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Abstract. The purpose of this paper is to generalize the relation [KM4] between
intersection numbers of cycles in locally symmetric spaces of orthogonal type and
Fourier coefficients of Siegel modular forms to the case where the cycles have lo-
cal coefficients. Now the correspondence will involve vector-valued Siegel modular
forms.

1. Introduction

Let V be a non-degenerate quadratic space of dimension m and signature (p, q)
over Q, for simplicity. The general case of a totally real number field is treated in
the main body of the paper. We write V = V (R) for the real points of V and let
G = SO0(V ). Let G′ denote the nontrivial 2-fold covering group of the symplectic
group Sp(n,R) (the metaplectic group) and let K ′ be the 2-fold covering inherited
by U(n). Let D = G/K resp. D′ = G′/K ′ be the symmetric space of G resp. G′.
Note that D′ = Hn, the Siegel upper half space. In what follows we will choose
appropriate (related) arithmetic subgroups Γ ⊂ G and Γ′ ⊂ G′. We let M = Γ\D
and M ′ = Γ′\D′ be the associated locally symmetric spaces.

We let En denote the holomorphic vector bundle over Hn associated to the standard
representation of U(n), i.e., En = Sp(n,R)×U(n) Cn. For each dominant weight λ′ of
U(n), we have the corresponding irreducible representation space Sλ′(Cn) of U(n) and
the associated holomorphic vector bundle Sλ′(En) over M ′ (see §3, for the meaning
of the Schur functor Sλ′(·)). For each half integer k/2 we have a character detk/2 of
K ′. Let Lk/2 be the associated G′-homogeneous line bundle over the Siegel space. For
each dominant weight λ of G, we have the corresponding irreducible representation
S[λ](V ) of G with highest weight λ and the flat vector bundle S[λ](V) over M with
typical fiber S[λ](V ) (see §3, for the meaning of the harmonic Schur functor S[λ](·)).

Let λ be a dominant weight for G. Let i(λ) be the number of nonzero entries in
λ when λ is expressed in the coordinates relative to the standard basis {εi} of [Bou],
Planche II and IV. Hence we have i(λ) ≤ [m/2]. We will assume (because of the choice
of X below in the construction of our cycles CX , see Remark 4.7) that i(λ) ≤ p. Now
we choose n as in the paragraph above to be any integer satisfying i(λ) ≤ n ≤ p and
choose for our highest weight of U(n) corresponding to λ the unique dominant weight
λ′ such that λ′ and λ have the same nonzero entries, We note that both weights
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correspond to the same Young diagram and consequently the Schur functors Sλ′(·)
and Sλ(·) are the same, and we will not distinguish between them.

The main point of this paper is to use the theta correspondence for the dual pair
(G,G′) to construct for a pair of dominant weights λ′ and λ as above an element

θnq,[λ](τ, z) ∈ C∞(M ′, SλE∗n ⊗ L−m
2

)⊗̂Anq(M,S[λ]V),

(τ ∈ Hn, z ∈ D) which is closed as a differential form on M :

dθnq,[λ](τ, z) = 0.

Here Anq(M,S[λ]V) denotes the space of S[λ]V-valued differential nq-forms on M .
Note that our notation is justified since n and λ determine λ′. Hence we obtain
an induced element [θnq,[λ]] ∈ C∞(M ′, SλE∗n ⊗ L−m

2
) ⊗ Hnq(M,S[λ]V). We will say

that elements of the above tensor product are sections of the holomorphic bundle
SλE∗n ⊗ L−m

2
with coefficients in Hnq(M,S[λ]V).

Note that the highest weight of the isotropy representation of the homogeneous
vector bundle for the symplectic group coincides (up to a shift) after the addition
or suppression of zeroes with the highest weight of the coefficient system for the
orthogonal group.

On the other hand, we can construct cycles in M as follows. Recall that we can
realize D as the set of negative q-planes in V :

D = {z ⊂ V : dim z = q, ( , )|z < 0}.
Then for x = (x1, . . . , xn) ∈ V n with positive definite inner product matrix (x,x) =
(xi, xj)i,j, we define a totally geodesic submanifold Dx by

Dx = {z ∈ D : z ⊥ span(x)}.
This gives rise to a cycle Cx in M of dimension (p − n)q, and by summing over all
x in a system of representatives of Γ-orbits in (a coset of) a lattice in V such that
1
2
(x,x) = β > 0, one obtains a composite cycle Cβ. For β positive semidefinite of

rank t ≤ n, there is a similar construction to obtain cycles Cβ of dimension (p− t)q.
We can then assign coefficients to these cycles (see §4 for details) to obtain (relative)
homology classes

Cβ,[λ] ∈ Sλ(Cn)∗ ⊗H(p−t)q(M,∂M,S[λ]V),

i.e., for every vector w ∈ Sλ(Cn), we obtain a class

Cβ,[λ](w) ∈ H(p−t)q(M,∂M,S[λ]V).

Then for a cohomology class η ∈ H(p−n)q
c (M,S[λ]V), the natural pairing gives a vector

〈η ∪ en−tq , Cβ,[λ]〉 ∈ Sλ(Cn)∗.

Here, for q even, eq denotes a certain invariant q-form, the Euler form on D, and is
zero if q is odd.

In the usual way, we can identify the space of holomorphic sections of the bun-
dle SλE∗n ⊗ L−m

2
over (the compactification of) M ′ with Mod(Γ′, Sλ(Cn)∗ ⊗ det−

m
2 ),

the space of holomorphic vector-valued Siegel modular forms for the representation
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Sλ(Cn)∗⊗det−
−m
2 . Here Mod(Γ′, Sλ(Cn)∗⊗det−

m
2 ) is the space of holomorphic func-

tions f(τ) on Hn with values in Sλ(Cn)∗ ⊗ det−
m
2 , holomorphic at the cusps of M ′,

such that

f(γτ) = (ρ∗λ ⊗ det −m/2)(tj(γ, τ)−1)f(τ).

Here ρλ is the action of GLn(C) on Sλ(Cn) and j(γ, τ) = cτ + d is the usual auto-
morphy factor for γ = ( a bc c ) ∈ Γ′. Recall that for Siegel modular forms, the Fourier
expansion is indexed by positive semidefinite β ∈ Symn(Q), and note that the β-th
Fourier coefficient of such a form is now a vector in Sλ(Cn)∗.

Our main result is

Theorem 1.1. The cohomology class [θnq,[λ]] is a holomorphic Siegel modular form

for the representation Sλ(Cn)∗⊗det−
m
2 with coefficients in Hnq(M,S[λ]V). Moreover,

the Fourier expansion of [θnq,[λ]](τ) is given by

[θnq,[λ]](τ) =
n∑
t=0

∑
β≥0

rankβ=t

(
PD(Cβ,[λ]) ∩ en−tq

)
e2πitr(βτ),

where PD(Cβ,[λ]) denotes the Poincaré dual class of PD(Cβ,[λ]). Furthermore, if q is
odd or if i(λ) = n, then [θnq,[λ]](τ) is a cusp form.

This generalizes the main result of [KM4], where the generating series for the
special cycles Cβ with trivial coefficients was realized as a classical holomorphic Siegel
modular form of weight m/2.

Pairing [θnq,[λ]] with cohomology and homology defines two maps, which we denote
both by Λnq,[λ], namely

Λnq,[λ] : H(p−n)q
c (M,S[λ]V) −→Mod(Γ′, S∗λ ⊗ det −

m
2 );

Λnq,[λ] : Hnq(M,S[λ]V) −→Mod(Γ′, S∗λ ⊗ det −
m
2 ).

These pairings give rise to the following two reformulations of Theorem 1.1:

Theorem 1.2. For any cohomology class η ∈ H(p−n)q
c (M,S[λ]V) and for any compact

cycle C ∈ Hnq(M,S[λ]V), the generating series

n∑
t=0

∑
β≥0

〈(η ∪ en−tq ), Cβ,[λ]〉e2πi tr(βτ)

and
n∑
t=0

∑
β≥0

〈C, (Cβ,[λ] ∩ en−tq )〉e2πi tr(βτ)

define elements in Mod(Γ′, Sλ(Cn)∗ ⊗ det−
m
2 ).

To illustrate our result, we consider the simplest example.
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Example 1.3. Consider the weight λ′ = (`, `, · · · , `) of U(n) (so the number or `’s is
n). Then Sλ(Cn) ' Sym`(

∧n(Cn)) is one-dimensional, while S[λ](V ) can be realized
as a summand in the harmonic tensors in Sym`(

∧n(V )) ⊂ V ⊗n`. For η a closed
rapidly decreasing S[λ]V-valued smooth differential (p − n)q-form on M , the pairing
〈[η], Cx,[λ]〉 is given by the period

〈[η], Cx,[λ]〉 =

∫
Cx

(η, (x1 ∧ · · · ∧ xn)`),

with the bilinear form ( , ) on V extended to V ⊗n`. Then the generating series of
these periods ∑

x∈Ln
(x,x)>0
mod Γ

(∫
Cx

(η, (x1 ∧ · · · ∧ xn)`)

)
eπitr((x,x)τ)

is a classical scalar-valued holomorphic Siegel cusp form of weight ` + m/2. Here L
is (a coset of) an integral lattice in V .

For n = 1, several (sporadic) cases for generating series for periods over cycles with
nontrivial coefficients as elliptic modular forms were already known: For signature
(2, 1) by Shintani [S], signature (2, 2) by Tong [T] and Zagier [Z], and for signature
(2, q) by Oda [O] and Rallis and Schiffmann [RS]. For the unitary case of U(p, q), see
also [TW].

We have not tried to prove that the Siegel modular form associated to a cohomology
class η or a cycle C is nonzero. However, for the case in which G = SO0(p, 1) the
nonvanishing of the associated Siegel modular form (for a sufficiently deep congruence
subgroup depending on β and λ) follows from [KM1] together with [M]. Indeed, first
apply [KM1], Theorem 11.2, to reduce to the case where the cycle Cβ,[λ] consists of a
single component CX ⊗ x[f(λ)], by passing to a congruence subgroup, see §4.3. Then
apply (the proof of) Theorem 6.4 of [M] where it is shown that for a sufficiently deep
congruence subgroup the cycle CX ⊗ x[f(λ)] is not a boundary.

For general orthogonal groups, the results of J. S. Li [L] suggest that again the
Siegel modular form associated to a suitable η is nonzero. Indeed, Li [L] has used the
theta correspondence (but not our special kernel θnq,[λ]) to construct non-vanishing
cohomology classes for O(p, q) for the above coefficient systems (with some restrictions
on λ). However it is possible that all the above cycles Cβ,[λ] are boundaries for some
p, q and λ. This would be an unexpected development.

Finally, we would like to mention our motivation for the present work. For M
not compact, we are interested in extending the lift Λnq,[λ], say for λ = 0, the trivial

coefficient case, to the full cohomology H(n−p)q(M,C). This would extend the results
of Hirzebruch/Zagier [HZ], who, for Hilbert modular surfaces (essentially Q-rank 1 for
O(2, 2)), lift the full cohomology H2(M,C) to obtain generating series for intersection
numbers of cycles. In this process, cohomology classes and cycles with nontrivial
coefficients naturally occur, as we now explain.
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We let M denote the Borel-Serre compactification and let ∂M denote the Borel-
Serre boundary of M . We study the restriction of θnq,0 to ∂(M), which is glued
together out of faces e(P ), one for each Γ-conjugacy class of proper parabolic Q-
subgroups P of G. In [FM1, FM2] we show that the theta kernel θnq,0 extends to
M . In fact, the restriction to e(P ) is given by a sum of theta kernels θn(q−r),λ for
a nondegenerate subspace W ⊂ V associated to an orthogonal factor of the Levi
subgroup of P with values in Sλ(W ) for certain dominant weights λ.

The paper is organized as follows. In §2, we briefly review homology and coho-
mology with nontrivial coefficients needed for our purposes, while in §3, we review
the construction of the finite dimensional representations of GLn(C) and O(n) using
the Schur functors Sλ and S[λ]. We introduce the special cycles with coefficients in
§4. In §5, we give the explicit construction of the Schwartz forms ϕnq,[λ] underlying
the theta series θnq,[λ]. We give their fundamental properties and for the proofs, we
reduce to the case of n = 1. §6 is the technical heart of the paper, in which we prove
the fundamental properties of ϕnq,[λ] for n = 1. Our main tool is the Fock model of
the Weil representation, which we review in the appendix to this paper. Finally, in
§7, we consider the global theta series θnq,[λ] and give the proof of the main result.

A major part of this work was done while the first named author was a fellow at the
Fields Institute in Toronto in the academic year 02/03. He thanks the organizers of
the special program on Automorphic Forms and the staff of the institute for providing
such a stimulating environment. We thank Steve Kudla for encouraging us to consider
the case of an arbitrary dominant weight in order to produce generating functions for
intersection numbers and periods that are vector-valued Siegel modular forms.

2. Homology and cohomology with local coefficients

In this section, we review the facts we need about homology and cohomology of
manifolds (possibly with boundary) with coefficients in a flat bundle (“local coeffi-
cients”) and “decomposable cycles”. We refer the reader to [Ha], page 330 - 336 for
more details.

2.1. The definition of the groups. We now define the homology and cohomology
groups of a manifold X with coefficients in E, a flat bundle over X. We will do this
assuming that X is the underlying space of a connected simplicial complex K. We
will define the simplicial homology and cohomology groups with values in E. By the
usual subdivision argument one can prove that the resulting groups are independent
of the triangulation K.

