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Abstract. The classical Abel–Jacobi map is used to geometrically motivate the construction of
regulator maps from Milnor K-groups KM

n (C(X)) to Deligne cohomology. These maps are given
in terms of some new, explicit (n − 1)-currents, higher residues of which are defined and related to
polylogarithms. We study their behavior in families Xs and prove a rigidity result for the regulator
image of the Tame kernel, which leads to a vanishing theorem for very general complete intersections.
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1. Introduction

This paper concerns some new formulas for the regulator maps

KM
n (C(X)) ∼= CHn(ηX, n)→ Hn

D(ηX,Z(n));
the maps themselves, at least in principle, have been around since the publication
of [1]. Our aim is to make them more accessible to computation. We will usually
be concerned with the case where X is an (n − 1)-dimensional projective variety,
so that (ignoring torsion) the maps take the form

R: KM
n (C(X))→ Hn−1(ηX,C/Q(n)) ∼= Hom{Hn−1(ηX,Z),C/Q(n)}.

(1.1)

To motivate our formula, we essentially generalize the approach of Bloch for
n = 2 in Chapter 8 of [2] (see Section 6.4). We begin in Section 3 with the explicit
Hodge-theoretic construction of what amounts to a Deligne cycle-class map for
codimension-n relative algebraic cycles on ηX × (�n, ∂�n), where (�n, ∂�n) is
cubical relative affine n-space. We call these cycles graphs, and some nontrivial
geometry goes into computing the AJ part of this map. By identifying formal linear
combinations f ∈ ⊗nZ{C(X)∗} with graphs γf ∈ Zn(ηX, n), we motivate a formula
assigning them to (n− 1)-currents�

⊗nZ{C(X)∗} → �(′Dn−1
X ), f �→ Rf

�See Section 4.1 for the definition of ′Dn−1
X

.



176 MATT KERR

by means of the AJ(γf) computation. This essentially descends to a ‘Milnor regu-
lator’ map of the form (1.1), as described in Section 4.

Here is a concrete example of what a Milnor regulator current looks like, for
n = 3. If f, g, h ∈ C(S) are meromorphic functions on an algebraic surface S,

let Tf = f −1(R−) (where R− is considered as the directed path
←−−−
[0,∞] on P1)

and log f = the branch with imaginary part ∈ (−π, π ] and jump along Tf , and so
on for g and h. On the other hand dlog f will mean df/f ; they are related by
d[log f ] = dlog f − 2π iδTf . Then if C is a ‘topological’ 2-chain (dimR C = 2) on
S avoiding |(f )| ∪ |(g)| ∪ |(h)| and f := f ⊗ g ⊗ h, the period of Rf on C is by
definition∫

C
log f dlog g ∧ dlog h+ 2π i

∫
C∩Tf

log g dlog h− 4π2
∑

p∈C∩Tf∩Tg
log h(p).

It is natural to ask whether nontrivial periods ∈ C/Q(n) arise primarily from
integrals encircling divisors of the functions in f, i.e. [C] ∈ ker{Hn−1(ηX,Z) →
Hn−1(X,Z)}, or from ‘nontrivial’ topological cycles on X avoiding those divisors.
To describe the first kind of periods precisely we employ a local–global spectral
sequence to define various ‘residues’ of the Milnor-regulator currents in Section 5,
and relate these to AJ maps (on higher Chow groups) with polylogarithmic proper-
ties in Section 6. We then define a subgroup KM

n (X) ⊂ KM
n (C(X)) which produces

‘residue-free’ currents, taking periods on coim{Hn−1(ηX) → Hn−1(X)}. This is
just the Tame kernel for n = 2, 3 but is smaller for n� 4.

The resulting restriction

R: KM
n (X)→ im{Hn−1(X,C/Q(n))→ Hn−1(ηX,C/Q(n))}

is called the holomorphic Milnor regulator. It appears to be related to the arithmetic
rather than the geometry of X, for when X is a very general� complete intersection
in PN , its image is zero: the periods

∫
C Rf lie in Q(n); there is only one excep-

tion – for X a general elliptic curve (and n = 2). This is the vanishing theorem
of Section 8, which in principle is a consequence of Nori connectedness. It is a
generalization to higher dimension of results in [6] (also see [14]) for n = 2, X a
curve.

According to Beilinson rigidity, which is proved in [1] (using rigidity of de
Rham classes), R is constant on continuous families in KM

n (X) for X fixed. What
we consider in Section 7 is the situation when X = Xs is allowed to very in a (com-
plete) family of complete intersections in PN . Let {fs} ∈ ker(Tame) ⊂ KM

n (C(Xs))

be an analytic family (in the sense described in Section 7.1); the associated Rfs
have trivial codimension-1 residues. Then (again excepting the case of elliptic
curves) [Rfs ] is a flat section of Hn−1

ηXs
under the Gauss–Manin connection; that

�This can be taken to mean that the coordinates of X (in the moduli space of complete
intersections) are algebraically independent.
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is, the periods are constant. While this is the basis for the vanishing result, it holds
with the weaker assumption (viz., ker(Tame) instead of KM

n (X)) and seems to be a
slightly deeper result.

We remark that we have taken dim X = n − 1 throughout Part 3, because the
nontrivial (primitive) cohomology of a complete intersection is found in the middle
dimension, and KM

n maps to Hn−1.
We conclude this paper with an easy, concrete regulator computation on a ‘de-

generate elliptic curve’; it is a ‘toy model’ for the harder computations on elliptic
curves in [2, 3, 6].

PART 1. GEOMETRIC CONSTRUCTION OF Rf

2. Preliminaries

2.1. HIGHER CHOW GROUPS

Define the algebraic n-cube

�n := (P1
C \ {1})n =: (P1)n \ In

with faces ∂�n = ⋃
i ∂i�n = ⋃

i,e ρ
e
i∗�n−1 and more generally codimension-r

subfaces ∂r�n = ⋃
i,e ρ

e1,...,er
i1,...,ir∗�

n−r , where for e = 0,∞ the face inclusions send

(z1, . . . , zn−1) �→ (z1, . . . ,
i
e, . . . , zn−1), and so on. The n-cube is also equipped

with projections πi1,...,ir : �n → �n−r , where, e.g., for r = 1, πi sends
(z1, . . . , zn) �→ (z1, . . . , ẑi , . . . , zn).

Let Y/C be a (possibly singular) quasiprojective variety and define cp(Y, n) :=
subgroup of Zp(Y × �n) generated by subvarieties intersecting all subfaces
Y × (ρe

i∗�n−r ) properly, i.e. in the right codimension. (Note that anything can
happen at Y × In if one looks at the closure of such a cycle on Y × (P1)n.)
Let dp(Y, n) := subgroup of cp(Y, n) generated by subvarieties pulled back from
Y ×�n−1 by some πi .

We neglect these latter cycles and write

Zp(Y, n) := cp(Y, n)/dp(Y, n),

which forms a complex with differential

∂B :=
n∑

i=1

(−1)i(ρ∞
∗

i − ρ0∗
i ): Zp(Y, n)→ Zp(Y, n− 1);

in particular note that ∂B ◦ ∂B = 0 so we have a complex. Define the higher Chow
groups as its homology:

CHp(Y, n) := Hn{Zp(Y, ·)}.
Note: we identify CHp(C(X), n) = CHp(Spec C(X), n) = CHp(ηX, n).

