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STRING GRADIENT WEIGHTED MOVING FINITE ELEMENTS IN
MULTIPLE DIMENSIONS WITH APPLICATIONS IN TWO

DIMENSIONS∗

A. WACHER† AND I. SOBEY‡

Abstract. We formulate the string gradient weighted moving finite element method (SGWMFE)
for systems of PDEs in multiple dimensions. Then we illustrate implementation issues for the method
using two dimensions. The method is applied successfully to solve the highly nonlinear unsteady
porous medium equation in two dimensions and the results are compared to exact solutions. We
proceed to present results for the method when applied to the Gray Scott chemical reaction diffusion
model in two dimensions. Finally, we apply the method to the shallow water equations in two
dimensions and compare the meshes produced with those produced using gradient weighted finite
element methods (GWMFE). Our conclusion is that SGWMFE is an easily applied member of the
group of moving finite element methods.
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1. Introduction. This paper has two objectives. The first is to present the
general formulation for a string gradient weighted moving finite element method
(SGWMFE) in multiple space dimensions. The second is to demonstrate the im-
plementation of SGWMFE in several nonlinear systems of PDEs, the porous medium
equation, the Gray Scott equations, and the shallow water equations. Solutions of
each problem can be found using other methods, and we are not suggesting or at-
tempting to demonstrate that SGWMFE is better or worse than other moving (or
nonmoving) finite element or discretization methods; rather, it is an implementation
of gradient weighted moving finite elements (GWMFE) with an elegant general form
that is straightforward to use.

Moving finite element methods (MFE), originally introduced in [14], are well
established to provide reliable solutions to unsteady systems of PDEs, often with less
computational cost than fixed mesh methods. There is a wide literature dealing with
moving mesh methods, both for finite elements and for finite differences. The text
of [1] gives an extensive view of MFE and [5, 11, 15, 16] describe recent applications
of moving mesh methods. GWMFE were developed in detail in [8] and [9], and the
string version, suggested in [12], was implemented in [17]. For other background on
moving mesh methods, see [17], where there is an extended reference list on moving
mesh methods including MFE, GWMFE, and moving finite difference type methods.
Here our interest is however in developing details of SGWMFE for systems of PDEs
in two or more dimensions. Using a projection matrix, a very general form of the
method can be developed and details are illustrated for a system of two PDEs. There
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are a number of implementation issues for MFE and the details of implementation
of SGWMFE are examined for a number of commonly occurring terms in first and
second order PDEs.

In the remainder of this section we set out the three test problems that are consid-
ered in this paper. In the second section we develop a mathematical formulation for
SGWMFE that is elegant and easily generalized to arbitrary systems of evolutionary
PDEs in multiple space dimensions. The third section considers implementation issues
for a system two independent variables in two space dimensions, focusing the theory
from section two for this case and showing details of how different terms are treated.
The fourth section gives solutions for the three test problems using SGWMFE.

1.1. Porous medium equation. The first test problem we consider is the ap-
plication to the porous medium equation in two space dimensions. While this is a
single PDE rather than a system, it admits an exact similarity solution under some
initial conditions so that the results of applying SGWMFE can be compared to the
exact solution.

The porous medium equation is well known (see [6] or [4]) but in computational
terms represents a hard problem because under some parameter values, the solution
develops a singularity in the slope of an advancing front. The porous medium equation
in two dimensions is given by

(1.1) ut = ∇ · (um∇u),

and we consider the problem with u = 0 imposed at the boundary.
This is a problem with a known set of similarity solutions when the initial data has

circular symmetry. The symmetric self-similar solutions used are of the same form as
in [2] and originally from [4]. Earlier studies on self-similar numerical solutions of the
porous medium equation can be found in [6] and [7]. The following form represents
the solutions for the one- (d = 1), two- (d = 2), and three- (d = 3) dimensional
problems for an initial distribution centered at the origin and starting at time t0:

(1.2) u(r, t) =

⎧⎨
⎩

1

λd(t)
(1 − (

r

r0λ(t)
)2)1/m, r ≤ r0λ(t)

0, r > r0λ(t)

⎫⎬
⎭ ,

where r is distance from the origin, m is an integer greater than 0, and

(1.3) λ(t) =

(
t

t0

) 1
2+md

with t0 =
r2
0m

2(2 + md)
.

The computations described below are for times T = t− t0 > 0. The computational
difficulty with this problem is that the slope of the solution at the moving front,
r = r0λ(t), is singular when m > 1.

1.2. Gray Scott equations. The Gray Scott equations are a model for chemical
species undergoing reaction and diffusion. Reaction and diffusion of chemical species
can lead to a variety of patterns which have beautiful and interesting solutions. For
a description of the physics of the model studied here, see [10]. The reader is also
referred to [20] for a comparison of results for the following problem using a different
class of moving mesh method.

The chemical reaction we consider is that given by

U + 2V → 3V,

V → P,
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where U , V , and P are chemical species. The PDEs that model this process are

(1.4)
ut = ru∇2u− uv2 + f(1 − u),
vt = rv∇2v + uv2 − (f + k)v,

where u and v represent their concentrations, ru and rv are their diffusion rates, k
represents the rate of conversion of V to P , and f represents the rate of the process
that feeds U and drains U , V , and P .