We define a p-chain with values in E to be a formal sum Σm
i−1σi ⊗ si where σi is

an oriented p-simplex and si is a flat section over σi. We denote the group of such
chains by Cp(X,E). Before defining the boundary and coboundary operators we note
that if t is a flat section of E over a face τ of a simplex σ then it extends to a unique
flat section eσ,τ (t) over σ. Similarly, if we have a flat section s over σ it restricts to
a flat section rτ,σ(s) over τ . Finally, if σ = (v0, · · · , vp) we define the i-th face σi by
σi = (v0, · · · , v̂i, · · · , vp). Here v̂i means the i-th vertex has been omitted.
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We define the boundary operator ∂p : Cp(X,E) −→ Cp−1(X,E) for σ a p-simplex
and s a flat section over X by

∂p(σ ⊗ s) =

p∑
i=0

(−1)iσi ⊗ rσi,σ(s)

Then ∂p−1◦∂p = 0 and we define the homology groups H•(X,E) of X with coefficients
in E in the usual way. These groups depend only on the topological space X and the
flat bundle E.

In a similar way simplicial cohomology groups of X with coefficients in E are
defined. A E-valued p-cochain on X with values in E is a function α which assigns
to each p-simplex σ a flat section of E over σ. The coboundary δpα of a p-cochain α
is defined on a (p+ 1)-cochain σ by :

δpα(σ) =

p∑
i=0

(−1)ieσ,σi(α(σi)).

Then δp+1 ◦ δp = 0, and we define the cohomology groups H•(X,E) of X with
coefficients in E in the usual way.

If A is a subspace of X, then the complex of simplicial chains with coefficients in
E|A is a subcomplex, and we define the relative homology groups H•(X,A,E) with
coefficients in E to be the homology groups of the quotient complex. Similarly, we
define the subcomplex of relative (to A) simplicial cochains with coefficients in E to
be the complex of simplicial cochains that vanish on the simplices in A and define the
relative cohomology groups H•(X,A,E) to be the cohomology groups of the relative
cochain complex.

2.2. Bilinear pairings. We first define the Kronecker pairing between homology and
cohomology with local vector bundle coefficients. Let E, F and G be flat bundles
over X. Assume that ν : E ⊗F −→ G is a parallel section of Hom(E ⊗F,G). Let α
be a p-cochain with coefficients in E and σ ⊗ s be a p-simplex with coefficients in F .
Then the Kronecker index < α, σ ⊗ s > is the element of H0(X,G) defined by:

< α, σ ⊗ s >= ν(α(σ)⊗ s).
The reader will verify that the Kronecker index descends to give a bilinear pairing

< , >: Hp(X,E)⊗Hp(X,F ) −→ H0(X,G).

We note that if G is trivial then H0(X,G) ∼= Gx0 , here Gx0 denotes the fiber of G
over x0. In particular, we get a pairing

< , >: Hp(X,E∗)⊗Hp(X,E) −→ R,
which is easily seen to be perfect. The coefficient pairing E ⊗ F → G also induces
cup products with local coefficients

∪ : Hp(X,E)⊗Hq(X,F ) −→ Hp+q(X,G)

and cap products with local coefficients (here we assume m ≥ p)

∩ : Hp(X,E)⊗Hm(X,F ) −→ Hm−p(X,G).
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These are defined in the usual way using the “front-face” and “back-face” of an
ordered simplex and pairing the local coefficients using ν.

Remark 2.1. We define the cap product α ∩ σ for α a p-cochain and σ a simplex
by making α operate on the back p face of σ. This agrees with [Br], pg. 334–338 but
does not agree with [Ha]. With this definition the adjoint formula

(2.1) 〈α ∪ β, σ〉 = 〈α, β ∩ σ〉

holds (rather than 〈α ∪ β, σ〉 = 〈β, α ∩ σ〉), see [Br], Proposition 5.1 (iii).

The above pairings relativize in a fashion identical to the case of trivial coefficients.
Since the proof of Poincaré (Lefschetz) duality is a patching argument of local

dualities (see [Ha], p. 245-254), it goes through for local coefficients as well. Thus

Theorem 2.2. Let X be a compact oriented manifold with (possibly empty) boundary
and (relative) fundamental class [X, ∂X]. Then we have an isomorphism

D : Hp(X,E) −→ Hn−p(X, ∂X,E)

given by

D(α) = α ∩ [X, ∂X].

Definition 2.3. Suppose [a] ∈ Hp(X, ∂X,E). We will define the Poincaré dual of [a]
to be denoted PD([a]) by

PD([a]) = D−1([a]).

We can now define the intersection number of cycles with local coefficients, again
following the conventions of [Br], see page 367.

Definition 2.4. Let E,F,G and ν be as above and [a] and [b] be homology classes
with coefficients in E and F respectively. Then we define the intersection class [a]·[b] ∈
H.(X,G) by the formula

[a] · [b] = D(PD([b]) ∪ PD([b])).

In order to help keep track of how the formula for intersection number depends on
our convention in Remark 2.1 we note (proof left to the reader)

Lemma 2.5.

[a] · [b] = PD([b]) ∩ [a].

So in the special case that [a] and [b] have complementary dimensions we have

[a] · [b] = 〈PD([b]), [a]〉.

2.3. Decomposable cycles. There is a particularly simple construction of cycles
with coefficients in E. Let Y be a compact oriented submanifold with (possibly
empty) boundary ∂Y ⊂ ∂X of X of codimension p and let s be a parallel section of
the restriction of E to Y . Let [Y, ∂Y ] denote the relative fundamental cycle of Y so
[Y, ∂Y ] = Σiσi, a sum of oriented simplices.
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Definition 2.6. Y ⊗ s denotes the (n− p)-chain with values in E given by

Y = Σiσi ⊗ si
where si is the value of s on the first vertex of σi.

Lemma 2.7. Y⊗s is a relative n−p cycle with coefficients in E, called a decomposable
cycle.

For motivation of the term decomposable cycle we refer the reader to [M],§3.2.1.

2.4. The de Rham theory of cohomology with local coefficients and the dual
of a decomposable cycle. In this subsection we recall the de Rham representations
of the cohomology groups H•(X,E) and of the Poincaré dual class PD(Y ⊗ s).

From now on, X will always be smooth manifold.
A differential p-form ω with values in a vector bundle E is a section of the bundle∧p T ∗(X) ⊗ E over X. Thus ω assigns to a p-tuple of tangent vectors at x ∈ X a

point in the fiber of E over x. Suppose now that E admits a flat connection ∇. We
can then make the graded vector space of smooth E-differential forms A∗(X,E) into
a complex by defining

d∇(ω)(X1, X2, · · · , Xp+1) =

p∑
i=1

(−1)i−1∇Xi(ω(X1, · · · , X̂i, · · · , Xp+1))

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, · · · , X̂i, · · · , X̂j, · · · , Xp+1).

Here Xi, 1 ≤ i ≤ p+ 1, is a smooth vector field on X.
We now construct a map ι from Ap(X,E) to the group of simplicial cochains

Cp(X,E) as follows. Let ω ∈ Ap(X,E) and σ be a p-simplex of K. Then in a
neighborhood U of σ we may write ω =

∑
i ωi⊗ si where the si’s are parallel sections

of E|U and the ωi’s are scalar forms. We then define

< ι(ω), σ >=
∑
i

(

∫
σ

ωi)si(v0).

The standard double-complex proof of de Rham’s theorem due to Weil, see [BT],
p. 138, yields

Theorem 2.8. The integration map ι : H•deRham(X,E) −→ H•(X,E) is an isomor-
phism.

Finally, we will need that the cohomology class PD(Y ⊗ s) has the following rep-
resentation in de Rham cohomology with coefficients in E.

Let U be a tubular neighborhood of the oriented submanifold with boundary Y .
We assume (by choosing a Riemannian metric) that we have a disk bundle π : U → Y .
Then a Thom form for Y is a closed form ωY where ωY is compactly supported along
the fibers of π and has integral one along one and hence all fibers of π. It is standard
that the extension of ωY to X by making it zero outside of U represents the Poincaré
dual of the class of [Y, ∂Y ]. The parallel section s of E|Y extends to a parallel section
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of E|U again denoted s. We extend ωY ⊗ s to X by making it zero outside of U . We
continue to use the notation ωY ⊗ s for this extended form. We will see below that
ωY ⊗ s represents the Poincaré dual of Y ⊗ s.

If [a] ∈ Hp(X, ∂X,E), then the de Rham cohomology class PD([a]) is the class of
(n−p)–forms characterized by the property that if a is a simplicial cycle representing
[a], then for any E∗ valued p-form η vanishing on ∂X we have∫

X

η ∧ PD([a]) =

∫
a

η.

Remark 2.9. In abstract terms the above equation is

〈[η] ∪ PD([a]), [X, ∂X]〉 = 〈[η], [a]〉.
Since the expression on the right-hand side of this formula is equal to 〈[η], PD([a])∩
[X, ∂X]〉 our definition of Poincaré dual amounts to assuming the adjoint formula,
(2.1), and hence amounts to assuming the “back p face ” definition of the cap product.

Lemma 2.10. The de Rham cohomology class Poincaré dual to the cycle with coef-
ficients Y ⊗ s is represented by the bundle-valued form ωY ⊗ s.

Proof. We need to prove that for any E∗-valued closed (n − p)-form η vanishing on
∂X we have ∫

X

η ∧ ωY ⊗ s =

∫
Y⊗s

η =

∫
Y

〈η, s〉.

But ∫
X

η ∧ ωY ⊗ s =

∫
X

〈η, s〉 ∧ ω.

But since s is parallel on U the scalar form 〈η, s〉 is closed, and the lemma follows
because ωY is the Poincaré dual to [Y, ∂Y ]. �

3. Finite dimensional representations of GL(n) and O(n)

In this section, we will review the construction of the irreducible finite dimensional
(polynomial) representations of GL(U) (resp. O(U)), where U is a complex vector
space of dimension n (resp. a finite dimensional complex vector space of dimension
n equipped with a non-degenerate symmetric bilinear form ( , )).

3.1. Representations of the general linear group.

3.1.1. Schur functors. We recall that the symmetric group S` acts on the `–fold tensor
product T `(U) according to the rule that s ∈ S` acts on a decomposable element
v1 ⊗ · · · ⊗ v` by moving vi to the s(i)–th position. Let λ = (b1, b2, · · · , bn) be a
partition of `. We assume that the bi’s are arranged in decreasing order. We will use
D(λ) to denote the Young diagram associated to λ. We will identify the partition λ
with the dominant weight λ for GL(n) in the usual way.

For more details on what follows, see [FH], §4.2 and §6.1, [GW], §9.3.1–9.3.4 and
[Boe], Ch. V, §5.
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Standard fillings and the associated projections.

Definition 3.1. A standard filling t(λ) of the Young diagram D(λ) by the elements
of the set [`] = {1, 2, · · · , `} is an assignment of each of the numbers in [`] to a box
of D(λ) so that the entries in each row strictly increase when read from left to right
and the entries in each column strictly increase when read from top to bottom. We
will denote the set of standard fillings of D(λ) by S(λ). A Young diagram equipped
with a standard filling will be called a standard tableau.

We let t0(λ) be the standard filling that assigns 1, 2, · · · , ` from left to right starting
with the first row then moving to the second row etc.

We now recall the projection in End(T `(U)) associated to a standard tableau T
with ` boxes corresponding to a standard filling t(λ) of a Young diagram D(λ). Let P
(resp. Q) be the group preserving the rows (resp. columns) of T . Define elements of
the group ring of S` by rt(λ) = c1

∑
P p and ct(λ) = c2

∑
Q ε(q)q where c1 = 1/|P | and

c2 = 1/|Q|, so rt(λ) and ct(λ) are idempotents. We let P (resp. Q) be the projections
operating on T `(U) obtained by acting by rt(λ) (resp. ct(λ)). We put st(λ) = c3ct(λ) ·rt(λ)

(product in the group ring) where c3 is chosen so that st(λ) is an idempotent, see [FH],
Lemma 4.26.

Remark 3.2. We have abused notation by not indicating the dependence of Q and P
on the standard filling t(λ). We will correct both these abuses by letting πt(λ) denote
the projector obtained by correctly normalizing the previous product.

We now have

Theorem 3.3. We have a direct sum decomposition

T `(U) =
⊕
λ∈P(`)

⊕
t(λ)∈S(λ)

πt(λ)

(
T `(U)

)
,

where P(`) denotes the set of partitions of `.

Furthermore we have, [GW], Theorem 9.3.9,

Theorem 3.4. For every standard filling t(λ), the GL(V )–module πt(λ)

(
T `(U)

)
is

irreducible with highest weight λ.

Remark 3.5. If t′(λ) is another standard filling then the permutation relating the
two fillings induces an isomorphism of πt(λ)(T

`(U)) and πt′(λ)(T
`(U)).

For concreteness, we will define the Schur functor Sλ(·) by choosing t(λ) = t0(λ),
whence Sλ(U) = πt0(λ)

(
T `(U)

)
. We obtain projections πλ

πλ : T `(U) −→ Sλ(U)

and inclusions

ιλ : Sλ(U) −→ T `(U).
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Semistandard fillings and the associated basis of Sλ(U).

Definition 3.6. A semistandard filling of D(λ) by the set [n] = {1, 2, · · · , n} is an
assignment of the numbers in [n] to the boxes of D(λ) such that the numbers in
each row weakly increase and the numbers in each column strictly increase. We let
SS(λ, n) denote the set of semistandard fillings of D(λ) by the elements of the set
[n].

