
ar
X

iv
:0

81
1.

20
49

v2
  [

he
p-

th
] 

 2
6 

N
ov

 2
00

8

Conformal non-relativistic hydrodynamics from gravity

Mukund Rangamania∗, Simon F. Rossa†, D. T. Sonb‡, Ethan G. Thompsonc§

a Centre for Particle Theory & Department of Mathematical Sciences,

Science Laboratories, South Road, Durham DH1 3LE, United Kingdom.

b Institute for Nuclear Theory, University of Washington, Seattle, WA, 98195-1550, USA

cDepartment of Physics, University of Washington, Seattle, WA, 98195-1560, USA

November 26, 2008

DCPT-08/61

INT PUB 08-48

Abstract

We show that the recently constructed holographic duals of conformal non-relativistic

theories behave hydrodynamically at long distances, and construct the gravitational

dual of fluid flows in a long-wavelength approximation. We compute the thermal

conductivity of the holographic conformal non-relativistic fluid. The corresponding

Prandtl number is equal to one.

∗mukund.rangamani@durham.ac.uk
†s.f.ross@durham.ac.uk
‡son@phys.washington.edu
§egthomps@u.washington.edu

http://arXiv.org/abs/0811.2049v2


Contents

1 Introduction 1

2 Light-cone reduction of relativistic fluids 4

2.1 Ideal fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Viscous fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Thermal description of non-relativistic CFTs 9

4 Hydrodynamic description of non-relativistic CFTs 12

4.1 Gravitational dual of a non-relativistic fluid: Direct construction . . . . . . . 13

4.2 Inhomogeneous black holes via TsT transform . . . . . . . . . . . . . . . . . 14

4.3 Properties of black holes dual to non-relativistic fluids . . . . . . . . . . . . . 16

5 Discussion 18

A Hamiltonian calculation in the bulk 20

1 Introduction

The AdS/CFT correspondence [1, 2, 3] provides an important theoretical framework for

studying a class of strongly coupled quantum field theories, and at the same time provides a

non-perturbative approach to quantum gravity. Traditionally, the correspondence has been

used to study the dynamics of non-abelian gauge theories, since the prototype examples of the

correspondence relate string theory/gravity in AdS spacetimes to supersymmetric Yang-Mills

theories. However, in recent times the correspondence has been extended to study various

condensed matter systems, especially those in the vicinity of a quantum critical point (see [4]

and references therein). An example is the possible application to non-relativistic fermions

at unitarity [5, 6], which is the focus of the current paper.

Fermionic systems at unitarity, which are realized in experiments with cold atoms, are

described by a non-relativistic CFT. This field theory enjoys a symmetry algebra called

the Schrödinger algebra [7, 8, 9]. The authors of [5, 6] proposed a class of spacetimes which

could describe field theories with non-relativistic conformal invariance holographically, whose
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metric is

ds2 = r2
(
−2 dx+ dx− − β2 r2 (dx+)2 + dx2

d

)
+
dr2

r2
. (1.1)

These have the Schrödinger algebra as an isometry algebra, and we will henceforth refer to

them as Schr spacetimes. A Galilean CFT in d-spatial dimensions is conjectured to be dual

to Schrd+3.

Subsequently, the Schr5 spacetime was realized in string theory [10, 11, 12].1 It was

obtained by starting from a known type IIB solution, the AdS5 × X5 spacetime, where

X5 is a Sasaki-Einstein manifold, and applying a solution-generating transformation, either

the Null Melvin Twist [33, 34] or the TsT transformation [35], to generate the spacetime

Schr5 × X5. The TsT transformation involves a T-duality, followed by a shift, and then a

second T-duality. This can be used in any spacetime with a U(1) × U(1) isometry and, in

general, can be thought of as a Melvin Twist, since the transformation adds a background

NS-NS B-field, effectively Melvinizing the spacetime. The Null Melvin Twist can be shown to

be equivalent to the TsT transformation in the special case when one of the U(1) isometries

is null.

Since the string-theoretic embedding of the Schr5 spacetimes can be achieved by using

dualities, we can see that the dual field theory is a deformed version of N = 4 SYM theory

(for the special case of X5 = S5). The transformation in [10, 11, 12] breaks the SU(4)

symmetry of N = 4 down to an SU(3) × U(1) subgroup, and the field theory is then the

theory twisted by the R-charge associated with the U(1) isometry. One can also view the

field theory as the one obtained by decoupling the open string field theory living on D3-

branes in a Null Melvin spacetime. More generally any N = 1 superconformal field theory

in 3+1 spacetime dimensions (corresponding to a dual Sasaki-Einstein compactification) can

be deformed to a two dimensional (spatial) non-relativistic CFT using the U(1)R symmetry.

Using the same solution-generating transformation, the authors of [10, 11, 12] constructed

a two-parameter family of black hole spacetimes with Schr5 asymptotics. These black holes

can be shown to solve the five-dimensional effective equations of motion obtained by a

Kaluza-Klein reduction of the 10-dimensional type IIB theory on the X5. The simplest five

dimensional effective action is composed of gravity coupled to a massive vector field and a

single scalar field [10], which is a truncation of a more general five-dimensional Lagrangian

involving three scalar fields. The latter, remarkably, is a consistent truncation of type IIB

supergravity on X5 [11].

This black hole solution was used to study the equilibrium thermodynamic properties

of the field theory and was shown to be dual to the grand canonical ensemble for the dual

field theory. The thermodynamics is, not surprisingly, consistent with non-relativistic scale

invariance in two spatial dimensions. In particular, it was found that ε = P , where ε is the

1For other recent studies of non-relativistic systems in the context of gauge-gravity duality see [13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].
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energy density and P is the pressure, as required in non-relativistic CFTs. Furthermore,

non-equilibrium transport properties of the non-relativistic plasma were also explored in

[10, 12]. In particular, the shear viscosity η of the non-relativistic fluid was calculated and

found to take the universal value η/s = 1/4π typical of strongly interacting field theories

with gravity duals.

The present paper is concerned with constructing the gravitational dual of arbitrary fluid

flows in the non-relativistic CFT. The basic premise is to build on the recent ideas in the

fluid-gravity correspondence [36] to construct inhomogeneous black hole solutions with Schr5

asymptotics. The hydrodynamic description of a fluid (either relativistic or non-relativistic)

is an effective field theory which captures the universal long wavelength physics when the

system achieves local thermal equilibrium. Building upon previous discussions of the hy-

drodynamic description of four-dimensional superconformal field theories in the AdS/CFT

correspondence (see [37] and references therein), in [36] it was argued that starting from the

most general black hole solution in AdS (a boosted Schwarzschild-AdS black hole) one can

promote the temperature and velocity fields to local functions of the boundary coordinates.

It is then possible to solve for the bulk metric order by order in a boundary derivative ex-

pansion and recover the relativistic Navier-Stokes equations, which encode the conservation

of the boundary energy-momentum tensor, entirely as a consequence of Einstein’s equations.

Importantly, it is possible to show that the resulting bulk solutions are genuine black holes,

i.e. that they have a regular event horizon [38]. This correspondence has been extended in

many directions, including to forced fluids [39], to conformal field theories in various dimen-

sions [40, 41, 42], to charged fluids [43, 44, 45], to Bjorken flow [46, 47], and incompressible

non-relativistic fluids [48].

