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1. Introduction

In their celebrated paper, Hirzebruch and Zagier [7] show that the intersection
numbers of certain algebraic cycles on a Hilbert modular surface S occur as the
Fourier coefficients of holomorphic modular forms on the upper half plane H. They
explicitly compute the intersection numbers of certain curves TN both in S and at
the resolution of the cusp singularities. By a direct computation they then show that
these numbers are Fourier coefficients of modular forms.

These results have inspired numerous other people to look at geodesic cycles in
other locally symmetric spaces and their relationship to modular forms. Here the
case SO(2, q) was of particular interest and was studied by Oda [20], Rallis and
Schiffmann [21], Kudla [9], and recently, by Borcherds [1, 2] and Bruinier [3, 4].

Starting in the late 1970s and throughout the 1980s, Kudla and Millson (see e.g.
[14]) carried out an extensive program to explain the work of Hirzebruch-Zagier from
the point of view of Riemannian geometry and the theory of reductive dual pairs
and the theta correspondence. Under some restrictions, they vastly generalize the
results of [7] to orthogonal, unitary, and symplectic groups of arbitrary dimension
and signature. Tong and Wang (e.g. [25]) ran a parallel program.

Currently, Kudla, Rapoport and Yang undertake a major investigation of the oc-
currence of arithmetic intersection numbers in certain moduli spaces as Fourier coef-
ficients of modular forms, see e.g. [11].

This paper deals with the case of the real orthogonal group of signature (p, 2).

Before we state our results we need to establish the basic notions of the paper. Let
(V (Q), q) be a rational quadratic space of dimension p + 2 and signature (p, 2) and
let ( , ) be the associated non-degenerate symmetric bilinear form on V (Q). We have
(v, w) = q(v + w) − q(v) − q(w). We let G = Spin(V (Q)) viewed as an algebraic
group over Q and write D = G(R)/K for the associated symmetric space, where K is
a maximal compact subgroup of G(R). It is very well known that D is of Hermitian
type of complex dimension p; for example, for p = 1, D ≃ H, the upper half plane,
and D ≃ H×H for p = 2. We identify D with the space of two-dimensional subspaces
of V (R) on which the bilinear form ( , ) is negative definite:

(1.1) D ≃ {z ⊂ V (R) : dim z = 2 and ( , )|z < 0}.
Let L ⊂ V (Q) be an integral Z-lattice of full rank, i.e., L ⊂ L#, the dual lattice,

and Γ be a congruence subgroup of G preserving L (in the main body of the paper
we will allow a congruence condition as well). We write M = Γ\D for the attached
locally symmetric space of finite volume.
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We construct special cycles in M as follows. Let U ⊂ V be a positive definite
subspace of V of any dimension 0 ≤ n ≤ p. We put

(1.2) DU = {z ∈ D : z ⊂ U⊥};
so DU is a complex submanifold of the (same) orthogonal type O(p− n, 2) and codi-
mension n. We can naturally identify Spin(U⊥) ≃ GU , where GU is the pointwise
stabilizer of U in G. We put ΓU = Γ ∩ GU and define the special cycle

(1.3) CU = ΓU\DU .

The map CU −→ Γ\D defines an algebraic cycle in M and is actually an embedding
if one passes to a suitable subgroup Γ′ ⊂ Γ of finite index (see [14]). For x ∈ V (Q)n,
we denote by U(x) the subspace generated by x (of possibly lower dimension) and
set Dx = DU(x) and Cx = Γx\Dx.

We will be mainly concerned with the case n = 1, when the special cycles are
divisors.

For N ∈ N, Γ acts on LN = {x ∈ L : q(x) = N} with finitely many orbits, and we
define the composite cycle

(1.4) CN =
∑

x∈Γ\LN

Cx.

We call CN the Heegner divisor of discriminant N . For p = 1, CN is the collection of
Heegner points of discriminant N in a modular (or Shimura) curve, while for p = 2,
CN is a Hirzebruch-Zagier curve TN([7]) in a Hilbert modular surface (if the Q-rank
of G is 1).

Kudla and Millson explicitly construct (in much greater generality) a theta function
θϕ(τ, L) =

∑
x∈L ϕ(x, τ) (τ = u + iv ∈ H) with values in the closed differential (1, 1)-

forms of M attached to a certain Schwartz function ϕ = ϕV on V (R) (In Section 2
we review this theta function in more detail). They then consider

(1.5) Iϕ(τ, C) =

∫

C

θϕ(τ, L),

the integral of θϕ(τ, L) over a compact curve C. Iϕ(τ, C) turns out to be a holomorphic
modular form of weight (p + 2)/2, whose N -th Fourier coefficient is given as the
(cohomological) intersection numbers of C with the composite cycle CN . This gives
analogues of the original results of Hirzebruch-Zagier in a much more general setting,
but actually does not contain their work as they consider the intersection numbers of
(in general) noncompact cycles. It therefore seems quite naturally to study the theta
integral (1.5) for possibly non-compact curves C.

We study the theta integral Iϕ(τ, C) in the non-compact case, where we restrict
our attention to the special curves CU , with U positive definite of dimension p − 1,
i.e., to embedded quotients of modular curves in M .

This leads to considerable complications because in [14] the assumption that C be
compactly supported is quite essential and needed at several places; for example, to
guarantee the convergence of the integral (1.5), to show the holomorphicity in τ ∈ H,
and to verify the vanishing of the negative Fourier coefficients.
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In Section 3 we consider the case p = 1 when M ≃ Γ\H is itself a modular curve,
i.e., V is isotropic, and study the integral Iϕ(τ, M) =

∫
M

θϕ(τ, L). Note that the
cusps of M correspond to the Γ-equivalence classes of isotropic lines ℓ in V .

Our main result is then that the generating series P (τ) =
∑∞

N=0 deg(CN)qN of the
degree of Heegner points in M is the holomorphic part of a non-holomorphic modular
form of weight 3/2. Here deg(CN) =

∑
x∈Γ\LN

1
|Γx| for N > 0, while for N = 0 we put

deg(C0) = vol(M). More precisely:

Theorem 1.1.
∫

M

θϕ(τ, L) = P (τ) +
v−1/2

4π

∑

cusps ℓ

ǫ(ℓ, L, Γ)
∑

N∈Z

β(4πdk2
ℓN

2v)q−dk2
ℓ N2

is a non-holomorphic elliptic modular form of weight 3/2. Here ǫ(ℓ, L, Γ) denotes the
’width’ of the cusp ℓ of Γ (see Def. 3.2), d ∈ N square-free, the discriminant of the
quadratic space V , kℓ the smallest k ∈ N such that L−dk2,ℓ = {x ∈ L−dk2 : x ⊥ ℓ} is
nonempty, and β(y) = β3

2
(y) =

∫∞
1

t−3/2e−tydt.

For example, specializing to a certain lattice in the quadratic space of discriminant
1, we recover Zagier’s [26] well-known Eisenstein series F of weight 3/2 as a theta
integral. One has

(1.6) F(τ) =
∞∑

N=0

H(N)e2πinτ +
v−1/2

16π

∞∑

N=−∞
β(4πN2v)e−2πiN2τ ,

where H(N) denotes the class number of positive definite binary quadratic forms
of discriminant −N2. From this perspective, we can consider Theorem 1.1 on one
hand as a special case of the Siegel-Weil formula expressing the theta integral as an
Eisenstein series, and on the other hand as the generalization of Zagier’s function to
arbitrary lattices of signature (1, 2).

Corollary 1.2.
∫

M
θϕ(τ, L) − 4

∑
ℓ

√
dkℓǫ(ℓ, L, Γ)F(dk2

ℓ τ) is a holomorphic modu-
lar form. Hence #(Γ\LN ) can be expressed in terms of class numbers and Fourier
coefficients of a holomorphic modular form.

The non-holomorphic Fourier coefficients seem to be some sort of ’error term’.
However, recent results of Kudla, Rapoport and Yang interpret these coefficients as
the (geometric) degree of certain 0-cycles supported in the cusps, see [16]. Moreover,
the occurence of incomplete Gamma-functions in the Fourier expansion of modular
forms appears to be a more general phenomenen in this context. In [15] it was shown
that the generating series of the (arithmetic) degree of certain 0-cycles in an arithmetic
curve (namely, the moduli scheme of elliptic curves with complex multiplication over
the ring of integers of an imaginary quadratic field) is the holomorphic part of a non-
holomorphic modular form of weight 1. Here the negative Fourier coefficients involve
the function β1(y) =

∫∞
1

t−1e−tydt.
We also compute the Mellin transform Λ(s) of

∫
M

θϕ(τ, L). It turns out to be closely
related to certain Siegel Zeta-functions associated to (split) indefinite quadratic forms
of signature (1, 2) which were previously studied by Shintani and F. Sato (see [23, 22]).
We have
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Theorem 1.3.

Λ(s) = (2π)−sΓ(s)ζ2(s, L) + 2−1−sπ− 1
2
−sΓ(s − 1

2
)
1

s
F (

3

2
, s, s + 1,−1)ζ1(s, L),

where F = 2F1 is the hypergeometric function, and the Siegel Zeta-functions are
defined by

ζ1(s, L) =
∑

x∈L
x⊥split

|q(x)|−s and ζ2(s, L) =
∑

x∈L
q(x)>0

1

|Γx|
|q(x)|−s.