Suppose x = (x1, · · · , xn) ∈ Un and f(λ) ∈ SS(λ, n). Suppose aij is the j-th entry
in the i-th column of the semistandard filling. Then xf(λ), the word in x corresponding
to f(λ), is defined by

xf(λ) = xa11 ⊗ xa12 ⊗ · · · ⊗ xakbk .
We have

Theorem 3.7. Let u1, · · · , un be a basis for U and let u = (u1, . . . , un). Then the set
of vectors {πt(λ)(uf(λ)) : f ∈ SS(λ, n)} is a basis for πt(λ)(T

d(U)).

For a simple proof of this theorem see [Boe], Theorem 5.3. Boerner proves the the-
orem using the idempotent c3PQ on T `(U) (actually, he considers c3QP on T `(U∗)),
but his proof can be easily modified to give the theorem above.

3.2. Representations of the orthogonal group.

3.2.1. The harmonic Schur functors. We will follow [FH] in our description of the
harmonic Schur functor U → S[λ](U) on an n-dimensional non-degenerate quadratic
space (U, ( , )) corresponding to a partition λ.
The harmonic projection. We extend the quadratic form ( , ) to T `(U) as the
`-fold tensor product and note that the action of S` on T `(U) is by isometries. For
each pair I = (i, j) of integers between 1 and ` we define the contraction operator
CI : ⊗`U → ⊗`−2U by

CI(v1 ⊗ · · · v`) =
∑
k

(vi, ek)(vj, ek)v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ v`

where {e1, · · · , en} is an orthonormal basis for ( , ). We also define the expansion
operator AI : ⊗`−2U → ⊗`U to be the adjoint of CI , that is the operator that inserts
the (dual of) the form ( , ) into the (i, j)-th spots. We define the harmonic `-tensors,
to be denoted U [`], to be the kernel of all the contractions CI . Following [FH], p. 263,

we define the subspace U
[`]
`−2r of U⊗` by

U
[`]
`−2r =

∑
AI1 ◦ · · ·AIrU [`−2r].

Carrying over the proof of [FH], Lemma 17.15 (and the exercise that follows it)
from the symplectic case to the orthogonal case we have

Lemma 3.8. We have a direct sum, orthogonal for ( , ),

T `(U) = U [`] ⊕⊕[ `
2

]

r=1U
[`]
`−2r.
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We define the harmonic projectionH : T `(U)→ U [`] to be the orthogonal projection
onto the harmonic `-tensors U [`]. The space of harmonic `-tensors U [`] is invariant
under the action of S`. Consequently we may apply the idempotents in the group
algebra of S` corresponding to partitions to further decompose U [`] as an O(U)–
module.

The harmonic Schur functors. We let λ = (b1, b2, · · · , bk) be a dominant weight
of SO(U) where k = [n

2
]. Here our coordinates are relative to the standard basis {εi}

of [Bou], Planche II and IV. We will also use λ to denote the corresponding partition
of ` =

∑
bi. Again following [FH], p. 296, we then define the harmonic Schur functor

S[λ]U as follows.

Definition 3.9.
S[λ](U) = HQPT `(U) = HSλ(U).

We then have see [FH], Theorem 19.22,

Theorem 3.10. The O(U)-module S[λ](U) is irreducible with highest weight λ.

Definition 3.11. We write π[λ] = H◦ πλ for the projection from T `(U) onto S[λ](U).
For a semistandard filling f(λ), we also set for x = (x1, . . . , xn),

x[f(λ)] = π[λ]xf(λ) ∈ S[λ](U).

In what follows, we will need the following

Lemma 3.12. (i) H,P and Q are self-adjoint relative to ( , ).
(ii) H commutes with P and Q.

Proof. It is clear that H is self-adjoint. The arguments for P and Q are the same. We
give the one for Q. We will use the symbol q to denote both the element q ∈ Q and
the corresponding operator on T `(V ). Since q is an isometry we have q∗ = q−1. Hence
we have Q∗ =

∑
ε(q)q∗ =

∑
ε(q−1)q−1 = Q. To prove that H commutes with P and

Q it suffices to prove that H commutes with every element g ∈ S`. But S` acts by
isometries and preserves U [`]. Consequently it commutes with orthogonal projection
on U [`]. �
The restriction of S[λ](U) to SO(U). The restriction of S[λ](U) to SO(U) remains
irreducible unless the dimension of U is even, so dim(U) = 2k, and i(λ) = k, and in
this case the restriction is the sum of two irreducible representations. For a precise
statement the reader is referred to [FH], Theorem 19.22. Thus for these cases our
cohomology classes will take values in the cohomology group of M with values in the
coefficient systems associated to the above direct sum (considered as representations
of SO(p+q)). However in case M is compact the classes obtained by our constructions
for these exceptional cases will often be zero. We will deduce from [LS], Proposition
2.14, that this is indeed the case provided that λ is regular in the sense that the
entries of λ are strictly decreasing. The argument divides into two cases: The case in
which both p and q are even and the case in which both p and q are odd.

In case p and q are both even and λ regular it follows immediately from [LS],
Proposition 2.14, that all cohomology groups for a coefficient system as above are
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zero except in the degree equal to the middle dimension (pq)/2 (note that l0(G) = 0
in this case). But we claim that the codimensions of the cycles we construct with
values in such coefficient systems are always larger than (pq)/2. Indeed, by Remark
4.7 in order to attach a nonzero local coefficient to the cycle Cx it is necessary that
dim(X) ≥ i(λ). Hence

cod(Cx) = dim(X) q ≥ i(λ) q.

Since we are assuming that i(λ) has its maximum value (p+ q)/2 we obtain

cod(Cx) ≥ q(p+ q)/2 > (pq)/2.

Thus the cycles we construct in this case are always boundaries.
Now suppose that p and q are both odd. It follows from [LS], Proposition 2.14, that

all cohomology groups for a coefficient system as above are zero except in the degrees
equal to the two middle dimensions (pq − 1)/2 and (pq + 1)/2 (note that l0(G) = 1
in this case). Once again we have i(λ) = (p+ q)/2 and cod(Cx) ≥ q(p+ q)/2. Hence
the cohomology classes we obtain as the Poincarè duals of our cycles with coefficients
occur in degrees greater than those allowed by [LS] if

q(p+ q)/2 > (pq + 1)/2.

This inequality holds if and only if q > 1. But for the case SO(p, 1) with p odd all
cohomology groups vanish provided only i(λ) = (p+ 1)/2, see [M], Theorem 1.2.

If λ is singular, it no longer follows from [VZ] that the cohomologies of the cor-
responding local coefficient systems are concentrated in the middle dimension(s).
However it is still possible that all classes we construct in this case are boundaries.

4. Special cycles with local coefficients

4.1. Arithmetic quotients for orthogonal groups. Let K be a totally real num-
ber field with Archimedean places v1, . . . , vr and associated embeddings λ1, . . . , λr
and let be O its ring of algebraic integers. Let V be an oriented vector space over
K of dimension m ≥ 3 with a non-degenerate bilinear form ( , ) and let V be the
completion of V at v1. We assume that the associated quadratic form has signature
(p, q) at the completion v1 and is positive definite at all other completions. Finally,
we let L be an integral lattice in V and L# ⊇ L its dual lattice.

Let G be the algebraic group whose K-points is the group of orientation preserving
isometries of determinant 1 of the form ( , ) and let G := G(R) its real points. We
let Φ = G(O) be the subgroup of G(K) consisting of those elements that take L into
itself. We let b be an ideal in O and let Γ = Γ(b) be the congruence subgroup of Φ of
level b (that is, the elements of Φ that are congruent to the identity modulo b). We
fix a congruence condition h ∈ Ln once and for all and note that Γ operates on the
coset h+ bLn.

We realize the symmetric space associated to V as the set of negative q- planes in
V :

D ' {z ⊂ V ; dim z = q and ( , )|z < 0}.
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We denote the base point of D by z0, and we have D ' G/K, where K is the maximal
compact subgroup of G stabilizing z0. Also note dimRD = pq. For z ∈ D, we write
( , )z for the associated majorant. Finally, we write

M = Γ\D
for the locally symmetric space.

4.2. Special cycles with trivial coefficients. Let x = {x1, x2, · · · , xn} ∈ V n be
an n-tuple of K–rational vectors. We let X be the span of x and let X be the
completion of X at λ1. We write (x,x) for the n by n matrix with ij–th entry
equal to (xi, xj). We call x nondegenerate if rank(λix, λix) = dimX for all i and
nonsingular if rank(λix, λix) = n.

Assume x is nondegenerate with dimX = t ≤ n such that ( , )|X is positive
definite. Let rX be the isometric involution of V given by

rX(v) =

{
−v if v ∈ X
v if v ∈ X⊥.

We define the totally geodesic subsymmetric space DX by

DX = {z ∈ D : (z, xi) = 0, 1 ≤ i ≤ n}.
Then DX is the fixed-point set of rX acting on D and has codimension (n − t)q in
D. We orient DX as in [KM4], p.130-131. We also define subgroups GX (resp. ΓX)
to be the stabilizer in G (resp. in Γ) of the subspace X. We define G′X ⊂ GX to be
the subgroup that acts trivially on X, and put Γ′X = Γ ∩G′X .

Theorem 4.1. There exists a congruence subgroup Γ := Γ(b) of Φ such that

(1) M = Γ\D is an orientable manifold of dimension pq with finite volume, and
(2) for all X as above, the image CX of DX in M is the quotient ΓX\DX and

defines a properly embedded orientable submanifold of codimension (n− t)q.

The theorem will be a consequence of the existence of a “neat” congruence sub-
group. We recall the definition of a neat subgroup of Γ.

Definition 4.2 ([B],p. 117). An element g ∈ G is neat if the subgroup of C∗ generated
by the eigenvalues of g is torsion free. In particular, if a root of unity z is an eigenvalue
of a neat element then z = 1. A subgroup Γ ⊂ G is neat if all the elements in Γ are
neat.

Proposition 4.3 (Proposition 17.4, [B]). Let G be an algebraic group defined over
Q and Γ an arithmetic subgroup. Then Γ admits a neat congruence subgroup.

Theorem 4.1 is an immediate consequence of the following

Lemma 4.4. If Γ is a neat subgroup, then ΓX acts trivially on X, i.e., Γ′X = ΓX .

Proof. We have a projection map pX : ΓX → O(X1)×O(X2)× · · · ×O(Xr). Here by
Xi we mean the i-th completion of X. The i-th completion of ( , ) restricted to Xi is
positive definite for 1 ≤ i ≤ r. Furthermore the splitting V = X⊕X⊥ is defined over
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K. Thus the diagonal embedding of the intersection LX = L∩X is a lattice in ⊕ri=1Xi

which is invariant under pX(ΓX). Hence pX(ΓX) is a discrete subgroup of a compact
group hence a finite group. Hence if γ ∈ pX(ΓX), then all eigenvalues of γ are roots
of unity. Since Γ is neat all eigenvalues must be 1 and the lemma follows. �

We will later need

Definition 4.5. The Riemannian exponential map from the total space of the normal
bundle of DX to D induces a fiber bundle πX : D → DX with totally geodesic fibers.
The map πX induces a quotient fibering πX : ΓX\D → ΓX\DX = CX , see [KM1]. A
Thom form ΦX for the cycle CX is a closed integrable (n − t)q-form on ΓX\D such
that the integral of ΦX over each fiber of πX is 1. In particular, ΦX is a Poincaré
dual form for the cycle CX in the non-compact submanifold ΓX\D.

Occasionally, we will also write Cx (Dx) for CX (DX).
We introduce composite cycles as follows. For β ∈ Symn(K), we set

Ωβ = {x ∈ V n : 1
2
(x,x) = β}

and
Ωc
β = {x ∈ Ωβ : dimλiX = rank β for all i}.

We put
Lβ = Lβ(h, b) = (h+ bLn) ∩ Ωβ.

Then Γ acts on Lcβ = Lβ∩Ωc
β with finitely many orbits and for β positive semidefinite

(i.e., λi(β) ≥ 0 for all i), we define

Cβ =
∑

x∈Γ\Lcβ

CX .

4.3. Special cycles with nontrivial coefficients. We now want to promote CX
to a (decomposable) cycle with coefficients for appropriate coefficient systems W by
finding a nonzero parallel section of W|CX . Note that it is enough to find any ΓX-
fixed vector w ∈ W since such a vector w gives rise to a parallel section sw of W|CX
in the usual way. Namely, for z ∈ CX , the section sw for the bundle CX×ΓXW → CX
is given by sw(z) = (z, w). Thus sw is constant, hence parallel. Furthermore, for such
a vector w, we write CX ⊗ w for CX ⊗ sw.

The key point for us in constructing parallel sections is Lemma 4.4. Namely, the
components x1, · · · , xn of x are all fixed by ΓX = Γ′X , hence any tensor word in these
components will be fixed by ΓX .

Definition 4.6. For f(λ) a semistandard filling for D(λ), we define special cycles
with coefficients in S[λ](V ) by setting

Cx,[f(λ)] = CX ⊗ (λ1x)[f(λ)].

We also define composite cycles Cβ,[f(λ)] analogously as before.

To lighten the notation, we will write xf(λ) and x[f(λ)] for (λ1x)f(λ) and (λ1x)[f(λ)].

However, there is an obstruction to the construction of nonzero sections.
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Remark 4.7 ([M], Proposition 4.3). Let λ be the highest weight of W and let i(λ)
be the number of nonzero entries in λ (so i(λ) is the number of rows in the associated
partition). Then

dim(X) ≥ i(λ)

is a necessary condition for the existence of a G′X–invariant vector in W , i.e., to
finding a nonzero parallel section of the restriction of the flat vector bundleW to the
cycle CX .