The initial conditions considered are block functions for each of the chemical
concentrations over the domain [0, 1] × [0, 1]:

(1.5) u(x, y, t) =

{
0.5, 0.3 ≤ (x, y) ≤ 0.7
1 elsewhere

}
,

(1.6) v(x, y, t) =

{
0.25, 0.3 ≤ (x, y) ≤ 0.7
0 elsewhere

}
.

The coefficients chosen for this problem are ru = 8(10−5), rv = 4(10−5), f =
0.024, and k = 0.06 with Dirichlet boundary conditions prescribed on all four bound-
aries of the domain.

1.3. Shallow water equations. The nonlinear shallow water equations provide
a further model problem to test SGWMFE. It is also possible to compare the results
with those obtained from the GWMFE code used in [8]. In our shallow water problem,
a “hump” of stationary water is released at time zero in the center of a square box.
As the hump subsides under gravity, a wave propagates away from the center, collides
with the reflective boundaries, and propagates back to the center of the box. As they
travel, a wave front steepens, forming a shock in the absence of viscosity. In this
problem a simulation should capture the shape of the wave front, the wave height,
and the front speed.

The nonlinear shallow water equations studied here are, in nondimensional terms,
given by

(1.7)
ut = −∇ · f + ε∇2u,
vt = −∇ · g + ε∇2v,
wt = −∇ · h + ε∇2w.

The physical domain is given by 0 ≤ x ≤ 5, 0 ≤ y ≤ 5, time t ≥ 0, u is the height of
the fluid from the flat bottom, v is the fluid momentum in the x direction, and w is
the fluid momentum in the y direction.

The vector functions in (1.7) are

(1.8) f = (v, w), g =

(
v2

u
+

u2

2
,
vw

u

)
, h =

(
vw

u
,
w2

u
+

u2

2

)
.

The initial conditions assigned are

u = 0.2 + e−((x−2.5)2+(y−2.5)2),(1.9)

v = 0,(1.10)

w = 0.(1.11)

On the south and north of the domain, the boundary conditions are that uy = 0,
vy = 0, and w = 0. On the east and west of the domain, the boundary conditions are
that ux = 0, wx = 0, and v = 0.



462 A. WACHER AND I. SOBEY

2. Formulation of SGWMFE in multiple dimensions. We consider a sys-
tem of n PDEs in k dimensions with independent variables x = (x1, . . . , xk) and
dependent variables u = (u1, . . . , un) satisfying

(2.1)
∂ul

∂t
= Ll(u1, . . . , un), l = 1, . . . n,

where the differential operators Ll are first or second order nonlinear differential
operators in space.

The solution u can be considered as an n-dimensional manifold in (n + k)-
dimensional space; that is,

(2.2) s = (x1, . . . , xk, u1, . . . , un)T.

Consider a parameterization of the manifold ξ = (ξ1, . . . , ξk) so that the solution
manifold is described by

(2.3) s(ξ, t) = (xm(ξ, t),m = 1 . . . k, ul(xj(ξ, t), j = 1 . . . k, t), l = 1 . . . n)T.

The velocity of the manifold, ṡ, is not computed directly; rather, the normal compo-
nent of the velocity, ṡn (not to be confused with the rate of change of the normal to
the manifold, so that ṡn ≡ [ṡ]n), is calculated, and normal movement of the manifold
is deduced from that velocity. Tangential movement of the manifold is not considered
since the location of the nodes is not affected.

In order to compute the normal velocity it is necessary to be able to evaluate the
normal component of vectors on the manifold. This can be done by defining k tangent
vectors to the manifold Xm = (0 . . . 1 . . . 0, ∂ul

∂xm
, l = 1 . . . n)T, m = 1, . . . , k, where the

unit value occurs in the mth row. These tangent vectors are always nonparallel and
nonzero. Define matrices

X = [X1, . . . ,Xk], V = (XT
l Xm) = XTX,

and the properties of the component vectors (nonzero and nonparallel) will guarantee
that V −1 will exist. Define D by

(2.4) D = det(V ).

Lemma 2.1. The normal sn to the manifold s is given by

(2.5) sn = P s,

where the matrix P is given by

(2.6) P = I −XV −1XT.

Proof. If sn = s −
∑k

l=1 alXl = s −Xa then choosing a so that sn · Xm = 0 for
m = 1, . . . , k gives a = V −1XTs and hence the equation for P .

Note that PXm = 0 for m = 1, . . . , k trivially as the tangent vectors have no
normal component.

Having identified the normal component of a vector on the manifold, the normal
velocity can be determined. To do this, use

(2.7) ẋm =
∂xm(ξ, t)

∂t
, m = 1, . . . , k,
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and

(2.8) u̇l =
∂ul

∂t
+

k∑
j=1

∂ul

∂xj
ẋj , l = 1, . . . , n,

and rearrangement gives that, if

(2.9) R =

(
0k×k 0k×n

[−ul,m]n×k In×n

)
,

where 0k×n is a k-row, n-column matrix of zeros, In×n is an n by n identity matrix,
and [−ul,m] is an n-row, k-column matrix with entries − ∂ul

∂xm
, then

(2.10) Rṡ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

∂u1

∂t
...

