice MG can be generated by Kondo’s
lattice LG together with the Kummer lattice Π and the vector υ0− υ mentioned above. This
vector gives a geometric interpretation to the invariant root needed in Kondo’s construction,
whose role had been mysterious, so far.

The lattices Π and Π̃, however, govern the symmetries in our holomorphic symplectic auto-
morphism groups G, as we shall explain now. By the known structure of Π and Π̃, the group
of isometries for both lattices is isomorphic to Aff(F4

2) n (Z2)16, where each factor of (Z2)16

is induced by inverting the sign of one lattice vector on which the quadratic form takes value
±2. Hence restricting to the analogs of effective automorphisms known from geometry,
we can restrict our attention to the affine linear maps in Aff(F4

2) = (Z2)4 o GL(4,F2).

Consider the action of a lattice automorphism α on Π ∼= Π̃(−1) with α ∈ Aff(F4
2). If α is an

element of the normal subgroup (Z2)4, then it corresponds to a translation on the hypercube
underlying the lattices Π and Π̃, and it induces a trivial action on the discriminant groups
Π∗/Π and Π̃∗/Π̃. Thus α can be trivially extended to a lattice automorphism of the K3-
homology H∗(X,Z) and of the Niemeier lattice N of type A24

1 . We claim that extensions to
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lattice automorphisms of H∗(X,Z) and N exist for every α ∈ Aff(F4
2) which is represented

by an action as automorphism of Π ∼= Π̃(−1). For the K3-homology H∗(X,Z) this follows
immediately from [11, Thm. 1.7] (using [11, Remark 1.2]), since Π⊥ ∩H∗(X,Z) ∼= U3(2)⊕U
is an even lattice of signature (4, 4) whose discriminant group has length 6 = 4 + 4 − 2.
For the Niemeier lattice N it is a consequence of the fact that the stabilizer group of an
octad in the Golay code is isomorphic to (Z2)4 o A8, where A8 is realised as the group of
permutations undergone by the 8 points of that octad according to [28]. Indeed, Conway’s
proof of [29, Thm. 2.10] shows that the induced action on Π̃ is precisely our group of effective
lattice automorphisms Aff(F4

2) ∼= (Z2)4 o A8. Hence every α ∈ Aff(F4
2) ⊂ Aut(Π̃) is the

restriction of some lattice automorphism of N to the sublattice Π̃, which in fact is uniquely
determined. In the case of extending α to the full K3-homology, we do not have a uniqueness
statement in general. However, restricting to lattice automorphisms which are induced by
some holomorphic symplectic automorphism of a K3 surface, uniqueness follows from the
Torelli Theorem.

In summary, the lattice automorphisms that are of interest in this work are completely deter-
mined by their restrictions to Π and Π̃, respectively. This explains why extending Kondo’s
lattice LG to a lattice MG which contains Π is such a useful idea. That this idea works is one
of our main results. It in particular implies that a bijection θ between H∗(X,Z) and N(−1)
can be constructed which is compatible with the symmetry group Gt ∼= (Z2)4 of generic
Kummer surfaces.

While it thus may be tempting to expect some natural geometric interpretation of the group
(Z2)4 o A8 in terms of holomorphic symplectic automorphisms of Kummer surfaces, we em-
phasize again that the overarching symmetry group (Z2)4 oA7 is the largest group which can
be induced by a map Θ obeying all our assumptions. As mentioned above, for other pairs of
Kummer surfaces one will be forced to drop the assumption that an overarching map fixes
the images of υ0 − υ in N(−1). Then one may be able to generate (Z2)4 oA8 [51].

It should be noted that our map Θ is an isometry only when restricted to the appropriate
lattices MG. Equivalently, it need not be G-equivariant outside of MG. The virtue of the
specific map Θ which we construct in this work is therefore its compatibility with two distinct
Kummer surfaces, namely the tetrahedral one and the one obtained from the square torus,
and with all the Kummer surfaces along a special path connecting the two. This property
defines Θ uniquely, up to a few choices of signs discussed in section 4.4, and only this property
allows us to combine the actions of the symmetry groups T192 and T64 of the two Kummer
surfaces to obtain the overarching symmetry group (Z2)4 oA7.