We are interested in constructing inhomogeneous black hole solutions with Schrödinger

asymptotics and extending the fluid-gravity correspondence to relate them to fluid flows in

the non-relativistic conformal theory. As a first step, we note that a four parameter family

of black hole solutions with Schr5 asymptotics can be obtained by boosting the solutions

considered in [10, 11, 12]. We can then promote these parameters to functions of the field

theory coordinates and find the solution order by order in a boundary derivative expansion.

However, we will show that we can obtain inhomogeneous black hole solutions with the de-

sired asymptotics in an easier way, by simply applying a TsT transformation to the solutions

constructed in [36]! We will argue that this in fact captures all the hydrodynamic properties

of the system in the planar limit.

To relate these inhomogeneous black hole solutions to fluid flows, we need to calculate

the boundary stress tensor from the bulk solutions. Because of the slow fall-off of the metric

perturbation in the asymptotically Schrödinger black holes, the usual technique of obtaining

the stress tensor by functionally differentiating the action with respect to the boundary

metric cannot be straightforwardly applied to these cases (see Appendix A for a discussion

of this issue). However, [11] proposed that the stress tensor of the asymptotically AdS
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space before the TsT transformation can be re-interpreted as the stress tensor complex of

the non-relativistic theory. We will adopt this approach. We therefore describe the general

reduction of a relativistic stress tensor on the light cone to obtain a non-relativistic stress

tensor complex. The structure of the relativistic conformal stress tensor implies that for any

non-relativistic conformal theory obtained in this way, the thermal conductivity κ of the

non-relativistic fluid is

κ = 2 η
ε+ P

ρT
(1.2)

where ρ is the mass density, or, even more succinctly,

Pr = 1 (1.3)

where Pr is the Prandtl number.

The outline of this paper is as follows: we will begin in §2 by discussing how the rel-

ativistic fluid equations are reduced on the light-cone to the non-relativistic Navier-Stokes

equations. This will allow us to explore the general properties of the non-relativistic stress-

tensor complex. We will review some aspects of the Schr5 solutions in §3 and then describe

how to construct inhomogeneous black hole solutions dual to arbitrary fluid flow and give

the dual stress tensor to first order in derivatives in §4. We end with a discussion in §5.

2 Light-cone reduction of relativistic fluids

Consider a relativistic fluid in Minkowski space in d + 2 spacetime dimensions; we will use

light-cone coordinates {x+, x−,x} and take the metric to be

ds2
flat = ηµν dx

µ dxν = −2 dx+ dx− + dx2. (2.1)

Suppose we view this fluid in the light-cone frame and evolve it in light-cone time x+.

Then, for fixed light-cone momentum P−, we obtain a system in d+ 1 dimensions with non-

relativistic invariance. This is of course familiar from the discrete light-cone quantization

(DLCQ) of quantum field theories. In fact, one of the models for studying non-relativistic

conformal field theories holographically, suggested in refs. [13, 14], was that one could con-

sider pure AdS, with the relativistic conformal symmetry broken to Galilean symmetry

simply by compactification of the x− coordinate, which singles out a preferred light-cone di-

rection. Note that in this case we are not only compactifying the light-cone direction in the

boundary where gravity is non-dynamical (and the metric flat, (2.1)), we are also required

to compactify the coordinate in the bulk AdS spacetime. This involves introducing closed

null curves in the geometry and the validity of supergravity becomes questionable [11]. We

will return to a different gravitational background, viz. (1.1), where x− does not need to be

compactified to achieve Galilean symmetry. Note however that it is still useful to take x−
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compact, so that the momentum P− is integer quantized, since P− is interpreted as particle

number in the dual theory.

Relativistic hydrodynamics in d + 2 dimensions is formulated in terms of pressure (or,

equivalently, the temperature) and the four velocity uµ, subject to the condition that ηµν u
µ uν =

−1. This gives d+ 2 degrees of freedom. At the same time, non-relativistic hydrodynamics

in d spatial, one temporal dimensions can be formulated in terms of the mass density ρ, the

pressure P , and the spatial velocities vi, also giving d+ 2 degrees of freedom.

We would like to find a mapping between the degrees of freedom of the (d+2)-dimensional

theory to the degrees of freedom of the d + 1 dimensional theory such that the relativistic

hydrodynamic equations imply the non-relativistic hydrodynamic equations. We would also

like to find how the thermodynamic quantities of the two formulations are related. Finally,

we plan to use the map to find out the thermal conductivity of the non-relativistic theory.

We will first begin with ideal hydrodynamics and then discuss dissipative terms.

2.1 Ideal fluids

The relativistic hydrodynamics equations are just the conservation of energy and momentum

∇µT
µν = 0. (2.2)

An ideal relativistic fluid has a stress tensor given by2

T µν = (ǫrel + Prel) u
µ uν + Prel η

µν , (2.3)

where the energy density ǫrel is related to the pressure Prel by a thermodynamic equation of

state. Equations (2.2) and (2.3) define a system of d+ 2 equations for the d+ 2 unknowns.

Non-relativistic ideal hydrodynamics is described by the continuity equation,

∂tρ+ ∂i
(
ρ vi

)
= 0, (2.4)

together with the equation of momentum conservation, (here i = 1, . . . , d)

∂t(ρ v
i) + ∂jΠ

ij = 0, Πij = ρ vi vj + δijP , (2.5)

and the equation of energy conservation,

∂t

(
ε+

1

2
ρ v2

)
+ ∂i j

i
ε = 0, jiε =

1

2
(ε+ P ) v2 vi . (2.6)

where v2 = vi vi.

2We use the subscript “rel” for quantities in relativistic hydrodynamics and indicate quantities in non-

relativistic hydrodynamics without subscripts.
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Consider the relativistic equations (2.2) on the light-cone. We will consider only solutions

to the relativistic equations that do not depend on x−; that is, all derivatives ∂− vanish. The

coordinate x+ corresponds to the non-relativistic time t. The equations of energy-momentum

conservation are,

∂+T
++ + ∂iT

+i = 0 , ∂+T
+i + ∂jT

ij = 0 , ∂+T
+− + ∂iT

−i = 0, (2.7)

which reduce to the non-relativistic equations under the following identification: identify T++

with the mass density, T+i with the mass flux (which is equal to the momentum density),

T ij with the stress tensor, T+− with the energy density, and T−i with the energy flux,

T++ = ρ, T+i = ρ vi, T ij = Πij ,

T+− = ε+
1

2
ρ v2, T−i = jiε. (2.8)

It is now easy to convince oneself based on (2.8) that the precise mapping between

relativistic and non-relativistic hydrodynamic variables is

u+ =

√
1

2

ρ

ε+ P
, ui = u+ vi,

Prel = P , ǫrel = 2 ε+ P. (2.9)

The component of the relativistic velocity u− can be determined using the normalization

condition uµ u
µ = −1 to be

u− =
1

2

(
1

u+
+ u+ v2

)
. (2.10)

While the analysis has been for a general relativistic fluid with an equation of state

ǫrel(Prel), we will soon focus on conformal fluids. Conformal invariance requires that the

stress tensor for the relativistic theory be traceless, T µµ = 0, which gives us the equation of

state ǫrel = (d + 1)Prel. In the non-relativistic theory we can once again use the conformal

invariance to learn that 2 ε = d P .