The proof of Theorem 1.1 is long and occupies Section 4. After showing the con-
vergence of

∫
M

θϕ(τ, L) using a Poisson summation argument, we are reduced to
calculating the orbital integrals

(1.7)

∫

Γ\D

∑

γ∈Γx\Γ
γ∗ϕ(x)

for elliptic, hyperbolic, and parabolic stabilizer Γx. (In the parabolic case, Γx shall
mean here the stabilizer of the isotropic line generated by x, and one first has to sum
over all isotropic vectors before integrating).

We treat the theta integral (1.5) for general p and a modular curve C = CU in
Section 5. The result is

Theorem 1.4. Let U ⊂ V be positive definite of dimension p−1 so that CU ≃ ΓU\H.
Assume for simplicity L = L ∩ U + L ∩ U⊥. Then

∫
CU

θϕV
(τ, L) is non-holomorphic

for CU non-compact and
∫

CU

θϕV
(τ, L) = θ(τ, L ∩ U)

∫

CU

θϕ
U⊥

(τ, L ∩ U⊥),

where θ(τ, L ∩ U) =
∑

x∈L∩U e2πiq(x)τ is the standard theta series attached to the
positive definite lattice L∩U and the second integral is the one considered in Th. 1.4
for the space U⊥, which has signature (1, 2).

Moreover, the holomorphic Fourier coefficients can be interpreted as the intersection
numbers in (the interior of) M of the curve CU and the divisor CN .

This generalizes parts of the results of Hirzebruch-Zagier, namely the ones concern-
ing the intersection numbers of the curves TN in the ‘interior’ of the Hilbert modular
surface. As an example for Theorem 1.2 we then explicitly derive these parts. From
there one can obtain the complete result of Hirzebruch-Zagier by applying the holo-
morphic projection principle for modular forms to the theta integral. This will then
account for the contribution of the cusps to the intersection numbers (This is an idea
of van der Geer and (independently) Zagier; see [24]). However, when using this
procedure, one still needs explicit formulas for the intersection at the cusps. As this
seems infeasible for the higher dimensional case, a more conceptual approach for the
cusps (similar to the treatment of the ’interior’ presented here) is still needed.

Our results should be closely related to recent work of Borcherds [2] and Bruinier
[3, 4]. They showed that the generating series

∑∞
N=0 CNqN of Heegner divisors, when

considered as elements in the so-called ’Heegner divisor class group’, is a holomorphic
modular form of weight (p+2)/2 with values in this group in the sense that application
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of a linear form on this Heegner divisor class group gives a scalar-valued holomorphic
modular form. One should expect that for p ≥ 2, an extension of the methods used
here to the cusps should yield the results of [2, 3, 4] (while it seems that the methods
used there will not imply our results). For p = 1, the results actually are independent
of each other, as taking the degree is the zero map on the ’Heegner divisor class
group’.

Most of the results in this paper are part of the author’s Ph.D. thesis at the Uni-
versity of Maryland. I would like to thank my advisor Steve Kudla for his guidance
throughout the last years. I also would like to thank John Millson for many valuable
discussions. The final stages of this paper were completed while visiting the Max-
Planck-Institut für Mathematik in Bonn as fellow of the European PostDoc Institute
(EPDI). I would like to thank its directors in general for providing such a stimulating
environment and in particular Professor Zagier for some comments on the results of
this paper.

2. Work of Kudla and Millson

Kudla and Millson explicitly construct for orthogonal, unitary, and symplectic
groups of arbitrary signature the Poincaré dual form of the cycles CU ([12, 13]).

We denote by Ωr,s(D) the space of smooth differentials forms of type (r, s) on D.

Theorem 2.1 (Kudla-Millson [12, 13]). For each n with 0 ≤ n ≤ p, there is a nonzero
Schwartz form

(2.1) ϕ(n) ∈ [S(V (R)n) ⊗ Ωn,n(D)]G

such that

(i)

dϕ(n) = 0;

i.e., for each x ∈ V n, ϕ(n)(x) is a closed (n, n)-form on D which is Gx-
invariant:

g∗ϕ(n)(x) = ϕ(n)(x)

for g ∈ Gx, the stabilizer of x in G.
(ii) Denote by ϕ+

U(x) = e−πtr(x,x) with x ∈ Un and (x, x)i,j = (xi, xj) the standard
Gaussian on a positive definite subspace U of V (R). Then, under the pullback
i∗U : Ωn,n(D) −→ Ωn,n(DU) of differential forms, we have

i∗Uϕ(n) = ϕ+
U ⊗ ϕ

(n)

U⊥,

where ϕ
(n)

U⊥ is the n-th Schwartz form for U⊥ and GU .
(iii) Assume U = U(x) for a linear independent n-frame in U . Then the Poincaré

dual of ΓU\DU is given by

eπ(x,x)

∑

γ∈ΓU\Γ
γ∗ϕ(n)(x)


 .

From now on we will restrict our attention to the case n = 1. For simplicity we
will write ϕ for the (1, 1)-form ϕ(1).
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Remark 2.2. We do not need the explicit general formula for the Schwartz form
right now; for an easily accessible construction see [9]. For signature (1, 2), we will
give the formula in the next section.

We denote by S̃L2(R) the two-fold cover of SL2(R). Recall that S̃L2(R) acts on
the Schwartz space S(V (R)) via the Weil representation ω associated to the additive

character t 7−→ exp(2πit), see for example [18]. Let K ′ ⊂ S̃L2(R) be the inverse
image of the standard maximal subgroup SO(2) in SL2(R).

Proposition 2.3 ([12]). The Schwartz form ϕ is an eigenfunction for K ′ with respect
to the Weil representation:

(2.2) ω(k′)ϕ = det(k′)(p+2)/2ϕ.

We associate to ϕ in the usual way a function on the upper half plane H. For
τ = u + iv ∈ H we put

(2.3) g′
τ =

(
1 u
0 1

)(
v1/2 0
0 v−1/2

)
,

and define

(2.4) ϕ(τ, x) = v−(p+2)/4ω(g′
τ)ϕ(x).

Fix a congruence condition h ∈ L# and assume that Γ fixes the coset L + h under
the action on L#/L. Then the theta kernel

(2.5) θϕ(τ) = θϕ(τ, L, h) =
∑

x∈h+L

ϕ(τ, x) ∈ Ω1,1(D)Γ

defines a closed (1, 1)-form in M = Γ\D. By the usual theta machinery (Poisson
summation) it is a non-holomorphic modular form for the congruence subgroup Γ(N)
of SL2(Z) (where N is the level of the lattice L), of weight (p + 2)/2 with values in
Ω1,1(D)Γ.

Slightly more general than in the introduction we put Lm = {x ∈ L+h : q(x) = m}
for m ∈ Q, suppressing the dependence on h. For m > 0, we again obtain a composite
divisor Cm =

∑
x∈Γ\Lm

Cx in M .

Let η be a closed (p− 1, p− 1)-form on M and assume that η is rapidly decreasing
if M is non-compact. The main result of [14] (in much greater generality) is that

(2.6) Iϕ(τ, η) =

∫

M

θϕ(τ) ∧ η

is a holomorphic modular form whose Fourier coefficients are periods of η over the
composite cycles Cm in M . If η now represents the Poincaré dual class of a compact
curve C in M , we obtain

(2.7) Iϕ(τ, C) =

∫

C

θϕ(τ) = Iϕ(τ, η),

and the Fourier coefficients are the (cohomological) intersection numbers of C with
Cm.

In the following we consider (2.7) for modular curves C.
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3. The Theta Integral Associated to SO(1, 2)

3.1. Preliminaries. Now assume dim V = 3; hence V has signature (1, 2). Over R
we fix an isomorphism

(3.1) V (R) ≃
{(

x1 x2

x3 −x1

)
∈ M2(R)

}

such that q(X) = det(X) = −x2
1 − x2x3 and (X, Y ) = −tr(XY ). So we can view

V (R) as the trace zero part B0(R) of the indefinite quaternion algebra B(R) = M2(R)
over R. We have G = Spin(V ) = SL2 and the action on B0 is the conjugation:

(3.2) g.X := gXg−1

for X ∈ B0 and g ∈ G.

Notation. In this section, we will write z = x + iy for an element in D ≃ H (the
orthogonal variable) and τ = u + iv ∈ H for the symplectic variable. The upper case
letters X and Y we reserve for vectors in V (R) with coefficients xi and yi.

Here it is more convenient to consider the symmetric space D ≃ H not as the space
of negative two-planes in V (R) but rather as the space of positive lines. We give the
following identification with the upper half plane. Picking as base point of D the line
z0 spanned by ( 0 1

−1 0 ), we note that K = SO(2) is its stabilizer in G(R), and we have
the isomorphism:

(3.3) H ≃ G(R)/K −→ D

with

(3.4) z 7−→ gK 7−→ g.z0 =: ℓ(z)

(where g ∈ G(R) such that gi = z; the action is the usual linear fractional transfor-
mation). We find that ℓ(z) is generated by

(3.5) X(z) := y−1

(
−1

2
(z + z̄) zz̄
−1 1

2
(z + z̄)

)
,

where z = x + iy. Note q(X(z)) = 1. Moreover, per construction

(3.6) g.X(z) = X(gz).

For X = ( x1 x2
x3 −x1

) ∈ B0(R) we compute

(X, X(z)) = −y−1(x3zz̄ − x1(z + z̄) − x2)

= −y−1(x3(x
2 + y2) − 2x1x − x2)(3.7)

=
(x3x − x1)

2 + q(X)

−x3y
− x3y,

when x3 6= 0.
The minimal majorant of ( , ) associated to z ∈ D is given by

(3.8) (X, X)z =

{
(X, X) if X ∈ ℓ(z)

−(X, X) if X ∈ ℓ(z)⊥.
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A little calculation shows

(X, X)z = (X, X(z))2 − (X, X)(3.9)

=
(x3x

2 − x2 − 2x1x)2

y2
+ (x3y)2 + 2(x3x − x1)

2.

