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ABSTRACT 

A plane-wave complex photonic bandstructure approach is used to calculate the pass bands as a function of rod diameter 
for a system consisting of circular metallic rods in a 2-D square lattice. In addition, FDTD calculations are employed to 
calculate the transmission properties of a finite 6-layer structure of the same form. The results of the two methods are 
compared and found to be consistent. The effective plasma frequency, the lowest frequency at which propagation can 
occur in the infinite lattice, is extracted from the bandstructure calculations, and is in the region of 1 THz for the 200 µm 
period structures considered. The results for the effective plasma frequency are compared to those predicted by several 
analytic models.  
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1. INTRODUCTION 
Some time ago Pendry et al1,2 studied the problem of low frequency plasmons in thin wire structures and proposed a 
simple analytic theory to explain the principal feature characterizing their low frequency response to incident 
electromagnetic radiation in the case of a periodic 2-D arrangement of such wires: the existence of an effective plasma 
frequency below that of the bulk metallic value. In their thin wire model, which is notable for the fact that the result 
depends only on geometrical factors and not the bulk plasma frequency, the effective plasma frequency is given by: 
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where a is the lattice constant, r is the radius of the rods and c the free-space velocity of light. In practice, no propagation 
can occur in the infinite structure below the effective plasma frequency, in analogy with the related effect in bulk 
material. Since the work of Pendry et al a number of alternative simple analytic expressions for the effective plasma 
frequency have been proposed 3,4,5 . There have also been various other theoretical studies of both the photonic 
bandstructure for infinite systems6,7 and transmission calculations in the case of finite structures8,9 . Experimental results 
have been reported both in the original work of Pendry et al2 and also, more recently, by Pimenov and Loidl10 who 
investigated arrays of copper and steel wires using broadband terahertz spectroscopy.  

It should be noted that the effective plasma frequency model only applies in the situation where the electric field is 
polarized parallel to the direction of the axis of the rods (we shall refer to this as TM polarization). For the alternative TE 
polarization, in which the magnetic field is parallel to the rods, the effective plasma frequency model does not apply and 
the results are rather similar to those expected for a standard dielectric photonic bandgap structure, apart from the 
existence of additional, effectively dispersionless, localized plasmon states essentially confined to the surface of 
individual rods6,11. 

In the present work, in Section 2, we present brief details concerning a general 2-D plane-wave complex photonic 
bandstructure method. The method is then applied to a particular structure consisting of circular metallic rods in a square 
lattice, with results presented in Section 3.1. Section 3.2 describes a more general set of numerical results and compares 
them to the predictions of various analytic theories for the effective plasma frequency that have been reported in the 
literature, and compares these to our results. Our conclusions are presented in Section 4. 
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2. THEORY OUTLINE 
In a standard 2-D plane-wave photonic bandstructure formulation as described by for example Plihal and Maradudin12  
the wavevector k is fixed and it is then possible to calculate the frequency as a function of k throughout the Brillouin 
zone. This approach, however, only works provided that the structure has no components with a frequency-dependent 
permittivity, and is therefore not really applicable to metallic structures. An extension to the method allowing a 
frequency-dependent permittivity to be used, was later described by Kuzmiak et al6 but nevertheless this only applies to a 
permittivity of the specific form ( ) 2 21 /pε ω ω ω= − . In practice, we would prefer to be able to deal with any general 
frequency-dependent form for the permittivity, of any component in the structure, possibly including absorption, and this 
can be achieved by employing a complex bandstructure formalism. Full details of our approach for both TM and TE 
polarizations are given elsewhere13 so in what follows we shall confine ourselves to giving only an outline of the method 
for the case of TM polarization, the polarization of interest for the present work. 
  
We begin by assuming a 2-D periodic structure of the form shown in Fig. 1, although any more general cross-section is 
possible. 

 

 

 
 
 

Fig.1 An array of circular rods having a frequency-dependent relative permittivity ( )ε ω embedded in a background 

material for which the relative permittivity has a constant value bε . 

The permittivity is represented in the form 
 
                                                       ( ) ( ) ( ) ( ), b bx y Sε ε ρ ε ε ω ε ρ= = + −⎡ ⎤⎣ ⎦  

where ( ) 1S ρ =  within the rods and ( ) 0S ρ = elsewhere. We use the Fourier series expansions over reciprocal lattice 
vectors 

( ) ( ) ( ), i k gi g
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for  ( )S ρ  and the electric field in the z direction respectively. Insertion of the above into Maxwell’s equations 
eventually leads to a matrix equation 
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for a general complex wavevector ˆk ku= in the x-y plane, û  being a unit vector in the direction of the wavevector and 

E is a vector whose components are the expansion coefficients gE .  

 
In (2), if n plane-waves are used in the E - field expansion, the various n x n sub-matrices are such that 
 
 I is the identity matrix 
  
 A has only diagonal elements given by , ˆ2G GA G u= ⋅     

 B has only diagonal elements given by 
2

2
, 2G G bB G

c
ω

ε= −  

 C has the elements ( )[ ]
2

, 2G g b G gC S
c
ω

ε ω ε −= − . 