2.2 Viscous fluids

We now wish to extend our mapping of relativistic hydrodynamics into non-relativistic hy-

drodynamics to first order in derivatives on both sides. The ideal stress energy tensor (2.3)

can be supplemented with dissipative terms, which can be expanded systematically in terms

of derivatives of the velocity field and pressure. Specifically, we have

T µν = (ǫrel + Prel) u
µ uν + ηµνPrel + πµν , (2.11)

where πµν incorporates all the dissipative contributions. For first order viscous hydrodynam-

ics we have

πµν = −2 ηrel τ
µν , (2.12)
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where

τµν =
1

2
P µα P νβ

(
∇αuβ + ∇βuα −

2

d+ 1
ηαβ ∇γu

γ

)
(2.13)

is the shear tensor and we have introduced the spatial projector P µν = ηµν + uµ uν .

We will use the zeroth-order equations of motion to simplify the viscosity term. By

using zeroth-order equations, we make an error of second order in derivatives, which can be

neglected. Namely, we use the ideal hydrodynamic equations in the following form,

uµ∇µǫrel + (ǫrel + Prel)∇µu
µ = 0,

uν ∇νuµ +
∇µ

⊥
Prel

ǫrel + Prel
= 0, where ∇µ

⊥
≡ P µα∇α , (2.14)

to rewrite the stress-energy tensor as

T µν = (ǫrel + Prel) u
µ uν + Prel η

µν

− ηrel

(
∇µuν + ∇νuµ − 2

d+ 1
P µν ∇αu

α − (uµ∇ν
⊥

+ uν ∇µ
⊥
)Prel

ǫrel + Prel

)
.(2.15)

On the non-relativistic side, we use the ideal hydrodynamic equations in the form

∂tρ+ ∂i(ρ v
i) = 0,

∂tv
i + vj ∂jv

i +
1

ρ
∂iP = 0,

∂t ε+ ∂i(ε v
i) + P ∂jv

j = 0. (2.16)

The first-order contributions to the (spatial) stress tensor and the energy flux are

Πij = ρ vi vj + P δij − η σij, σij = ∂ivj + ∂jvi − 2
d
δij ∂kv

k,

jiε =
(
ε+ P + 1

2
ρ v2

)
vi + η σij vj − κ ∂iT, (2.17)

where κ is the thermal conductivity and T is the temperature.

By using (2.15) and (2.17), we now establish the mapping between relativistic and non-

relativistic viscous hydrodynamics. First, we find τ++ = 0, and therefore

T++ = (ǫrel + Prel) (u+)2. (2.18)

The identification T++ = ρ implies then that

u+ =

√
ρ

ǫrel + Prel
, (2.19)

unchanged from the ideal hydrodynamic level (2.9).

Next, we find

τ i+ = −ηrel

(
∂iu

+ − u+ ∂iPrel

2 (ǫrel + Prel)

)
. (2.20)
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On the other hand, we still want to map T+i = ρ vi. This means that there is now a

correction to the relation between ui and vi:

ui = u+

[
vi +

ηrel

ρ

(
∂iu

+ − u+

2 (ǫrel + Prel)
∂iPrel

)]
. (2.21)

For T ij, after some algebra, we find

T ij = ρ vi vj + Prel δ
ij − ηrel u

+

(
∂ivj + ∂jvi −

2

d
δij ∂kv

k

)
, (2.22)

which implies that the pressures on the two sides still coincide,

Prel = P, (2.23)

and the relationship between the viscosities is

ηrel =
η

u+
. (2.24)

Note that our identifications automatically give a first-order correction σij in the non-

relativistic theory with the correct tensor structure. That is, the trace-free relativistic shear

tensor gives a trace free spatial stress tensor in the non-relativistic theory.

Regarding the other components of the stress tensor, after some calculations involving

many cancellations, one discovers that T+− is

T+− =
1

2
(ǫrel − Prel) +

1

2
ρ v2, (2.25)

which means that the relationship between relativistic and non-relativistic energy densities

remain unchanged,

ǫrel = 2 ε+ P. (2.26)

Finally, for T−i we find

T−i =

(
ε+ P +

1

2
ρ v2

)
vi − ηrel u

+σij vj + ηrel δ
ij ∂ju

+

(u+)2
− ηrel

u+

ρ
δij ∂jP. (2.27)

Thus we have to require that

ηrel
∂iu

+

(u+)2
− ηrel

u+

ρ
∂iP = −κ ∂iT. (2.28)

In order to see that the left hand side is indeed proportional to ∂iT , we need to use the

mapping (2.19) and the equation of state for a non-relativistic theory.

Focusing specifically now on conformally invariant fluids, using (2.19) and ε = d
2
P , we

find

ηrel
∂iu

+

(u+)2
− ηrel

u+

ρ
∂iP = −ηrel

√
ε+ P

2 ρ
∂i ln

(
P (d+4)/(d+2)

ρ

)
. (2.29)
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Recalling that the equation of state of the holographic non-relativistic liquid is [25]

P = α

(
T 2

µ

)(d+2)/2

, (2.30)

the argument of the logarithm in (2.29) is T 2 up to a constant. Therefore, the left hand

side of (2.28) is indeed proportional to ∂iT , and one reads out the value for the thermal

conductivity:

κ = 2 η
ε+ P

ρT
. (2.31)

Let us now compute the Prandtl number. The Prandtl number is defined as the ratio of

the kinematic viscosity ν and the thermal diffusivity χ,

Pr =
ν

χ
, (2.32)

where

ν =
η

ρ
, χ =

κ

ρ cp
, (2.33)

where cp is the specific heat at constant pressure. We note the definition of the heat capacity

at constant volume:

Cv =

(
∂H

∂T

)

P,N

, (2.34)

where H = E + PV is the enthalpy. Write H = w V = wN/n. We then find

Cp = N
∂

∂T

(w
n

)

P
= −N w

n2

(
∂n

∂T

)

P

(2.35)

where we have used the fact that w = (d/2+1)P and is fixed at fixed P . At fixed P , µ ∼ T 2,

and n = ∂P/∂T ∼ 1/T 2, and ∂n/dT = −2n/T . Therefore

Cp =
2wN

T n
(2.36)

and cp = Cp/M (M being the total mass) is equal to 2w/ρT . Thus we find:

Pr =
2w η

ρT κ
= 1. (2.37)

Note that this result is valid for any non-relativistic conformal fluid obtained from the DLCQ

of a relativistic conformal fluid.