On the other hand, for dim(X) ≥ i(λ), we do have nonzero parallel sections along
the submanifold CX .

Theorem 4.8 ( [M],Theorem 4.13). For a weight λ = (b1, . . . , b[m
2

]), assume i(λ) =
k ≤ n. Let f0(λ) be the semistandard filling that puts 1’s in the first row of D(µ),
2’s in the second row etc.. Furthermore, assume that for x = (x1, . . . , xn), the first k
vectors x1, . . . , xk are linearly independent and satisfy (xi, xj) = 0, i 6= j. Then

x[f0(λ)] = Hπλ(xf0(λ)) = HQx⊗b11 ⊗ · · · ⊗ x⊗bkk

is a nonzero Γ′X–invariant in S[λ](V ).

For later use, we record (by an analog of Lemma 2.10)

Lemma 4.9. Let η be a rapidly decreasing S[λ](V)–valued closed (p − n)q form on
M . If ΦX denotes a Thom form for the cycle CX , then ΦX ⊗ x[f(λ)] satisfies∫

M

η ∧
(
ΦX ⊗ x[f(λ)]

)
=

∫
Cx,[f(λ)]

η =

∫
CX

(η,x[f(λ)]).

4.4. Cycle-valued homomorphisms on T `(Qn). We now construct composite cy-
cles Cβ,[λ], which are homomorphisms from Sλ(Qn) to H•(M,S[λ](V)).

Definition 4.10. We define elements CX,[λ](·) of Hom(Sλ(Qn), H•(M,S[λ](V))) by

Cx,[λ](εf(λ)) = CX ⊗ x[f(λ)].

Here ε = (ε1, · · · , εn) ∈ Qn. (Note that we could have defined the map on T `(Qn)
instead and observed that it automatically factors through Sλ(Qn)). We then have
composite cycles Cβ,[λ](·) as before by summing over all x ∈ Γ\Lβ.

Finally note that, if η is a rapidly decreasing S[λ](V)–valued closed (p − n)q form
on M , then the period

∫
Cx,[λ]

η is the linear functional on Sλ(Cn) given by

(4.1)

(∫
Cx,[λ]

η

)
(πλεf(λ)) =

∫
CX

(η,x[f(λ)]).

5. Special Schwartz forms

In this section, we will explicitly construct the Schwartz form ϕnq,[λ] needed to
construct the cohomology class [θnq,[λ]](τ, z) alluded to in the introduction. As in the
introduction we will choose a pair of highest weights λ for G and λ′ for U(n) which
have the same nonzero entries. We let ` be the sum of the entries of λ (which equals
the sum of the entries of λ′).
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5.1. A double complex for the Weil representation. In this section, V will
denote a real quadratic space of dimension m and signature (p, q). We write S(V n)
for the space of (complex-valued) Schwartz functions on V n. We denote by G′ =
Mp(n,R) the metaplectic cover of the symplectic group Sp(n,R) and let K ′ be the
inverse image of the standard maximal compact U(n) ⊂ Sp(n,R) under the covering

map Mp(n,R) → Sp(n,R). Note that K ′ admits a character det1/2, i.e., its square
descends to the determinant character of U(n). The embedding of U(n) into Sp(n,R)
is given by A + iB 7→

(
A B
−B A

)
. We let ω = ωV be the Schrödinger model of the

(restriction of the) Weil representation of G′ × O(V ) acting on S(V n) associated to
the additive character t 7→ e2πit.

Let Hn = {τ = u + iv ∈ Symn(C) : v > 0} ' Sp(n,R)/U(n) be the Siegel
upper half space of genus n. We write g′ and k′ for the complexified Lie algebra of
Sp(n,R) and U(n) respectively. We write the Cartan decomposition as g′ = k′ ⊕ p′,
and write p′ = p+ ⊕ p− for the decomposition of the tangent space of the base
point i1n into the holomorphic and anti-holomorphic tangent spaces. We let Z̄j,
1 ≤ j ≤ n(n + 1)/2 be a basis of p− and let η̄j be the dual basis. We let C(χm/2)

be the 1-dimensional representation detm/2 of K ′. We write W` = T `(Cn)⊗ C(χm/2)
considered as a representation of K ′ and letW` be the G′-homogeneous vector bundle
over Hn associated to W`. We also define Wλ′ andWλ′ in the same way using Sλ′(Cn)
instead.

We pick an orthogonal basis {ei} of V such that (eα, eα) = 1 for α = 1, . . . , p and
(eµ, eµ) = −1 for µ = p+ 1, . . . , p+ q. We will use “early” Greek letters (typically α
and β) as subscripts to denote indices between 1 and p (for the “positive” variables)
and “late” ones (typically µ and ν) to denote indices between p+ 1 and p+ q (for the
“negatives” ones).

Let g be the Lie algebra of G and g = p + k its Cartan decomposition, where
Lie(K) = k. Then p ' g/k is isomorphic to the tangent space at the base point of
D ' G/K. We denote by Xαµ (1 ≤ α ≤ p, p + 1 ≤ µ ≤ p + q) the elements of the
standard basis of p induced by the basis {ei} of V , i.e.,

Xαµ(ei) =


eµ, if i = α

eα, if i = µ

0, otherwise.

We let ωαµ ∈ p∗ be the elements of the associated dual basis. Finally, we let Ak(D)
be the space of (complex-valued) differential k forms on D.

We consider the graded associative algebra

C =
⊕
i,j,`≥0

Ci,j
` ,

where

Ci,j
` =

[
W ∗
` ⊗

∧i
(p−)∗ ⊗ S(V n)⊗

∧j
p∗ ⊗ T `(V )

]K′×K
,
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where the multiplication · in C is given componentwise. For each `, we have a double
complex (C•,•` , ∂̄, d) with commuting differentials

∂̄ =

n(n+1)/2∑
j=1

1⊗ A(η̄j)⊗ ω(Z̄j)⊗ 1⊗ 1,

d = dS + dV ,

where

dS =
∑
α,µ

1⊗ 1⊗ ω(Xαµ)⊗ A(ωαµ)⊗ 1,

dV =
∑
α,µ

1⊗ 1⊗ 1⊗ A(ωαµ)⊗ ρ(Xαµ).

Here A(·) denotes the left multiplication, while ρ is the derivation action of g on
T `(V ). Furthermore, K ′ acts on the first three tensor factors of Ci,j

` , while K acts on
the last three. The actions on S(V n) are given by the Weil representation, while the
actions on the other tensor factors are the natural ones.

We also have an analogous complex C•,•[λ] by replacing W ∗
` and T `(V ) with W ∗

λ and

S[λ](V ) respectively.
We call a d-closed element ϕ ∈ Ci,j holomorphic if the cohomology class [ϕ] is

∂̄-closed, i.e., there exists an element ψ ∈ Ci+1,j−1 such that

∂̄ϕ = dψ.

Note that the maps ∂̄ and d correspond to the usual operators ∂̄ and d under the
isomorphism

[W ∗
` ⊗A0,i(Hn)⊗ S(V n)⊗Aj(D)⊗ T `(V )]G

′×G → Ci,j
` ,

given by evaluation at the base points of Hn and D. We will frequently identify these
two spaces, and we will use the same symbol for corresponding objects.

5.2. Special Schwartz forms. We construct for n ≤ p a family of Schwartz func-
tions ϕnq,` on V n taking values in W ∗

` ⊗ Anq(D) ⊗ T `(V ), which we interpret as
the space of differential nq-forms on D which take values in W ∗

` ⊗ T `(V ). That is,

ϕnq,` ∈ C0,j
` :

ϕnq,` ∈
[
W ∗
` ⊗ S(V n)⊗Anq(D)⊗ T `(V )

]K′×G
'
[
W ∗
` ⊗ S(V n)⊗

∧nq
(p∗)⊗ T `(V )

]K′×K
.

These Schwartz forms are the generalization of the ’scalar-valued’ Schwartz forms
considered by Kudla and Millson [KM2, KM3, KM4] to the coefficient case.

Starting with the standard Gaussian,

ϕ0(x) = e−πtr(x,x)z0 ∈ S(V n),

with x = (x1, · · · , xn) ∈ V n, the ‘scalar-valued’ form ϕnq,0 is given by applying the
operator
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D : S(V n)⊗
∧•

(p∗) −→ S(V n)⊗
∧•+nq

(p∗),

D =
1

2nq/2

n∏
i=1

p+q∏
µ=p+1

[
p∑

α=1

(
xαi −

1

2π

∂

∂xαi

)
⊗ A(ωαµ)

]
,

to ϕ0 ⊗ 1 ∈ [S(V n)⊗
∧0(p∗)]K :

ϕnq,0 = D(ϕ0 ⊗ 1).

Note that this is 2nq/2 times the corresponding quantity in [KM4]. We have

ϕnq,0 ∈ C0,nq
0 =

[
C(χ−m/2)⊗ S(V n)⊗

∧nq
(p∗)

]K′×K
Here the K-invariance is immediate, while the K ′-invariance is Theorem 3.1 in [KM2].

We let

A = EndC

(
S(V n)⊗

∧•
(p∗)⊗ T (V )

)
,

where T (V ) =
⊕∞

`=0 T
`(V ) denotes the (complexified) tensor algebra of V . Note that

A is an associative C-algebra by composition. We now define for 1 ≤ i ≤ n another
differential operator Di ∈ A by

Di =
1

2

p∑
α=1

(
xαi −

1

2π

∂

∂xαi

)
⊗ 1⊗ A(eα).

Here A(eα) denotes the left multiplication by eα in T (V ). Note that the operator Di
is clearly K-invariant. We introduce a homomorphism T : Cn → A by

T (εi) = Di,
where ε1, . . . , εn denotes the standard basis of Cn. Let m` : T `A → A be the `-fold
multiplication. We now define

T` : T `(Cn) −→ A
by

T` = m` ◦
(⊗

`T
)
.

We identify

HomC

(
W`,S(V n)⊗

∧nq
(p∗)⊗ T `(V )

)
' W ∗

` ⊗ S(V n)⊗
∧nq

(p∗)⊗ T `(V ),

and use the same symbols for corresponding objects.

Definition 5.1. We define

ϕqn,` ∈ HomC

(
W`,S(V n)⊗

∧nq
(p∗)⊗ T `(V )

)K
by

ϕnq,`(w) = T`(w)ϕnq,0

for w ∈ T `(Cn). We put ϕnq,` = 0 for ` < 0.
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Note that the symmetric group S` on ` letters is acting on T `(Cn) and T `(V ) in
the natural fashion. We will now show that ϕnq,` is an equivariant map with respect
to S`. More precisely, we have

Proposition 5.2.

ϕnq,` ∈ HomC

(
W`,S(V n)⊗

∧nq
(p∗)⊗ T `(V )

)S`×K
,

that is, for any s ∈ S`, we have

ϕnq,` ◦ s = (1⊗ 1⊗ s)ϕnq,`.

Proof. We first need

Lemma 5.3. Let s ∈ S`. Then

T` ◦ s = (1⊗ 1⊗ s) ◦ T`.

Proof. Let i1, i2, . . . , i` ∈ {1, . . . , n}. Then(⊗
`T
)

(s(εi1 ⊗ · · · ⊗ εi`)) = s (T (εi1)⊗ · · · ⊗ T (εi`)) ,

where s on the right hand side permutes the factors of A⊗ · · · ⊗ A. Hence

T` (s(εi1 ⊗ · · · ⊗ εi`)) = m` (s (T (εi1)⊗ · · · ⊗ T (εi`))) ,

thus T` (s(εi1 ⊗ · · · ⊗ εi`)) takes the factors of
(⊗

`T
)

(s(εi1 ⊗ · · · ⊗ εi`)), permutes
them according to s and then multiplies them in A. The product T`(εi1 ⊗ · · · ⊗ εi`) is
a sum of tensor products of products of certain differential operators in S(V n) with
products of the eα’s in T (V ). But the differential operators in S(V n) commute with
each other so that the rearrangement of the Di’s has no effect on this factor in the
tensor product. Hence s only acts on the third factor of S(V n)⊗

∧nq(p∗)⊗T `(V ). �

The proposition now follows easily. For w ∈ T `(Cn), we have

ϕnq,`(sw) = T`(sw)ϕnq,0 = ((1⊗ 1⊗ s)T`(w))ϕnq,0 = (1⊗ 1⊗ s) (T`(w)ϕnq,0) .

�

This will now enable us to define the Schwartz forms ϕnq,[λ]. We first note

Lemma 5.4. For any standard filling t(λ) of D(λ), the composition

(1⊗ 1⊗ πt(λ)) ◦ ϕnq,` : T `Cn −→ S(V n)⊗
∧nq

(p∗)⊗ St(λ)(V )

descends to a map

πt(λ)T
`(Cn) −→ S(V n)⊗

∧nq
(p∗)⊗ πt(λ)T

`(V ).

Proof. We have (1⊗ 1⊗ sf(λ))
2 = 1⊗ 1⊗ sf(λ). Since ϕnq,` is equivariant with respect

to S`, we have

(1⊗ 1⊗ πf(λ)) ◦ ϕnq,`(w1 ⊗ · · · ⊗ w`) = (1⊗ 1⊗ πf(λ)) ◦ ϕnq,`(πf(λ)(w1 ⊗ · · · ⊗ w`))
for all wi ∈ Cn, 1 ≤ i ≤ `. �



CYCLES WITH COEFFICIENTS AND MODULAR FORMS 21

We use the lemma for the standard filling t0(λ) to introduce ϕnq,[λ].