Proposition 3.1 ([10]). The Schwartz function ϕ = ϕ(1) on V (R) valued in the
(1, 1)-forms on D is explicitly given by

(3.10) ϕ(X, z) =

(
(X, X(z))2 − 1

2π

)
e−π(X,X)z ω.

Here

(3.11) ω =
dx ∧ dy

y2
=

i

2

dz ∧ dz̄

y2
,

the standard G-invariant (1, 1)-form on D ≃ H.

We will write ϕ(X) for its value at X. Then

(3.12) g∗ϕ(X) = ϕ(g−1X);

i.e., ϕ(g.X, gz) = ϕ(X, z) for g ∈ G(R), follows from (3.6); while Proposition 2.3
becomes an exercise using the explicit formulae of the Weil representation and reduces
to ϕ̂ = −ϕ.

Finally, we define

ϕ0(X, z) = eπ(X,X)ϕ(X, z)(3.13)

=

(
(X, X(z))2 − 1

2π

)
e−π(X,X(z))2+2π(X,X) ω(3.14)

and

ϕ(τ, X) =

(
v(X, X(z))2 − 1

2π

)
eπi(X,X)z,τ ω,(3.15)

where

(X, X)z,τ = u(X, X) + iv(X, X)z.(3.16)

= τ̄ (X, X) + iv(X, X(z))2.

3.2. The Theta Integral. We put

Iϕ(τ) :=

∫

Γ\D
θ(τ ; L, h) =

∫

Γ\D

∑

X∈L+h

ϕ(τ, X).(3.17)

Thus, in the notation of the previous section, Iϕ(τ) = θϕ(τ, η) where η is the constant
function 1. In particular, η is not rapidly decreasing. Alternatively we can interpret
(3.17) as the integral Iϕ(τ, CU) in the case of signature (1, 2) with U = 0.

We assume the convergence of (3.17) for the moment. Then it is again clear that
I(τ) defines a (in general non-holomorphic) modular form on the upper half plane of
weight 3/2.

For X ∈ Lm, we have

(3.18) ϕ(τ, X) = qmϕ0(
√

vX),
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where qm = e2πimτ , as usual. Define

(3.19) θm(τ) =
∑

X∈Lm

ϕ(τ, X) and θ0
m(v) =

∑

X∈Lm

ϕ0(
√

vX).

We then - yet formally - have

Iϕ(τ) =

∫

Γ\D

∑

m∈Q

θm(τ) =
∑

m∈Q

(∫

Γ\D
θ0

m(v)

)
qm,(3.20)

which is the Fourier expansion of Iϕ(τ).
Since Γ\Lm is finite for m 6= 0, we can simplify the inner integral in (3.20) in that

case:

∫

Γ\D
θ0

m(v) =

∫

Γ\D

∑

X∈Γ\Lm

∑

γ∈ΓX\Γ
ϕ0(γ−1

√
vX, z)(3.21)

=
∑

X∈Γ\Lm

∫

Γ\D

∑

γ∈ΓX\Γ
γ∗ϕ0(

√
vX, z).

For X = 0, we simply have ϕ(τ, X) = − 1
2π

ω and therefore

(3.22)

∫

Γ\D
ϕ(τ, 0) = µ(Γ\D),

the hyperbolic volume of Γ\D, normalized such that µ(SL2(Z)\H) = −1
6
. In partic-

ular, we see that with this normalization (see e.g.[19])

(3.23) µ(Γ\D) ∈ Q.

If V is isotropic over Q, we can pick the isomorphism (3.1) such that

(3.24) V (Q) ≃
{(√

dx1 x2

x3 −
√

dx1

)
: xi ∈ Q

}
:= B0(d; Q)

as quadratic Q-vector spaces, where d is a square-free positive integer, the discrimi-
nant of the quadratic space V . The set of all isotropic lines in V corresponds to the
cusps of G(Q) and Γ acts on them with finitely many orbits.

For the constant term in the Fourier expansion of Iϕ(τ), we therefore have to
proceed differently than in the case m 6= 0: Let ℓ1, ..., ℓt be a set of Γ-representatives
of isotropic lines and pick Xi ∈ ℓi primitive in L. Define δ(ℓi) = δ(ℓi, L, h, Γ) = 1 if ℓi

intersects the coset L + h and δ(ℓi) = 0 otherwise. Hence ℓi ∩ (L + h) = ZXi + hi for
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some hi ∈ ℓi if δ(ℓi) = 1. Denote by Γi the stabilizer of ℓi in Γ. We then have
∫

Γ\D

∑

X∈L0
X 6=0

ϕ0(
√

vX, z) =

∫

Γ\D

t∑

i=1

∑

X∈Γ(ℓi∩(L+h))
X 6=0

ϕ0(
√

vX, z)

=

∫

Γ\D

t∑

i=1

∑

X∈ℓi∩(L+h)
X 6=0

∑

γ∈Γi\Γ
γ∗ϕ0(

√
vX, z)(3.25)

=

t∑

i=1

δ(ℓi)

∫

Γ\D

∑

γ∈Γi\Γ

∞∑′

k=−∞
γ∗ϕ0(

√
v(kXi + hi), z).

Here
∑′

indicates that we omit k = 0 in the sum in the case of the trivial coset.

We need to discuss the notion of the width of a cusp for our purposes. For Y ∈ V
isotropic (usually primitive in L), pick g ∈ G(R) such that gY = βX0 with X0 = ( 0 1

0 0 )
and β ∈ R×. Put Γ′ = gΓg−1. Hence Γ′

X0
= gΓY g−1 is equal to {± ( 1 kα

0 1 ) : k ∈ Z}
(if −I ∈ Γ) for some α ∈ R+. Now we could call α the width of the cusp ℓ, however
this is not well defined, since it depends on the choice of g ∈ G(R) and hence on β.
However, one easily checks that the ratio α

|β| is constant and only depends on Y and

Γ.

Definition 3.2 (Width of a cusp). (i) For Y isotropic, we define

ǫ(Y, Γ) =
α

|β| ,

where α and β are the quantities above. We call the pair (Y, Γ) a cusp and
the number ǫ(Y, Γ) its width.

(ii) For a lattice L ⊂ V , h ∈ L#/L and Γ ⊂ Γ(L), we define (with the above
notation) the total width by

ǫ(L, h, Γ) =

t∑

i=1

δ(ℓi)ǫ(Xi, Γ).

Remark 3.3. (i) If Γ is a congruence subgroup of SL2(Z), then there is (up
to sign) a unique g ∈ SL2(Z) such that gY = βX0 = β ( 0 1

0 0 ). Then both
numbers α and β are intrinsic: α is simply the usual width of a cusp of a
congruence subgroup of SL2(Z) while β can be interpreted as the volume of
the fundamental domain of RX0/ZβX0 with respect to the Lebesgue measure
on RX0.

(ii) We can always arrange |β| = 1. Then we can interpret α = ǫ(Y, Γ) as the
volume of the corresponding component of the Borel-Serre boundary of M .

(iii) It does indeed happen that for a fixed space V we can find two lattices with
the same stabilizer Γ such that the “cusp ∞” has different width. Consider the
lattices

{(
b a
c −b

)
: a, b, c ∈ Z

}
and

{(
b 2a
2c −b

)
: a, b, c ∈ Z

}
. Both have stabi-

lizer Γ = SL2(Z), hence α = 1, but β = 1 and 2 respectively. See also Example
3.9.

We are now ready for the main result:
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Theorem 3.4. With the above notation we have

(i)
θϕ(τ) ∈ L1(Γ\D).

(ii)
θ0

m(v) ∈ L1(Γ\D)

for all m ∈ Q and ∫

Γ\D
θϕ(τ) =

∑

m∈Q

(∫

Γ\D
θ0

m(v)

)
qm.

For the Fourier coefficients, we get

(iii) for m > 0: ∫

Γ\D
θ0

m(v) =
∑

X∈Γ\Lm

1

|ΓX |
;

(iv) for m = 0:
∫

Γ\D
θ0

m(v) = µ(Γ\D) +
1

2π
v−1/2ǫ(L, h, Γ),

where the volume term only occurs for h ∈ L;
(v) for m < 0:

∫

Γ\D
θ0

m(v) =
1

4π
√
−m

v−1/2
∑

X∈Γ\Lm

X⊥isotropic

(∫ ∞

1

t−3/2e4πvmtdt

)
.

Note that for m < 0 we have

(3.26)

∫ ∞

1

t−3/2e4πmtdt ≤ O(e4πm)

so that the negative part of the Fourier expansion has the same convergence behavior
as the positive part.

The next section will deal with the proof of the Theorem 3.4. First we discuss the
convergence of Iϕ(τ). Then we turn our attention to the computation of the individual
integrals which define the Fourier coefficients via the analysis (3.19) to (3.25).

For m > 0, the composite 0-cycle Cm =
∑

X∈Γ\Lm
CX is the collection of Heegner

points of discriminant m, and we define its degree by

(3.27) deg(Cm) =
∑

X∈Γ\Lm

1

|ΓX |
.

We also put

(3.28) deg(C0) =

{
µ(Γ\D) if 0 ∈ L + h

0 else.