3 Thermal description of non-relativistic CFTs

Non-relativistic conformal field theories with Schrödinger symmetry in d spatial dimensions

are dual to Schrd+3 spacetime [5, 6]. The Schr5 spacetimes can be realized in string theory as
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the near-horizon geometry of D3-branes probing a Null Melvin universe [10].3 Furthermore,

this background can be obtained as a solution to a 5-dimensional Lagrangian which is a

consistent truncation of IIB supergravity [11], involving gravity coupled to a massive vector

field and three scalars:

Sbulk =
1

16 πG5

∫
d5x

√−g
(
R + V (φi) − 5 (∂φ1)

2 − 15

2
(∂φ2)

2 − 1

2
(∂φ3)

2

−1

4
g(φi)FµνF

µν − 4 e−2φ1−3φ2−φ3 AµA
µ

)
,

V (φi) = 24 e−φ1−4φ2 − 4 e−6φ1−4φ2 − 8 e−10φ2 ,

g(φi) = e4φ1+φ2−φ3 . (3.1)

In fact, all known solutions are solutions to a slightly simpler theory outlined in [10], where

the three scalars are linearly related as

{φ1, φ2, φ3} = {−2

5
,− 1

15
, 1}φ. (3.2)

This allows one to consider the five-dimensional effective action

S =
1

16 πG5

∫
d5x

√−g
(
R − 4

3
(∂µφ)(∂µφ) − 1

4
e−8φ/3FµνF

µν − 4AµA
µ − V (φ)

)
, (3.3)

where

V (φ) = 4 e2φ/3(e2φ − 4). (3.4)

The field theory on the D-branes in the appropriate decoupling limit is N = 4 Super

Yang-Mills plus a non-commutative deformation, giving rise to a version of the dipole field

theories discussed in [33, 49]. Consider the fields in N = 4 SYM (with gauge group SU(N))

which transform under the global symmetry SO(4, 2)× SO(6). Picking a U(1) ⊂ SO(6) we

deform the field theory by replacing ordinary products appearing in the Lagrangian by a

star-product [11]

f ⋆ g = ei β (P f
−
Rg−P g

−
Rf) fg (3.5)

where P− is the momentum along the null x− direction and R is the U(1) charge. This prod-

uct is a hybrid between the usual non-commutative star-product which only involves spatial

momenta and the β-deformation of N = 4 which involves only the R-charges. Of importance

later will be the fact that this deformed field theory inherits some of the properties from

N = 4 SYM. In the large N limit we in fact expect that the planar sector of the deformed

theory to be identical to that of N = 4 SYM [11].4

3The near-horizon limit in this case needs to be taken keeping in mind that we want to realize the scaling

symmetry consistent with the Schrödinger algebra. We thank James Lucietti for a useful discussion about

this issue.
4As discussed in §1 these statements extend to generic N = 1 superconformal field theories which we deform

by a U(1)R symmetry.
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The Lagrangian (3.3) has a black hole solution which was obtained by the Null Melvin

Twist [10, 12] or TsT solution-generating transformation [11] in 10 dimensions. The black

hole geometry is given as

ds2
E = r2 k(r)−

2

3

([
1 − f(r)

4 β2
− r2 f(r)

]
(dx+)2 +

γ2

r4
(dx−)2 − [1 + f(r)] dx+ dx−

)

+ k(r)
1

3

(
r2dx2 +

dr2

r2 f(r)

)
, (3.6)

with the massive vector and scalars taking the form

A =
r2

k(r)

(
1 + f(r)

2
dx+ − γ2

r4
dx−

)
,

eφ =
1√
k(r)

, (3.7)

where f(r) and k(r) are

f(r) = 1 − r4
+

r4
, k(r) = 1 +

γ2

r2
, (3.8)

with γ2 ≡ β2 r4
+. Note that in these light-cone coordinates, the solution asymptotically

approaches the vacuum solution (1.1) at large r, and also reduces to (1.1) when we set

r+ = 0. It has been argued in [10] that the black hole spacetime (3.6) corresponds in the

field theory to a grand canonical ensemble at temperature

T =
r+
π β

(3.9)

and a chemical potential for particle number

µ =
1

2 β2
. (3.10)

Note that the Schrödinger algebra involves a conserved charge associated with particle num-

ber, which geometrically is realized via the Killing field ∂−. These results were obtained with

minor differences in the derivation in [11, 12].

Using a Euclidean action calculation, the authors of [10] derived the conserved charges

of the black hole. This calculation required a careful analysis of the boundary counter-

terms, since the metric (3.6) has rather complicated asymptotics. In Appendix A we discuss

the calculation of the conserved charges in a Hamiltonian formulation, supplementing the

analysis of [10]. The conserved charges associated with the Killing symmetries ∂− and ∂+

in (3.6) translate in the field theory to particle number N and total energy E. To obtain

finite values we assume that the x−-direction is compactified with period ∆x−. The results

obtained in [10] are

〈N〉 = 〈P−〉
∆x−

2π
=

π2 T 4

64G5 µ3
V (∆x−)2 =

γ2

8π2G5

V (∆x−)2, (3.11)
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and

〈E〉 =
π3 T 4

64G5 µ2
V ∆x− =

r4
+

16πG5

V ∆x−, (3.12)

where we have given the results in terms of the physical temperature and chemical potential,

and also in terms of the parameters in the bulk solution to emphasize the physical interpre-

tation of the parameters γ and r+. Furthermore, the pressure is given in the grand canonical

ensemble directly in terms of the Gibbs potential Q(T, µ, V ):

P V = −Q(T, µ, V ) =
π3 T 4

64G5 µ2
V ∆x− , (3.13)

leading thus to an equation of state

P V = E =⇒ P = ε. (3.14)

In addition, we note for future reference that the entropy of the black hole is given by

S =
π3 T 3

16G5 µ2
V ∆x− . (3.15)

4 Hydrodynamic description of non-relativistic CFTs

The black hole solution (3.6) corresponds to an equilibrium configuration of the non-relativistic

field theory. We would like to study departures from equilibrium in the continuum limit by

considering local patches of the field theory in local equilibrium. This is the hydrodynamic

limit, where one has local variations of energy density and particle number; these local

domains evolve according to the laws of hydrodynamics which were described in §2.

To obtain a gravitational description of the fluid dynamical regime, we need to patch to-

gether local domains of equilibrated fluid – the precise manner in which this can be achieved

was outlined in [36]. The authors presented an algorithmic procedure to construct gravita-

tional solutions starting from the equilibrium black hole solution. The idea is to consider the

most general stationary solution for the equilibrium – for the case of relativistic supercon-

formal theories in d + 2 dimensions, this is given by a boosted Schwarzschild-AdSd+3 black

hole, which is specified by d+1 parameters: a horizon size r+ and a unit normalized velocity

field uµ. Choosing Eddington-Finkelstein like ingoing coordinates which are regular on the

horizon, the metric takes the form:

ds2 = 2 uµ dx
µdr − r2 f(r) uµuν dx

µdxν + r2 Pµν dx
µdxν (4.1)

where Pµν = ηµν +uµ uν is the spatial projector introduced earlier and f(r) = 1− (r+/r)
d+2.

To study the hydrodynamic configurations one promotes the parameters r+ and uµ to

functions of the boundary coordinates xµ. Then one recursively solves for the bulk metric

12



order by order in a boundary derivative approximation. This procedure was systematically

carried out to second order in [36]. To ensure regularity of the bulk solution, and in particular

to guarantee the existence of a regular future event horizon, it was necessary to adapt

coordinates wherein lines of constant boundary xµ corresponded to ingoing null geodesics

in the bulk. This coordinate chart was utilized in identifying how the locally equilibrated

boundary domains evolve in the bulk radial direction – the fluid in such a domain was evolved

along a tube in the bulk centered about the ingoing null geodesic. The size of these tubular

domains is set by the local energy density and they provide the bulk analog of patching

together pieces of equilibrated fluid.