Definition 5.5. We define

ϕnq,[λ] ∈ HomC

(
Sλ(Cn),S(V n)⊗

∧nq
(p∗)⊗ S[λ](V )

)K
by

ϕnq,[λ](w) = (1⊗ 1⊗ π[λ])(ϕnq,`(ιλ(w)),

the projection onto S[λ](V ), the harmonic tensors in Sλ(V ).

5.3. Fundamental Properties of the Schwartz forms. We will now state the
four basic properties of our Schwartz forms. These are:

• K ′-invariance; thus ϕnq,` ∈ C0,nq
`

• d-closedness; thus ϕnq,` defines a cohomology class [ϕnq,`]
• The holomorphicity of [ϕnq,[λ]]
• A recursion formula relating [ϕnq,`] to [ϕnq,`−1]

The first three properties are the generalizations of the properties of ϕnq,0 in [KM2,
KM3, KM4], the trivial coefficient case. Except for the K ′-invariance, we will reduce
the statements to the case of n = 1. Our main tool in proving these properties will be
then the Fock model of the Weil representation. We will carry out the proofs for the
K ′-invariance and for the other statements in the case of n = 1 in the next section.

Theorem 5.6. The forms ϕnq,` and ϕnq,[λ] are K ′-invariant, i.e.,

ϕnq,` ∈ C0,nq
` = [W ∗

` ⊗ S(V n)⊗
∧nq

(p∗)⊗ T `(V )]K
′×K

and

ϕnq,[λ] ∈ C0,nq
[λ] = [W ∗

λ′ ⊗ S(V n)⊗
∧nq

(p∗)⊗ S[λ](V )]K
′×K .

In particular, for n = 1, we have

ϕq,` ∈
[
C(χ−`−m/2)⊗ S(V )⊗

∧q
(p∗)⊗ T `(V )

]K′×K
.

Proof. We consider the first statement using the Fock model in the next section. The
second statement follows from the first by projecting onto S[λ](V ). �

The K ′-invariance of the Schwartz forms will enable us in Section 7 to construct
theta series using the forms ϕnq,[λ].

Theorem 5.7. The forms ϕnq,` and ϕnq,[λ] define closed differential forms on D, i.e.,

dϕnq,`(x) = 0

for all x ∈ V n. In particular, ϕnq,[λ](x) defines a (de Rham) cohomology class

[ϕnq,[λ](x)] ∈ Hnq
(
D,HomC(Sλ(Cn), S[λ](V ))

)
.
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Proof. We will prove the case n = 1 in the next section using the Fock model of the
Weil representation. For general n, it is enough to show that ϕnq,`(εi1 ⊗ · · · ⊗ εi`) is
closed for any n-tuple (εi1 , . . . , εi`). By the S`-equivariance of ϕnq,` we can assume

that i1 ≤ · · · ≤ i`, so that εi1 ⊗ · · · ⊗ εi` = ε⊗`11 ⊗ · · · ⊗ ε⊗`nn for some non-negative
integers `1, . . . , `n. But this implies that

ϕnq,`(ε
⊗`1
1 ⊗ · · · ⊗ ε⊗`nn )(x) = ϕq,`1(x1) ∧ · · · ∧ ϕq,`n(xn).

Here the wedge ∧ means the usual wedge for A(D) and the tensor product in the
other slots. This reduces the closedness of ϕnq,` to the case n = 1. �

To state the last two properties of the forms ϕnq,[λ], we first need to introduce some
more notation. We define a map

σ : Cn −→ (V n)∗ ⊗
∧•

p∗ ⊗ V

by

σ(εi) =
m∑
j=1

xij ⊗ 1⊗ ej.

Here the xij, 1 ≤ i ≤ n, 1 ≤ j ≤ m are the standard coordinate functions on V n.
Thus under the identification of (V n)∗⊗

∧•
p∗⊗V with Hom(V n,

∧•
p∗⊗V ) we have

σ(εi)(x) =
m∑
j=1

xij(1⊗ ej) = 1⊗
m∑
j=1

xijej = 1⊗ xi.

Now the xij are numbers, the coordinates of the n-tuple of vectors x.
We let σ` be the `-th outer tensor power of σ, and for λ a partition of [`], we put

σλ = σ` ◦ ιλ : SλCn −→ (V n)∗ ⊗
∧•

p∗ ⊗ T (V ).

Note that we do not need to distinguish between λ′ and λ because only the nonzero
parts of the partition matter here.

Lemma 5.8. (i) Let f be a semistandard filling of D(λ). Then

σλ(εf(λ))(x) = 1⊗ xf(λ)

for any ε = εi1 ⊗ · · · ⊗ εi` ∈ T `(Cn). In particular,

σλ : SλCn −→ (V n)∗ ⊗
∧•

p∗ ⊗ Sλ(V ).

(ii) The map σλ is GLn(C)-invariant, i.e., for a ∈ GLn(C), we have

σ((a−1ε)f(λ))(xa) = σ(εf(λ))(x).

Proof. For (i), first note

σ`(εi1 ⊗ · · · ⊗ εi`)(x) = 1⊗ (xi1 ⊗ · · · ⊗ xi`).
Indeed,

σ`(εi1 ⊗ · · · ⊗ εi`)(x) = σ`(εi1) ◦ · · · ◦ σ`(εi`)(x) = (1⊗ xi1) ◦ · · · ◦ (1⊗ xi`)
= 1⊗ (xi1 ⊗ · · · ⊗ xi`).
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But now for s ∈ S` and wi ∈ Cn, 1 ≤ i ≤ `, we have

σ` (s(w1 ⊗ · · · ⊗ w`)) = (1⊗ s)σ(w1 ⊗ · · · ⊗ w`),
which gives immediately

σ`(εf(λ))(x) = 1⊗ xf(λ),

as claimed. (ii) follows easily from σ(a−1ε)(xa) = σ(ε)(x). �

We can therefore define σ[λ] by post-composing with the harmonic projection π[λ]

onto S[λ](V ), and we have

σ[λ](πλεf(λ))(x) = 1⊗ x[f(λ)].

Via left multiplication we can interpret σ (and similarly σ`, σλ, σ[λ]) as a map
from Cn to A (and we do not distinguish between these two interpretations). With
this identification and considering S(V n)⊗

∧•
p∗ ⊗ T (V ) as the

∧•
p∗ ⊗ T (V )-valued

Schwartz functions on V n, we have

(σ(εi)ϕ)(x) = (1⊗ A(xi))ϕ(x).

For v ∈ V , we let Aj(v) : T `−1(V )→ T `(V ) be the insertion of v into the j-th spot.
We let Ajk : T `−2(V )→ T `

Ajk(f) =

p∑
α=1

Aj(eα)Ak(eα)−
p+q∑

µ=p+1

Aj(eµ)Ak(eµ)

be the insertion of the invariant metric into the (j, k)-th spot, and we put

A(f) =
1

2

∑̀
j=1

`−1∑
k=1

Ajk(f).

One of the fundamental properties of the scalar-valued Schwartz form ϕnq,0 is that
for (x,x) positive semidefinite, ϕnq,0(x) gives rise to a Thom form for the special cycle
CX . In view of Lemma 4.9, we now relate ϕnq,[λ](x) to (σ[λ]ϕnq,0)(x).

Theorem 5.9. (i) Let n = 1 and let σj be the operator on S(V )⊗
∧•

p∗ ⊗ T (V )
defined by σj(x) = 1 ⊗ 1 ⊗ Aj(x). Then for each j = 1, . . . , `, we have in
cohomology

[ϕq,`] = [σjϕq,`−1] +
1

4π

`−1∑
k=1

[Ajk(f)ϕq,`−2]

for all x ∈ V . In particular,

[ϕq,[`]] = [σ[`]ϕq,0].

(ii) For general n, we have in cohomology

[ϕnq,[λ]] = [σ[λ]ϕnq,0],

i.e., for all semistandard fillings f ,

[ϕnq,[λ](εf(λ))(x)] =
[
(1⊗ x[f(λ)])ϕnq,0(x)

]
,
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n where ε = εi1 ⊗ · · · ⊗ εi` ∈ T `(Cn).

Proof. We prove (i) in the next section via the Fock model. For (ii), we first see by
(i) that up to exact forms we have

ϕnq,`(ε
⊗`1
1 ⊗ · · · ⊗ ε⊗`nn )(x) =

(
σ(x1)ϕq,`1−1(x1) +

1

4π

`1−1∑
k=1

Ajk(f)ϕq,`1−1(x1)

)
∧ · · ·

∧

(
σ(xn)ϕq,`n−1(xn) +

1

4π

`n−1∑
k=1

Ajk(f)ϕq,`n−1(xn)

)
,

and we get a similar statement for ϕnq,`(εi1⊗· · ·⊗ εi`) by the S`-equivariance of ϕnq,`.
Iterating and using Lemma 5.8 then gives a statement for ϕnq,`(x) with coefficients in
Sλ(V ) analogous to (ii) - up to terms coming from the metric. Projecting to S[λ](V )
now gives the claim. �

One of the main results of [KM4] is that the scalar-valued cohomology class [ϕnq,0]

is holomorphic, i.e, [∂ϕnq,0] = 0. We will now show that the more general cohomology
classes [ϕnq,[λ]] are holomorphic as well.

For n = 1, we have g′ = sl2(C), and the anti-holomorphic tangent space p− is
spanned by the element L = 1

2

(
1 −i
−i −1

)
.

Theorem 5.10. (i) Let n = 1. Then in cohomology, we have

[ω(L)ϕq,`] =
−1

4π
[A(f)ϕq,`−2].

In particular,

[∂ϕq,[`]] = 0.

(ii) For general n, we have

[∂ϕnq,[λ]] = 0.

Proof. We will prove (i) in the next section. (ii) follows from (i) by generalizing the
argument given for the scalar valued case in [KM4], Theorem 5.2. First note that we
have to show [∂ijϕnq,[λ]] = 0 for all n(n + 1)/2 partial derivatives ∂ij ( i ≤ j) in p−.
By (i), we see

(1⊗ 1⊗ π[λ])∂iiϕnq,`(ε
⊗`1
1 ⊗ · · · ⊗ ε⊗`nn ) = 0

up to an exact form. By the S`-equivariance, we then see

(1⊗ 1⊗ π[λ])∂iiϕnq,`(εi1 ⊗ · · · ⊗ εi`) = 0,

again, up to an exact form. This gives the desired vanishing for the anti- holomorphic
tangent space p−0 of H× · · · ×H, naturally embedded into Hn. By the K ′-invariance
of ϕnq,` we now see that (1 ⊗ 1 ⊗ c[λ])ϕnq,` is annihilated by the AdK ′ orbit of p−0
inside p−, which is all of p−. �
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6. Proof of the fundamental properties of the Schwartz forms

The purpose of this section is to prove the K ′-invariance of ϕnq,` and for n = 1 the
other fundamental properties of ϕq,` given in the previous section. Our main tool will
be the Fock model of the Weil representation, which we review in the appendix.

By abuse of notation we will frequently use in the following the same symbols for
corresponding objects and operators in the two models.

6.1. The Schwartz forms in the Fock model and the K ′-invariance. For multi-
indices α = (α1, · · · , αq) and β = (β1, · · · , β`), (usually suppressing their length), we
will write

ωα = ωα1p+1 ∧ · · · ∧ ωαqp+q,
zαj = zα1j · · · zαqj,
eβ = eβ1 ⊗ · · · ⊗ eβ` .

Here we have returned to our original notation, denoting the standard basis elements
of V by eα and eµ. In the Fock model F , the “scalar-valued” Schwartz form ϕnq,0
becomes with this notation

ϕnq,0 =
1

2nq/2

(
−i
2π

)nq ∑
α1,...,αn

zα11 · · · zαnn⊗ωα11∧· · ·∧ωαnn⊗1 ∈ F⊗
∧nq

(p∗)⊗T 0(V )

We define

ϕ0,` ∈ HomC(T `(Cn),F ⊗
∧0

(p∗)⊗ T `(V ))

by

ϕ0,`(εi1 ⊗ · · · ⊗ εi`) =
(−i

4π

)n`∑
β

zβ1i1 · · · zβ`i` ⊗ 1⊗ eβ.

We then easily see

Lemma 6.1.

ϕnq,` = ϕnq,0 · ϕ0,`,

where the multiplication is the natural one in HomC(T (Cn),F ⊗
∧•(p∗)⊗ T (V )).

We should note that only in the Fock model we have such a “splitting” of ϕnq,`
into the product of two elements. We do not have an analogous statement in the
Schroedinger model (only in terms of operators acting on the Gaussian ϕ0).

Theorem 6.2 (Theorem 5.6). The form ϕnq,` is K ′-invariant.

Proof. We show this on the Lie algebra level. The element k′ = 1
2i
w′j ◦w′′k ∈ k ' gln(C)

is the endomorphism of Cn mapping εj to εk and annihilating the other basis elements.
To show ω(k′)ϕnq,` = 0, we need to show

ω(k′) (ϕnq,`(εi1 ⊗ · · · ⊗ εi`)) = ϕnq,`(k
′(εi1 ⊗ · · · ⊗ εi`)).
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From Lemma A.1 we see

ω(k′) (ϕnq,`(εi1 ⊗ · · · ⊗ εi`)) = ω(k′)ϕnq,0 · ϕ0,`(εi1 ⊗ · · · ⊗ εi`)

+ ϕnq,0 ·
p∑

α=1

zαk
∂

∂zαj
(ϕ0,`(εi1 ⊗ · · · ⊗ εi`)) .