We shall think of (�n, ∂�n) and ((C∗)n, In) as dual relative varieties.
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2.2. MILNOR K-GROUPS

We shall write Z{S} for the free Abelian group on a set S. For any field F ⊇ Q
and n� 2, let KM

n (F ) denote the quotient of the Abelian group ⊗nZ{F∗} by the
Steinberg relations: the subgroup generated by all permutations of

f1 ⊗ f2 ⊗ · · · ⊗ fn + g1 ⊗ f2 ⊗ · · · ⊗ fn − f1g1 ⊗ f2 ⊗ · · · ⊗ fn,

f1 ⊗ f2 ⊗ · · · ⊗ fn + f2 ⊗ f1 ⊗ · · · ⊗ fn,

f1 ⊗ (1− f1)⊗ f3 ⊗ · · · ⊗ fn.

(For n < 2 just set KM
1 (F) := F∗ and KM

0 (F) := Z.) Boldface f or g denotes an
element of ⊗nZ{F∗} while {f} or {g} is the corresponding element of KM

n (F).
Let X/C be a smooth projective variety of dimension d; to a ‘multifunction’ f =∑
mjf1j ⊗· · ·⊗fnj ∈ ⊗nZ{C(X)∗} we associate the subvariety Vf := ⋃

i,j |(fij )|
and the ‘graph cycle’

γf =
[∑

mj(idX;f1j , . . . , fnj )∗(X \ Vf)
]
∩ ((X \ Vf)×�n).

Also denote by V 2
f the union of all intersections (and self-intersections) of all

components of Vf, by V 3
f all intersections of components of Vf and V 2

f , and so
on

A fundamental result of Totaro [28] says that the graph homomorphism

γ : ⊗n Z{C(X)∗} →→ Zn(ηX, n)

so defined, induces an isomorphism

KM
n (C(X))

∼=−→ CHn(ηX, n).

We shall call f ‘good’ if the closure γf of its graph to X×�n intersects all subfaces
X×∂r�n properly, i.e. if γf ∈ Zn(X, n). From Bloch’s moving lemma [5] we have
immediately the following proposition.

PROPOSITION 2.1. For any f0 ∈ ⊗nZ{C(X)∗} there is a Steinberg relation g (i.e.
{g} = 0) such that f := f0 − g is good.

The absence of ‘corners’ from good f allows us to define elements

∂if :=
∑
x∈X1

νx(fi) · f1|x ⊗ · · · ⊗ f̂i ⊗ · · · ⊗ fn|x, ∂f :=
∑
i

(−1)i∂if

of
∐

x∈X1 ⊗n−1Z{C(x)∗}; and by the proposition, f �→ ∂f induces a map

Tame: KM
n (C(X))→

∐
x∈X1

KM
n (C(x)).
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2.3. THE DLOG MAP

For us ‘log’ will be a (discontinuous) function from C∗ → {z ∈ C|�(z) ∈ (−π, π ]}
with branch cut T = R− \ {0} (or R− ∪ {∞} depending on context); given f ∈
C(X)∗, dlog f means df/f and Tf = f −1(T ). On �n one has a topological re-
lative n-cycle Tn := Tz1 ∩ · · · ∩ Tzn ∈ Cn(�n, ∂�n) and a holomorphic n-form
,n := dlog z1∧ · · ·∧ dlog zn ∈ H 0(,n

�n(log ∂�n)). To a multifunction f on X one
may associate

Tf :=
∑

mjTf1j ∩ · · · ∩ Tfnj = πX∗{γf ∩ (X × Tn)} ∈ C2d−n(X, Vf),

and

,f :=
n∧

dlog f =
∑

mj

df1j

f1j
∧ · · · ∧ dfnj

fnj

∈ H 0(,n
X(log Vf)).

(For the definition of log-differentials when Vf is not a NCD, see for example [20].)
Writing lim−→V⊂XH

0(,n
X(logV )) =: H 0(,n

X(log)), we have the following lemma.

LEMMA 2.2. (i) The assignment f �→ ,f descends to a map ‘dlog’ on Milnor
K-theory, so that the lower-left-hand square of the following diagram commutes:

(ii) Assuming that always [,f] ∈ im{Hn(ηX,Z(n))→ Hn(ηX,C)} [which will
follow from the construction below], {f} ∈ ker(Tame) =⇒ ,f = 0.
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Proof. (i) dlog is well-defined because ,g = 0 if {g} = 0; use good f to check
the square commutes (easy).

(ii) Note first the right-hand column is exact: this is from the localization exact
sequence in cohomology. Now suppose {f} ∈ ker(Tame). Then ,f ∈ ker(Res)
and we defined a functional on Z0

d(,
2d−n
X∞ ) by duality:� α �→ limε→0

∫
X\Nε(Vf)

,f ∧ α. Noting that

lim
ε→0

∫
X\Nε(Vf)

,f ∧ dβ = ± lim
ε→0

∫
∂{Nε(Vf)}

,f ∧ β

= ± lim
ε→0

∫
Vf\Nε(V

2
f )

Res(,f) ∧ β = 0

for β ∈ �(,2d−n−1
X∞ ), the functional descends to a class

[̃,f] ∈
{
H 2d−n(X,C)

F d−n+1H 2d−n

}∨
∼= FnHn(X,C).

If ω ∈ H 0(,n
X) represents this class then [ ∗ηXω] ≡ [,f] ∈ Hn(ηX) and so (by the

diagram) ,f =  ∗ηXω ∈ H 0(,n
X(log)). Since im(Gy) ⊆ Hn−1,1 ⊕ · · · ⊕ H 1,n−1,

it follows that Hn,0(X)⊕ H 0,n(X)
∗ηX
↪→Hn(ηX) and thus [ ∗ηXω] "= ±[ ∗ηX ω̄] unless

ω = 0. But [,f] ∈ im{Hn(ηX,Z(n))→ Hn(ηX,C)} =⇒ [,f] = ±[,f]. �

3. Abel–Jacobi for Graphs

3.1. GEOMETRIC MOTIVATION

Let ∂�n = (P1)n \ (C∗)n,

Nε(∂�n) =
{
z1, . . . , zn ∈ (P1)n

∣∣∣∣|zi| < ε or >
1

ε
for some i

}
,

�̄n
ε = (P1)n \Nε(∂�n); and put γ ε

f := γf ∩ (X × �̄n
ε ). Note that ∂γ ε

f ⊆ X × ∂�̄n
ε .

Writing f−1(S) := ⋃
j (idX;f1j , . . . , fnj )

−1(X × S) for a set S ⊆ (P1)n, define

Nε(Vf) := f−1(Nε(∂�n)).
We want to construct cycle-class and Abel–Jacobi maps for our graph cycle γf.

To do this, we will view γ ε
f as giving a homology class in

H2d((X,Nε(Vf))× ((C∗)n, In)) ∼= H2d−n(X, Vf)⊗Hn((C
∗)n, In),

�One can show this integral is convergent for any C∞ form α (see [18]). Notation: Z0
d(· · · )

means d-closed sections and ,2d−n
X∞ means C∞(2d − n)-forms.
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and integrate limε→0
∫
γ ε

f
,n ∧ π∗Xα to determine this class (where α ∈

Z0
d(!,

2d−n
(X\Vf)

∞) has compact support on X \ Vf). Moreover, Hn((C∗)n, In) is gen-
erated by the n-torus (S1)n; so there should be a topological (2d + 1)-chain on
X×(C∗)n bounding on (i) γ ε

f , (ii) {a relative cycle C}×(S1)n, and (iii) components
supported on X×In and Nε(Vf)×(C∗)n. That chain will be produced in Section 3.3
by means of a ‘homotopy’ θ [formula (3.1)] which pulls γ ε

f into the ‘topological
trashcan’ X × In, leaving ‘residues’ along� Nε(Vf) × (C∗)n; and it will turn out
that C is just Tf. Towards the goal of constructing this chain, we now make some
preliminary definitions.