∂un

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 2.2. The matrices P and R satisfy

(2.11) PR = P.

Proof. The matrix R is rewritten as R = I − [X1 · · ·Xk0 · · ·0], and then we use
PXm = 0.

Thus we obtain

(2.12) ṡn = P ṡ = PRṡ = P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

∂u1

∂t
...

∂un

∂t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
L1

...
Ln

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= PL,

with L = (0, . . . , 0, L1, . . . , Ln)T. Thus the normal motion of the manifold is deter-
mined by

(2.13) P
[
ṡ − L

]
= 0.

This system is central to the solution method since the original n PDEs have been
replaced by n + k equations for the manifold velocities (ẋ1, . . . , ẋk, u̇1, . . . , u̇n) and
upon space discretization, these will become n + k nonlinear ODEs in time.

3. Implementation of SGWMFE in two dimensions. Having considered
the very general formulation, in this section we look at the details of implementing
the method for a system of two PDEs in two dimensions. For simplicity, denote the
independent variables x and y and the dependent variables u and v, and let them be
governed by

(3.1) ut = L1(u, v), vt = L2(u, v).
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The solution (u, v) can be considered as a two-dimensional manifold in four-
dimensional space; that is,

(3.2) s = (x, y, u, v)T.

Two tangent vectors to the manifold will be XT = (1, 0, ux, vx) and YT = (0, 1, uy, vy),
and the determinant D is

(3.3) D = |X|2|Y|2 − (X · Y)2 = (|X||Y|| sin(θ)|)2,

where θ is the angle between X and Y.
The normal sn to the manifold s is given by

(3.4) sn = P s

(see (2.5)), where the matrix P from (2.6) is given by

(3.5) P = I − 1

D
[|Y|2(XXT ) − (X · Y)(XYT ) + |X|2(YYT ) − (X · Y)(YXT )].

The matrix R is

(3.6) R =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−ux −uy 1 0
−vx −vy 0 1

⎞
⎟⎟⎠

so that

(3.7) Rṡ = R

⎛
⎜⎜⎝
ẋ
ẏ
u̇
v̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
ut

vt

⎞
⎟⎟⎠ .

As in the general case, obtain

(3.8) ṡn = P ṡ = PRṡ = P

⎛
⎜⎜⎝

0
0
ut

vt

⎞
⎟⎟⎠ = P

⎛
⎜⎜⎝

0
0
L1

L2

⎞
⎟⎟⎠ = PL,

with L = (0, 0, L1, L2)
T. Thus, as before, the normal motion of the manifold is

determined by

(3.9) P
[
ṡ − L

]
= 0.

Discretization of this system can be cast in a finite element framework by using
appropriate test functions—in this case the piecewise linear basis functions which are
used also to discretize the solutions for (u, v) at time varying (x, y) nodal locations. If
the basis functions are denoted αi then the discrete equations for the normal motion
of the manifold are

(3.10)

∫
manifold

P (ṡ − L)αidS = 0,
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Figure 3.1. Triangle T , showing the orientation of nodes 0, 1, and 2, the projected x− y area
A, and the edge lengths �0, �1, and �2.

where dS is an element of the manifold and the superscript i ranges over the basis
functions. In two dimensions, a triangular cell T can be used, as in Figure 3.1, and
then, after piecewise linear discretization, ux, vx, uy, vy, and hence also P are constant
on each cell. The parameterization used for the implementation of SGWMFE is ξ1 = x
and ξ2 = y, so that two infinitesimal vectors Xdx and Ydy span a parallelogram in
4 −D of area

(3.11) dS = |Xdx||Ydy|| sin(θ)| =
√
Ddxdy.

It can also be noted that this SGWMFE formulation is equivalent to a variational
formulation which chooses to minimize the functional

(3.12) ψ =

∫
||P (ṡ − L)||2dS,

with respect to the nodal velocities ṡi = (ẋi, ẏi, u̇i, v̇i).
In order to solve the discrete system of ODEs, an algorithm such as the well-

known backward differentiation formula 2 (BDF2) found in [3] can be used. The
BDF2 integrator is a robust stiff integrator which is necessary for the stiff systems
arising in SGWMFE; however, any robust stiff integrator may be used. The BDF2
integration code developed and made available by Carlson and Miller was used for
the results in this paper. A detailed outline of the BDF2 integrator routine is in [8].

3.1. Implementation. The implementation of SGWMFE requires some nota-
tion for the average value of a scalar or vector valued function f on a cell or an edge.
An element of area on the manifold, dS, is related to the projected x−y area by (3.11),
and since D is constant on each element, the projected area A of an element with
area S is related by S =

√
DA. Hence the average of a function f over a triangular

cell T is given by

(3.13) [f ]T =
1

A

∫
T

fdxdy =
1

S

∫
T

fdS.

We will also assume that the three nodes of the triangle T are labeled 0, 1, 2, as in
Figure 3.1.

The average of f over an edge E of length 	 is given by

(3.14) [f ]E =
1

	

∫
E

fds,

where the integrand is with respect to the infinitesimal length along the edge: ds =√
dx2 + dy2.
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3.2. Time derivative terms. As P is constant on an element, the components
of the system for time derivatives on a triangular cell T are given by

(3.15)

∫
T

P ṡα0dS = P

∫
T

ṡα0dS.