We have ω(k′)ϕnq,0 = 0, since ϕnq,0 ∈
[
C(χ−m/2)⊗F ⊗

∧nq(p∗)
]K′

by [KM2], Theo-
rem 5.1. On the other hand, one easily sees

p∑
α=1

zαk
∂

∂zαj
(ϕ0,`(εi1 ⊗ · · · ⊗ εi`)) = ϕ0,`(k

′(εi1 ⊗ · · · ⊗ εi`)).

The assertion follows. �

6.2. The Schwartz forms for n = 1. For n = 1, we consider the forms ϕq,`, ϕq,0,
and ϕ0,` to be in F ⊗

∧•(p∗)⊗ T (V ), and we have

ϕq,` = cq,`
∑
α,β

zαzβ ⊗ ωα ⊗ eβ.

Here cq,` = 2q/2(−i/4π)q+`. Also

ϕq,0 = 2q/2(−i/4π)q
∑
α

zα ⊗ ωα ⊗ 1 and ϕ0,` = (−i/4π)`
∑
β

zβ ⊗ 1⊗ eβ.

For later use, we note that Theorem 6.2 for n = 1 boils down to

(6.1)

p∑
α=1

(
zα

∂

∂zα
⊗ 1⊗ 1

)
ϕq,` = (q + `)ϕq,`,

which follows directly from

(6.2)

p∑
α=1

zα
∂

∂zα
ϕq,0 = q ϕq,0 and

p∑
α=1

zα
∂

∂zα
ϕ0,` = ` ϕ0,`.

6.3. Closedness. Similarly to the Schroedinger model, the differentiation d in the
Lie algebra complex F ⊗

∧ ∗(p∗)⊗ S`(V ) is given by d = dF + dV with

dF =
∑
α,µ

ω(Xαµ)⊗ A(ωαµ)⊗ 1 and dV =
∑
α,µ

1⊗ A(ωαµ)⊗ ρ(Xαµ).(6.3)

Furthermore, we write dF = d′F + d′′F with

d′F = −4π
∑
α,µ

∂2

∂zα∂zµ
⊗ A(ωαµ)⊗ 1,(6.4)

d′′F =
1

4π

∑
α,µ

zαzµ ⊗ A(ωαµ)⊗ 1.
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Theorem 6.3 (Theorem 5.7). The form ϕq,` is closed. More precisely,

d′Fϕq,` = d′′Fϕq,` = 0

and

dV ϕq,` = 0.

Proof. First note that d′Fϕq,` = 0 is obvious from (6.4). From the ‘scalar-valued’ case,
see [KM2], we have dFϕq,0 = d′′Fϕq,0 = 0. In fact, this can be seen directly by (6.4),
since one easily checks

(6.5)
∑
α

(zα ⊗ A(ωαµ)⊗ 1)ϕq,0 = 0

for any µ. We then easily see

d′Fϕq,` = (d′Fϕq,0) · ϕ0,` = 0.

For the action of dV , we first note

(6.6) (1⊗ 1⊗ ρ(Xαµ))ϕ0,` =
−i
4π

∑̀
k=1

(zα ⊗ 1⊗ Ak(eµ))ϕ0,`−1.

(6.3) then implies

dV ϕq,` =
−i
4π

∑
α,µ

∑̀
k=1

(zα ⊗ A(ωαµ)⊗ 1)ϕq,0 · (1⊗ 1⊗ Ak(eµ))ϕ0,`−1 = 0

by (6.5). �

6.4. Recursion. We will now show Theorem 5.9(i), the recursive formula for the
cohomology class [ϕq,`].

For j ≥ 1, we define operators Aj(σ) by

Aj(σ) = i
∑
α

(
∂

∂zα
− 1

4π
zα

)
⊗ 1⊗ Aj(eα) − i

∑
µ

(
∂

∂zµ
− 1

4π
zµ

)
⊗ 1⊗ Aj(eµ).

We write A(σ) = A1(σ), and by (A.3) we note that this is the image in the Fock
model of the operator A(σ) in the Schroedinger model.

For j ≥ 1, we introduce operators h′j by

h′j =
∑
α,µ

∂

∂zα
⊗ A∗(ωαµ)⊗ Aj(eµ).

We write h′ = h′1. Here A∗(ωαµ) denotes the (interior) multiplication with Xαµ, i.e.,

A∗(ωαµ)(ωα′µ′) = δαα′δµµ′ . We define a (q − 1)-form Λ
(j)
q,` by

Λ
(j)
q,` =

−i
p+ q + `− 1

h′jϕq,`.

We write Λq,` = Λ
(1)
q,` .
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Theorem 6.4 (Theorem 5.9). For any 1 ≤ j ≤ `, we have

ϕq,` = Aj(σ)ϕq,`−1 + dΛ
(j)
q,`−1 +

1

4π

`−1∑
k=1

Ajk(f)ϕq,`−2.

For the proof of Theorem 6.4, we first compute Aj(σ)ϕq,`−1:

Lemma 6.5. For any 1 ≤ j ≤ `, we have

Aj(σ)ϕq,`−1 = ϕq,` + Aj + Bj + C+
j .

Here

Aj =
i

4π

(
p+q∑

µ=p+1

zµ ⊗ 1⊗ Aj(eµ)

)
ϕq,`−1,

Bj = i

p∑
α=1

(
∂

∂zα
⊗ 1⊗ 1)ϕq,0 · (1⊗ 1⊗ Aj(eα))ϕ0,`−1,

C+
j =

1

4π

`−1∑
k=1

Ajk(f+)ϕq,`−2,

where Ajk(f+) is the insertion
∑p

α=1 Aj(eα)Ak(eα) in the j-th and k-th position in
T (V ).

Proof. We write Aj(σ) = A′j(σ) + A′′j (σ) with A′j(σ) = −i
4π

∑
α zα ⊗ 1 ⊗ Aj(eα) +

i
4π

∑
µ zµ ⊗ 1⊗ Aj(eµ). We immediately see

A′j(σ)ϕq,`−1 = ϕq,` + Aj.

On the other hand, we have

A′′j (σ)ϕq,`−1 = i

p∑
α=1

(
∂

∂zα
⊗ 1⊗ Aj(eα))(ϕq,0 · ϕ0,`−1)

= Bj + iϕq,0 ·

(
p∑

α=1

(
∂

∂zα
⊗ 1⊗ Aj(eα))

)
ϕ0,`−1.

But the last term is equal to C+
j . Indeed, a little calculation gives

(6.7) (
∂

∂zα
⊗ 1⊗ 1)ϕ0,`−1 =

−i
4π

`−1∑
k=1

(1⊗ 1⊗ Ak(eα))ϕ0,`−2,

from which the claim follows. �

Therefore Theorem 6.4 will follow from

Proposition 6.6. For any 1 ≤ j ≤ `, we have

dΛ
(j)
q,`−1 = −(Aj +Bj + C−j ),



CYCLES WITH COEFFICIENTS AND MODULAR FORMS 29

where

C− =
1

4π

`−1∑
k=1

Ajk(f−)ϕq,`−2

with Ajk(f−) =
∑p

µ=1 Aj(eµ)Ak(eµ).

Proof. Since ϕq,`−1 is closed, we have

(p+ q + `− 2)dΛq,`−1 = dh′jϕq,`−1 = {d, h′j}ϕq,`−1,

where {A,B} denotes the anticommutator AB +BA. It is easy to see that

{d′F , h′j}ϕq,`−1 = 0,

so that we only need to compute {d′′F , h′j} and {dV , h′j}.

Lemma 6.7. As operators on F ⊗
∧ •(p∗)⊗ T (V ),

(i) 4πi{d′′F , h′j} =
∑
α,µ

zµ
∂

∂zα
zα ⊗ 1⊗ Aj(eµ) −

∑
µ,ν

zµ ⊗Dµν ⊗ Aj(eν).

(ii) i{dV , h′j} =
∑
α,µ

∂

∂zα
⊗ 1⊗ Aj(eµ)ρ(Xαµ) +

∑
α,β

∂

∂zβ
⊗Dαβ ⊗ Aj(eα).

Here the operators Dαβ and Dµν are the derivations of
∧ •(p∗) determined by

Dαβωγµ = δβγωαµ and Dµνωαλ = δλνωαµ.

Proof. For (i), using the definitions of the operators and ∂
∂zβ
zα = zα

∂
∂zβ

+ δαβ, we

easily see

4πi{d′′F , h′j} =
∑
α,µ
β,ν

zµzα
∂

∂zβ
⊗ {Aαµ, A∗βν} ⊗ Aj(eν) + δαβzµ ⊗ A∗βνAαµ ⊗ Aj(ev).

Here and in the following we write Aα,µ for A(ωα,µ). The Clifford identities imply

{Aαµ, A∗βν} = δαβδµν

and

A∗ανAαµ =

{
I − AαµA∗αν , if µ = ν

−AαµA∗αν , if µ 6= ν.

Note

(6.8)
∑
α

AαµA
∗
αν = Dµν and

∑
µ

AαµA
∗
βµ = Dαβ.

We therefore obtain∑
α,µ

zµ

(
zα

∂

∂zα
+ 1

)
⊗ 1⊗ Aj(eµ) −

∑
α,µ,ν

zµ ⊗ AαµA∗αν ⊗ Aj(eν),

and the assertion follows from (6.8).
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For (ii), first note ρ(Xαµ)Aj(eν) = δµνAj(eα) + Aj(ev)ρ(Xαµ). One then obtains

{dV , h′j} =
∑
α,µ
β,ν

∂

∂zβ
⊗ {Aαµ, A∗βν} ⊗ Aj(ev)ρ(Xαµ) +

∂

∂zβ
⊗ AαµA∗βν ⊗ δµνAj(eα)

=
∑
α,µ

∂

∂zα
⊗ 1⊗ Aj(eµ)ρ(Xαµ) +

∑
α,β

∂

∂zβ
⊗Dαβ ⊗ Aj(eα),

by (6.8). �

Proposition 6.6 now follows from

Lemma 6.8.

(i) {d′′F , h′j}ϕq,`−1 = −(p+ q + `− 2)Aj.

(ii) {dV , h′j}ϕq,`−1 = −(p+ q + `− 2)(Bj + C−j ).

Proof. We use Lemma 6.7. For (i), we first have∑
α,µ

(
zµ

∂

∂zα
zα ⊗ 1⊗ Aj(eµ)

)
ϕq,`−1 = (p+ q + `− 1)

(∑
µ

zµ ⊗ 1⊗ Aj(eµ)

)
ϕq,`−1

= −4πi(p+ q + `− 1)Aj,

which follows immediately from
(6.9)∑
α

(
∂

∂zα
zα ⊗ 1⊗ 1

)
ϕq,`−1 =

∑
α

(
(zα

∂

∂zα
+ 1)⊗ 1⊗ 1

)
ϕq,`−1 = (p+q+`−1)ϕq,`−1

by (6.1). Furthermore, by [KM4], Lemma 8.2 we have

(1⊗Dµν ⊗ 1)ϕq,0 = δµνϕq,0,

and therefore∑
µ,ν

(zµ ⊗Dµν ⊗ Aj(eν))ϕq,`−1 =
∑
µ,ν

(1⊗Dµν ⊗ 1)ϕq,0 · (zµ ⊗ 1⊗ Aj(eν))ϕ0,`

=

(∑
µ

zµ ⊗ 1⊗ Aj(eµ)

)
ϕq,`−1 = −4πiAj.

Lemma 6.7 now gives (i). For (ii), by (6.6) we first note

(6.10) (1⊗ 1⊗ ρ(Xαµ)ϕq,`−1 =
−i
4π

`−1∑
k=1

(zα ⊗ 1⊗ Ak(eµ))ϕq,`−2.

Thus, using (6.9), we see∑
α,µ

(
∂

∂zα
⊗ 1⊗ Aj(eµ)ρ(Xαµ)

)
ϕq,`−1 =

−i
4π

(
`−1∑
k=1

Ajk(f−)

)
(p+ q + `− 2)ϕq,`−2

= −i(p+ q + `− 2)C−j .
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Finally, by [KM4], Lemma 8.2, we have

(1⊗Dαβ ⊗ 1)ϕq,0 = (zβ
∂

∂zα
⊗ 1⊗ 1)ϕq,0.

Hence ∑
α,β

(
∂

∂zβ
⊗Dαβ ⊗ Aj(eα)

)
ϕq,`−1(6.11)

=
∑
α,β

(
∂

∂zβ
zβ ⊗ 1⊗ Aj(eα)

)
((

∂

∂zα
⊗ 1⊗ 1)ϕq,0) · ϕ0,`−1

=
∑
α,β

((
∂

∂zβ
zβ

∂

∂zα
⊗ 1⊗ 1

)
ϕq,0

)
· (1⊗ 1⊗ Aj(eα))ϕ0,`−1

+
∑
α,β

((
∂

∂zα
⊗ 1⊗ 1)ϕq,0) ·

(
∂

∂zβ
zβ ⊗ 1⊗ Aj(eα)

)
ϕ0,`−1,

The second term, using (6.9), is equal to −i(`− 1)B, while for the first we have∑
α,β

((
∂

∂zβ
(
∂

∂zα
zβ − δαβ)⊗ 1⊗ 1

)
ϕq,0

)
· (1⊗ 1⊗ Aj(eα))ϕ0,`−1,

and this, using (6.9) again, equals to −i(p+q−1)B. This finishes the proof of (ii). �

This concludes the proof of Proposition 6.6 and hence the proof of Theorem 6.4! �

6.5. Holomorphicity. We will now show Theorem 5.10(i), i.e., that the cohomology
class [ϕq,[`]] is holomorphic.

Following [KM4], we define another operator h on F ⊗
∧•(p∗)⊗ S•(V ) by

h =
∑
α,µ

zµ
∂

∂zα
⊗ A∗(ωαµ)⊗ 1.