4.1 Gravitational dual of a non-relativistic fluid: Direct construction

We now turn to the analogous calculation for the non-relativistic CFT discussed in §3. We

should first write the metric (3.6) in a form that is regular through the future horizon. To

do so, perform a coordinate transformation

x+ → x+ + β p(r) , x− → x− +
1

2 β
p(r) (4.2)

with p(r) chosen such that the metric is regular on the horizon r = r+. A convenient choice

is5

p′(r) =
1

r2 f(r)
, (4.3)

leading to a metric

ds2 = r2 k(r)−
2

3

([
1 − f(r)

4β2
− r2 f(r)

]
(dx+)2 +

γ2

r4
(dx−)2 − [1 + f(r)] dx+ dx−

)

−k− 2

3

[(
1

β
+ 2 β r2

)
dx+ + 2 β dx−

]
dr − k−

2

3 β2 dr2 + k(r)
1

3 r2dx2 . (4.4)

This gives a two-parameter family of solutions of the 5d effective Lagrangian (3.3). We

can construct a four parameter family of solutions trivially by performing a boost via the

coordinate transformation

x → x + v x+ , x− → x− + v · x +
1

2
v2 x+. (4.5)

Since the background metric (1.1) has Galilean invariance, this boost does not change the

asymptotic form of the metric.

This boosted black hole, characterized by the parameters {r+, β,v}, is the starting point

for a systematic hydrodynamic analysis. Following [38] we should promote the parameters

5If one wanted further ∂r to be null then one could instead choose p′(r) = ±
√

k(r)
1+β2 r2

1
r2 f(r) .
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{r+, β,v} to fields depending on (x+,x) and consistently solve the equations of motion

order by order in derivatives in the x+ and x directions. This process, while straightforward,

is rendered cumbersome by the presence of additional fields in the action (3.1). We will

therefore resort to a trick to recover the dual geometry.

4.2 Inhomogeneous black holes via TsT transform

The solution we want to obtain is characterized by four parameters depending on the coordi-

nates (x+,x). The general inhomogeneous black hole of [36] also depends on four parameters,

r+ and uµ, and if we specialize to solutions independent of x−, they also depend on the coor-

dinates (x+,x). For such solutions, we can then apply the same TsT transformation used to

obtain the black hole solution (3.6) to obtain inhomogeneous black holes with Schrödinger

asymptotics. Since these solutions will by construction reduce to (3.6) when the parameters

are constants, we argue that they are precisely the required inhomogeneous solutions. Below,

we discuss the action of the TsT transformation on the solution of [36].

The TsT transformation is a solution-generating technique in string theory wherein one

uses a twisted T-duality to add NS-NS flux to a given solution [35]. Consider a solution to

type IIB supergravity of the form M5 × X5 where X5 is a Sasaki-Einstein space, which we

view as a U(1) fibration over a base B, and M5 is a constant negatively curved spacetime,

which we will take to be asymptotically AdS5. The simplest case is when X5 = S5 and

the base is thus a CP2. We assume that M5 admits a Killing vector field ∂−, so that

M5 × X5 has an isometry group U(1)x− × U(1)ψ. Viewed as an eight dimensional solution

upon Kaluza-Klein reduction, we have an SL(2,R) symmetry group, which can be used to

generate new solutions. This is the TsT transformation.

We start from the solutions dual to arbitrary fluid flow for hydrodynamics of relativistic

superconformal theories of [36],

ds2 = gAB dX
A dXB = −2 uµ S(r, x) dxµ dr + χµν(r, x) dx

ν dxν , (4.6)

where XA = {xµ, r}. The metric dual to viscous fluid dynamics for the relativistic conformal

fluids is given by (4.6) with S(r, x) = 1 and

χµν = r2 (Pµν − f(r, x) uµ uν) +
2

r+
r2 F (r, x) τµν +

2

3
r uµ uν ∇λu

λ − r uλ∇λ (uνuµ) , (4.7)

where Pµν is the spatial projector defined after (2.13), f(r, x) is the function f(r) appearing

in (3.8) with r+ → r+(x), and

F (r, x) =
1

4

[
ln

(
(r + r+(x))2(r2 + r+(x)2)

r4

)
− 2 arctan(r/r+(x)) + π

]
. (4.8)

It is important to note that uµ and r+ are no longer parameters, but regarded as functions of

xµ. To apply the TsT transformation, we need to choose a direction x−, and assume r+, uµ
are independent of x−.
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The general map between the parameters of a relativistic fluid and the parameters of

a non-relativistic fluid to first order in derivatives was written in (2.19), (2.21) and (2.23).

When we write the relativistic fluid in terms of the gravitational dual spacetime, we can

rewrite this mapping as a mapping between the functions r+, uµ characterizing the asymp-

totically AdS spacetime and the functions r+, β, vi appropriate in the non-relativistic case.

The function r+ is the same in both descriptions, and the map from uµ to β, vi is

u+ = β, ui = β

[
vi +

1

4β2
∂i
β

r+

]
. (4.9)

The full 10 dimensional metric is a direct sum of the metric gAB on M5 given in (4.6)

and a Sasaki-Einstein space X5,

ds2
E = gAB dX

A dXB + h2 (dψ + A)2 + ds2(B),

F(5) = 4 (Vol(M5) + hVol(B) ∧ (dψ + A)) . (4.10)

Under the TsT transformation the metric (4.10) gets mapped to a new solution of Type IIB

supergravity [11]6

ds2
E = e−

ϕ
2

(
gAB dX

A dXB − e2ϕ h2 gA− gB− dX
AdXB + e2ϕ h2 (dψ + A)2 + ds2(B)

)
,

F(5) = 4 (Vol(M5) + Vol(B) ∧ h (dψ + A)) ,

B(2) = e2ϕ h2 gB− dX
B ∧ (dψ + A),

e−2ϕ = 1 + h2 g−− . (4.11)

This solution can be Kaluza-Klein reduced back to five dimensions to give a metric (restrict-

ing to situations where the norm of the Reeb vector ∂ψ is fixed to h2 = 1),

ds2
5 = e−

2

3
φ

(
gAB − e2φ gA− gB−

)
dXA dXB, (4.12)

supported by

A = e2φ gA− dX
A,

e2φ =
1

1 + g−−

. (4.13)

As before this five dimensional solution solves the equations of motion arising from (3.1)

with the scalars being related as in (3.2).

6In [11], the TsT transformation involved an arbitrary parameter σ; however, this can be absorbed into

a redefinition of the coordinate x− by a boost in the x± plane. We have found it more transparent to fix

the parameter in the TsT transformation and keep instead the velocity β in (4.9) as the free parameter

corresponding to the choice of x−.
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Restricting to configurations which have ∂− as an isometry, after a TsT transformation

on the metric (4.6) we get a new metric of the form

ds2
E = e−

2

3
φ

(
−2 uµ S dxµ dr +

[
χAB − χ̃A χ̃B

1 + χ−−

]
dXA dXB

)
,

A = e2φ χ̃A dX
A,

e2φ =
1

1 + χ−−

, (4.14)

with

χ̃A = χA− − u− S δrA . (4.15)

The TsT transform converts the asymptotically AdS5 spacetime (4.6) to an asymptotically

Schr5 spacetime, which depends on the r+, β, vi defined in (4.9) which are arbitrary functions

of (x+,x). This provides the required inhomogeneous generalization of the black hole solution

(3.6). We will not write the result of applying the transformation more explicitly, as it is

quite complicated, and its construction is a straightforward exercise. Also note that since

the internal manifold X5 plays a minimal role in our construction, it is easy to verify that the

solution (4.14) also solves the consistent truncation action (3.1) with the scalars still related

according to (3.2).