Similar contributions will occur for nodes 1 and 2 of the cell. Since the ṡ and α0

are linear functions of the two-dimensional parameter ξ, the integrand in (3.15) is
quadratic in the components of ξ and hence can be evaluated by the “edge-midpoint
rule” which is exact for quadratic functions.

3.3. Flux terms. Since many systems of interest contain a flux term, consider
the case where L1 = ∇· f . For the given triangular cell T , the contributions from this
flux term from the cell onto its 0 node are

(3.16)

∫
T

P

⎛
⎜⎜⎝

0
0

−∇ · f
0

⎞
⎟⎟⎠α0dS =

√
DP

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

∫
T

(−∇ · f)α0dxdy,

where, again, the constancy of P and D on each cell enables these to be taken out of
the integral. The scalar integral expression may be integrated by parts, as in [9]:

(3.17)

∫
T

−∇ · fα0dxdy =

∫
T

f · ∇α0dxdy −
∫
E1

α0f · ν̂1ds−
∫
E2

α0f · ν̂2ds,

where E1 and E2 are edges adjacent to node 0 and ν̂1, ν̂2 are outward normals to
those edges (α0 is zero on the third edge).

This component can be simplified by using average values. Defining 	i as the
x − y projected lengths of the corresponding edge Ei, (3.17) is rewritten in terms of
average values as

(3.18)

∫
T

−∇ · fα0dxdy = A∇α0 · [f ]T − l1ν̂1 · [α0f ]E1
− l2ν̂2 · [α0f ]E2

.

3.4. Constant coefficient diffusion terms. Another common component of
the differential operators L1 and L2 is a diffusion term. We consider first the case of
constant diffusion; the second case of nonconstant or nonlinear diffusion is considered
later. In order to evaluate the integrals of the Laplacian terms, mollification is used.
For piecewise linear approximations, the Laplacian is singular at an edge. In order
to overcome this, consider the integrals in neighborhoods of each edge and assume
that the piecewise linear approximation is the limit of an approximation which can
be differentiated twice; that is, the piecewise linear representations of the solution
variables need to be mollified so that the first derivatives vary smoothly from cell to
cell in a neighborhood whose thickness will be allowed to vanish. The principle here
is the same as in the two-dimensional paper of [9]. To do this, some of the same labels
as in that paper are used to define cells, edges, endpoints, and unit normal vectors.

Without loss of generality, assume that the 0 to 1 edge E is aligned in the y
direction as shown in Figure 3.2. This is done so that the unit outward normal vector
to E is ν̂ = x̂, and the unit tangent vector to E is τ̂ = ŷ. Then on crossing the edge,
the values uy and vy stay constant, but ux and vx are functions of x, which increase
by 2a and 2b, respectively, with mean values mu and mv. Now assume all three are
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Figure 3.2. Mollification of edge of two triangles.

x
σ=−1

σ=1

Figure 3.3. σ(x).

mollified equally; that is, the “X” tangent vector to the two-dimensional manifold in
four dimensions is

(3.19) X(x) = M + σ(x)A =

⎛
⎜⎜⎝

1
0
ux

vx

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
mu

mv

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
a
b

⎞
⎟⎟⎠σ(x),

where σ(x) varies from −1 to 1 in the neighborhood of the edge as shown in Figure
3.3. Thus the Laplacian contribution is

(3.20) L ≡

⎛
⎜⎜⎝

0
0

uxx + uyy

vxx + vyy

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
a
b

⎞
⎟⎟⎠σ′(x).

The “Y” tangent vector to the two-dimensional manifold is the constant vector

(3.21) Y =

⎛
⎜⎜⎝

0
1
uy

vy

⎞
⎟⎟⎠ .

Note that the integrals are considered only in a small neighborhood nbd of the edge—
that is, the neighborhood of the x− y projection of edge E. This is because uxx and
vxx are identically zero away from the edge neighborhood where the rapid variation
occurs. First use the same approach as in the section on constant coefficient diffusion
terms—that of assuming the edge E is aligned with the y axis and then rotating
the results accordingly. We note that α0 is equivalent to a function of y alone in an
infinitesimal neighborhood of the edge E. Now take the integral

∫ ∫
PLα0dS over

the neighborhood nbd to get
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(3.22)

∫ ∫
nbd

P

⎛
⎜⎜⎝

0
0

uxx

vxx

⎞
⎟⎟⎠α0(y)dS =

∫ ∫
nbd

√
DP

⎛
⎜⎜⎝

0
0
a
b

⎞
⎟⎟⎠σ′(x)α0(y)dxdy

=

∫ y=�01

y=0

⎛
⎜⎜⎝
∫
xnbd

√
DP

⎛
⎜⎜⎝

0
0
a
b

⎞
⎟⎟⎠σ′(x)dx

⎞
⎟⎟⎠α0(y)dy

=
	01
2

∫ σ=1

σ=−1

√
D(σ)P (σ)Adσ,

where 	01 is the length of the edge joining node 0 and node 1, as in Figure 3.2. Further,
once the matrix P (σ) has been postmultiplied through by the vector A (defined in
(3.19)) and by

√
D(σ), then

(3.23)
√
D(σ)P (σ)A =

1√
D(σ)

[D(σ)A −D1(σ)X(σ) −D2(σ)Y],

where the vector X(σ) and variables D(σ), D1(σ), and D2(σ) are functions of σ:

(3.24)

X(σ) = M + Aσ,

D(σ) = |X(σ)|2|Y|2 − (X(σ) · Y)2,

D1(σ) = (X(σ) · A)|Y|2 − (Y · A)(Y · X(σ)),

D2(σ) = (Y · A)|X(σ)|2 − (X · A)(X(σ) · Y).