Definition 6.9. We introduce a (q − 1)-form ψq,` by

ψq,` :=
−1

2(p+ q − 1)
(hϕq,0) · ϕ0,`.

It will be convenient to note that we could have also defined ψq,` by letting h act
on ϕq,`:

Lemma 6.10.

ψq,` =
−1

2(p+ q + `− 1)
hϕq,`.
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Proof. We have

hϕq,` = (hϕq,0) · ϕ0,` +
∑
α,µ

(zµ ⊗ A∗(ωαµ)⊗ 1)ϕq,0 · (
∂

∂zα
⊗ 1⊗ 1)ϕ0,`(6.12)

= (hϕq,0) · ϕ0,` −
i

4π

∑̀
j=1

h′′jϕq,`−1,(6.13)

with h′′j =
∑

α,µ zµ ⊗ A∗(ωαµ)⊗ Aj(eα). But now one easily checks that

−1

4π
h′′jϕq,`−1 = ϕ′q,0 · ϕ0,`

with

ϕ′q,0 =
∑

µ,α1,...,αq−1

(−1)µ−p−1zµzα ⊗ ωα1p+1 ∧ · · · ∧ ω̂αµ−pµ ∧ · · ·ωαq−1p+q ⊗ 1.

On the other hand, we also compute

hϕq,0 = (p+ q − 1)ϕ′q,0.

From this the lemma follows. �

Theorem 6.11 (Theorem 5.10). The action of the lowering operator L on ϕq,` is
given by

ω(L)ϕq,` = d

(
ψq,` +

1

2

∑̀
j=1

Λ
(j)
q,`−1

)
− 1

4π
A(f)ϕq,`−2.

Remark 6.12. This theorem is the generalization of one of the main points in [KM4]
for ` = 0, the trivial coefficient case. Namely, [KM4], Lemma 8.3 states

(6.14) ω(L)ϕq,0 = dψq,0.

Proof of Theorem 6.11. We first compute the left hand side:

Lemma 6.13.

ω(L)ϕq,` = (ω(L)ϕq,0) · ϕ0,` −
∑̀
j=1

Bj −
1

4π
A(f+)ϕq,`−2,

with Bj as in Lemma 6.5.
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Proof. By Lemma A.1 we have

ω(L)ϕq,` =
−1

8π

∑
µ

(
z2
µ ⊗ 1⊗ 1

)
ϕq,`(6.15)

+ 2πcq,`
∑
γ
α,β

(
∂2

∂z2
γ

zα

)
zβ ⊗ ωα ⊗ eβ(6.16)

+ 4πcq,`
∑
γ
α,β

(
∂

∂zγ
zα

)(
∂

∂zγ
zβ

)
⊗ ωα ⊗ eβ(6.17)

+ 2πcq,`
∑
γ
α,β

zα

(
∂2

∂z2
γ

zβ

)
⊗ ωα ⊗ eβ.(6.18)

The first two terms ((6.15) and (6.16) give (ω(L)ϕq,0) · ϕ0,`. By (6.7), the third term
(6.17) is equal to

−i
∑
γ

(
∂

∂zγ
⊗ 1⊗ 1

)
ϕq,0 ·

∑̀
j=1

(1⊗ 1⊗ Aj(eγ))ϕ0,`−1 = −
∑̀
j=1

Bj.

For the fourth term (6.18) in the sum above, we apply (6.7) twice and obtain

−i
2
ϕq,0 ·

∑̀
j=1

∑
γ

(
∂

∂zγ
⊗ 1⊗ Aj(eγ)

)
ϕ0,`−1

=
−1

8π
ϕq,0 ·

∑̀
j=1

`−1∑
k=1

∑
γ

(1⊗ 1⊗ Aj(eγ)Ak(eγ))ϕ0,`−2 =
−1

4π
A(f+)ϕ0,`−2.

�

We now compute dψq,`:

Lemma 6.14.

(i) dFψq,` = (dFψq,0) · ϕ0,` −
1

2

∑̀
j=1

Bj.

(ii) dV ψq,` =
1

2

∑̀
j=1

Aj.

with Aj and Bj as in Lemma 6.5.

Proof. For (i), we first observe

(6.19) d′′F ((hϕq,0) · ϕ0,`) = (d′′Fhϕq,0) · ϕ0,`.
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For d′F we get

d′F ((hϕq,0) · ϕ0,`) = −4π
∑
α,µ

(
∂

∂zα
⊗ 1⊗ 1

)[((
∂

∂zµ
⊗ Aαµ ⊗ 1

)
hϕq,0

)
· ϕ0,`

]
= (d′Fhϕq,0) · ϕ0,`(6.20)

− 4π
∑
α,µ

((
∂

∂zµ
⊗ Aαµ ⊗ 1

)
hϕq,0

)
·
((

∂

∂zα
⊗ 1⊗ 1

)
ϕ0,`

)
.(6.21)

For the first term in (6.21) we see∑
µ

(
∂

∂zµ
⊗ Aαµ ⊗ 1

)
(hϕq,0) =

∑
µ,ν
β

(
∂

∂zβ

∂

∂zµ
zν ⊗ AαµA∗βµ ⊗ 1

)
ϕq,0

=
∑
β,µ

(
∂

∂zβ
⊗ AαµA∗βν ⊗ 1

)
ϕq,0

=
∑
β

(
∂

∂zβ
⊗Dαβ ⊗ 1

)
ϕq,0.

Combining this with (6.7) we obtain for (6.21)

i
∑̀
j=1

∑
α,β

((
∂

∂zβ
⊗Dαβ ⊗ Aj(eα)

)
ϕq,0

)
· ϕ0,`−1.

But this is exactly (up to a constant) the term (6.11), i.e., (6.21) is equal to (p+ q−
1)
∑`

j=1Bj. This together with (6.19),(6.20) and collecting the constants implies (i).

For (ii), we will use Lemma 6.10. We easily see

{dV , h} =
∑
α,µ

zµ
∂

∂zα
⊗ 1⊗ ρ(Xαµ).

By (6.6) and (6.1), we get

dV hϕq,` = {dV , h}ϕq,`

=
−i
4π

∑̀
j=1

∑
α,µ

(
zµ

∂

∂zα
zα ⊗ 1⊗ Aj(eµ)

)
ϕq,`−1

= −
∑̀
j=1

(p+ q + `− 1)Aj.

This implies (ii). �
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We are now in the position to finish the proof of Theorem 6.11: Combining
Lemma 6.13, Lemma 6.14 and Proposition 6.6, we get

ω(L)ϕq,` − d

(
ψq,` +

1

2

q∑
j=1

Λ
(j)
q,`−1

)
= (ω(L)ϕq,0) · ϕ0,` −

∑̀
j=1

Bj −
1

4π
A(f+)ϕq,`−2

− (dFψq,0) · ϕ0,` +
1

2

∑̀
j=1

Bj −
1

2

∑̀
j=1

Aj

+
1

2

∑̀
j=1

(Aj +Bj + C−j )

= − 1

4π
A(f)ϕq,`−2,

via (6.14) and A(f−)ϕq,`−1 = 1
2

∑`
j=1 C

−
j , since A(f) = A(f+)− A(f−). �

7. Main Result

In this section, we first construct the cohomology class [θnq,[λ]] and use the funda-
mental properties of ϕnq,[λ] to derive our main result.

First note that over R, the Weil representation action of the standard Siegel para-
bolic in Sp(n,R) on ϕ ∈ S(V n) is given by

ω
((

a 0
0 ta−1

))
ϕ(x) = (det a)m/2ϕ(xa)

for a ∈ GL+
n (R), and

ω (( 1 b
0 1 ))ϕ(x) = eπitr(b(x,x))ϕ(x)

for b ∈ Symn(R). Here x = (x1, · · · , xn) ∈ V n, as before.
Globally, we let A = AK be the ring of adeles of K. Let G′(A) be the two-fold cover

Sp(n,A), which acts on S(V n(A)) via the (global) Weil representation ω = ωV .
For g′ ∈ G′(A), we define the standard theta kernel associated to a Schwartz

function ϕ = ϕf ⊗ ϕ∞ ∈ S(V n
A ) by

θ(g′, ϕ) :=
∑
x∈V n

ω(g′)ϕ(x).

By abuse of notation, we let ϕnq,[λ] = ⊗ri=1ϕvi = ϕ∞, where ϕvi is the Schwartz form
ϕnq,[λ] at the first infinite place and the standard Gaussian ϕ0 at the other infinite
places, and we define ϕnq,` in the same way. For the finite places, we let ϕf correspond
to the characteristic function of h+ bLn.

Given τ = (τ1, . . . , τr) ∈ Hr
n we let g′τ ∈ Sp(n,K∞) be a standard element which

moves the base point (i, . . . , i) ∈ Hr
n to τ , i.e.,

g′τ =

(
1 u
0 1

)(
a 0
0 ta−1

)
,

with v = a(ta−1). We consider g′τ ∈ G′(A) in the natural way.
We write ρλ for the representation action of GLn(C) on Sλ(Cn).
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For τ ∈ Hr
n, we then define

θnq,[λ](τ, z) = NK
Q (det(a)−m)ρ∗λ(a)θ(g′τ , ϕf ⊗ ϕnq,[λ])

=
∑

x∈h+bLn

ρ∗λ(a)ϕnq,[λ](xa)e∗((x,x)u/2),

and similarly, θnq,`(τ, z). Here

e∗(A) = exp

(
2πi

r∑
j=1

tr(λi(A))

)
,

for A ∈Mn,n(K).

We denote by A(Γ′, Sλ(Cn)∗⊗ det−m/2) the space of vector-valued (not necessarily
holomorphic) Hilbert-Siegel modular forms of degree n for a congruence subgroup Γ′

and for the representation (ρ∗λ ⊗ det−m/2, det−m/2, · · · , det−m/2).
Then Theorem 5.6 and the standard theta machinery give us

Proposition 7.1.

θnq,[λ](τ, z) ∈ A(Γ′, Sλ(Cn)∗ ⊗ det −m/2)⊗ Anq(M,S[λ]V),

i.e, θnq,[λ](τ, z) is a vector-valued non-holomorphic Hilbert-Siegel modular form for the

representation (ρ∗λ ⊗ det−m/2, det−m/2, . . . , det−m/2) with values in the S[λ](V)-valued
closed differential nq-forms of the manifold M .

The Fourier expansion of θnq,[λ](τ) is given by

θnq,[λ](τ) =
∑

β∈Symn(K)

θβ,nq,[λ](v)e∗(βτ),

with

θβ,nq,[λ](v) =
∑
x∈Lβ

ρ∗λ(a)ϕnq,[λ](xa)e∗((x,x)v/2).

Definition 7.2. If η is a rapidly decreasing S[λ](V)-valued closed (p − n)q form on

M representing a class [η] ∈ H(p−n)q
c (M,S[λ]V), we define

Λnq,[λ](τ, η) =

∫
M

η ∧ θnq,[λ](τ) ∈ A(Γ′, Sλ(Cn)∗ ⊗ det −m/2).

We define Λnq,`(τ, η) in the same fashion for η taking values in T `(V). If η is S[λ](V)-
valued, then we have

Λnq,`(τ, η) = Λnq,[λ](τ, η).

Before we can state our main result, we need a bit more notation. For q = 2k even,
we let eq be the Euler form of the symmetric space D (which is the Euler class of the
tautological vector bundle over D, i.e., the fiber over a point z ∈ D is given by the
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negative q-plane z) and zero for q odd. Here eq is normalized such that it is given in∧q(p∗) by

eq =

(
− 1

4π

)k
1

k!

∑
σ∈Sq

sgn(σ)Ωp+σ(1),p+σ(2) . . .Ωp+σ(2k−1),p+σ(2k),

with

Ωµν =

p∑
α=1

ωαµ ∧ ωαν .

Remark 7.3. The main result of [KM4] is that in the scalar valued case, the gener-
ating series

n∑
t=0

∑
β≥0

rankβ=t

(
PD(Cβ) ∧ en−tq

)
e∗(βτ),

is a classical Hilbert-Siegel modular form of weight m/2. The key point is that for
nondegenerate x such that (x,x) positive semidefinite of rank t, ϕnq,0(x) is (essen-
tially) a Thom form for the cycle CX ∩ en−tq . One has∫

ΓX\D
η ∧ ϕnq,0(xa) =

(∫
CX

η ∧ en−tq

)
e∗(−(x,x)v/2).

Remark 7.4. Actually, in [KM4] the non-compact hyperbolic case of signature (p, 1)
with n = p− 1 is excluded (when the cycles are infinite geodesics). In the following,
we will also exclude this case. Note however that for signature (2, 1) and n = 1 this
restriction was removed in [FM1], and our result will also hold in that particular case.

The following two theorems are the generalization of the main result of [KM4].

Theorem 7.5. The cohomology class [θnq,[λ]] is holomorphic; i.e., it defines a holo-
morphic Siegel modular form of genus n with values in Sλ(Cn)∗⊗ χ(−m/2) and with
coefficients in Hnq(M,S[λ]V).