3.2. FUNDAMENTAL DOMAIN FOR (C∗)n

Let D = closure of C∗ \ T with left and right-hand limits not identified; there is an
obvious map N : D → C∗. Write z̃ := N−1(z /∈ T ) [one point], N−1(z ∈ T ) =:
{z+, z−}, N−1(T ) = {T +, T −}, T̃ = T + − T −. Choose any C∞ map

θ : [0, 1] × D → C∗

with θ(0, z̃) = z, θ(1, z̃) = 1, so that θ(z) := θ(t, z) gives a path from z to 1
in C∗. Also observe that θ(z+) − θ(z−) =: θ+(z) − θ−(z) is a circle (S1), where
θ±: [0, 1] × T → C∗. If � is a topological cycle compactly supported on C∗,
and �̃ a lift to D, θ(�̃) denoted the image of [0, 1] × �̃ under θ , and ∂θ(�̃) =
� + θ+(� ∩ T )− θ−(� ∪ T ).

More generally, let Dn = closure (as above) of (C∗)n\∪Tzi and N : Dn → (C∗)n
take T +zi , T

−
zi
�→ Tzi , etc. We define various maps

θi1...ik : [0, 1]k × Dn → (C∗)n

by formulas

θ1(t1; z̃1, . . . , z̃n) = (θ(t1, z̃1), z2, . . . , zn),

θ12(t1, t2; z̃1, . . . , z̃n) = (θ(t1, z̃1), θ(t2, z̃2), z3, . . . , zn),

and so on, often omitting parameters ti in the argument to indicate corresponding
chains. Again certain restrictions descend to subsets of (C∗)n; e.g. by restricting
θ12 to T +z1

∩ T −z2
we have θ+−12 : [0, 1]2 × (Tz1 ∩ Tz2) → (C∗)n and more generally

θ
s1...sk
i1...ik

=: θs
i . For z ∈ Tzi1

∩ · · · ∩ Tzik
, the formal sum (considered as a chain)∑

s1,...,sk=+,−(−1)
∏

sj θ s
i (z) yields a topological k-torus (S1)k.

All of these definitions make sense crossed with X. Below we shall use the
shorthand Tzi for X × Tzi , and so on.

�We cannot say ∂Nε(Vf) here because in general f−1(∂�̄n
ε ) only ⊂ Nε(Vf).
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3.3. BOUNDING CHAIN FOR γ ε
f

The idea is to use θ1 to push γ ε
f down (along the first coordinate) to z1 = 1, with

discrepancy arising from γ ε
f ∩Tz1 which we then push (along the second coordinate,

using θ12) down to z2 = 1, and so on.

If γ̃ ε
f is the preimage of γ ε

f under N : X × Dn → X × (C∗)n, one writes the
chain

θ(γ̃ ε
f ) := θ1(γ̃

ε
f )− θ12(γ̃

ε
f ∩ T̃z1)+ · · · + ±θ1...n(γ̃

ε
f ∩ T̃z1 ∩ · · · ∩ T̃zn)

(3.1)

whose boundary is a sort of ‘geometric collapsing sum’ yielding

∂θ(γ̃ ε
f ) = γ ε

f ±
∑

s

(−1)sθ s
1...n(γ

ε
f ∩ Tn)+ θ(∂̃γ ε

f ) (3.2)

plus terms supported on X × In. The second term is supported over Tf with
fibers ∼ (S1)n; we may tacitly modify θ(γ̃ ε

f ) by a ‘trivial’ chain (which would not
affect integrals) uniformizing these tori, and replace the second term by Tf× (S1)n.
The third term is in Nε(Vf)× (C∗)n (trivial for our immediate purposes) but gives
some insight into residues of the AJ (and cycle-class) constructions below. Ignoring
codimension 2, it turns out that θ(γ̃ ε

f ) ≈
∑

i S
1
zi
× θ(γ̃ ε

∂i f) is a sufficiently accurate
approximation (for good f), making the construction ‘telescopic’ in codimension 1
(only!). Pursuing this leads to a geometric proof of Proposition 5.3.
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For α ∈ ,2d−n
X∞,c(X \ Vf) d-closed and compactly supported on [a closed subset

of] X \Nε(Vf), we have that

0 = ±
∫
θ(γ̃ ε

f )

,n ∧ π∗ dα =
∫
θ(γ̃ ε

f )

d{,n ∧ π∗α} =
∫
∂θ(γ̃ ε

f )

,n ∧ π∗α

=
∫
γ ε

f

,n ∧ π∗α ±
∫
Tf×(S1)n

,n ∧ π∗α +
∫
θ(∂γ̃ ε

f )

,n ∧ π∗α

=
∫
X

,f ∧ α ± (2π i)n
∫
Tf

α + 0;

that is,

[,f] ≡
[
(2π i)n

∫
Tf

]
∈ {H 2d−n(X, Vf)}∨ ∼= Hn(X \ Vf,C).

Since [(2π i)n
∫
Tf

] ∈ im{Hn(X \ Vf,Z(n)) → Hn(X \ Vf,C)} this completes
the proof (see Lemma 2.2) that Tame{f} = 0 =⇒ ,f = 0. We shall henceforth
work under the assumption that Tame{f} is trivial or n > d[=⇒ ,f = 0 by type
considerations]. Either condition clearly =⇒ [Tf] ∼ 0 in H2d−n(X, Vf;Q),� so that
there is a membrane ζ with ∂ζ = Tf+ chains supported on Vf; we often write
∂−1
(X,Vf)

Tf for ζ . Define

∂−1
ε γf := θ(γ̃ ε

f )∓ ζ × (S1)n; (3.3)

modulo X× In and Nε(Vf)× (C∗)n this now bounds exactly on γ ε
f . We summarize

in the following proposition.

PROPOSITION 3.1. If Tame{f} = 0 or n > d then the relative cycle-class of γf in
H2d((X,Nε(Vf))× ((C∗)n, In)) is trivial.

3.4. COMPUTATION OF AJ

We now propose to define AJ(γf) by integrating ‘test forms’ over ∂−1
ε γf; intuitively

this should map to

H 2n−1((X \ Vf)× (�n, ∂�n))

F n{num} + {num}Z
∼= {F

d+1H 2d+1((X, Vf)× ((C∗)n, In))}∨
periods

the expression in braces is

Fd−n+1H 2d−n+1(X, Vf)⊗ 〈,n〉 = H 2d−n+1(X, Vf)⊗ 〈,n〉,
which is to say the ((C∗)n, In) part absorbs all Hodge-theoretic restrictions on the
test forms.

�[Tf] may still be torsion in H2d−n(X, Vf;Z), so in particular the membrane may require Q-
coefficients.
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Remark. Since there is actually nothing preventing us, then, from taking an
integral basis for these test forms, we might as well substitute [Poincaré duals of]
topological (2d − n + 1)-cycles. This is the point of view we take in subsequent
sections.

DEFINITION. AJ(γf) ∈ Hn−1(X \ Vf,C/Q(n)) ∼= {H 2d−n+1(X, Vf)}∨/
im{H2d−n+1(X, Vf;Q(n))} is the functional on forms ω ∈ �(,2d−n+1

X∞,c ) supported
on a compact subset of X \ Nε(Vf), given by the integral

∫
∂−1
ε γf

,n ∧ π∗Xω. The

ambiguity of Q(n) · {periods} is generated by the choice of ζ = ∂−1
(X,Vf)

Tf.

Remark. We usually take the image of AJ(γf) ∈ Hn−1(ηX,C/Z(n)) by the
direct limit.