In any case we have deg(Cm) ∈ Q. We define the generating series of the degree of
the Heegner points by

(3.29) P (τ) =
∑

m≥0

deg(Cm)qm.
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Then as a corollary we obtain the following generalization of the results of Kudla
and Millson to the non-compact case:

Theorem 3.5. Let V be a quadratic space over Q of signature (1, 2).

(i) ([14]) If V is anisotropic, i.e., Γ\D compact, then the generating function
P (τ) is a holomorphic modular form of weight 3/2 for a suitable congruence
subgroup of SL2(Z).

(ii) If V is isotropic, i.e., Γ\D non-compact, then P (τ) is the holomorphic part
of the non-holomorphic modular form of weight 3/2 given by

(3.30)
∑

m≥0

deg(Cm)qm +
v−1/2

2π
ǫ(L, h, Γ) +

∑

m>0

v−1/2

4π
√

m

∑

X∈Γ\L−m

X⊥isotropic

β(4πvm) q−m,

where we set, following Zagier [26] (up to a factor), β(s) =
∫∞
1

t−3/2e−stdt.

The following lemma characterizes the values for which the negative Fourier coef-
ficients in the previous theorem are nonzero.

Lemma 3.6. For X ∈ V (Q) ≃ B0(d; Q) with q(X) < 0 the following two statements
are equivalent:

1. X⊥ is split over Q.
2. q(X) ∈ −d (Q×)

2
.

Proof. If q(X) = −dm2 < 0 with m ∈ Q, then by Witt’s Theorem we can map

X 7→
(

m
√

d 0

0 −m
√

d

)
∈ B0(d; Q); hence X⊥ is split. Conversely, if X⊥ is split, we can

assume X ⊥ ( 0 1
0 0 ) (again by Witt’s Theorem moving an isotropic vector orthogonal

to X to ( 0 1
0 0 )). Thus X =

(
m
√

d ∗
0 −m

√
d

)
for some m ∈ Q. �

Let X ∈ L−dm2 . Then X is orthogonal to two cusps. However, giving an orientation
to QX we can distinguish between these cusps (if they are not equivalent), since
switching the cusps by an element in G ∩ SO(X⊥) switches X to −X.

For a fixed cusp ℓi, we write L−dm2,i,+ = {X ∈ L−dm2 : X ⊥ ℓi; X pos orient.} and
note that Γi acts on this set. We have

Lemma 3.7.

#Γ\L−dm2 =

t∑

i=1

#Γi\L−dm2,i,+

and

#Γi\L−dm2,i,+ = 2m
√

dǫ(Xi, Γ),

if L−dm2,i,+ is not empty.

Proof. The first assertion is clear. For the second, take X ∈ L−dm2 , say X =(
m
√

d 0
0 −m

√
d

)
. So X is orthogonal to the cusps 0 and ∞. We distinguish them by

requiring that the left upper left entry of X is positive, since switching the cusps by
( 0 1
−1 0 ) maps X to −X. By our conventions about the cusps we can assume that

(
0 β
0 0

)
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is primitive in L with stabilizer Γ∞(α) = {Tαk = ± ( 1 αk
0 1 ) : k ∈ Z} in Γ (if −I ∈ Γ).

Now

(3.31) Tαk.X =

(
m
√

d −2m
√

dαk

0 −m
√

d

)
;

hence

(3.32) X − Tαk.X =

(
0 −2m

√
dαk

0 0

)
∈ L.

Thus 2m
√

dα ∈ βZ. The assertion now follows from the observation that we have
showed that we have 2m

√
dǫ equivalence classes of vectors in L−dm2,i,+. �

Lemmata 3.6 and 3.7 enable us to rewrite Theorem 3.5 (ii):

Theorem 3.8. With the above notation we have

Iϕ(τ, L, h) =
∑

m≥0

deg(Cm)qm+
v− 1

2

2π

∑

cusps ℓi

ǫ(Xi, Γ)
(
δ(ℓi)+

∑

m∈Q+

L
−dm2,i,+ 6=∅

β(4πdm2v)q−dm2
)
.

This implies Theorem 1.1 as follows: For the constant Fourier coefficient note that
for the trivial coset we have δ(ℓi) = 1 and β(0) = 2. For the negative coefficients,
take a non-isotropic vector X in ℓ⊥i , primitive in L. We see q(X) = −dk2

ℓi
for some

kℓi
∈ N. Now all other vectors in the sum for the cusp ℓi are integral multiples of X.

Example 3.9 (Zagier’s Eisenstein Series of weight 3/2). Let V be the space of trace 0
elements of the (indefinite) split quaternion algebra M2(Q) over Q; i.e., V ≃ B0(1, Q).

(i). We first consider the isotropic lattice

(3.33) L =

{(
b 2a
2c −b

)
: a, b, c ∈ Z

}
;

so q(a, b, c) = −b2 − 4ac. L has level 4. As mentioned above we have Γ = Γ(L) =
SL2(Z) and one isomorphism class of cusps. The stabilizer of ℓ0 = Q ( 0 2

0 0 ) is Γ∞ =
{± ( 1 n

0 1 ) : n ∈ Z}. Note that the width of this cusp (in the above sense) is ǫ = 1
2
! By

Lemma 3.7 Γ acts on L−n2 with n orbits, and these X are precisely the vectors such
that X⊥ is split over Q.

For N > 0 and X =
(

b 2a
2c −b

)
such that q(X) = N , observe that the assignment

(3.34) X 7−→
(
−2c b
b 2a

)

defines (for a > 0) a binary positive definite quadratic form of discriminant −N . One
easily deduces that

(3.35) # (Γ\LN) = 2H(N),

where H(N) denotes the class number of binary positive definite integral
quadratic forms of discriminant −N ; we count the classes with nontrivial stabi-
lizer with multiplicities 1/2 and 1/3 respectively. The elements of the form k ( 0 2

−2 0 )
(corresponding to i ∈ H) are fixed by ( 0 1

−1 0 ) and the stabilizer of the elements of

the form k ( 1 2
−2 1 ) (corresponding to (1 + i

√
3)/2) is generated by ( 1 −1

1 0 ). We set
H(0) = − 1

12
= 1

2
µ(Γ\D).
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Applying Theorem 1.1 we obtain

(3.36)
1

2
Iϕ(τ ; L) = F(τ) =

∞∑

N=0

H(N)qN +
v−1/2

16π

∑

n∈Z

β(4πn2v) q−n2

,

Zagier’s well known non-holomorphic Eisenstein series of weight 3/2 and level 4, see
[26, 7].

(ii). This example we will need later to deduce a case of the results of Hirzebruch
and Zagier. We almost repeat (i) considering the trace zero elements in the maximal
order M2(Z) in M2(Q):

(3.37) K =

{(
b a
c −b

)
: a, b, c ∈ Z

}
;

so q(a, b, c) = −b2 − ac. We set X1 = ( 1 0
0 −1 ) and define (the coset)

(3.38) Kj =
j

2
X1 + K

for j = 0, 1. Again we put Γ = SL2(Z) = Γ(Kj). This time we have ǫ = 1 and δ = 0
for j = 1. As above we see that Γ acts on the vectors of length −(n+ j

2
)2 with 2n+ j

orbits.
For N > 0 and X =

(
b+j/2 a

c −b−j/2

)
such that q(X) = N − j

4
we assign

(3.39) X 7−→
(

−2c 2b + j
2b + j 2a

)
,

which defines a positive form of discriminant −4N + j! We obtain

(3.40) #

(
Γ\(Kj)

N− j
4

)
= 2H(4N − j),

hence

(3.41)
1

2
Iϕ(τ ; Kj) =

∞∑

N=0

H(4N − j)qN−j/4 +
v−1/2

8π

∑

n∈Z

β
(
4π(n + j

2
)2v
)
q−(n+

j
2
)2 .

The example now implies Corollary 1.2.
As a corollary to the example and as an illustration of Corollary 1.2 we obtain the

famous relationship between the representation numbers of integers as a sum of three
squares and the class numbers of binary quadratic forms:

Corollary 3.10. Denote by r3(N) the representation number of N as a sum of three

squares and write ϑ(τ) =
∑

n∈Z e2πin2τ for the classical Jacobi theta series. Then

(ϑ(τ))3 = 12

(
1

2
Iϕ(τ ; K0) − Iϕ(τ ; L)

)
;

i.e.,

r3(N) = 12 (H(4N) − 2H(N))

for all integers N .

Proof. The space of holomorphic modular forms for Γ0(4) of weight 3/2 of Nebentypus

is one-dimensional, spanned by (ϑ(τ))3. �
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We now compute the Mellin transform Λ(s) of Iϕ(τ), hence giving the proof of
Theorem 1.3:

We write

(3.42) Λ(s) = Λ+(s) + Λ−(s)

with

(3.43) Λ±(s) =

∫ ∞

0

∑

X∈L+h
±q(X)>0

ϕ(iv, X)vsdv

v
.

For the positive part, we obtain in the standard fashion via Theorem 3.4 (iii)

(3.44) Λ+(s) = (2π)−sΓ(s)
∑

X∈L+h
q(X)>0

1

|Γx|
q(X)−s = (2π)−sΓ(s)ζ2(s, L, h).