Simplifying, the expression D(σ)A − D1(σ)X(σ) − D2(σ)Y is linear in σ as
quadratic terms cancel and may be written as G + Hσ, where G and H are con-
stant vectors in σ. Also notice that D(σ) is quadratic in σ and may be written as
c1 + c2σ + c3σ

2, where c1, c2, and c3 are constants in σ. Using this information, the

integral
∫ 1

−1

√
D(σ)P (σ)Adσ may thus be written as

(3.25) G

∫ 1

−1

1√
c1 + c2σ + c3σ2

dσ + H

∫ 1

−1

σ√
c1 + c2σ + c3σ2

dσ.

In the one-dimensional theory of SGWMFE both the integrals multiplied by G
and H, respectively, were expressed analytically in [19] and [17], since they were
necessary for the calculation of the contributions from the Laplacian terms in one
dimension; however, sixteen point Gauss quadrature is used for the integrals for the
studies carried out for this paper. Once the terms of the vector have been calculated,
it is necessary to rotate the x and y components to the correct orientation, since the
calculations were made based on the assumption that the x−y projection of the edge
E was aligned with the y axis.

This rotation is done by replacing the first two components of the vector (corre-
sponding to its x and y components) and multiplying by a rotation matrix:

(3.26)

⎛
⎜⎜⎝

dy

	i

dx

	i

−dx

	i

dy

	i

⎞
⎟⎟⎠ .
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3.5. Source terms. The contributions over a cell from a source term, say,
S1(u, v) in L1 onto its 0th node, are obtained as follows:

(3.27)

∫
T

P

⎛
⎜⎜⎝

0
0

S1(u, v)
0

⎞
⎟⎟⎠α0dS =

√
DP

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

∫
T

S1(u, v)α
0dxdy,

resulting in the equivalent compact form

(3.28)

∫
T

S1(u, v)α
0dxdy = A[α0S1(u, v)]T .

3.6. Nonuniform diffusion terms in conservative form. Consider a non-
constant or nonlinear diffusion term of the form L1 = ∇·(a∇u), where a = a(x, y, u, v).
The contributions from this term in the cell onto its 0th node are obtained as follows:

(3.29)

∫
T

P

⎛
⎜⎜⎝

0
0

∇ · (a∇u)
0

⎞
⎟⎟⎠α0dS =

∫
T

P

⎛
⎜⎜⎝

0
0

a∇2u
0

⎞
⎟⎟⎠α0dS +

∫
T

P

⎛
⎜⎜⎝

0
0

∇a · ∇u
0

⎞
⎟⎟⎠α0dS.

Consider the first integral on the right-hand side, noting that the term ∇2u is zero
on each cell not including the edges. So the contributions from this first integral need
only be considered in the δ-neighborhood of the edges in the support of α0, as is the
case for the constant coefficient Laplacian, as discussed in the section about constant
coefficient diffusion terms. It will suffice to express the integral here for one edge E.
Again we use the same approach as in the section on constant coefficient diffusion
terms—that of assuming the edge E is aligned with the y axis and then rotating the
results accordingly. As in [9] we note that, like α0, a(x, y, u, v) is equivalent to a
function of y alone in an infinitesimal neighborhood of the edge E. Thus

(3.30)

∫
T

P

⎛
⎜⎜⎝

0
0

a∇2u
0

⎞
⎟⎟⎠α0dS =

∫ y=�01

y=0

⎛
⎜⎜⎝
∫
xnbd

√
DP

⎛
⎜⎜⎝

0
0

∇2u
0

⎞
⎟⎟⎠dx

⎞
⎟⎟⎠ a(y)α0(y)dy,

and the integral thus becomes (using the notation from (3.14))

(3.31) 	01[aα
0]E

⎛
⎜⎜⎝
∫
xnbd

√
DP

⎛
⎜⎜⎝

0
0

∇2u
0

⎞
⎟⎟⎠dx

⎞
⎟⎟⎠ .

The integral over the xnbd is identical to the one derived for the Laplacian in (3.22),
and thus the details will not be repeated here. The second integral in (3.29) can be
treated as a source term:

(3.32)

∫
P

⎛
⎜⎜⎝

0
0

∇a · ∇u
0

⎞
⎟⎟⎠α0dS.
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Since P is constant over each cell and the term ∇a · ∇u is assumed bounded on each
cell (u is constant on each cell and a is assumed continuous and bounded), then it is
only necessary to consider the integral over each cell. For each cell T , use the theory
derived for source terms with S1(u, v) = ∇a ·∇u, and similarly if there are equivalent
terms in the second PDE S2(u, v) = ∇a · ∇v.