Now recall that

∂−1
ε γf = θ1(γ̃

ε
f )+

n∑
k=2

(−1)k−1θ1...k(γ̃
ε
f ∩ T̃z1 ∩ · · · ∩ T̃zk−1)+ ∂−1

(X,Vf)
Tf×(S1)n.

The first term of the integral defining AJ(γf) is (partially) computed by integrating
dlog z1 along the fibers of θ1(γ̃

ε
f ):∫

θ1(γ̃
ε
f )

dlog z1 ∧ · · · ∧ dlog zn ∧ π∗ω

=
∫
γ ε

f

log z1 dlog z2 ∧ · · · ∧ dlog zn ∧ π∗ω

=
∑

mj

∫
X

log f1j dlog f2j ∧ · · · ∧ dlog fnj ∧ π∗ω.

More generally,∫
θ1...k(γ̃

ε
f ∩T̃z1∩···∩T̃zk−1 )

,n ∧ π∗ω

=
∫
(γ̃ ε

f ∩T̃z1∩···∩T̃zk−1 )×[0,1]k
θ∗1...k(dlog z1 ∧ · · · ∧ dlog zn ∧ π∗ω)

=
∫
(γ̃ ε

f ∩T̃z1∩···∩T̃zk−1 )×[0,1]k
θ∗(dlog z1) ∧ · · · ∧ θ∗(dlog zk) ∧

∧ dlog zk+1 ∧ dlog zn ∧ π∗ω

= (2π i)k−1
∫
γ ε

f ∩Tz1∩···∩Tzk−1

log zk dlog zk+1 ∧ · · · ∧ dlog zn ∧ π∗ω

= (2π i)k−1
∑

mj

∫
Tf1j ∩···∩Tfk−1

log fkj dlog f(k+1)j ∧ · · · ∧ dlog fnj ∧ ω,
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where log fkj is understood as having argument ∈ (−π, π ]. Therefore the whole
integral [AJ(γf)](ω) =∫

∂−1
ε γf

,n ∧ π∗ω =
∑

mj

{ ∫
X

log f1j dlog f2j ∧ · · · ∧ dlog fnj ∧ ω −

− 2π i
∫
Tf1j

log f2j dlog f3j ∧ · · · ∧ dlog fnj ∧ ω +

+ · · · ± (2π i)n−1
∫
Tf1j ∩···∩Tf(n−1)j

log fnj ∧ ω

}
∓

∓ (2π i)n
∫
∂−1
(X,Vf)

Tf

ω

=:
∫
X

Rf ∧ ω ∓ (2π i)n
∫
∂−1
(X,Vf)

Tf

ω

=:
∫
X

R′f ∧ ω.

PROPOSITION 3.2. AJ(γf) ∈ Hn−1(ηX,C/Q(n)) is computed by the class of the
current R′f.

Any given topological (n− 1)-cycle C on X \Vf has a C∞ Poincaré-dual (2d −
n − 1)-form ωC compactly supported on X \ Vf; so one defines periods

∫
C R′f :=∫

X
R′f ∧ ωC and observes that their values ∈ C/Q(n) determine [R′f] = AJ(γf).

Since (2π i)n
∫
ζ
ωC is an intersection number ∈ Q(n), from this point of view [Rf]

will suffice.

Remark. One can also check geometrically that f �→ AJ(γf) descends to Milnor
K-theory (see [18, Section 2.1]), but it is much easier to do algebraically with the
bit of formalism we develop in the next section.

4. Milnor-regulator Currents

4.1. CURRENTS ON X AND ηX

An m-current on X is a section of the sheaf ′Dm
X = D(,2d−m

X∞ ) of distributions on
C∞- forms.

EXAMPLE 4.1. Let Y ⊆ X be a real-codimension-k analytic subset, η an 8-form
with singularities along D ⊂ Y . Then η · δY defines a current ∈ �(′Dk+8

X ) by the
formula

∫
X
(η · δY ) ∧ ω := limε→0

∫
Y\Nε(D)

η ∧ ι∗Yω, provided the limit converges

for all ω ∈ �(,2d−k−8
X∞ ).

Like C∞-forms, currents form a complex of acyclic sheaves with

H∗(X,′D•
X)
∼= H ∗(�(X,′D•

X))
∼= H ∗

DR(X,C),

under the differential defined by [15]∫
X

d[S] ∧ ω = (−1)1+deg S

∫
X

S ∧ dω.
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EXAMPLE 4.2. d[dlog f ] = 2π iδ(f ) on X.

A different kind of example concerns us here, where we are not interested in
‘residues’ of this sort, and want to work ‘away’ from Vf. If  : X \ Vf ↪→ X is the
inclusion, !,

2d−m
(X\Vf)

∞ is the sheaf of C∞-forms compactly supported away from Vf.
Let ′Dm

V∞ ⊆ ′Dm
X be the subsheaf of currents annihilating these forms; these are the

‘currents on X supported on V ’ (distinct from currents ′Dm
V ‘on V ’). Ignoring these

we get currents on X \ V ,
′Dm

(X\V )∞ := ′Dm

X/
′Dm

V∞ = D(!,
2d−m
(X\V )∞).

These form a complex, and
∫
X
S ∧ ω induces a perfect pairing between

Hm{�(X, ′D•
(X\V )∞)} ∼= Hm(X \ V,C),

and

H 2d−m{�(X, !,
•
(X\V )∞)} ∼= H 2d−m

c (X \ V,C).

EXAMPLE 4.3. d[log f ] = dlog f − 2π iδTf on ηX , where Tf is oriented so that
∂Tf = (f )0 − (f )∞.

With the convention that the δTfi ’s anti-commute with the dlog fi’s and the
like, we may differentiate combinations of these exactly like forms (with regard
to signs).

4.2. FORMALIZATION OF THE MAP {f} �→ Rf

Define a map

R: ⊗n Z{C(X)∗} → �(′Dn−1
X )

induced by sending

f1 ⊗ · · · ⊗ fn = f �→ Rf :=
n∑

i=1

(±2π i)i−1 log fi dlog fi+1 ∧

∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1
,

where ± = (−1)n−1. Singularities are integrable even for f ‘bad’ so this makes
sense as a current on all of X. Now modulo ′Dn

V∞f
, applying d gives a collapsing

sum:

d[Rf] =
n∑

i=1

(±2π i)i−1 dlog fi ∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1
−

−
n∑

i=1

(±2π i)i dlog fi+1 ∧ · · · ∧ dlog fn · δTf1∩···∩Tfi

= dlog f1 ∧ · · · ∧ dlog fn − (2π i)nδTf1∩···∩Tfn = ,f − (2π i)nδTf .
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Assuming n > d or Tame{f} = 0, ,f = 0 and ∂−1
(X,Vf)

Tf =: ζf exists, so that
the (n − 1)-current R′f = Rf + (2π i)nδζf has d[R′f] ∈ �(′Dn

V∞) and so is closed in
�(′D•

(X\V )∞). We get a class in Hn−1(X\Vf,C) well defined up to classes generated
by currents {(2π i)nδC |[C] ∈ Hn−1(X, Vf;Q)} as before.

PROPOSITION 4.4. For n > d the assignment f �→ R′f induces a well-defined
map R′: KM

n (C(X))→ Hn−1(ηX,C/Q(n)).
Proof. For f any Steinberg we must write R′f (for some choice of ζf) as a

coboundary d[S] in �(′D•
(X\Vf)

∞) – that is, modulo components with support in
codimension � 1.