For the negative part, we have via Theorem 3.4 (v)

Λ−(s) =

∫ ∞

0

∑

X∈L+h
X⊥ split

v− 1
2

4π
√
|q(X)|

(∫ ∞

1

u− 3
2 e−4πv|q(X)|udu

)
e2π|q(X)|vvsdv

v
(3.45)

=
∑

X∈L+h
X⊥ split

v− 1
2

4π
√
|q(X)|

∫ ∞

1

(∫ ∞

0

e−2π|q(X)|(2u−1)vvs− 1
2
dv

v

)
u− 3

2 du(3.46)

=
∑

X∈L+h
X⊥ split

v− 1
2

4π
√
|q(X)|

Γ(s − 1

2
)

∫ ∞

1

(2π|q(X)|(2u− 1))
1
2
−su− 3

2 du(3.47)

= 2−
3
2
−sπ− 1

2
−sΓ(s − 1

2
)ζ1(s, L, h)

∫ ∞

1

(2u − 1)−
1
2
−s

u3/2
du.(3.48)

The integral in the last line is equal to
√

2
∫ 1

0
ws−1

(w+1)3/2 =
√

21
s
F (3

2
, s, s + 1,−1), see

[17].
This concludes the proof of Theorem 1.3.

4. Proof of Theorem 3.4

4.1. Convergence of the Theta Integral.

Proposition 4.1 (Theorem 3.4 (i)).

θϕ(τ ; L, h) ∈ L1(Γ\D).

Proof. If Γ\D is compact, i.e., V = V (Q) is anisotropic, then there is nothing to
show; the existence of the integral is immediate.

On the other hand, if V is isotropic then we can choose the isomorphism of V (R) ≃
B0(R) such that V (Q) ≃ B0(d; Q) and X0 := ( 0 1

0 0 ) primitive in L.
We then can find r ∈ Q such that L′ := rB0(d; Z) ⊂ L. With this notation we see

(4.1) θϕ(τ ; L, h) =
∑

h′≡h(L)
mod L′

θϕ(τ ; L′, h′).
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So it is sufficient to show that each θϕ(τ ; L′, h′) ∈ L1(Γ\D). Picking a fundamental
domain for Γ\D we observe that via (3.12) it suffices to show that θϕ is rapidly
decreasing as y −→ ∞.

For X ∈ B0(d; Q), we have

ϕ(τ, X)

=

(
v(X, X(z))2 − 1

2π

)
e−πv(X,X(z))2e2πiτ̄q(X)ω(4.2)

=

(
v

y2
(x3zz̄ − 2

√
dx1x − x2)

2 − 1

2π

)
exp

(
−π

v

y2
(x3zz̄ − 2

√
dx1x − x2)

2

)

× e
(
−τ̄ (dx2

1 + x2x3)
)
ω.

Write x2 = x′
2 + h′

2 and let x′
2 run over rZ. We will apply Poisson summation

to the sum on x′
2. So consider in the above expression the coefficient of ω as a

function f of x′
2. For the Fourier transform of f , we see by changing variables to

−t =
√

v
y

(x3zz̄ − 2
√

dx1x − x′
2 − h′

2),

f̂(w) =

∫ ∞

−∞
f(x′

2)e
−2πix′

2wdx′
2

= (y
√

v)−1e
(
−τ̄dx2

1

)
e

(
−[w + x3τ̄ ][x3zz̄ − 2

√
dx1x − h′

2]

)
(4.3)

×
∫ ∞

−∞

(
t2 − 1

2π

)
exp(−πt2) e

(
−t

y√
v
(w + x3τ̄ )

)
dt

= ∗(−1)

(
y√
v
(w + x3τ̄ )

)2

exp

(
−π

(
y√
v
(w + x3τ̄ )

)2
)

,

since the Fourier transform of
(
t2 − 1

2π

)
exp(−πt2) is −t2 exp (−πt2).

We obtain:

θ(τ ; L′, h′)(z) =

− r−1 y

v3/2

∑

w∈r−1Z
x1∈h′

1+rZ

x3∈h′

3+rZ

(w + x3τ̄)2 e
(
−τ̄ dx2

1

)

× e

(
−[w + x3τ̄ ][x3zz̄ − 2

√
dx1x − h′

2]

)
exp

(
−π

y2

v
(w + x3τ̄ )2

)
ω.

All terms of this sum are exponentially decreasing as y 7→ ∞ except those for which
w = x3 = 0. But the coefficient (w + x3τ̄ )2 vanishes for such terms.

So |θ(τ ; L′, h′)| is integrable and θ(τ ; L, h) is real analytic in τ . �

4.2. Computation of the Individual Terms. We will compute for Γ an arbitrary
Fuchsian subgroup of SL2(R) the integrals

(4.4)

∫

Γ\D

∑

γ∈ΓX\Γ
γ∗ϕ0(X, z)
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with any non-isotropic X ∈ V (R) and ΓX the stabilizer of X in Γ, and

(4.5)

∫

Γ\D

∑

X∈Γ(ZY +hY )
X 6=0

ϕ0(X, z),

where Y ∈ V (R) isotropic such that QY = ℓ is a cusp of Γ, i.e, ΓY is nontrivial, and
hY ∈ ℓ. Note that via (3.21) and (3.25) the calculation of these integrals yields the
Fourier expansion of Iϕ(τ) (Theorem 3.4).

There are several cases to consider:

A: q(X) > 0

B1: q(X) < 0, ΓX nontrivial, infinite cyclic

B2: q(X) < 0, ΓX trivial

C : The integral (4.5)

According to the stabilizer ΓX of X (Γℓ of the isotropic line ℓ) we call A the elliptic,
B the hyperbolic and C the parabolic case.

Note that the cases are closely related to each other:

Lemma 4.2. Let q(X) < 0 for X ∈ V (Q), so X⊥ has signature (1, 1). Then ΓX is
trivial if X⊥ splits over Q. Conversely, if X⊥ is non-split, i.e., anisotropic over Q,
then ΓX is infinite cyclic.

Proof. Indeed, we can identify GX(R) with Spin(X⊥) ≃ R× which acts on the two
isotropic lines of X⊥ as homotheties. Hence ΓX = Γ(X⊥) being a discrete subgroup
of R× is either trivial or infinite cyclic. But for a possible isotropic line ℓ over Q, i.e.,a
cusp for Γ, we would also have a discrete unipotent subgroup in Γ stabilizing ℓ. This
together with Γ(X⊥) has an accumulation point, see [19], p.16. On the other hand,
an indefinite anisotropic binary quadratic form over Q corresponds to the norm form
of a real quadratic field K over Q, and the units O×

K act as isometries and are infinite
cyclic (up to torsion). �

So the cases B2 and C occur together. Moreover, they occur if and only if Γ\D is
non-compact. These two cases create the complications when extending the results
of Kudla and Millson to the non-compact case.

4.2.1. A: The Elliptic Case. Let X ∈ V (R) such that q(X) > 0, hence RX ∈ D.
Therefore the stabilizer ΓX of X in G(R) = SL2(R) is conjugate to SO2(R), and is
in particular compact. Since ΓX is a discrete subgroup, it is finite cyclic.

Proposition 4.3 (Theorem 3.4 (iii)). Let q(X) > 0. Then
∑

γ∈ΓX\Γ
|γ∗ϕ(X, z)| ∈ L1(Γ\D);

unfolding in (4.4) is allowed, and we have

(4.6)

∫

Γ\D

∑

γ∈Γ

γ∗ϕ0(X, z) =

∫

D

ϕ0(X, z) = 1.
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Remark 4.4. This result is certainly already contained in [12, 13]. In fact, it is one
of the corner stones of the theory. However, for the convenience of the reader we give
a brief sketch of the proof

Proof. Write X = ( x1 x2
x3 −x1

). Since q(X) > 0, we have x3 6= 0. Hence by the explicit
formulae for ϕ we get

(4.7) ϕ0(X, z) = e2π(X,X)

×
[(

(x3x − x1)
2 + q(X)

−x3y
− x3y

)2

− 1

2π

]
e
−π

„
(x3x−x1)2+q(X)

−x3y
−x3y

«2

dxdy

y2
.

The integrand is rapidly decreasing for x → ±∞ and y → 0,∞. Note that here one
needs q(X) > 0. Hence unfolding is allowed and therefore ϕ0(X, z) ∈ L1(D). The
proof of

∫
D

ϕ0(X, z) = 1 can be found in [13], p. 301-302. Note that the Schwartz
function considered there differs from ours by a factor of 1/2. �

4.2.2. B: The Hyperbolic Case. So let X ∈ V (R) such that q(X) < 0, say q(X) = −d

with d ∈ R+. The stabilizer of X1(d) :=
(√

d 0
0 −

√
d

)
in G(R) = SL2(R) is GX1(d)(R) =

{(
a 0
0 a−1

)
: a ∈ R×}. So ΓX is conjugate to a discrete subgroup Γ′

X of GX1(d), hence
either infinite cyclic or trivial.

Case B1.

With the above notation assume that ΓX is infinite cyclic, say g.X = X1(d) and
gΓXg−1 = Γ′

X =
〈(

ǫ 0
0 ǫ−1

)〉
with some ǫ > 1 (can assume ǫ > 0, since −I acts trivially

on D).

Proposition 4.5 (Theorem 3.4(v)). Let X ∈ V (R) such that q(X) < 0 and ΓX

infinite cyclic. Then ∑

γ∈ΓX\Γ
|γ∗ϕ0(X, z)| ∈ L1(Γ\D);

unfolding in (4.4) is valid and

(4.8)

∫

Γ\D

∑

γ∈ΓX\Γ
γ∗ϕ0(X, z) =

∫

ΓX\D
ϕ0(X, z) = 0.

Remark 4.6. This orbital integral also appears in the compact quotient case. Since
in that case all negative Fourier coefficients vanish, the above proposition also follows
from the work of Kudla and Millson. However, as they only sketch the argument in
this particular case ([14], p. 138), it seems desirable to give a direct proof.