This group has 40320 elements and thus is by orders of magnitude larger than the biggest
finite symplectic automorphism group of any K3 surface. Our techniques thus mitigate the
“order of magnitude” problem that was mentioned in the introduction. We are currently
generalising our techniques by replacing the Niemeier lattice N by the Leech lattice. This
way we hope to obtain the action of the entire Mathieu group M23 or M24 on the Leech lattice
merely using classical symmetries of K3 surfaces. This may mean that “Mathieu moonshine”
has nothing to do with symmetries beyond the classical ones.
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A The Mathieu group M24, the binary Golay code and the
MOG

The relation between Kummer lattices and the group M24 can be made explicit by thinking
of M24 as the proper subgroup of A24 - the group of even permutations of 24 objects labelled
by the elements of I = {1, 2, 3, . . . , 24} - that preserves the extended binary Golay code G24.
The latter is the dimension 12 quadratic residue code of length 23 over the field F2, extended
in such a way that each element is augmented by a zero-sum check digit as described in [25].
The vector space G24 contains 212 vectors called codewords, each being an element of F24

2 ,
with the restrictions that their weight (the number of non-zero entries) is a multiple of 4,
bar 4 itself and 20. The code contains exactly one codeword zero and one codeword where
all digits are one, together with 759 octads, 2576 dodecads and 759 complement octads.

Besides its description as a vector of F24
2 with components ck, k = 1, . . . , 24, a non-zero

codeword is often represented in the main text by a subset of I of cardinality 8, 12, 16
or 24, whose elements are the integers k labelling ck 6= 0. So for instance, the word
(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0) may be represented by the set
{1, 2, 3, 5, 12, 16, 18, 22}. That such a collection of eight labels is actually a weight 8 codeword
of the binary Golay code can be readily checked by using an extremely powerful (and playful!)
technique devised by Robert Curtis in the course of his extensive study of M24 [52] and that
we refer to as ‘mogging’, as it uses the Miracle Octad Generator (MOG). We have used a vari-
ant of the original technique, which was developed by Conway shortly after, and combines the
hexacode H6 with the Miracle Octad Generator (MOG). These tools are well-documented in
the literature (see [25] for instance), and we therefore confine ourselves to the bare essentials.

The hexacode H6 is a 3-dimensional code of length 6 over the field of four element F4 =
{0, 1, ω, ω2}, with ω3 = 1, 1 + ω = ω2, and ω̄ := ω2. It may be defined as

H6 = {(a, b, φ(0), φ(1), φ(ω), φ(ω̄))|a, b, φ(0) ∈ F4, φ(x) := ax2 + bx+ φ(0)}.

The MOG is given by a 4× 6 matrix whose entries are elements of F2 = {0, 1}, and therefore
provides binary words of length 24. To check which among those words are Golay codewords,
one proceeds in three steps.

1. Step 1: take a MOG configuration and calculate the parity of each 4-column of the
MOG and the parity of the top row (the parity of a column or a row being the parity
of the sum of its entries); they must be all equal.

14W.A. Stein et al., Sage Mathematics Software (Version 4.6.2 )
15The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12 ; 2008, http://www.

gap-system.org
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2. Step 2: to each 4-column with entries α, β, γ, δ ∈ F2, associate the F4 element β+γω+δω̄
called its score.

3. Step 3: check whether the set of six scores calculated from a given MOG form a hexacode
word. If they do, then the original MOG configuration corresponds to a Golay codeword.
One may take advantage of the fact that if (a, b, c, d, e, f) is a hexacode word, then so
are (c, d, a, b, e, f), (a, b, e, f, c, d) and (b, a, d, c, e, f).