Proof. This follows immediately from Theorem 5.10: We have [∂ϕnq,[λ]] = 0, thus

[∂θnq,[λ]](τ) = 0. �

Theorem 7.6. The Fourier expansion of [θnq,[λ]](τ) is given by

[θnq,λ](τ) =
n∑
t=0

∑
β≥0

rankβ=t

(
PD(Cβ,[λ]) ∧ en−tq

)
e∗(βτ),

where PD(Cβ,[λ]) denotes the Poincaré dual class of PD(Cβ,[λ]). Furthermore, if q is
odd or i(λ) = n, then [θnq,λ](τ) is a cusp form.

This is equivalent to
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Theorem 7.7. For η a rapidly decreasing closed q(n− p) form on M with values in
S[λ](V), the generating series

Λnq,[λ](τ, η) =
n∑
t=0

∑
β≥0

rankβ=t

∫
Cβ,[λ]

(
η ∧ etq

)
e∗(βτ)

is a holomorphic Siegel modular form of type (det−m/2⊗ρ∗λ, det−m/2, · · · , det−m/2).
Note that by Theorem 3.7 a basis of Sλ(Cn) is given by πλεf(λ), where f(λ) runs

through the semistandard fillings SS(λ, n). With respect to this basis, we define the
πλf(λ) component (Λ[λ](τ, η))πλf(λ) by

(Λnq,[λ](τ, η))πλf(λ) =

(∫
M

η ∧ θnq,[λ](τ)

)(
εf(λ)

)
.

Note here that the value of Λ at εf(λ) and πλf(λ) is the same. We then have

(Λnq,[λ](τ, η))πλf(λ) =
n∑
t=0

∑
β≥0

rankβ=t

∫
Cβ,[f(λ)]

(
η ∧ etq

)
e∗(βτ)

=
n∑
t=0

∑
x∈Lct

(x,x)≥0
mod Γ

∫
Cx

(
(η,xf(λ)) ∧ etq

)
e∗((x,x)τ/2),

where
Lct = {x ∈ h+ bLn : rank(x,x) = t; x nondegenerate}

Proof. We denote the β Fourier coefficient of (Λnq,[λ](τ, η))f(λ) by

aβ =

∫
M

η ∧
∑
x∈Lβ

ρ∗λ(a)ϕnq,[λ](xa)

 ((a−1ε)f(λ))e∗(βv).

We first note

Lemma 7.8. Assume that β not positive semidefinite. Then

aβ = 0.

Proof. For n > 1, this follows from the Koecher principle, since Λ[λ](τ, η) is holo-
morphic. For n = 1, so that β < 0, the vanishing follows from the vanishing in the
trivial coefficient case by an argument similar to the positive definite coefficient, see
Lemma 7.9 below. �

For β positive semidefinite, we write

acβ =

∫
M

η ∧
∑
x∈Lcβ

ρ∗λ(a)ϕnq,[λ](xa)

 ((a−1ε)f(λ))e∗(βv)

for the contribution of the closed orbits and adβ = aβ − acβ for the degenerate part.
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Lemma 7.9. Assume β is positive semidefinite of rank t. Then

acβ =

∫
Cβ,[f(λ)]

(
η ∧ en−tq

)
.

Proof. By the usual unfolding argument, we obtain

acβe∗(−βv) =

∫
Γ\D

η ∧
∑
x∈Lcβ

ϕnq,[λ](xa)

 ((a−1ε)f(λ))

=

∫
Γ\D

η ∧
∑

x∈Γ\Lcβ

∑
γ∈ΓX\Γ

γ∗ϕnq,[λ](xa)

 ((a−1ε)f(λ))

=
∑

x∈Γ\Lcβ

(∫
Γx\D

η ∧ ϕnq,[λ](xa)

)
((a−1ε)f(λ)).

But now by Theorem 5.9 and Lemma 5.8, we have

[ϕnq,[λ](xa)((a−1ε)f(λ))] =
[
(1⊗ 1⊗ x[f(λ)])ϕnq,0(xa)

]
.

Thus(∫
Γx\D

η ∧ ρ∗λ(a)ϕnq,[λ](xa)

)
(εf(λ)) =

∫
Γx\D

η ∧ (1⊗ 1⊗ x[f(λ)])ϕnq,0(xa)

=

∫
Γx\D

(η,x[f(λ)]) ∧ ϕnq,0(xa)

=

(∫
CX

(η,x[f(λ)]) ∧ etq
)
e∗(−(x,x)v/2),

by Remark 7.3. This implies acβ =
∫
Cβ,[f(λ)]

η ∧ etq, as claimed. �

It remains to show

Lemma 7.10. Assume β is positive semidefinite. Then

adβ = 0.

Proof. The recursion formula reduces this to the analogous statement for the singular
coefficients in the scalar-valued case in the same way as in Lemma 7.9. The Lemma
then follows from the vanishing of those coefficients in the scalar-valued case, see
[KM4], §4. We leave the details to the reader. �

This concludes the proof of the theorem. �

Appendix A. The Fock model

We briefly review the construction of the Fock model of the (infinitesimal) Weil
representation of the symplectic Lie algebra sp(W ⊗ C), where (W, 〈 , 〉) denotes a
non-degenerate real symplectic space of dimension 2N . We follow [Ad2, KM4]. We
let J0 be a positive definite complex structure on W , i.e., the bilinear form given
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by 〈w1, J0w2〉 is positive definite. Let e1, . . . , eN ; f1, . . . , fN be a standard symplectic
basis of W so that J0ej = fj and J0fj = −ej. We decompose

W ⊗ C = W ′ ⊕W ′′

into the +i and −i eigenspaces under J0. Then w′j = ej − ifj and w′′j = ej + ifj,

j = 1, . . . , N form a basis for W ′ and W ′′ respectively. We identify Sym2(W ) with
sp(W ) via

(x ◦ y)(z) = 〈x, z〉y + 〈y, z〉x.
Given λ ∈ C, we define the quantum algebra (see [Ho]) Wλ to be the tensor

algebra T (W ⊗C) modulo the two sided ideal generated by the elements of the form
x⊗y−y⊗x−λ〈x, y〉1. We let p : T (W⊗C)→Wλ be the quotient map. Since T (W⊗
C) is graded, we have a filtration F • on Wλ, and we easily that [F kWλ, F

k′Wλ] ⊂
F k+k′−2Wλ. Hence F 2Wλ is a Lie algebra. Furthermore, we have a split extension of
Lie algebras

0 −→ F 1Wλ −→ F 2Wλ −→ sp(W ⊗ C) −→ 0.

Here the second map is p(x⊗ y) 7→ λ(x ◦ y) ∈ Sym2(W ⊗C) ' sp(W ⊗C), while the
splitting map j : Sym2(W ⊗ C)→ F 2Wλ is given by

j(x ◦ y) =
1

2λ
(p(x)p(y) + p(y)p(x)) .

(Note the sign error in [KM4], p. 151).
We let J be the left ideal in Wλ generated by W ′. The projection p induces

an isomorphism of the symmetric algebra Sym•(W ′′) with Wλ/J . We denote by
ρλ the action of Wλ on Wλ/J ' Sym•(W ′′) given by left multiplication. We now
identify Sym•(W ′′) with the polynomial functions P(CN) = C[z1, . . . , zN ] on W ′ via
zj(w

′′
k) = 〈w′j, w′′k〉 = 2iδjk and observe that then the action of W ⊂ Wλ on P(CN) is

given by

ρλ(w
′′
j ) = zj and ρλ(w

′
j) = 2iλ

∂

∂zj
.

This gives the action of Wλ, and we obtain an action ωλ = ρλ ◦ j of sp(W ⊗ C) on
P(CN). This is the Fock model of the Weil representation with central character λ.

We now let V be a real quadratic space of signature (p, q) (for the moment, we
change notation and denote the standard basis elements by vα and vµ), and let W
be a real symplectic space over R of dimension 2n (with standard symplectic basis ej
and fj, j = 1, . . . , n). We consider the symplectic space W = V ⊗W of dimension
2n(p + q), and note that J = θ ⊗ J defines a positive definite complex structure on
W. Here θ is the Cartan involution with respect to the above basis of V , while J is
the positive define complex structure with respect to the above symplectic basis of
W . Then the +i-eigenspace W′ of J is spanned by the vα⊗w′j and vµ⊗w′′j , while the
−i eigenspace W′′ is spanned by the vα ⊗ w′′j and vµ ⊗ w′j.

We naturally have o(V ) × sp(W ) ⊂ sp(V ⊗ W ), and one easily checks that the
inclusions j1 : o(V ) '

∧2(V ) → sp(V ⊗ W ) ' Sym2(V ⊗ W ) and j2 : sp(W ) →
sp(V ⊗W ) ' Sym2(V ⊗W ) are given by
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j1 (v1 ∧ v2) =
1

2i

[
n∑
j=1

(v1 ⊗ w′j) ◦ (v2 ⊗ w′′j )−
n∑
j=1

(v1 ⊗ w′′j ) ◦ (v2 ⊗ w′j)

]

j2 (w1 ◦ w2) =

p∑
α=1

(vα ⊗ w1) ◦ (vα ⊗ w2)−
p+q∑

µ=p+1

(vµ ⊗ w1) ◦ (vµ ⊗ w2)

with v1, v2 ∈ V and w1, w2 ∈ W , see [KM4], Lemma 7.3.
We write F = P(Cn(p+q)) for the Fock model F of the (infinitesimal) Weil repre-

sentation of sp(V ⊗W ). We denote the variables in P(Cn(p+q)) by zαj corresponding
to vα⊗w′′j and zµj corresponding to vµ⊗w′j. For n = 1 we drop the subscript j(= 1).
We have

ρλ(vα ⊗ w′j) = 2iλ
∂

∂zαj
, ρλ(vα ⊗ w′′j ) = zαj,

ρλ(vµ ⊗ w′′j ) = 2iλ
∂

∂zµj
, ρλ(vµ ⊗ w′j) = zµj.

We easily obtain the following formulas for the action of o(V )× sp(W ) in F : (the
formulas differ from the ones given in [KM4] by a sign due to the sign error mentioned
above).

Lemma A.1. For the symplectic group, we note that in the decomposition sp(W ⊗
C) = k′ ⊕ p+ ⊕ p−, k′ ' glnC is spanned by the elements of the form w′j ◦ w′′k, p+ is
spanned by w′′j ◦ w′′k and p− is spanned by w′j ◦ w′k (1 ≤ j, k ≤ n). Then

ω(w′j ◦ w′′k) = 2i

[
p∑

α=1

zαk
∂

∂zαj
−

p+q∑
µ=p+1

zµj
∂

∂zµk

]
+ i(p− q)δjk,

ω(w′′j ◦ w′′k) =
1

λ

p∑
α=1

zαjzαk + 4λ

p+q∑
µ=p+1

∂2

∂zµj∂zµk
,

ω(w′j ◦ w′k) = −4λ

p∑
α=1

∂2

∂zαj∂zαk
− 1

λ

p+q∑
µ=p+1

zµjzµk.

Note that for n = 1, we have sp(W ⊗ C) ' sl2(C), and (for λ = 2πi) the action of
L := 1

2

(
1 −i
−i −1

)
= −i

4
w′1 ◦w′1 and R := 1

2
( 1 i
i −1 ) = i

4
w′′1 ◦w′′1 correspond to the classical

Maass lowering and raising operators on the upper half plane.

Lemma A.2. For the orthogonal group o(V ) = k ⊕ p, we write Xrs = vr ∧ vs ∈∧2(V ) ' o(V ). So k is spanned by Xαβ and Xµν, while p is spanned by the Xαµ.
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Then

ω(Xαβ) = −
n∑
j=1

zαj
∂

∂zβj
− zβj

∂

∂zαj
,

ω(Xµν) =
n∑
j=1

zµj
∂

∂zνj
− zνj

∂

∂zµj
,

ω(Xαµ) = 2iλ
n∑
j=1

∂2

∂zαj∂zµj
− 1

2iλ

n∑
j=1

zαjzµj.

We now give the intertwiner of the Schrödinger model with the Fock model for
λ = 2πi. The K ′-finite vectors of the Schrödinger model form the polynomial Fock
space S(V n) ⊂ S(V n) which consists of those Schwartz functions on V n of the form
p(x)ϕ0(x), where p(x) is a polynomial function on V n and ϕ0(x) is the standard
Gaussian on V n. On the other hand, we define an action of the quantum algebra Wλ

on S(V n) by

ω(vα ⊗ ej) = 2πixαj, ω(vα ⊗ fj) = − ∂

∂xαj
,

ω(vµ ⊗ ej) = −2πixµj, ω(vµ ⊗ fj) = − ∂

∂xµj
,

which has central character λ = 2πi. As before, we obtain an action of sp(V ⊗W ), and
this is the infinitesimal action of the Schroedinger model of the Weil representation in-
troduced in the previous section. For λ = 2πi, we then have a unique Wλ-intertwining
operator ι : S(V n)→ P(Cn(p+q)) satisfying ι(ϕ0) = 1 (W′ annihilates 1 ∈ P(Cn(p+q))
and ϕ0 ∈ S(V n)).

Lemma A.3. The intertwining operator between the Schrödinger and the Fock model
satisfies

ι

(
xαj −

1

2π

∂

∂xαj

)
ι−1 = −i 1

2π
zαj, ι

(
xαj +

1

2π

∂

∂xαj

)
ι−1 = 2i

∂

∂zαj
,

ι

(
xµj −

1

2π

∂

∂xµj

)
ι−1 = i

1

2π
zµj, ι

(
xµj +

1

2π

∂

∂xµj

)
ι−1 = −2i

∂

∂zµj
.
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