Proof. We have∫

Γ\D

∑

γ∈ΓX\Γ
γ∗ϕ0(X, z) =

∫

gΓg−1\D

∑

γ∈ΓX\Γ
ϕ0(g.X, gγg−1z)(4.9)

=

∫

Γ′\D

∑

γ∈Γ′

X\Γ′

γ∗ϕ0(X1(d), z)

where Γ′ := gΓg−1.
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We will now show the validity of the unfolding which then proves the existence of
the original integral as well.

∫

Γ′\D

∑

γ∈Γ′

X\Γ′

γ∗ϕ0(X1(d), z) =

∫

Γ′

X\D
ϕ0(X1(d), z)(4.10)

= e−4πd

∫

Γ′

X\D

(
4d

x2

y2
− 1

2π

)
e
−4πd x2

y2
dxdy

y2
.

(
ǫ 0
0 ǫ−1

)
acts on z ∈ D as z → ǫ2z. So a fundamental domain F of Γ′

X\D is the
domain bounded by the semi arcs |z| = 1 and |z| = ǫ2 > 1 in the upper half plane:

(4.11) F =
{
z ∈ D : 1 ≤ |z| < ǫ2

}
.

But in this domain ϕ0(X1(d), z) is clearly rapidly decreasing as z approaches the
boundary of D. So all considered integrals actually exist and unfolding is allowed.

Changing to polar coordinates we compute
∫

F

(
4d

x2

y2
− 1

2π

)
e
−4πd x2

y2
dxdy

y2

=

∫ ǫ2

1

∫ π

0

(
4d cot2(θ) − 1

2π

)
e−4πd cot2(θ) 1

r
csc2(θ)dθdr

= log(ǫ2)

∫ ∞

−∞

(
4πdt2 − 1

2π

)
e−4πdt2dt (t = cot θ)

= 0,

(4.12)

since

(4.13)

∫ (
t2 − 1

2π

)
e−πt2dt =

1

2π
te−πt2 + C.

�

Case B2.

Proposition 4.7 (Theorem 3.4(v)). Let q(X) be negative and assume that ΓX is
trivial. Then

(4.14)
∑

γ∈Γ

γ∗ϕ0(X, z) ∈ L1(Γ\D)

and

(4.15)

∫

Γ\D

∑

γ∈Γ

γ∗ϕ0(X, z) =
1

4π
√

|q(X)|

∫ ∞

1

t−3/2e4πq(X)tdt.

Proof. Let q(X) = −d and suppose that ΓX is trivial. Recall that we chose g ∈ G(R)

such that g.X = X1(d) =
(√

d 0
0 −

√
d

)
and gΓg−1 = Γ′. As above we have

(4.16)

∫

Γ\D

∑

γ∈Γ

γ∗ϕ0(X, z) =

∫

Γ′\D

∑

γ∈Γ′

γ∗ϕ0(X1(d), z).
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Unfolding in this situation will be not possible since

(4.17) ϕ0(X1(d), z) = e−4πd

(
4d

x2

y2
− 1

2π

)
e
−4πd x2

y2
dxdy

y2

is not integrable over D. So we have to proceed more carefully.
ΓX is trivial. Hence X⊥, having signature (1, 1), is split. Therefore the stabilizers in

Γ of the isotropic lines in X⊥ are nontrivial by Lemma 4.2. By conjugation we consider

the isotropic lines in X1(d)⊥. They are generated by X0 = ( 0 1
0 0 ) and X̃0 = ( 0 0

−1 0 ). We
put J = ( 0 1

−1 0 ). Note that J switches the isotropic lines ( i.e. the cusps) orthogonal

to X1(d): JX0 = X̃0.
Hence Γ′

X0
= 〈Tα〉 with Tα = ( 1 α

0 1 ) for some α ∈ R+ and Γ′
fX0

= 〈JTβJ
−1〉 for some

β ∈ R+. We write Γ′′
X0

= 〈Tβ〉. Note that α and β are not intrinsic to the situation
since they depend on the choice of g such that g.X = X1(d).

Define a subset G of D = H by

(4.18) G = {z ∈ D : |z| ≥ 1}.

Note JG = Ḡ := D − G (up to measure zero).
Fundamental for us is the fact that J essentially fixes X1(d): J.X1(d) = −X1(d);

hence for any z ∈ D

(4.19) ϕ0(X1(d), z) = ϕ0(J.X1(d), z)

and therefore (up to measure zero)

(4.20) ϕ0(X1(d), z) = χG(z) ϕ0(X1(d), z) + J∗ (χG(z) ϕ0(X1(d), z)
)
.

Here χG denotes the characteristic function of G. We have

∫

Γ\D

∣∣∣
∑

γ∈Γ

γ∗ϕ0(X, z)
∣∣∣

=

∫

Γ′\D

∣∣∣
∑

γ∈Γ

χG (γz)ϕ0(X1(d), γz) + χG(Jγz) ϕ0(X1(d), Jγz)
∣∣∣

≤
∫

Γ′\D

∑

γ∈Γ′

X0
\Γ′

∣∣∣
∑

k∈Z

χG(T k
αγz) ϕ0(X1(d), T k

αγz)
∣∣∣

+

∫

Γ′\D

∑

γ∈Γ′

gX0
\Γ′

∣∣∣
∑

k∈Z

χG(JJT k
β J−1γz) ϕ0(X1(d), JJT k

β J−1γz)
∣∣∣.

(4.21)
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Now we are in position to unfold and obtain

=

∫

Γ′

X0
\D

∣∣∣
∑

k∈Z

χG(T k
αz) ϕ0(X1(d), T k

αz)
∣∣∣

+

∫

Γ′

gX0
\D

∣∣∣
∑

k∈Z

χG(T k
β J−1z) ϕ0(X1(d), T k

β J−1z)
∣∣∣

=

∫

Γ′

X0
\D

∣∣∣
∑

k∈Z

χG(T k
αz) ϕ0(X1(d), T k

αz)
∣∣∣

+

∫

Γ′′

X0
\D

∣∣∣
∑

k∈Z

χG(T k
β z) ϕ0(X1(d), T k

β z)
∣∣∣

(4.22)

by changing variables z 7−→ Jz in the second integral.
It is sufficient to show the convergence of the first integral. So let F∞ be a funda-

mental domain for Γ′
X0
\D and split F∞ = F1

∐
F2, where F1 = {z ∈ F∞ : Im(z) ≥ 1}.

For F1, we have
∫

F1

∣∣∣
∑

k∈Z

χG(T k
αz)ϕ0(X1(d), T k

αz)
∣∣∣

=

∫

F1

∣∣∣
∑

k∈Z

ϕ0(X1(d), z + αk)
∣∣∣

= e−4πd

∫

F1

∣∣∣
∑

k∈Z

(
4d

(x + αk)2

y2
− 1

2π

)
e
−4πd (x+αk)2

y2

∣∣∣dxdy

y2

=
1

8d3/2α
e−4πd

∫

F1

∣∣∣
∑

w∈α−1Z

y3w2e−πy2w2

e2πixw
∣∣∣dxdy

y2

(4.23)

by Poisson summation (see Section 4.1). But the integrand is clearly exponentially
decreasing for y −→ ∞. This shows the existence of this part of the integral. M

Moreover, removing the absolute value signs, we see that the integral (4.23) van-
ishes, as we easily conclude by interchanging the summation and the integration w.r.t.
x in the last line of (4.23). However, note that

(4.24)
∑

k∈Z

(
4d

(x + αk)2

y2
− 1

2π

)
e
−4πd (x+αk)2

y2
dxdy

y2

is not termwise integrable over F1.
For F2, we can even unfold further and get

(4.25)

∫

{z∈G:y≤1}

∣∣ϕ0(X1(d), z)
∣∣ = e−4πd

∫

{z∈G:y≤1}

∣∣∣
(

4d
x2

y2
− 1

2π

)
e
−4πd x2

y2

∣∣∣dxdy

y2

which is clearly finite since the integrand is rapidly decreasing at the boundary of the
domain of integration. Note that the last expression does not depend on α.

This shows integrability for the first summand in (4.22); the second summand is
handled in the same manner!
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These considerations give us
∫

Γ\D

∑

γ∈Γ

γ∗ϕ0(X, z) = 2

∫

{z∈G:y≤1}
ϕ0(X1(d), z)(4.26)

= 2e−4πd

∫

{z∈G:y≤1}

(
4d

x2

y2
− 1

2π

)
e
−4πd x2

y2
dxdy

y2
(4.27)

Using (4.13) we get

2

∫

{z∈G:y≤1}
ϕ0(X1(d), z) = 2

∫ 1

0

2

∫ ∞

√
1−y2

e−4πd

(
4d

x2

y2
− 1

2π

)
e
−4πd x2

y2
dxdy

y2

= 4e−4πd

∫ 1

0

√
1 − y2

2π
e
−4πd 1−y2

y2 y−2dy

=
1

π

∫ ∞

1

√
w − 1e−4πdww−1dw (w = y−2)(4.28)

=
1

π

∫ ∞

0

w
1
2 (w + 1)−1e−4πd(w+1)dw

=
e−4πd

2
√

π
Ψ

(
3

2
,
3

2
; 4πd

)
,

where Ψ(α, γ; z) is the confluent hypergeometric function of the second kind which
has for Re(α), Re(z) > 0 the integral representation

(4.29) Ψ(α, γ; z) =
1

Γ(α)

∫ ∞

0

tα−1(t + 1)γ−α−1e−ztdt

([17], 9.11.6). Further note the functional equation

(4.30) Ψ(α, γ; z) = z1−γΨ(1 + α − γ, 2 − γ; z)

for |arg(z)| < π ([17], 9.10.8). Thus

e−4πd

2
√

π
Ψ

(
3

2
,
3

2
; 4πd

)
=

1

4
√

dπ
e−4πd Ψ

(
1,

1

2
; 4πd

)

=
1

4
√

dπ

∫ ∞

0

(t + 1)−3/2e−4πd(t+1)dt(4.31)

=
1

4
√

dπ

∫ ∞

1

t−3/2e−4πdtdt.