3.7. Regularization. As in the one-dimensional SGWMFE approach it may be
necessary to add regularization terms in order to remove any degeneracies which may
occur in the discrete system of ODEs. The regularization terms used here are similar
to the terms introduced as pressure regularization in [8], as opposed to the internodal
viscosity regularization terms more commonly known. As in the one-dimensional
case, the need for regularization may arise when the solution has two consecutive
cells with the same slope or when two nodes run into each other or overlap causing a
degeneracy in the system of equations (see [17] for one-dimensional analysis). In order
to remove the possibility of this happening, in [12] and [8] it was shown that adding
regularization terms which are proportional to nodal velocities (described by Miller
as internodal viscosities) is successful in two dimensions. These internodal viscosities
are not needed for the porous medium equation; however, in some instances when the
solution has an infinite slope it is necessary to use the pressure regularization terms
as suggested by [13], added to keep nodes from overlapping.

The pressure terms used are derived from a quality functional. That is, the terms
added are a constant times the negative gradient of a mesh quality functional Q,
where the gradient is with respect to the discrete nodal velocities [ẋi, ẏi, u̇i, v̇i]. The
quality functional used here is

Q =
P 2

ΔS
,(3.33)

on each cell T , where P is the perimeter of the triangular cell and ΔS is the area of
the triangle in the four-dimensional space as introduced in (3.11). Thus for a four-
dimensional set of ODEs resulting from the SGWMFE discretization, the pressure
terms added to the equations at each node is

(3.34) −C2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dQ

dxi

dQ

dyi

dQ

dui

dQ

dvi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The solutions are not very sensitive to the value of the pressure regularization pa-
rameter C2, so long as C2 is much smaller than the error tolerance, that is, so that
the regularization terms added are well below the order of accuracy required. For
the porous medium equation when the pressure terms are not needed, the addition
of these terms makes no difference to the solution within the error tolerance. These
terms are not needed for the case when m = 1 in the porous medium equation. How-
ever, as explained later, there are some cases when these terms are needed and the
C2 is set to (tol/10)2, where tol is the local truncation error tolerance of the time
integrator.
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4. Results.

4.1. Porous medium equation. The parameter m in (1.1) determines the
strength of the nonlinearity in the diffusion. In this paper we consider two cases,
m = 1 and m = 3. For both cases the problem is started with an initial condition
of r0 = 1/2 and the initial profile is obtained from the similarity solution using this
information. It is worthwhile noting that the choice of m is not limited; while not
all possible integer values for m > 0 were tested, some integer values larger than 3
were tested, such as the problem with m = 5, which produced results in agreement
with (1.2), as in the cases presented in this paper. The key point that makes the
cases m = 1 and m > 1 different is that for the first case the slopes of the solutions
are finite over the domain for this problem, and for cases m > 1 the solutions have
infinite slopes at the moving boundary. In all cases, SGWMFE performs well.

The results illustrated in Figures 4.1 and 4.2 show the differences between the
cases m = 1, which clearly diffuses faster, and m = 3, which has infinite slope near
the moving boundary. The solutions were computed in the first quadrant using a
two-dimensional SGWMFE code and the graphs show the solutions reflected onto the
three remaining quadrants. This is because the problem is axially symmetric. The
mesh plots are on the actual computational domain (see Figures 4.3 and 4.4), where
it is seen that the SGWMFE code does indeed produce axially symmetric results.
The speed of the spreading of the solutions can also be seen more clearly from the
mesh plots. For both problems (m = 1 and m = 3) the initial conditions begin with
an arced domain of radius 1/2. However, in the case m = 1, the solution boundary
reaches a radius of almost 1.5, and in the case m = 3, the radius reaches a value of
around 0.8 in the same amount of time. It is interesting that, regardless of the initial
mesh chosen, for the porous medium equation, the meshes converge almost instantly,
so that at any particular later time, the meshes will be the same; i.e., the mesh acts
as an attractor. This can be seen in Figures 4.5 and 4.6.

It is worth mentioning that the case of m = 3 required use of pressure regu-
larization terms. This is because the slopes are infinite and in the two-dimensional
case (as in the one-dimensional case found in [17, 18]) the nodes tend to bunch up
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Figure 4.1. SGWMFE solutions for the porous medium equation with m = 1. Solutions
were obtained with 136 nodes initially distributed uniformly. Viscous (A2) regularization terms and
pressure (C2) regularization terms were not needed for this problem.
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Figure 4.2. SGWMFE solutions for the porous medium equation with m = 3. Solutions
were obtained with 136 nodes initially distributed uniformly. Pressure regularization terms of C2 =
(10)−10 were used for this problem. Viscous (A2) regularization terms were not needed for this
problem.
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Figure 4.3. SGWMFE meshes corresponding to solutions for the porous medium equation
with m = 1. Solutions were obtained with 136 nodes initially distributed uniformly. Viscous (A2)
regularization terms and pressure (C2) regularization terms were not needed for this problem.