For instance, the MOG configuration

0 1 1 0 0 0
0 1 0 0 1 0

0 0 1 1 1 0
0 0 0 1 0 0

is such that all parities of columns and of top row are even, so the configuration passes Step
1. The ordered scores are (0, 1, ω, 1, ω̄, 0), and one must attempt to rewrite this 6-vector as
(a, b, φ(0), φ(1), φ(ω), φ(ω̄)) for a quadratic function φ(x) = ax2 + bx + φ(0). In the present
case, a = 0, b = 1 and φ(0) = ω, so we see that φ(x) = x+ω, and hence φ(1) = ω̄, which differs
from the fourth entry of the ordered scores vector. The latter is therefore not a hexacode
word, and the MOG configuration does not yield a Golay codeword. The power of the MOG in
this context resides in the fact that all Golay codewords can be obtained as MOG codewords.

The connection between subsets of I = {1, . . . , 24} and Golay codewords is made possible
through the use of a special 4 × 6 array whose entries are the elements of I, distributed in
one of two ways, according to

24 23 11 1 22 2
3 19 4 20 18 10

6 15 16 14 8 17
9 5 13 21 12 7

M

or

23 24 1 11 2 22
19 3 20 4 10 18

15 6 14 16 17 8
5 9 21 13 7 12

M ′

(A.1)

The distribution M is the original Curtis configuration, while the mirror distribution M ′ is
due to Conway. Our labelling conventions for the codewords are compatible with the second
version M ′, but our results could be rederived using the version M , provided an appropriate
relabelling.

Starting with a subset of eight distinct elements of I, one constructs a MOG configuration
using M ′, where entries corresponding to elements in the subset are 1’s and the 16 other
entries are 0’s. It remains to apply Steps 1 to 3 to conclude whether or not the initial set
corresponds to a Golay codeword. For instance, the set {1, 2, 3, 4, 5, 6, 7, 8} corresponds to
the MOG configuration

0 0 1 0 1 0
0 1 0 1 0 0

0 1 0 0 0 1
1 0 0 0 1 0

M ′

,

which fails the parity test (Step 1), and therefore does not yield a Golay codeword. The same
technique may be used to check whether a subset of 12 elements in I is a dodecad.

As an application of the MOG technique, one can check that the following twelve codewords
form a basis of the Golay code:
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O1 = {1, 2, 16, 18, 5, 12, 22, 3}, O6 = {6, 3, 22, 4, 21, 17, 15, 9},
O7 = {7, 4, 19, 10, 12, 15, 8, 16}, O8 = {8, 7, 15, 17, 11, 23, 18, 16},
O16 = {16, 1, 2, 21, 4, 7, 8, 18}, O18 = {18, 1, 16, 8, 23, 13, 14, 5},

O20 = {20, 10, 11, 17, 14, 13, 22, 12}, O23 = {23, 3, 9, 19, 13, 18, 8, 11},
O24 = {24, 2, 10, 19, 9, 5, 14, 21}, D1 = {8, 7, 15, 9, 19, 23, 4, 22, 13, 18, 1, 16},

D2 = {18, 23, 13, 22, 3, 1, 11, 10, 2, 16, 7, 8}, D3 = {16, 1, 2, 10, 12, 7, 5, 9, 15, 8, 23, 18}.
(A.2)

We now indicate how one may show that the group T192 preserves the Golay code. Act
with each generator in (4.13) on a basis of the Golay code, for instance, the basis introduced
in (A.2), and show that the resulting sets of eight or twelve elements correspond to Golay
codewords. For instance, take the first generator from (4.13),

ι1 = (1, 11)(2, 22)(4, 20)(7, 12)(8, 17)(10, 18)(13, 21)(14, 16),

acting on the first basis vector O1,

ι1(O1) = ι1({1, 2, 16, 18, 5, 12, 22, 3}) = {11, 22, 14, 10, 5, 7, 2, 3}.