Case 1: f = f ⊗ (1− f )⊗ g.
As Tf ∩ T1−f ⊂ Vf, we may choose ζf = 0 and so

R′f = log f dlog(1− f ) ∧,g + (−1)n−12π i log(1− f ),g · δTf .
Now one may view all the polylogarithms as single-valued functions
with branch cut at T1−z = [1,∞] ⊂ R+, and so as 0-currents on P1

with

d[Lin(z)] = Lin−1(z) dlog z + 2π i

(n− 1)!
logn−1 z · δT1−z

.

(This formula follows from the discussion of monodromy in [16].) Setting
S = −Li2(1− f ) ∧,g, we have d[S] = R′f.

Case 2: f = g⊗ f1f2 − g⊗ f1 − g⊗ f2.
The difficulty here is the branch change: log f1 + log f2 − log f1f2 =:
2π iδ;f

"= 0, for some (2d − 1)-chain ;f with ∂;f = Tf1f2 − Tf1 − Tf2 .
Since dlog f1f2 = dlog f1+ dlog f2, most terms cancel in Rf = Rg⊗f1f2−
Rg⊗f1−Rγ⊗f2 = ±(2π i)nδ;f

·δTg . By choosing ζf = Tg∩;f we actually
cancel this term and get R′f = 0 (no need for S).

Case 3: Alternation is more involved. We do increasing levels of difficulty.
n = 2: f = f ⊗ g + g ⊗ f. On X − V

R′f = log f dlog g − (2π
√−1) log g · δTf +

+ log g dlog f − (2π
√−1) log f · δTg = d[log f log g].

n = 3: f = f ⊗ g ⊗ h+ g ⊗ f ⊗ h⇒ R′f = d[log f log g dlog h]

f = f ⊗ g ⊗ h+ f ⊗ h⊗ g ⇒ R′f = d[2π
√−1 log g log h · δTf ]

f = f ⊗ g ⊗ h+ h⊗ g ⊗ f ⇒ R′f = log f dlog g ∧ dlog h+
+ (2π

√−1) log g dlog h · δTf − 4π2 log h · δTf ∩Tg +
+ log h dlog g ∧ dlog f + (2π

√−1) log g dlog f · δTh −
− 4π2 log f · δTh∩Tg

= d
[− log f log h dlog g + 2π

√−1 log f log g · δTh +
+ 2π

√−1 log h log g · δTf
]
.
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n > 3: f = f1⊗· · ·⊗fi ⊗· · ·⊗fj ⊗· · · ⊗fn+f1⊗· · ·⊗fj ⊗· · ·⊗
fi ⊗ · · · ⊗ fn. Then on X\Vf, R′f = d[S] (choosing ∂−1

(X,V )Tf = ∂−10 = 0)
where

Sij = (2π
√−1)i−1 log fi log fj dlog fi+1

∧ · · · ∧ dlog fj−1 ∧ dlog fj+1 ∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1
+

+ (2π
√−1)i[log fi log fi+1 dlog fi+2 ∧ · · ·∧ dlog fj−1 ∧

∧ dlog fj+1 ∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1∩Tfj +
+ log fj log fi+1 dlog fi+2 ∧ · · · ∧ dlog fj−1 ∧ dlog fj+1

∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1∩Tfi ]+ · · · +
+ (2π

√−1)j−2[log fi log fj−1 dlog fj+1

∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1∩Tfj ∩Tfi+1∩···∩Tfj−2
×

× log fj log fj−1 dlog fj+1

∧ · · · ∧ dlog fn · δTf1∩···∩Tfi−1∩Tfi∩Tfi+1∩···∩Tfj−2
]. �

Remarks. (i) Let n and d be arbitrary. Clearly the proof also shows that R′ induces
a map {ker(Tame) ⊆ KM

n (C(X))} → Hn−1(ηX,C/Q(n)). On the other hand, to
induce a map on all of KM

n one needs the triple� ((2π i)nTf,,f, Rf). The resulting
general version of the Milnor regulator, KM

n (C(X))→ Hn
D(ηX,Z(n)), is also the

form in which it is compatible with products. That is, KM
n (C(X))⊗KM

m (C(X))→
KM

n+m(C(X)) never corresponds to simply wedging together R′f’s — you have to
use the multiplication table (in [8] or [19]) for computing Hn

D(X,Z(n)) ⊗
Hm

D (X,Z(m)) → Hn+m
D (X,Z(n + m)). This boils down to the formula Rf⊗g =

Rf ∧,g ± (2π i)nRg · δTf in general.
(ii) Composition R′ with the ‘real’ projection Hn−1(ηX,C/Q(n))→ Hn−1(ηX,

R(n − 1)) gives a map r: KM
n (C(X)) → Hn−1(ηX,R), corresponding to the real

(imaginary) part of R′f for n odd (even). [Note that the ambiguous
membrane term is killed.] This regulator r agrees (up to factors of (2π i)) with the
induced by the map in [11, Section 2.2], see [18, Section 3.1].
Composing r with further projection to ({Hn−1,0(X,C) ⊕ H 0,n−1(X,C)} ∩
Hn−1(X,R))∨ on the right, and on the left with H 0(X,KM

n,X)
(∼=⊗Q)→ ker(Tame)

[⊆ KM
n (C(X))] (see [27]), induces the real regulator in [23] (for the case m,

k = n).

�See Section 6.1 (and [19, Section 5.9]). Technically for d � n one needs to replace X\Vf by
a normal-crossings pair X̃\Ṽf (just for the map on all of KM

n ). We have carefully pursued lines of
reasoning (and cases) in this paper that avoid this complication.
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PART 2. RESIDUES AND POLYLOGARITHMS

5. Higher Residues for Currents

5.1. DEFINITION OF Res
i

Following a suggestion in [9], we now construct a local–global spectral picture
which will aid in describing the ‘residues’ of the Milnor currents. We must avoid
the assumption of normal crossings, since even for good f the situation may not be
this nice.

Consider the following inclusions for the ‘f-substrata’ V k
f :

 (k): X\Vf ↪→ X, (k,k+1): V k
f \V k+1

f ↪→ V k
f ,

ι(k): V k
f ↪→ X, ι(k,k+1): V k+1

f ↪→ V k
f ,

where V 0
f := X and V 1

f := Vf. Pushing forward by ι we have the exact sequence
of sheaves

0 → ι(k+1)
∗ C → ι(k)∗ C → ι(k)∗ C/ι(k+1)∗ C → 0

(2π i)k · ι(k)∗ ↑∼=
 (k,k+1)∗ C

in which we may resolve terms by

ι(k)∗ C→
(,)

′D•
(V k

f )∞, ι(k)∗ C/ι(k+1)
∗ C→

(,)

′D•
(V k

f )∞/
′D•

(V k+1
f )∞

(2π i)k · ι(k)∗ ↑,
′D•

(V k
f \V k+1

f )∞[−2k].

Here
′D•

(V k
f \V k+1

f )∞ :=′ D•
(V k

f )
/{′D•

(V k+1
f )∞ ⊂ ′D•(V k

f )}
are (quotients of) currents on V k

f – not currents on X with support on V k
f , which

is what they are mapping to via ι(k)∗ (essentially multiplication by δV k
f
). The (2π i)k

twist will make sense later. The short-exact sequence reflects a descending filtration
by coniveau

F
p
NC := ι(p)∗ C, Gr

p
NC = F

p
N

F
p+1
N

∼=  (p,p+1)
∗ C,

and from the acyclic resolutions we get the initial ‘exact triangles’

· · · d→H ∗
V k+1

f
(X,C)→ H ∗

V k
f
(X,C)→ H ∗

V k
f \V k+1

f
(X,C)

d→· · ·
(2π i)k · ι(k)∗ ↑∼=

H ∗−2i(V k
f \V k+1

f ,C). (5.1)

for the corresponding spectral sequence.
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The E1-term is then�

E
p,−q
1 (n) := H 2n+p−q−1{�(X,Grp

NC)}
= H 2n+p−q−1{�(X, ′D•

(V
p
f )∞/

′D•
(V

p+1
f )∞)}

∼=←−−−−
(2π i)p·ι(p)∗

H 2n−(p+q)−1{�(V
p
f ,

′D•
(V

p
f \V p+1

f )∞
)}

∼= H 2n−(p+q)−1(V
p

f \V p+1
f ,C)

=⇒ Gr
p
NH 2n+p−q−1(X,C) =: Ep,−q

∞ .