Knowing the form of ( )ε ω we can then scan through frequency in order to determine k, and thus the whole complex 
bandstructure of the system can be mapped out. As (2) involves a 2n x 2n general complex matrix with general complex 
eigenvalues this process is somewhat more time-consuming than standard plane-wave bandstructure calculations. 

3. RESULTS 
We now consider a series of 200 µm lattice constant arrays containing gold rods with a range of diameters from 10→  
120 µm, with specific detailed results for a 50 µm diameter rod structure presented in Section 3.1 and more general 
results for the effective plasma frequency as a function of rod diameter presented in Section 3.2. Experimental colleagues 
are currently fabricating finite layer versions of such structures and detailed results for the transmission properties will be 
available in due course. For our calculations we take the background permittivity to be that for air, 1bε = , and to 
represent the permittivity of the gold rods we employ the Drude expression 

( ) ( )

2

1 p

ci
ω

ε ω
ω ω ω

= −
+

 

where values 152 2.175 10pω π= × × s-1, for the bulk plasma frequency for gold, 122 6.5 10cω π= × × s-1, the absorption 
term, are taken from Ordal et al14. 
 
3.1 Square lattice with 200 µm lattice constant and 50 µm diameter gold rods 

As an example of the form of the resultant bandstructure we show representative results for an array of 50 µm diameter 
rods in Fig. 2. The calculations were for wavevectors in a [100] direction and employed 805 plane waves for the E - field 
expansion and in this case the absorption term has been omitted. The figure shows the existence of two purely imaginary 
k, evanescent, solutions over the range of frequencies displayed. Also shown is an initially evanescent solution with 
Im(k) ≈ 0.5 x (2π/a) at low frequencies which evolves into a purely real solution, indicating the value of the effective 
plasma frequency, close to 0.67 THz, and giving rise to a pass band up to about 0.84 THz. A second pass band is present 
from about 1.16 → 1.53 THz and a band gap region, corresponding to general complex wavevector, with Re(k) = 0.5 x 
(2π/a)  is to be seen in the region between the two pass bands. At the centre of this band gap region, at ≈ 1 THz, we have 
that Im(k) ≈ 0.15 x (2π/a) corresponding to an E - field decay length of about one lattice constant. This indicates that for 
any finite structure consisting of more than a few layers there will be negligible transmission at frequencies 
corresponding to the centre of the band gap region. At higher frequencies not shown in the figure the bandstructure 
becomes more complicated with additional pass and stop bands. 
 

Proc. of SPIE Vol. 6328  63280L-3

Downloaded from SPIE Digital Library on 25 Jan 2011 to 129.234.252.67. Terms of Use:  http://spiedl.org/terms



 

 

Although we do not give graphical results here, our calculations show that with the inclusion of the absorption term, cω , 
all wavevectors become of general complex form and come in ± k pairs. However, in the regions of the two pass bands, 
Im(k) is relatively small and consistent with electromagnetic wave decay in passing through the structure in the direction 
given by the sign of the group velocity in the respective band. The value of Im(k) is such that the E - field decay length is 
about 15 periods at the centre of the first “pass band” and about 25 periods for the second band. The decay length at 
frequencies corresponding to the central region between these two bands is little affected by the inclusion of the 
absorption term. We note that the results are not particularly sensitive to the value of cω ,and similar decay lengths 

within the bands are obtained even with significantly larger values of cω .  
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Fig. 2 Complex bandstructure of an array of 50 µm gold rods in a 200 µm period square lattice. The dashed and dotted lines 

correspond to purely imaginary wavevector solutions. The solid line indicates evanescent, purely imaginary, solutions 
in the region up to the effective plasma frequency at about 0.67 THz. Pass bands, corresponding to purely real k are 
present in the ranges from about 0.67→0.84 THz and 1.16→1.53 THz with general complex solutions indicating a 
band gap region in between. There is no special significance to the sign of Im(k) and Re(k) in this plot, which is chosen 
purely for plotting convenience.    

In order to consider the transmission properties further we have also performed FDTD studies of the 50 µm diameter rod 
- 200  µm lattice constant structure. In particular, we have calculated the transmission for a 6-layer structure and the 
results of these calculations are shown in Fig. 3. The calculations were performed by directing a short pulse of EM 
radiation at the structure and comparing the Fourier transforms of the incident and transmitted signals. There are inherent 
numerical errors in this process as can be seen by the peak value of the transmission, which exceeds unity. We note that 
similar deconvolution errors are also to be expected in any experimental analysis as actual THz pulses tend to have a 
fairly complicated profile.  