The corresponding MOG configuration is

0 0 0 1 1 1
0 1 0 0 1 0

0 0 1 0 0 0
1 0 0 0 1 0

M ′

,

which passes the parity test. Furthermore, the score vector is (ω̄, 1, ω, 0, ω, 0) and for the
MOG configuration to correspond to a Golay codeword, one needs to identify the score vector
with (ω̄, 1, φ(0), φ(1), φ(ω), φ(ω̄) where φ(x) = ω̄x2 + x + ω. Since φ(0) = ω, φ(1) = ω̄ +
1 + ω = 0, φ(ω) = ω̄ω2 + ω + ω = ω and φ(ω̄) = ω̄3 + ω̄ + ω = 0, we are through: the set
ι1({1, 2, 16, 18, 5, 12, 22, 3}) is an octad.

A related technique used in this work consists in constructing the unique octad associated
with 5 given elements of I via the MOG. Suppose we choose the set A = {3, 6, 14, 17, 18}
and wish to complete A so that one obtains an octad. First, one constructs a MOG start
configuration where one replaces the elements belonging to A by 1, and all elements in I \A
by nothing in the Conway MOG array M ′ of (A.1),

1 1

1 1 1

M ′

.

Then one observes that, were all the blanks replaced by 0’s, 3 columns would have odd parity,
and 3 would have even parity, while the top row also would have even parity. One has three
extra entries of 1 to distribute in such a way that the configuration passes the parity test. If
the solution corresponds to odd parity, columns 3, 5 and 6 cannot accommodate more entries
of 1, so the score vector is partially known and reads (a, b, ω, φ(1), ω, 1), with a, b ∈ F4 and
φ(x) = ax2 + bx + c. So φ(0) = c = ω and the system φ(ω) = aω̄ + bω + ω = ω;φ(ω̄) =
aω+ bω̄+ω = 1 has no solution for a, b ∈ F4. One thus tries a solution corresponding to even
parity. In this case, columns 1, 2 and 4 cannot accommodate more entries of 1 if one hopes to
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pass the parity test. The partial score is (0, ω̄, ω+n, 0, φ(ω), φ(ω̄)), with φ(x) = ω̄x+ω+n for
n = 0, 1 or ω̄. The equation φ(1) = ω̄+ω+n = 0 implies that n = 1. Thus φ(ω) = 1+ω+1 = ω
and φ(ω̄) = ω+ω+ 1 = 1. The reconstructed hexacode word is (0, ω̄, ω̄, 0, ω, 1) and the octad
MOG configuration is thus,

0 0 0 0 1 1
0 1 1 0 0 1

0 1 1 0 1 0
0 0 0 0 0 0

M ′

.

In other words, the unique octad formed from the partial knowledge encoded in the set
{3, 6, 14, 17, 18} is given by {2, 3, 6, 14, 17, 18, 20, 22}.

B Tables

The following tables provide a roadmap through our notations. They list the relevant lattices
that we introduce in sections 2 and 3 and which we use throughout this work. As a shorthand
we introduce the following notation: Consider an even unimodular lattice Γ. To state that
Γ can be obtained by the gluing construction of proposition 2.1.1 from a pair of primitive
sublattices Λ, V ⊂ Γ, where Λ and V are orthogonal complements of one another in Γ, we
write Γ = Λ 1 V.
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signature lattice Ref. in text

(4,m−), LG sublattice of H∗(X,Z) invariant
m− ≥ 1 under a group G of symplectic Prop. 3.2.4

automorphisms preserving the
dual Kähler class

(0, 20−m−), LG = (LG)⊥ ∩H∗(X,Z) Prop. 3.2.4
m− ≥ 1

(0, 22− l−), MG := LG ⊕ spanZ{e, υ0 − υ} Prop. 3.3.6
l− ≥ 2

(4, l− − 2), M ′G := π∗((H2(T,Z))G
′
T )⊕ spanZ{υ0 + υ} Prop. 3.3.6

l− ≥ 2 = M⊥G ∩H∗(X,Z)

(0, 1) ΠG := Π ∩H∗(X,Z)G Prop. 3.3.6
= spanZ{e}

Table 2: Notations for lattices introduced in section 3 and used throughout the text. G
denotes the group of dual Kähler class preserving symplectic automorphisms of a Kummer
surface X with complex structure and dual Kähler class induced from the underlying torus
T . The group of non-translational holomorphic symplectic automorphisms of T is G′T .
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