We use the di: E
0,−n
i (n)→ E

i,−n−i+1
i (n) in this spectral sequence to get ‘residue’

maps

Resi: {ker(Resi−1) ⊆ Hn−1(X\Vf,C)}
→ {subquotient of Hn−2i(V i

f \V i+1
f ,C)}.

Replacing the left-hand column E
0,q
1 (n) ∼= H 2n−q(X\Vf,C) by zeroes, one has

a spectral sequence ′E converging to ′Ep,−q
∞ ∼= Gr

p
NH

2n+p−q−1
Vf

(X,C); a simple
algebraic argument then gives the long-exact sequence

→ H ∗
Vf
(X)

Gy−→
ι
(1)∗

H ∗(X)−→
∗
(1)

H ∗(X\Vf)
Res−→H ∗+1

Vf
(X)→

in which the N-graded pieces of Res are exactly the Resi .

PROPOSITION 5.1. If successive Resi[R′f] are all trivial, then [R′f] comes from
H ∗(X).

This means (a)
∫
X
R′f∧(·) gives a well-defined functional on H ∗

c (X\Vf)/ker( (1)∗ )

and (b) R′f may be ‘completed’ to a closed current on all of X by adding currents
supported on the V

i � 1
f .

In order to work modulo the choice of membrane ζf, we need to modify the
spectral sequence for C/Q(n) coefficients. Just as �(X, ′D•

(V
p

f )∞) computed H ∗(X,

F
p
NC) above, cohomologies of F p

N(C/Q(n)) are given by taking H ∗ of

Cone
{
C

V
p
f

2d−•(X,Q(n))
δ(·)−→�(X, ′D•

(V
p
f )∞)

}
,←−−−−−−

(2π i)p·ι(p)∗
Cone

{
C2d−•(V

p
f ,Q(n− p))

δ(·)−→�(V
p

f , ′D•
V

p
f
)
}
. (5.2)

�Similarly, the choice of indices will also make sense later.



A REGULATOR FORMULA FOR MILNOR K-GROUPS 191

The corresponding Res
i

map from ker(Res
i−1

) ⊆ Hn−1(X\Vf,C/Q(n)) to a sub-
quotient of Hn−2i(V i

f \V i+1
f ,C/Q(n− i)).

COROLLARY 5.2. If the Res
i
[R′f] are trivial, then a suitable modification of the

choice of ζf gives an R′′f completable to a closed section ∈ �(′Dn−1
X ). All Resi[R′′f ]

are zero.

Remark.

(i) We frequently work with d(= dim X) = n − 1. To get nontrivial Res
i

in this
case, we must take d � 2i.

(ii) By similar reasoning, if Res
i
[R′f] ≡ 0 for all i � r, ∃R′′f with Resi[R′′f ] = 0 for

all i � r.

5.2. INTERPRETATION OF Res1

This is essentially just d[·]. Tracing through d1 in the spectral sequence, [R′f] ∈
Hn−1(X\Vf,C) lifts to a closed section R′f ∈ �(X, ′Dn−1

X /′Dn−1
(Vf)

∞), then to a non-

closed section ∈ �(X, ′Dn−1
X ), so that d[R′f] ∈ �(X, ′Dn

(Vf)
∞) → �(X, ′Dn

(Vf)
∞/

′Dn

(V 2
f )∞). Modulo currents exact in the last complex, the image (of d[R′f]) lifts to

(1/2π i) ·d[R′f] ∈ �(V, ′Dn−2
Vf

/′Dn−2
(V 2

f )∞) under (2π i) · ι(1)∗ ; then Res1[R′f] is the class

of the latter, in Hn−2(Vf\V 2
f ,C).

If f = f1 ⊗ · · · ⊗ fn is good, then in �(′D•
X)

d[Rf] = d

[ n∑
k=1

(±2π i)k−1 log fk dlog fk+1 ∧ · · · ∧ dlog fn · δTf1∩···∩Tfk−1

]

=
n∑

8=1

[ 8−1∑
k=1

(±2π i)k−12π i(−1)8−k−1 log fk dlog fk+1 ∧ · · · ∧ ×

× d̂log f8 ∧ · · · ∧ dlog fn · δTf1∩···∩Tfk−1
+

n∑
k=8+1

(±2π i)k−1 ×

× (−1)n+8−k−1 log fk+1 dlog fk+2 ∧ · · · ∧ dlog fn ·
· δTf1∩···∩T̂f8∩···∩Tfk−1

]
· δ(f8) ± (2π i)nδTf

= 2π i
n∑

8=1

(−1)8Rf1⊗···⊗f̂8⊗···⊗fn
· δ(f8) ± (2π i)nδTf .

Now writing Vf = ∪{|(f8)| =: V8}, W8 := V8∩V 2
f , the boundary of the membrane

is

∂X(∂
−1
(X,Vf)

Tf) = Tf −
∑
8

(−1)8∂−1
(V8,W8)

T∂8f,
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and so

d[R′f] = 2π i
n∑

8=1

(−1)8R′∂8f · δ(f8);

dividing by 2π i gives Res1.
Noticing that

{g} = 0 =⇒ R′g = d[S] on X\Vf =⇒ all Resi[R′g] = 0

then gives the

PROPOSITION 5.3. For n > d we have a commutative diagram

and for all n, d{f} ∈ ker(Tame) =⇒ Res
1
[R′f] ≡ 0.

5.3. INTERPRETATION OF Res2

This is defined when codimension-1 residues are trivial. From the remark to Co-
rollary 5.2, Res

1
[R′f] ≡ 0 =⇒ Res1[R′′f ] = 0 =⇒ d[R′′f ] exact in �(X, ′D•

(Vf)
∞/

′D•
(V 2

f )∞). That is, ∃S ∈ �(X, ′Dn−1
(Vf)

∞) such that d[R′′f ] = d[S] modulo ′Dn

(V 2
f )∞ .

Now to see how to compute Res2[R′′f ], we paste together exact triangles (5.1):
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First use d[S] to ‘move’ support of d[R′′f ] to V 2
f , obtaining d[R′′f − S] ∈ �

(X, ′Dn

(V 2
f )∞) → �

(
X, ′Dn

(V 2
f )∞/

′Dn

(V 3
f )∞
)
; then move the image by a coboundary

and lift via (2π i)2 · ι(2)∗ to

−1

4π2
d[R̃′′f − S] ∈ �(V 2

f ,
′Dn−4

V 2
f

/′Dn−4
(V 3

f )∞),

finally going modulo im(d1) (and exact currents).