toward the infinite slope. In this case, it is so severe that the regularization pressure
terms are needed in order to keep the nodes from overlapping and thus maintaining a
well-defined mesh. The regularization pressure terms used for this problem are very
small—much smaller than the time integrator tolerance used for this problem, which
was chosen at 10−4. Also this is the only problem presented in this paper where
regularization terms were not needed, regardless of the value of m and regardless
of the dimension in which the problem was solved. This is because the problem is
diffusive and has its own natural diffusivity in the nonlinear terms, thus keeping the
solution smooth. This is different from the shallow water equations because artificial
viscosity was added for the purpose of maintaining a smooth solution in the numerical
calculation.
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Figure 4.4. SGWMFE meshes corresponding to solutions for the porous medium equation
with m = 3. Solutions were obtained with 136 nodes initially distributed uniformly. Pressure
regularization terms of C2 = (10)−10 were used for this problem. Viscous (A2) regularization terms
were not needed for this problem.
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Figure 4.5. SGWMFE meshes corresponding to solutions for the porous medium equation with
m = 1. Solutions were obtained with 136 nodes at times T = 0, 0.5, 1, 2 shown from left to right.
In (a) the initial mesh is one with nodes clustered toward the origin, (b) shows an initial mesh
which is uniform, and (c) shows nodes initially clustered toward the moving boundary. Viscous (A2)
regularization terms and pressure (C2) regularization terms were not needed for this problem.

Convergence results for SGWMFE applied to the porous medium equation in
two dimensions are shown. In the two-dimensional cases (regardless of the value of
m) the slopes of the convergence lines for all the times shown are close to 1. Since
the relation between N and the average mesh parameter h is h =

√
area(Ω)/N , or

N ∼ h−2 (where Ω is the area of the computational domain), this result corresponds
to an h2 rate of convergence, which is optimal for linear finite elements.

The L∞ norm is chosen here for simplicity and to avoid introducing error from
the numerical calculation of the L1 norm over the nonuniform moving triangular grid.
The L∞ error norms are shown in Figures 4.7 and 4.8. As expected from the results
shown in the one-dimensional cases in [17, 18], the convergence rates are the same
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Figure 4.6. SGWMFE meshes corresponding to solutions for the porous medium equation with
m = 3. Solutions were obtained with 136 nodes at times T = 0, 0.5, 1, 2 shown from left to right.
In (a) the initial mesh is one with nodes clustered toward the origin, (b) shows an initial mesh
which is uniform, and (c) shows nodes initially clustered toward the moving boundary. Viscous (A2)
regularization terms were not needed for this problem. Pressure regularization terms of C2 = (10)−10

were used for this problem.
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Figure 4.7. Errors in SGWMFE solutions for the two-dimensional porous medium equation
with parameter m = 1. The solutions were obtained using meshes with a varying number of nodes
at time T = 2. Viscous (A2) regularization terms and pressure (C2) regularization terms were not
needed for this problem. nnodes = number of nodes.

regardless of the time to which the problem is solved. Thus only the convergence
results for solutions calculated at time T = 2 are presented here.

The results in Figure 4.8 show more data results, from solving the problem using
more nodes, than used to produce Figure 4.7 since originally it was not clear if the
order of convergence of the radius was the same as the error over the entire solution
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Figure 4.8. Errors in SGWMFE solutions for the two-dimensional porous medium equation
with parameter m = 3. The solutions were obtained using meshes with a varying number of nodes
at time T = 2. Viscous (A2) regularization terms were not needed for this problem and pressure
regularization terms of C2 = (10)−10 were used for this problem. nnodes = number of nodes.

domain, or if it was better for the case when m = 3. The extra data was needed since
from the graph of the convergence rate, Figure 4.8, shows a higher order convergence
rate than the case when m = 1 as the number of nodes are increased. However,
since the error tolerance used for this problem is 10−4, using more nodes than used to
produce the convergence results will not be more conclusive, since the results shown
are already of the same order as the error tolerance. If all the data were to be
reproduced with a lower truncation error tolerance, this would lead to more accurate
solutions, though the results would not necessarily show convergence rates that are
significantly different.

4.2. Gray Scott equations. First we examine the convergence of the method
on the Gray Scott equations. Since an analytic solution is not available, we construct
a reference solution (to be regarded as the “exact solution”) by using an extremely
fine discretization—much finer than that used for the actual computation. Solutions
with variable nodes are compared pointwise to solutions on a fine reference mesh with
55 by 55 nodes. We then define the error measure in the component u as

(4.1) E = ‖ uref − u ‖ / ‖ uref ‖,

where u is the actual SGWMFE solution, uref is the reference solution, and ‖ · ‖ is
the discrete L2 norm. Note that the values used for calculating the norms in (4.1) are
mapped onto a fixed uniform fine mesh (using the linear shape functions) in order to
enable objective comparison of the various meshes. Figure 4.9 shows the convergence
curves of E(N) on a log-log scale, where N is the total number of nodal points,
showing that the solutions with a variable number of nodes converge to the solution
on the finest mesh. Similar results have been obtained when applying this procedure
to the shallow water equations.
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Figure 4.9. SGWMFE convergence in u for the Gray Scott equations at times (from left to
right): T = 1, 20, and 40. The error tolerance used is 10−4. The corresponding viscous regulariza-
tion terms of A2 = 5(10)−8 and pressure regularization terms of C2 = (10)−8 were used for this
problem. nnodes = number of nodes.
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Figure 4.10. SGWMFE meshes produced when solving the Gray Scott equations with 35 by
35 nodes. The error tolerance used is 10−4. The corresponding viscous regularization terms of
A2 = 5(10)−8 and pressure regularization terms of C2 = (10)−8 were used for this problem.