This proves the proposition. �

4.2.3. C: The Parabolic Case. Now let ℓ be an isotropic line in V (R) such that its
(pointwise) stabilizer Γℓ is nontrivial. Pick a point Y ∈ ℓ. Choose g ∈ G(R) = SL2(R)
such that g.Y = βX0 with X0 = ( 0 1

0 0 ) and β ∈ R×. Put Γ′ = gΓg−1. Hence
Γ′

X0
:= gΓY g−1 is equal to {± ( 1 kα

0 1 ) : k ∈ Z} (if −I ∈ Γ) for some α ∈ R+. Recall
that we defined the width of the cusp (Y, Γ) by ǫ(Y, Γ) = α

|β| = ǫ(Y, Γ).
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Proposition 4.8 (Theorem 3.4(iv)). Let ℓ ∈ V (R) isotropic be a cusp of Γ as above,
Y ∈ ℓ, hY ∈ QY and r ∈ R×. Then

(4.32)

∫

Γ\D

∑

X∈Γ(ZY +hY )
X 6=0

ϕ0(rX, z) =
ǫ(Y, Γ)

2π|r|

where ǫ(Y, Γ) is the width of the cusp (Y, Γ) (Def. 3.2).

Proof. We can assume β = ±1 and by abuse of notation hY = h = hX0 with h ∈ [0, 1).
We are interested in

∫

Γ\D

∑

X∈Γ(ZY +h)
X 6=0

ϕ0(X, z) =

∫

Γ\D

∑

γ∈ΓY \Γ

∞∑′

k=−∞
γ∗ϕ0(kY + h, z)

=

∫

gΓg−1\D

∑

γ∈ΓY \Γ

∞∑′

k=−∞
ϕ0(g.(kY + h), gγg−1z)(4.33)

=

∫

Γ′\D

∑

γ∈Γ′

X0
\Γ′

∞∑′

k=−∞
γ∗ϕ0(±kX0 + h, z),

where
∑′∞

k=−∞
omits k = 0 in the case of the trivial coset. Now

(4.34) ϕ0(±r(k + h)X0), z) =

(
((k + h)r)2

y2
− 1

2π

)
e
−π

((k+h)r)2

y2
dxdy

y2
.

We unfold and get

∫

Γ′\D

∑

γ∈Γ′

X0
\Γ′

∞∑′

k=−∞
γ∗ϕ0(±r(k + h)X0, z)

(4.35)

=

∫

Γ′

X0
\D

∞∑′

k=−∞

(
((k + h)r)2

y2
− 1

2π

)
e
−π

((k+h)r)2

y2
dxdy

y2

= ǫ(Y, Γ)

∫ ∞

0

∞∑′

k=−∞

(
((k + h)r)2

y2
− 1

2π

)
e
−π ((k+h)r)2

y2 y−2dy.

The validity of the unfolding in (4.35) (and therefore the existence of the original
integral) follows by looking at the last integral: For y → 0 we have exponential decay
and for y → ∞ one sees - adding the constant term k = 0 into the summation if
h = 0 - by Poisson summation (see Section 4.1)
(4.36)

∞∑′

k=−∞

(
(kr)2

y2
− 1

2π

)
e
−π

(kr)2

y2
dxdy

y2
=

(
1

2π
− r−1y3

∞∑

w=−∞
(w/r)2e−π(yw/r)2

)
dxdy

y2

which is O(y−2) as y → ∞. (The same argument works for h 6= 0.)
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Now in the last expression of (4.35) interchanging summation and integration is
not allowed in general since

(4.37)

∞∑′

k=−∞

(kr)2

y2
e
−π (kr)2

y2 =

∞∑′

k=−∞

1

2π
e
−π (kr)2

y2 = O(y) (y → ∞)

However, we can modify the integrand defining

(4.38) F (s) :=

∫ ∞

0

∞∑′

k=−∞

(
((k + h)r)2

y2
− 1

2π

)
e
−π ((k+h)r)2

y2 y−2−sdy.

for s ∈ C. F is holomorphic for Re(s) > −1 and for Re(s) > 0 interchanging
summation and integration is valid. We obtain

F (s) =

∞∑′

k=−∞

∫ ∞

0

(
((k + h)r)2

y2
− 1

2π

)
e
−π

((k+h)r)2

y2 y−2−sdy

(4.39)

=
1

2
π

−3−s
2

∞∑′

k=−∞
|(k + h)r|−1−s

∫ ∞

0

(
w − 1

2

)
w(s+1)/2

ew

dw

w

(
w =

π(k + h)r2

y2

)
(4.40)

=
1

2
π

−3−s
2 |r|−1−s (ζ(1 + s, h) + ζ(1 + s, 1 − h))

(
Γ

(
s + 3

2

)
− 1

2
Γ

(
s + 1

2

))(4.41)

=
1

2
π

−3−s
2 |r|−1−s (ζ(1 + s, h) + ζ(1 + s, 1 − h))

s

2
Γ

(
s + 1

2

)
−→ 1

2π|r| ,

(4.42)

as s −→ 0. Here ζ(s, x) =
∑∞

n=0(x + n)−s is the Hurwitz Zeta-function which has a
simple pole of residue 1 at s = 1. �

5. General Signature (p, 2)

5.1. Theta Integral for SO(p, 2). Now we assume that V has signature (p, 2). Let
U ⊂ V be a positive definite subspace of dimension p − 1 so that CU = ΓU\DU is a
quotient of H in M . We consider the period integral

(5.1) IϕV
(τ, L, CU) =

∫

CU

θϕV
(τ, L).

Here we write ϕV for ϕ to emphasize the domain ϕ is associated to. For p = 1 and
U = (0), this is the theta integral considered in the previous sections.

We write

(5.2) LU = L ∩ U and LU⊥ = L ∩ U⊥.

We can split the lattice L as follows:

(5.3) L =

r∑

i=1

(λi + LU ) ⊥ (µi + LU⊥)
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with λi ∈ L#
U and µi ∈ L#

U⊥ .

Theorem 5.1.

IϕV
(τ, L, CU) =

r∑

i=1

ϑ(τ, λi + LU)Iϕ
U⊥

(τ, µi + LU⊥).

Here ϑ(τ, λi + LU) =
∑

x∈λi+LU
e2πiq(x)τ is the standard theta function of a coset of

the positive definite lattice LU . In particular, the period integral IϕV
(τ, L, CU) is a

non-holomorphic (if CU is non-compact) modular form of weight (p + 2)/2.

Proof. By Theorem 2.1 (ii), we have that under the pullback i∗U : Ω1,1(D) −→
Ω1,1(DU) of differential forms,

(5.4) i∗UϕV = ϕ+
U ⊗ ϕU⊥,

where ϕ+
U is just the Gaussian on U . Then

θϕV
(τ, L) =

∑

x∈L

ϕV (X, τ)(5.5)

=
r∑

i=1

∑

x∈λi+LU

ϕ+
U(x, τ)

∑

y∈µi+L
U⊥

ϕU⊥(y, τ).(5.6)

integrating over CU together with the results on the theta integral for signature (1, 2)
(Theorem 3.4) now gives the theorem. �

5.2. Intersection Numbers. We will now show how one can interpret the Fourier
coefficients of θϕV

(τ, L) as intersection numbers.
For a special curve C = CU (dim U = p − 1) and a divisor C ′ = CU ′ (dim U ′ = 1),

we define the intersection number in (the interior of) M :

(5.7) [C.C ′]M := [C.C ′]tr + vol(C ∩ C ′)1,

the sum of the transversal intersection and the (hyperbolic) volume of the one-
dimensional intersection of C and C ′. For p = 2, the Hilbert modular surface case,
this follows Hirzebruch and Zagier ([7]). One easily sees that CU and CU ′ intersect
transversally if and only if U +U ′ is positive definite of (maximal) dimension p, while
CU and CU ′ have a one-dimensional intersection if and only if CU ⊆ CU ′, i.e., U ′ ⊆ U .

Theorem 5.2. Assume for simplicity that L = LU + LU⊥ . Also assume that Γ is
torsion-free so that M has no quotient singularities.

For a composite special divisor CN (N ∈ N), we have

(i)

[CU .CN ]tr =
∑

N1≥0,N2>0
N1+N2=N

r(N1, LU) deg(N2, CU);

(ii)

vol(CU ∩ CN)1 = r(N, LU)vol(CU).

Here r(N, LU) = #{x ∈ LU : q(x) = N} and deg(N, CU) = #ΓU\{x ∈ LU⊥ :
q(x) = N}, the degree of the Heegner divisor in the modular curve CU .