EXAMPLE 5.4. Take the case n = 4, X = a 3-fold, f good ∈ ker(Tame). For
simplicity we restrict to a Zariski-open neighborhood U ⊆ X of a normal crossing
in Vf, so that Vf = V1∪V2, V 2

f = V1∩V2 =: W . Now R′′f is closed in codimension 0,
and Tame{f} = 0 =⇒ d[R′′f ] is exact (= d[Sj ] on Vj ) in codimension 1. So R′′f −Sj

(on Vj ) is closed in codimension 1, and (1/4π2) d[Sj − R′′f ] = (1/4π2) d[Sj ] is
our answer in codimension 2. Intuitively

Res2[R′′f ] = ResW {d−1(ResV1[R′′f ])− d−1(ResV2[R′′f ])}
modulo ResW of currents on Vj closed in codimension 1; this formula is the key to
understanding what these higher residues are.

Notice that if Sj has terms of the form 2π i Li2(fj ) dlog gj · δVj
[which one

expects from Case 1, proof of Proposition 4.4] and gj = 0 or ∞ at W , then the
0-current Res2[R′′f ] has terms Li2(fj ) on W . One expects a certain rigidity here:
namely, Res2[R′′f ] must actually (up to 4π2Q ‘jumps’) be constant on W . That is
because we have just locally traced through the composition

ker(Tame)
R′−→ ker(Res

1
)

Res
2

−→
∐

y∈X2 H 0(ηy,C/Q(2))

im(d1)
=
∐

y∈X2 C/Q(2)

im(d1)
.

∩ ∩
KM

4 (C(X)) H 3(ηX,C/Q(4))

Logically, the next step should be to define ‘Tame2’ on ker(Tame)⊆KM
4 (C(X)),

so as to get a diagram for Res2 analogous to Proposition 5.3. First recall the Bloch
group B2(C(X)) := Z{C(X)\{0, 1,∞}} modulo the ‘dilogarithm’ relations�

[f ]− [g]+ [g/f ]− [(1− g)/(1− f )]+ [(1− g−1)/(1− f −1)],

and st: B2(C(X))→∧2 C(X)∗ maps {f }2 �→ (1− f ) ∧ f . Clearly

KM
2 (C(X)) = coker(st),

KM
3 (C(X)) = coker

{
st⊗ id: B2(C(X))⊗ C(X)∗ →

3∧
C(X)∗

}
;

let us also suppose the existence of T :
∧4 C(X)∗ → ∐

x∈X1

∧3 C(X)∗ inducing
Tame.

�Note: these are relations on L2(x) = �{Li2(x)} + log |x| arg(1− x).
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Now start by lifting {f} ∈ ker(Tame) ⊆ KM
4 (C(X)) to f̃ ∈ ∧4 C(X)∗, and

assume one can trace through a diagram like the following (with T ◦ T = 0)

to get an element
∑

ai{gi}2 =: Tame2{f} ∈ ker(st). It certainly seems plausible
that (for some variant L̃i2 of the dilogarithm)

Res2
y[R′f]

?= L̃i2(Tame2
y{f}), (5.3)

especially in light of the above ‘rigidity’ (as ker(st) is generated by algebraic num-
bers, see [29]). Similar arguments suggest an i-logarithmic behavior for Resi[R′f].

These suggestions are not entirely wrong, but (except perhaps for individual
computations) the approach outlined here would not work. To prove something
like (5.3), one would need maps directly from the groups in the diagram, to corres-
ponding currents. This is fine for Goncharov’s real currents but ours are only well
defined on the level ⊗4Z{C(X)∗} and so on. Moreover, while there is no problem
with defining the first T , issues involving norm maps (encountered in the passage
from codimension 1 to 2, see [12] or [18]) have so far proved fatal for defining the
other two.

6. Higher Residues for KM
n

6.1. AJ FOR HIGHER CHOW GROUPS

Since one therefore cannot define the higher residue maps for Milnor K-theory on
the level of functions, we are forced to use the higher Chow complex.

Recall that on �n we have Tn = Tz1 ∩ · · · ∩ Tzn ∈ Cn(�n), ,n = dlog zn ∧
· · · ∧ dlog zn ∈ �(Fn′Dn

�n
), and set Rn = Rz1⊗···⊗zn ∈ �(′Dn−1

�n
). Given Z ∈

Zp(X, n) [X smooth projective / C] with irreducible components Zj , let Z∗ :=∑
π
Zj

X ∗ ◦ πZj∗
� ; and define

RZ := Z∗Rn ∈ �(′D2p−n−1
X ), ,Z := Z∗,n ∈ �(Fp′D2p−n

X ),

and

TZ := πX((X × Tn) ∩ Z) ∈ C2d−2p+n(X,Z).
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Note that π
Zj

X ∗ involves ‘fiberwise integration’ when fiber dimension of Zi → X is
� 1.

Cohomology of the complex�

C•D(X,Z(p)) := Cone{C2d−•(X,Z(p))⊕ �(X,Fp′D•
X)→ �(X, ′D•

X)}[−1]

computes Deligne cohomology: H ∗(C•D(X,Z(p))) ∼= H ∗
D(X,Z(p)). Since

∂TZ = T∂BZ , d[,Z ] = ,∂BZ , and

d[RZ ] = −2π iR∂BZ +,Z − (2π i)nδTZ ,

sending (for −• = n)

Z �−→ (−2π i)p−n((2π i)nTZ ,,Z , RZ ) =: R(Z)

induces a map of complexes

R: Zp(X,−•) −→ C
2p+•
D (X,Z(p)),

and thus

AJp,nX : CHp(X, n) −→ H
2p−n

D (X,Z(p)).

Remark.

(i) Whenever ,Z = 0 (e.g. p > d, p < n) and ∂BZ = 0, d[RZ ] = (2π i)nδTZ =⇒∃ topological Q-chain ζ with ∂ζ = TZ . So RZ − (2π i)nδζ =: R′Z is a closed
(2p − n− 1)-current and [(1/(−2π i)n−p)R′Z ] = AJp,nX (Z) (modulo torsion).

(ii) The composition of AJ with the real projection π
p

R: H 2p−n

D (X,Z(n))→ H
2p−n

D
(X,R(n)), coincides with Goncharov’s regulator map (in [11]); see [18, Sec-
tion 3.1.1] for the proof.

6.2. DEFINITION OF TAMEi

Now R essentially respects coniveau, and we can use this to induce a map of local–
global spectral sequences for CH and HD. The general case requires reduction to
a normal-crossings/log-poles setting (as does AJ for quasi-projectives, e.g. X\V );
see [18, Section 2.4.1] and [19, Section 5.9]. An exception is the case p > d, where
H

2p−n

D (X,Q(p)) ∼= H 2p−n−1(X,C/Q(p)), the middle term of the cone complex
drops out, and

C•D(X,Q(p)) = Cone{C2d−•(X,Q(p))→ �(X, ′D•
X)}[−1]

�Equivalently {C2d−•(X,Z(p)) ⊕ �(X,Fp′D•
X
) ⊕ �(X, ′D•−1

X
)} with differential

D(a, b, c) := (−∂a,−d[b], d[c] − b + a). (See [17] for a discussion of Deligne homology.)
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is easily filtered by F i
NC•D(X,Q(p)) := limit of

Cone{CV i

2d−•(X,Q(p))→ �(X, ′D•
(V i)∞)}[−1]

,←−−−−
(2π i)i ·ι(i)∗

Cone{C2d−•(V i,Q(p − i))→ �(V i, ′D•
V i )}[−1].