Next we show mesh plots at several times for SGWMFE solutions of the Gray
Scott equations using 35 by 35 nodes, much fewer nodes than for the solution plots
following, for the sake of clarity of the figure. It is clear in Figure 4.10 that the
mesh is attracted to the reaction fronts. See Figures 4.11 and 4.12 for contours of
the solutions of the component u at corresponding times. The patterns observed in
the solution figures are similar to those found in [20]. However, the meshes obtained
for SGWMFE as compared to those shown in [20] are quite different, noting that for
SGWMFE there is a much richer concentration of the nodes at the reaction front in
comparison to the meshes produced by the method in [20].

4.3. Shallow water equations. Figure 4.13 shows SGWMFE results for the
shallow water equations in two dimensions. The mesh plots are shown on the com-
putational domain in order to make clearer comparisons between the mesh produced
by SGWMFE and those produced by GWMFE. All of the numerical results for this
problem conserve “mass” (the integral of the variable u over the domain) within the
error tolerance. SGWMFE solutions are visually the same in comparison to the re-
sults obtained using GWMFE, though the meshes produced by each method differ.
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Figure 4.11. SGWMFE solutions produced when solving the Gray Scott equations with 45 by
45 nodes. The error tolerance used is 10−4. The corresponding viscous regularization terms of
A2 = 5(10)−8 and pressure regularization terms of C2 = (10)−8 were used for this problem.
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Figure 4.12. SGWMFE solutions produced when solving the Gray Scott equations with 55 by
55 nodes. The error tolerance used is 10−4. The corresponding viscous regularization terms of
A2 = 5(10)−8 and pressure regularization terms of C2 = (10)−8 were used for this problem.

The results shown here are calculated to the user-chosen tolerance, which was chosen
to be 10−3 in this case. The solutions were in agreement with those obtained with
the GWMFE code used in [9]. Further noting that the solutions are in agreement
with GWMFE, it is worth discussing the uniqueness of the meshes produced. The
meshes obtained for the shallow water equations are not “unique.” In Figures 4.14
and 4.15, it is shown that with different initial meshes for solving the two-dimensional
shallow water equations (with the same artificial viscosity), at various times, different
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Figure 4.13. SGWMFE solutions for the shallow water equations with artificial viscosity
ε = (10)−2 at times T = 0, 1, 2, 3, 4, 5. Solutions were obtained with 289 nodes using the viscous
regularization terms A2 = 5(10)−5. Regularization pressure terms were not needed for this problem.
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Figure 4.14. SGWMFE meshes corresponding to solutions for the shallow water equations
with artificial viscosity ε = (10)−2 at times T = 0, 2, 4, 5. Solutions were obtained with 289 nodes
using the viscous regularization terms A2 = 5(10)−5. Pressure regularization terms were not needed
for this problem.

meshes are obtained (although the methods converge to solutions within the same
accuracy, regardless of the initial mesh). It can also be seen in Figures 4.14 and 4.15,
as expected, that the GWMFE and SGWMFE produce different meshes. This is true
for both the one-dimensional and two-dimensional formulations of the shallow water
equations. This could have been shown using results obtained for the one-dimensional
shallow water equations; however, the results in two dimensions, presented here, are
more demonstrative of the differences.
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Mesh plots for GWMFE with different starting meshes
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Figure 4.15. GWMFE meshes corresponding to solutions for the shallow water equations with
artificial viscosity ε = (10)−2 at times T = 0, 2, 4, 5. Solutions were obtained with 289 nodes using
the viscous regularization terms A2 = 5(10)−5. Pressure regularization terms were not needed for
this problem.

5. Conclusions. The equations for SGWMFE have been presented using a pro-
jection matrix, making the underlying formulation easy to understand. The result-
ing equations resulting for SGWMFE are an elegant extension to existing gradient
weighted methods. A convergence study of the method was carried out for the porous
medium equation in two dimensions. The results show accurate solutions that corre-
spond to an h2 rate of convergence, which is optimal for linear finite elements. Further
results were shown for the Gray Scott equations agreeing with results of a different
moving mesh method and solutions of the nonlinear shallow water equations for both
SGWMFE and GWMFE, obtaining equally accurate results on the different meshes
produced by each corresponding method.

In [17] further calculations are given for the shallow water equations in both one
and two dimensions, as well as for reaction diffusion equations in one dimension. In
each case SGWMFE was straightforward to implement and gave reliable solutions for
relatively little computational effort.

In conclusion, derivation and implementation of SGWMFE is straightforward
and the formulation is easily generalized for arbitrary systems of PDEs in multiple
dimensions. The method has proved to solve the problems presented here with steep
moving fronts and a chemical reaction diffusion problem with pattern formation, both
of which are difficult numerical problems. For such problems, SGWMFE can produce
accurate results efficiently with respect to the number of nodes used as well as the
calculation time.
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