4.3 Properties of black holes dual to non-relativistic fluids

We will now discuss some of the physical properties of the solution (4.14). The solutions

(4.14) are the most general long-wavelength regular solutions dual to configurations of the

dual non-relativisitic conformal field theory and are valid to leading order in the boundary

derivative expansion. These geometries solve the field equations arising from (3.3) provided

the boundary stress tensor complex satisfies the non-relativistic Navier-Stokes equations.

This follows from the fact that (4.6) are the most general regular solutions dual to the

relativistic field theory and that the regularity properties of the black hole solutions are

unaffected by the TsT transformation. The regularity of the solutions (4.6), in particular,

the fact that they have a regular event horizon, was demonstrated in [38]. This result required

that the variations in the boundary directions parameterized by xµ are slow. In employing

the TsT transformation, all we required was that ∂− be a Killing vector; so there is no

variation of the relativistic fluid in the light cone direction and one can of course take the

variations in all the other directions to be appropriately slow. To explicitly demonstrate that

the solution (4.14) has a regular event horizon, one can follow the perturbative construction

of [38]. From this analysis it is easy to infer that for viscous non-relativistic fluids, the

location of the horizon will remain at r = r+(x+,x).

In analyzing the regularity of the geometries constructed in [36], it was important to

work in a well behaved coordinate chart. As explained there and subsequently elaborated in
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[38, 42] the solutions can be thought of as being tubewise approximated by a homogeneous

black hole solution, with the tubes being domains in the bulk centered around radially

ingoing null geodesics with width set by the scale of variation in the boundary directions xµ.

In the non-relativistic case (4.14), the metric is not a priori written in coordinates adapted

to the radially ingoing geodesics. To see this note that the gauge choice employed in [36, 38]

was to set grµ ∝ uµ.
7 On the other hand, in the non-relativistic case we have non-trivial grr

arising after the TsT transformation coming from the non-vanishing χ̃r. This can of course

be removed by a coordinate transformation, and then the issue of regularity boils down to

the analysis presented in [38].

To complete the fluid-gravity correspondence, we need to identify the stress tensor com-

plex associated with the inhomogeneous solutions constructed above. The boundary field

theory dual to the Schr5 background was argued to be a non-commutative deformation of

N = 4 SYM. This fact allows us to argue that the planar sector of the deformed theory with

non-relativistic invariance is in fact identical to the parent N = 4 theory [11], and the direct

computations of the thermodynamics in [10] are consistent with this picture. We therefore

argue that, as advocated in [11], we can identify the non-relativistic stress tensor complex

corresponding to the geometry after the TsT transformation with the one we have prior to

the transformation. That is, the dual stress tensor complex is obtained simply by performing

the DLCQ reduction described in §2 for the relativistic stress tensor corresponding to the

geometry (4.6) before the TsT transformation.

More explicitly, the relativistic stress tensor corresponding to (4.6) (to first order in

derivatives) is of the form (2.11) with8

ǫrel = 3Prel, Prel =
r4
+

16π G5

, ηrel =
r3
+

16πG5

. (4.16)

Thus, using the identifications in section 2, the non-relativistic stress tensor complex dual

to the geometry (4.14) will be of the form (2.17) with9

ε = P, P =
r4
+

16πG5
, ρ =

β2r4
+

4πG5
, η =

r3
+β

16πG5
, κ =

r2
+

16G5
. (4.17)

The boundary stress tensor complex for the solution (4.14) comprises a spatial stress

tensor Πij , particle density ρ, an energy flux jiε, momentum flux ρ vi and energy ε. While

we have argued that in the large N planar limit these quantities can be derived by reducing

7In fact, as discussed in [42], one can simplify the metric further, by demanding that the radially ingoing

null geodesics are affinely parameterized by r. This is equivalent to setting S(r, x) = 1 in (4.6).
8Note that 1

16π G5

gives the effective central charge of the dual field theory. For the case of deformed N = 4

SYM to the non-relativistic dipole theory, this evaluates to N2

8 π2 where N is the rank of the gauge group.
9Note that the stress tensor complex obtained from the relativistic stress tensor in §2 is a local density in

the x− direction. From the non-relativistic field theory point of view, it is more natural to multiply by ∆x−

to obtain an object which is a local density only in the spatial directions.
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the relativistic stress tensor on the light-cone (using thus the properties of the TsT trans-

formation), it should in principle also be possible to obtain these by direct computation in

the geometry (4.14). It turns out to be easy to use the counter-term construction proposed

in [10] to extract the spatial stress tensor without trouble. However, it is not clear how

to calculate the energy ǫ and the particle density ρ in an analogous fashion. In [10], the

energy ǫ and the particle density ρ for the system in thermal equilibrium were obtained by a

Euclidean action calculation. In Appendix A, we discuss the calculation of these quantities

using canonical methods.

5 Discussion

We have discussed the hydrodynamic limit of d spatial dimensional non-relativistic confor-

mal field theories and their dual gravitational solutions, which are inhomogeneous black

holes with Schrd+3 asymptotics. We employed the fact that starting with a relativistic

hydrodynamical system one can obtain non-relativistic fluid dynamical equations upon an

appropriate light-cone reduction. Relativistic hydrodynamics in d+ 2 spacetime dimensions

descends to non-relativistic hydrodynamics in d spatial dimensions. We demonstrated this

both for ideal fluids and also for dissipative fluids where we restricted attention to first order

in the gradient expansion. The latter allowed us to recover the heat conductivity of the

non-relativistic system in terms of the shear viscosity and state parameters of the parent

relativistic fluid. In particular, for non-relativistic CFTs we have shown that the Prandtl

number is unity.10 Since the first order dissipative coefficients for the non-relativistic CFTs

arise from the shear viscosity of the relativistic system, it is not surprising that the rates of

momentum diffusion and thermal conduction are correlated.

Our construction of the geometries dual to the non-relativistic fluids uses as its starting

point the asymptotically AdS spacetimes dual to relativistic hydrodynamics. Starting with

the solutions constructed in [36] we were able to construct inhomogeneous black holes with

Schr asymptotics using the TsT transformation described in [11]. The TsT transform deforms

the boundary field theory to a non-local quantum field theory through the introduction of

a star-product (3.5) – we are therefore looking at the hydrodynamic limit of these deformed

superconformal field theories.

Given these black hole solutions we can in principle try to extract the non-relativistic

stress tensor complex of the dual field theory using an appropriate boundary stress tensor

construction. Instead of doing so, we adopted the philosophy advocated in [11] – the hydro-

dynamics of the non-relativistic theory is given by the light-cone reduction of the undeformed

superconformal theory in the planar limit. This can be justified by recalling that for super-

conformal field theories with gauge group of rank N , the star-product deformation resulting

10For comparision, Pr(water) ≈ 7, Pr(mercury) ∼ 10−3, and Pr(air) ≈ 0.7.
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from the TsT transformation leaves the planar sector of the theory unchanged [35]. This

allows us to efficiently extract the stress tensor for the non-relativistic viscous fluid. One

should in principle explicitly compute the stress-tensor complex using the counter-term sub-

traction scheme discussed in [10]. It turns out to be easy to check that one can indeed extract

the spatial stress tensor. Furthermore, by rewriting the action in a Hamiltonian formulation

we have been able to extract the energy and particle density. But we have encountered some

difficulties in proving that the Hamiltonian generates the time-translation symmetry of the

non-relativistic field theory. This is an interesting open problem which we hope to return to

in the future. It is also worth remarking that to compute equilibrium thermodynamics we

can take a simpler route proposed in [25] – use a background subtraction scheme where the

reference spacetime is not the vacuum Schrd spacetime, but corresponds to a state with zero

temperature at finite particle density.11

Our discussion of the light-cone reduction of the relativistic equations was restricted to

ideal and viscous fluids, i.e., up to and including the first order in the gradient expansion.