The most notable feature in the calculated transmission spectrum is the large, broad peak centred at about 1.34 THz. The 
position of this peak corresponds almost exactly with the centre of the second pass band found in the bandstructure 
calculations. The smaller lower frequency peak, at about 0.83 THz, is slightly above the centre of the first band seen in 
the bandstructure calculations but both calculations are in agreement with regard to the existence of a lower frequency, 
narrower width band at these lower frequencies. In practice, due to the finite size of the structure employed for the 
transmission calculations, we would expect to encounter some differences. Although not fully shown in Fig. 2 we note 
that the bandstructure calculations also reveal other pass bands at about 1.64→1.72 THz and 1.9→2.2 THz and in the 
region above 2.35 THz. We would not expect the first of these bands to be particularly distinguishable in transmission 
because, as can be seen in Fig. 2, the value of Im(k) is quite small in the region between bands 2 and 3 – in effect this 
band appears to turn up as a shoulder to the main peak. The FDTD transmission peak at 1.98 THz and the onset of 
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further significant transmission above 2.3 THz are both consistent with the bandstructure calculations. We also note that 
the minima in the transmission results at both ≈ 1.75 THz and just under 1 THz correspond almost exactly with peak 
values of Im(k) in the bandstructure calculations. Overall, we believe that that our results demonstrate good agreement 
between the bandstructure and FDTD transmission results. 
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Fig. 3 Plot showing the transmission for a finite structure consisting of 6 layers of  50 µm diameter gold rods in a 200 µm 

lattice constant array. The FDTD approach is employed to calculate the transmission.  

 

3.2 The effective plasma frequency as a function of rod diameter 

In this section we neglect the absorption term and show, in Fig. 4, the positions of the first two pass bands obtained from 
the bandstructure calculations as a function of rod diameter. In all cases the lattice constant is 200 µm. 
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Fig. 4 The location of the first two pass bands as function of rod diameter. 
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To obtain the results displayed in Fig. 4 we have employed 877 plane waves for the electric field expansion and hence 
the eigenvalue equation to be solved in (2) has a matrix size of 1754 x 1754.  

We note that although there is an order of magnitude change in the rod diameter, and a much larger change in metallic 
fill factor (f), the position of the bands is not greatly altered. The centre of the first band shifts from about 0.6 THz to just 
over 1 THz, and the centre of the second band shifts from about 1.2 THz to 1.7 THz, following an increase in rod 
diameter from 10 µm to 100 µm. In practice, if the absorption term in the Drude expression is included, there is little 
overall difference in the bandstructure but it becomes somewhat problematic to define precisely the positions of the band 
edges and hence the effective plasma frequency because all solutions are generally complex. However, the basic form of 
the results is very similar so we define the effective plasma frequency as that at which we first observe the appearance of 
purely real k solutions, at the lower edge of the first pass band, without the absorption term.  

In Fig. 5 we show a plot of the effective plasma frequency as obtained by the above procedure from our plane-wave 
calculations compared with the curves obtained from the analytic expressions given by Pendry et al1,2, eqn. (1), 
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Fig. 5 The effective plasma frequency as a function of rod diameter as obtained from the current plane-wave calculations 

and as given by various simple analytic models. 

Proc. of SPIE Vol. 6328  63280L-6

Downloaded from SPIE Digital Library on 25 Jan 2011 to 129.234.252.67. Terms of Use:  http://spiedl.org/terms



 

 

The results shown in Fig. 5 make it clear that the Pendry et al expression, which was explicitly obtained for a system of 
thin wires, of much smaller diameter than the rods considered here, does not give particularly good agreement with the 
plane-wave calculations. Overall, the best agreement is provided by the expression of Maslovski et al, although that of 
Sarychev and Shalaev also works well. The Tretyakov expression gives results in good agreement with our results at 
lower frequencies but is much worse as the rod diameter is increased. We note that our calculations cannot be considered 
to be reliable for rod diameters much below 10 µm due to the number of plane waves employed. Nevertheless, in 
performing calculations for very small diameter systems we note that the results obtained are in agreement with the 
expression 2 2

,p eff pfω ω= . In this regime our calculations perform in effect as if we have a uniform system characterised 
by the average electron concentration, and all structural detail is lost. 

With regard to our plane-wave calculations, it should be pointed out that the convergence is such that the results are 
likely to have an error of a few percent, with the actual effective plasma frequency probably being slightly lower than 
indicated in Figs. 4 and 5. This convergence problem is inherent to plane-wave calculations and does not have any 
significance with regard to our basic conclusions, nor is it likely to have any implications when using our method to 
compare with experimental results. We have also carried out conventional ( )kω plane-wave calculations employing a 
large and constant negative value for the permittivity of the gold rods and although these do reveal the existence of pass 
bands in somewhat similar positions, the convergence is significantly worse than in the current complex bandstructure 
calculations. In practice, calculations have also been carried out for structures with the parameters given by Pimenov and 
Loidl10 and our results for the positions of the first pass band appears to be in good agreement with their reported 
experimental results, confirming that convergence is adequate. This experimental work used somewhat larger period 
structures with lattice constants of  0.45 to 0.9 mm but rather similar fill factors. 

4. CONCLUSIONS 
We have presented results obtained from calculations of the complex photonic bandstructure of a set of metallic rod 
structures. Specific comparison of the bandstructure results and those of FDTD calculations appear to demonstrate good 
agreement for a particular example of one of the systems. In considering a series of structures with differing rod 
diameters we find good overall agreement with the simple analytic theory of Maslovski et al4 for the effective plasma 
frequency. The THz range pass bands displayed in our results may be of practical use for THz filter applications. 
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