26 JENS FUNKE

Proof. We write CN =
∑

x∈Γ\LN
Cx. We decompose x = x1 + x2 with x1 ∈ LU and

x2 ∈ LU⊥. We have CU ⊂ Cx if and only if x2 = 0. In the sum defining CN therefore
exactly the x = x1 ∈ LU of length N contribute to the one-dimensional intersection.
This proves (ii). For (i), each x with q(x2) = N2 > 0 contributes. Taking into account
the action of ΓU on LU⊥ gives the assertion. �

We certainly have a similar theorem if L does not split along U . If Γ is not torsion-
free, then we can always pass to a torsion-free subgroup Γ′ of finite index to obtain
intersection numbers on Γ′\D. The intersection numbers on Γ\D (in the sense of
rational homology manifolds) are then obtained by dividing by the degree of the
covering Γ′\D 7−→ Γ\D.

Corollary 5.3. Write

IϕV
(τ, L, CU) =

∞∑

N=0

c(N)qN +

∞∑

N=−∞
c(N, v)qN

for the Fourier expansion of the above theta integral. Then

c(N) = [CU .CN ]M ;

i.e., the intersection numbers are exactly the Fourier coefficients of the holomorphic
part of IϕV

(τ, L, CU).

Proof. Just write down the Fourier expansion of IϕV
(τ, L, CU) using Theorem 3.5 and

5.1. �

5.3. Hirzebruch-Zagier Case. As an example we will derive the basic case of the
results of Hirzebruch and Zagier [7] and its (mild) extensions by Franke [5], Hausmann
[6] and van der Geer [24].

Let D > 0 be squarefree and let K = Q(
√

D) be the real quadratic field over Q,
OK its ring of integers. We denote by x 7−→ x′ the Galois involution on K. We let
V ⊂ M2(K) be the space of of skew-hermitian matrices in M2(K), i.e., which satisfy
the relation tX ′ = −X. V is a vector space over Q of dimension 4.

We let L ⊂ V be the integral skew-hermitian matrices; that is

(5.8) L =

{
X =

(
a
√

D λ

−λ′ b
√

D

)
: a, b ∈ Z, λ ∈ OK

}
.

As usual, the determinant defines a quadratic form on L; we have Q(X) = abD+λλ′,
which is of signature (2, 2) and has Q-rank 1, i.e., it splits over Q into a hyperbolic
plane and into an anisotropic part of rank 2. SL2(OK) acts on L by γ.X = γX tγ′

as isometries. We let Γ be the Hurwitz-Maass extension of SL2(OK) which is the
maximal discrete subgroup of PGL+

2 (R)2 containing SL2(OK) (for a brief discussion
of its definition and properties, see [24]; for example, if D ≡ 1 mod 4 is a prime,
then Γ = SL2(OK) . This is actually the case Hirzebruch and Zagier considered).
Slightly changing our notation we write S = Γ\D for the Hilbert modular surface.
The Hirzebruch-Zagier cycles TN are nothing but our special cycles CN =

∑
X∈LN

CX .

TN has finitely many components, is non-empty if
(

N
p

)
6= −1 and is compact if N is

not the norm of an ideal in OK .
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We can compactify S by adding the cusps and resolving the singularities thus cre-
ated. We call this (up to quotient singularities) nonsingular compact surface S̃. Now

H2(S̃) decomposes canonically into as the direct sum of the image of H2(S) and the
subspace generated by the homology cycles of the curves of the cusp resolution. We
denote by T c

N the component in the first factor of TN . Hirzebruch and Zagier com-
pute the intersection numbers [T c

N .TM ] (N, M ∈ N) and by a direct computation they
show that these numbers are the Fourier coefficients of a holomorphic modular form
of weight 2. In fact, [T c

N .TM ] is the sum of the intersection numbers [TN .TM ]S in the
interior and the contribution of the cusp resolution, and these numbers individually
occur as Fourier coefficients of two non-holomorphic modular forms. For M = 1, one
has

(5.9) (T1.TN )S = HD(N) =
∑

s2≤4N
s2≡4N mod D

H

(
4N − s2

D

)
,

where H(N) denotes the class number of positive definite binary quadratic forms, see
Example 3.9.

We now recover these results: We consider the curve T1 = C1 in our setting. Γ acts
transitively on L1, the vectors of length 1, see [6, 24]. So T1 = CX0 for any X0 ∈ L1.
We pick X0 = ( 0 1

−1 0 ) ∈ L.

Theorem 5.4.

1

2

∫

T1

θϕV
(τ, L) =

∞∑

N=0

HD(N)qN +
2v−1/2

√
D

∑

λ∈O
β
(
4π(λ−λ′

2
)2v
)

qλλ′

.

So the Fourier coefficients of the holomorphic part of the period integral
∫

T1
θϕV

(τ, L)

are the intersection numbers of the the cycles T1 and TN in the “interior” of Γ\D.

Proof. First we assume D ≡ 0 mod 4, so K = Q(
√

d) with d = D/4 square free. In
this case L splits orthogonally:

(5.10) L = ZX0 ⊥ (L ∩ X⊥
0 )

and

(5.11) LU⊥ = L ∩ X⊥
0 =

{√
d

(
2a b
−b 2c

)
: a, b, c ∈ Z

}
,

which is - up to the scaling - exactly the lattice considered in Example 3.9(i) which
gave rise to Zagier’s Eisenstein series F !. Hence by Theorem 5.1 and Example 3.9(i)



28 JENS FUNKE

we find

1

2
Iϕ(τ, L, T1) = ϑ(τ)Iϕ

U⊥
(τ, LU⊥)

(5.12)

= ϑ(τ)F(dτ)(5.13)

=

(
∑

m∈Z

qm2

)( ∞∑

N=0

H(N)qdN + (dv)−1/2
∑

n∈Z

β(4πn2dv) q−dn2

)
(5.14)

=
∑

s2≤N
s2≡N (d)

H

(
N − s2

d

)
qN +

v−1/2

√
d

∞∑

N=−∞

∑

n,m∈Z

m2−dn2=N

β(4πdn2v) qN(5.15)

=
∑

(2s)2≤4N
(2s)2≡4N (4d)

H

(
4N − (2s)2

4d

)
qN +

2v−1/2

√
4d

∑

λ∈O
β
(
4π(λ−λ′

2
)2v
)

qλλ′

(5.16)

since O = {m + n
√

d : m, n ∈ Z}. Noting D = 4d, the theorem follows for D ≡ 0
mod 4.

The case D ≡ 1 mod 4 is slightly more complicated since L does not split orthog-
onally so that one has to deal with cosets. We have

(5.17) LU⊥ = L ∩ X⊥
0 =

{√
D

(
a b
−b c

)
: a, b, c ∈ Z

}

which is the lattice from Example 3.9(ii)! We set X1 =
(

0
√

D√
D 0

)
and obtain

(5.18) L = (ZX0 ⊥ LU⊥) ⊕ 1

2
(X0 + X1) + (ZX0 ⊥ LU⊥) .

The holomorphic part is given by

(5.19)

1∑

j=0

(
∑

m∈Z

q(m+
j
2
)2

)( ∞∑

n=0

H(4n − j)qD(n− j
4
)

)
=

1∑

j=0

∞∑

N=0

∑∗

m,n∈Z

H(4n − j)qN ,

where the inner summation extends over all integers m and n such that

(m + j
2
)2 + D(n − j

4
) = N ; or equivalently 4n − j = 4N−(2m+j)2

D
. So (5.19) becomes

(5.20)
1∑

j=0

∞∑

N=0

∑

(2m+j)2≤4N
(2m+j)2≡4N (D)

H
(

4N−(2m+j)2

D

)
qN =

∞∑

N=0

∑

s2≤4N
s2≡4N (D)

H

(
4N − s2

D

)
qN .
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For the non-holomorphic part, we first note O = {m + n1+
√

D
2

: m, n ∈ Z}. For

λ = m + n1+
√

D
2

we write λ ∼ (m, n). Then

1∑

j=0

(
∑

m∈Z

q(m+
j
2
)2

)(
2(vD)−1/2

∑

n∈Z

β
(
4π(n + j

2
)2vD

)
q−D(n+

j
2
)2

)
(5.21)

=
2v−1/2

√
D

1∑

j=0

∞∑

N=0

∑∗

m,n∈Z

β
(
4π(n + j

2
)2Dv

)
qN ,(5.22)

where the inner sum goes over all m, n such that (m + j
2
)2 − D(n − j

4
) = N .

=
2v−1/2

√
D

1∑

j=0

∑

N∈Z

∑

λ∼(n−m,2n+j)
λλ′=N

β
(
4π(λ−λ′

2
)2v
)

qN(5.23)

=
2v−1/2

√
D

∑

λ∈O
β
(
4π(λ−λ′

2
)2v
)

qλλ′

,(5.24)

as desired.
�

The factor 1
2

in the previous theorem occurs as −1 ∈ Γ, which acts trivially on
D ≃ H × H.

To obtain the intersection numbers [T c
1 .TN ] and the holomorphic modular form of

weight 2, one can now apply the holomorphic projection principle onto
∫

T1
θϕV

(τ, L).

This is an idea of van der Geer and (independently) Zagier, which has been carried
out in [24].

Remark 5.5. We see that Theorem 5.1 is the exact generalization of a part of
the results of Hirzebruch-Zagier. One is certainly very interested to obtain com-
plete analogues of these results. Applying holomorphic projection onto the function∫

CU
θϕV

(τ, L) in Theorem 5.1 for p > 2 is certainly possible, but this does not have
a priori a geometric interpretation. More promising seems to be an analysis of the
boundary along the lines of the theory of Kudla and Millson. It seems likely that
Eisenstein cohomology will enter the picture at this stage. We hope to come back to
this issue.
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