Fluid dynamics in general can be viewed as an effective field theory with an infinite number

of irrelevant terms obtained as usual in a derivative expansion. It would be interesting to

understand the light-cone reduction of the second order relativistic conformal hydrodynamic

stress tensor constructed in [36, 50] (see [41, 42] for the result in arbitrary dimensions).

In particular, the various relaxation times encountered at second order should descend to

interesting transport coefficients for the non-relativistic theory. It must however be men-

tioned that unlike the relativistic case, where causality issues [50] require us to consider

non-linear hydrodyanamics, one is not similarly forced to consider higher-order terms in the

non-relativistic setting. It would also be interesting to carry out a systematic analysis of

non-relativistic conformal hydrodynamics by looking at the constraints on the allowed ten-

sor structures coming from the Schrödinger symmetry, paralleling the relativistic analyses of

[50, 51].

The fluid dynamics we have discussed here has been restricted to conformal fluids with

Schrödinger symmetry. One main feature of such fluids is that they are in general compress-

ible; this follows from the fact that the energy density is related to the pressure 2 ε = d P

through the equation of state (which in turn follows from scale invariance). To make contact

with the usual studies of incompressible Navier-Stokes equations we need to ensure that we

can decouple the fluctuations in the density. This can be achieved by looking at low fre-

quency modes which do not excite the propagating sound mode in a hydrodynamic system.

In fact, this limit was discussed recently in the context of the fluid-gravity correspondence in

[48, 52] where the authors showed that starting from a parent relativistic conformal fluid dy-

namical system one can recover incompressible Navier-Stokes equations in a suitable scaling

limit. Curiously the limit procedure reveals an interesting structure in the fluid equations –

they are scale invariant under a new scaling symmetry. This symmetry is different from the

11In the notation used in [10] this corresponds to the limit r+ → 0 and β → ∞ with γ = β r2
+ held fixed.
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Schrödinger symmetry enjoyed by the fluids under consideration in this paper. We arrived

at our hydrodynamic description in d spatial dimensions via a light-cone reduction of a d+2

dimensional relativistic theory. In [48, 52] the authors derive non-relativistic incompressible

hydrodynamics in d + 1 spatial dimensions by a suitable limit of the relativistic theory. It

would be interesting to the take the incompressible limit of the non-relativistic conformal

fluid described here to compare with their results.
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A Hamiltonian calculation in the bulk

Since the field theory dual of the asymptotically Schr geometries is non-relativistic, we might

not expect the construction of a spacetime stress tensor for asymptotically AdS geometries

to have a natural counterpart for these solutions. We might instead expect the map from

bulk to boundary to involve some kind of Hamiltonian framework, which treats spatial and

time directions separately. In this appendix, we describe the construction of a Hamiltonian

for the bulk geometry from the action constructed in [10]. This is a generalization of the

calculation of [53], using the known form of the action to determine the correct boundary

terms for the Hamiltonian framework.

The idea of the calculation in [53] is to choose a foliation of the spacetime by constant

time slices, and rewrite the covariant action in the form S =
∫
dt [pq̇ −H ], keeping careful

track of the boundary terms. This will then give us a form for the Hamiltonian including

boundary terms at infinity. For simplicity we start from the truncated version of the action

used in [10],12

S =
1

16πG5

∫
d5x

√−g
(
R− 4

3
(∂µφ)(∂µφ) − 1

4
e−8φ/3FµνF

µν − 4AµA
µ − V (φ)

)
(A.1)

+
1

16πG5

∫
d4ξ

√
−h

(
2K − 6 + AµA

µ + cAµA
µφ+ b (AµA

µ)2 + (2 c− 4 b+ 3)φ2
)

for some arbitrary constants c, d. To simplify the formulae below, we will work with c = b = 0,

but it is straightforward to carry out the analysis in the general case. We take the constant

12The analysis can be easily extended to the consistent truncation Lagrangian of [11] modulo the cost of

some cumbersome expressions. We find that we have an eight parameter set of boundary terms which lead

to the finite on-shell action reported in [10].
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time slices to be the surfaces Σ+ of constant x+. The coordinates on Σ+ will be denoted

collectively as χµ and the induced metric is κµν .
13 The lapse and shift N , Nµ are defined by

considering a vector uµ defined on Σ+, such that uµ∇µx
+ = 1, and decomposing this vector

into the normal nµ to Σ+ and the shift,

uµ = N nµ +Nµ. (A.2)

We also have a constant r surface which is our cut-off on the spacetime, with coordinates ξµ

and induced metric hµν . To top off the list of surfaces we have the constant time surfaces on

the cut-off surfaces which we will denote as Σ∞

+ and we reserve ζµ for the coordinates and

σµν for the induced metric on Σ∞

+ .

The analysis of the gravitational part of the action (A.2) is very similar to the calculation

in [53], and leads to

Hg =

∫

Σ+

d4χ (N Hg +NµHµ,g) −
∫

Σ∞

+

d3ζ
√
σ

[
N

16πG5

(2 (3)K − 6) − 2Nµ pµν√
κ
rν

]
, (A.3)

where pµν is the gravitational conjugate momentum, pµν =
√
κ(Kµν − Kgµν), and rµ is

the unit normal to Σ∞ and κ = det(κµν). The contributions to the bulk Hamiltonian and

Hamiltonian density constraints are

Hg =
16πG5√

κ
pµν p

µν − 16πG5

3
√
κ
pµµ p

ν
ν −

√
κ

16πG5

R, Hµ,g = −2
√
κDν

(
p ν
µ√
κ

)
. (A.4)

Here Dµ is the covariant derivative associated with the spatial metric κµν . Only the boundary

term will contribute to the on-shell Hamiltonian. We note that this can be rewritten as

Hos
g = −

∫
d3ζ

[√
σ

N

16πG5

(
2 (3)K − 6N

)
− 2Nµ prµ

]
. (A.5)

For the matter part of the action,

Sm =
1

16πG5

∫
d5x

√−g
(
−4

3
∂µφ ∂

µφ− 1

4
e−8φ/3FµνF

µν − 4AµA
µ − V (φ)

)
(A.6)

+
1

16πG5

∫
d4ξ

√
−h

(
AαA

α + 3φ2
)
,

performing the space-time split and introducing the momenta

pφ =
1

6πG5

√
κ

N

(
φ̇−Nµ∂µφ

)
, (A.7)

pλA =
e−8φ/3

16πG5

√
κ

N

(
Ȧµ − ∂µAu −NνFνµ

)
κλµ, (A.8)

13We will not distinguish between the indices used for different hypersurfaces.
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where dot denotes differentiation wrt x+, we can rewrite this action as

Sm =

∫
dx+

∫

Σ+

d4χ

[
pφφ̇+ pλAȦλ +

2
√
κ

8πG5N
(A+ −NµAµ)

2 − (∂µA+) pµA −N H′

m −NµH′

µ,m

]

+

∫
dx+

∫

Σ∞

+

d3ζ
√
σ

[
− 1

16πG5N
(A+ −NαAα)

2 +
N

16πG5

(
AαA

α + 3φ2
)]
. (A.9)

We need to integrate the term (∂µA+) pµA by parts; A+ will then be a non-dynamical field,

and we can eliminate it using its equation of motion,

A+ = NµAµ − 2πG5N Dµ
pµA√
κ
, (A.10)

This gives us the matter action in its final form,

Sm =

∫
dx+

∫

Σ+

d4χ
[
pφ φ̇+ pλA Ȧλ −N Hm −NµHµ,m

]
(A.11)

+

∫
dx+

∫

Σ∞

+

d3ζ
√
σ

[
− 1

16πG5N
(A+ −NαAα)

2 −A+
pµA√
κ
rµ

+
N

16πG5

(
AαA

α + 3φ2
)]
,

where

Hm =
8πG5

√
κ

8

(
Dµ

pµA√
κ

)2

+
24πG5

8
√
κ
p2
φ +

8πG5√
κ

e8φ/3 pµA p
ν
A κµν (A.12)

+

√
κ

16πG5

[
4

3
∂µφ ∂

µφ+
1

4
e−8φ/3 FµνF

µν + 4AµA
µ + V (φ)

]
,

and

Hµ,m = ∂µφ pφ + Fµν p
ν
A −Aµ

√
κDν

pνA√
κ
. (A.13)

Thus, the matter contribution to the on-shell Hamiltonian is

Hos
m = −

∫

Σ∞

+

d3ζ
√
σ

[
− 1

16πG5N
(A+ −NαAα)

2 − A+
pµA√
κ
rµ +

N

16πG5

(
AαA

α + 3φ2
)]
.

(A.14)

On-shell

A+ −NαAα ∝ A+ = 0, (A.15)

so we can drop the first term, which will not contribute to the value or first variation of the

Hamiltonian, and write

Hos
m = −

∫

Σ∞

+

d3ζ

[
−A+ p

r
A +

N
√
σ

16π G5

(
AαA

α + 3φ2
)]
, (A.16)

which is closer in form to the gravitational part.
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For our spacetime (3.6), we have (writing for brevity ℓ(r) =
√
f(r) k(r)1/6)

uµ =
∂

∂x+
,

nµ = − γ

r3 ℓ(r)

∂

∂x+
− r (1 + f(r))

2 γ ℓ(r)

∂

∂x−
, (A.17)

which leads to

N = −1

γ
r3 ℓ(r),

Nµ = −r4 1 + f(r)

2 γ2

∂

∂x−
, (A.18)

and rµ being the unit-normal to Σ∞

+ is just given as

rµ =
r f(r)

ℓ(r)

∂

∂r
. (A.19)

Direct computation gives

√
h̃ = γ r,

(3)K =
f(r)

ℓ(r)
,

p−r√
k

= − N

8π G5

γ2

r5 f(r) k(r)
. (A.20)

The gravitational part of the Hamiltonian then involves

Hos
g = −

∫

Σ∞

+

d3ζ
√
σ

N

16πG5

(
2
f(r)1/2

k(r)1/6
− 6 + 2 k(r)−7/6 (1 + f(r))

f(r)1/2

)
(A.21)

≈ −
∫

Σ∞

+

d3ζ
√
σ

N

16 πG5

(
−5

γ2

r2
+

21

4

γ4

r4
− r4

+

r4

)
.

We see that the r4 divergence cancels. The r2 divergence will cancel against a contribution

from the matter part, which we turn to next.

On the 3-boundary,

AαA
α =

γ2

r2 k(r)4/3
, (A.22)

so

AαA
α + 3φ2 ≈ γ2

r2
− 7

12

γ4

r4
. (A.23)

We also evaluate

− A+
prA√
κ
rr =

e−8φ/3

8πG5N

rf(r)1/2

k(r)1/6
A+(∂rA+ −N−∂rA−) ≈ N

16πG5

(
4γ2

r2
− 14

3

γ4

r4

)
(A.24)
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to obtain

Hos
m ≈ −

∫

Σ∞

+

d3ζ
√
σ

N

16πG5

(
5
γ2

r2
− 21

4

γ4

r4

)
. (A.25)

As a result, the total Hamiltonian is

Hos =
1

16πG5

∫

Σ∞

+

d3ζ
√
σN

r4
+

r4
= − 1

16π G5

∫

Σ∞

+

d3ζ r4
+, (A.26)

in agreement with our expectations: this matches the total energy obtained by Euclidean

methods in [10].

It is easy to also extract the particle number density from this calculation; we simply

consider shifting the vector tµ → tµ + αµ, where αµ∂µt = 0, which shifts Nµ → Nµ + αµ.

This will change

pλA → pλA − e−8φ/3
√
κ

16πG5N
αν Fνµ k

λµ, (A.27)

and hence redefines the Hamiltonian by

Hos → Hos −
∫

Σ∞

+

d3ζ
√
σ

[
−2αµ

pµν√
κ
rν +

e−8φ/3

16πG5N
αν Fνµ r

µ − 1

16πG5N
(ανAν)

2

]
.

(A.28)

We should interpret this new Hamiltonian associated with tµ + αµ as a combination of the

energy and the momentum in the direction specified by αµ. We see immediately that if

αν points in one of the spacelike directions, the change in the Hamiltonian vanishes, which

agrees with our expectation that the spatial momentum densities vanish in the state we are

considering. If we take αν = α δν
−
, then the gravity term is

p−r√
κ
rr = − N

8π G5

γ2

r5 f(r) k(r)

r f(r)

ℓ(r)
≈ − N

8πG5

γ2

r4
. (A.29)

The matter terms give

e−8φ/3

16πG5N
αν Fνµ r

µ ≈ − αN

8πG5

γ4

r6
,

1

16πG5N
(ανAν)

2 ≈ α2N

16πG5

γ6

r10
, (A.30)

so only the gravitational term contributes to the change in the Hamiltonian, which is

Hos → Hos −
∫

Σ∞

+

d3ζ
√
σN

1

4πG5

γ2

r4
= Hos −

∫

Σ∞

+

d3ζ
1

4π G5

γ2, (A.31)

consistent with the value 〈P−〉 = γ2V∆x−/4πG5 obtained in the Euclidean approach.

Thus, this approach gives us a definition of the Hamiltonian whose on-shell value appears

correct. We should ask if the Hamiltonian so defined is the generator of the asymptotic time-

translation symmetry on this class of spacetimes. To be the generator of the symmetry, our

Hamiltonian should satisfy [54]

δH =

∫
d4χ

[
δpµν E

µν + δpψ E
ψ + δkµν Aµν + δψ Aψ

]
, (A.32)
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with no surface terms, where ψ denotes the collection of matter fields. Now, our Hamiltonian

constructed from the covariant action should satisfy this property by construction, since

(A.32) is just the requirement for Hamilton’s principle δ
∫
dt (pq̇−H) = 0 to have solutions,

and the boundary terms in our action S =
∫
dt (pq̇−H) were chosen precisely so as to ensure

that δS = 0 on-shell. However, in [10], the action was only shown to satisfy δS = 0 for a

restricted set of boundary conditions on the variations, relating the leading order variations

of different fields. It would therefore be useful to check directly that the Hamiltonian we

have proposed satisfies (A.32). We have encountered difficulties in performing this check; we

leave their resolution to future work.
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