The resulting

E
i,−j

1 (p) = H 2n−(i+j){GriNC•D(X,Q(p))}
∼=

∐
x∈Xi

H 2p−(i+j)−1(ηX,C/Q(p − i))

is the (modified) spectral sequence from Section 5.1; recall the di : E
0,−n
i (p) →

E
i,−n−i+1
i (p) are called Res

i
. Let [4]

′Ei,−j

1 (p) := Hi−j {GriNZp(X,−•)} ∼=
∐
x∈Xi

CHp−i (ηX, j − i);

then commutativity of the square

establishes the map ′E → E induced by R; in particular this enjoys the property
that

Res
i ◦AJp,nηX =

( ∐
x∈Xi

AJp−i,n−1
ηX

)
◦ ′di (6.1)

as maps from ′E0,n
i (p)→ E

i,−n−i+1
i (p).

If furthermore n = p(> d) then under γ : KM
n (C(X))

∼=→CHn(ηX, n),AJn,nηX is
identified with R′ and ′d1 with Tame. So we generalize Tame(=: Tame1) by setting
Tamei := ′di ◦ γ . The ker(Tamei) then give a filtration on KM

n (C(X)) and we
define

KM
n (X) :=

⋂
ker(Tamei).

This consists of those {f} ∈ KM
n (C(X)) whose [good representative’s] graph γ f ∈

Zn(X, n) may be completed to a higher Chow (∂B−) cycle by the addition of
components with support (over X) of codimension � 1.

Now (6.1) becomes the ultimate generalization of Proposition 5.3:
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PROPOSITION 6.1.

(i) The following diagram commutes:

In terms of currents, Res
i

x[R′f] ≡ (1/(−2π i)i−1)R′di(γf)
up to coboundaries on

ηx .
(ii) Since

⋂
ker(Res

i
) = im{Hn−1(X,C/Q(n))}, the Milnor regulator has a ‘holo-

morphic’ restriction
R: KM

n (X) −→ im{Hn−1(X,C/Q(n))→ Hn−1(ηX,C/Q(n))}
∼= Hn−1(X,C/Q(n))/im(Gy).

Remark. Here Gy: lim−→V⊂XH
n−1
V (X,C/Q(n)) → Hn−1(X,C/Q(n)) is the

Gysin homomorphism (V ⊂ X divisors); we are obviously concerned with situ-
ations where it is not surjective, e.g. d = n− 1 and KX � 0.

6.3. SOME QUESTIONS

(1) How deep is the filtration on KM
n (C(X))?

CONJECTURE 6.2 [Beilinson–Soulé]. CHq(C(x),m) = 0 for m� 2q.
(Known for q = 0, 1.)

(See [24].) Assuming n� 2 one has this easy.

COROLLARY 6.3. KM
n (X) = ker(Tamei ) if 2i + 1 � n (or i � d). Known for

n = 2, 3, 4; in particular ker(Tame) = KM
n (X) for n = 2, 3.

(2) Does AJn−i,n−1
ηX exhibit ‘i-logarithmic’ behavior?

Let us specialize to the case n = 2i, where this is obviously tied to Goncharov’s
conjecture that Chow polylogarithms are expressible in terms of classical poly-
logarithms. One easily writes an element W ∈ Zi(pt., 2i − 1) for which RW
is an i-logarithm value: namely,

Wi(a) =
(

1− a

wi−1
, 1− wi−1

wi−2
, . . . , 1− w2

w1
,

1− w1, w1, w2, . . . , wi−1

)
⊆ �2i−1

has RWi (a) =
∫
Wi (a)

R2i−1 = Lii (a). But you cannot build higher Chow
cycles out of the Wi(a) without alternating them, and alternating destroys the
computation.
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Our feeling is that the ‘i-logarithms’ involved should be not the Lii , but C/Q(i)-
valued ‘lifts’ of the real-valued Li , defined only on small subsets of
Z{C\{0, 1,∞}}. We work this out for i = 2 in the following example.

EXAMPLE 6.4. n = 4, X = 3-fold, {f} ∈ ker(Tame). Recall that in Example 5.4

we attempted to relate Res
2
[R′f] ∈ {

∐
y∈X2 C/Q(2)}/im(d1) to B2(C(y)) and the

dilogarithm. We accomplish this now (in a weaker sense) by relating B2 and L2 to
AJ2,3

ηy
(in the next proposition) on at least certain types of higher Chow cycles.

For g ∈ C(y)\{0, 1} let ρ(g) = Alt3(1− g/z, 1− z, z) ∈ Z2(C(y), 3).

PROPOSITION 6.5 ([18, Section 3.1.2]).

(i) Given any element ξ = ∑
mj {gj }2 ∈ ker(st) ⊂ B2(C(y)),

∑
mjρ(gj ) ∈

Z2(C(y), 3) can be completed to a higher Chow cycle Zξ by adding decom-
posable elements ∈ Z1(C(y), 2) ∧ Z1(C(y), 1).

(ii) Moreover, the ‘real’ projection of AJ2,3
ηy

(Zξ ) is the constant �(RZξ
) =∑

mjL2

(gj (p)), p ∈ y a general point.

6.4. BLOCH’S CONSTRUCTION

There is a nice geometric perspective on the holomorphic Milnor regulator, which
exhibits it as the correct generalization to higher n(>d) of Bloch’s construction (in
Chapter 8 of [2], for n = 2, d = 1). Given a compact Riemann surface E , and f ∈
⊗2Z{C(E)∗} (not necessarily good) such that {f} ∈ ker(Tame) ⊆ KM

2 (C(E)), he
shows how to complete γf to a certain kind of relative cycle �f in (E×�n, E×∂�2)
by adding curves (in �2) over points of E . Then he constructs a bounding chain,
and integrates π∗ωX ∧ ,2 over this bounding chain to get a map ker(Tame) →
H 1(E,C/Z(2)) by duality.

He allows certain corner intersections (satisfying some integrability conditions)
for his relative cycles; to get rid of the

∫
conditions we disallow corners by taking

Zn(X×�n,X×∂�n) to be the subset of cn(X, n) consisting of {Z|Z ·(X×∂�n) =
0}. We then choose a good representative f of {f} ∈ KM

n (X) (not ker(Tame), of
course), complete γf to a higher Chow cycle �f ∈ Zn(X, n) (∂B�f = 0), and
alternate to a relative cycle� Altn�f ∈ Zn(X × �n,X × ∂�n)Q. Finally we apply
the homotopy θ from Section 3.3 [formula (3.1)] over all of X, to get a [limit
of] bounding chain[s] and integrate π∗ωX ∧ ,n over the result. We lose torsion
information from the alternation, though; it is better�� (and equivalent) to take
AJ(�f). In either case we must go modulo AJ of ambiguities in codim. � 1, arising
from the completion γf �→ �f; so the target is Hn−1(X,C/Q(n))/im(Gy).

�That Altn�f has the same higher Chow class as �f (mod torsion) follows from [21].
��One could also use normalization of chain complexes ([10, Section III.2]) to produce (from

�f) a relative cycle without losing torsion.
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PART 3. BEHAVIOR OF [Rf] IN FAMILIES

7. Rigidity

7.1. THE STATEMENT

We now investigate the behavior of the Milnor regulator on smooth (n−1)-dimen-
sional complete intersections in Pn+r of multidegree (D0, . . . ,Dr)[r � 0]; to avoid
redundancy take all Dj � 2. The family of all such is denoted

X π→S := PH 0 (Pn+r ,O(D0)⊕ · · · ⊕O(Dr))\;,

where ; is the discriminant locus and π−1(s) =: Xs . We are interested in the
situation where

{fs} ∈ ker(Tame) ⊆ KM
n (C(Xs))

is an analytic family over an open ball U ⊂ S; in particular, we assume {fs}
comes from the fiberwise restriction of {F} ∈ ker(Tame) ⊆ KM

n (C(X̃ )), where

S̃ ρ→′S
Zar. op.⊂ S is a finite cover and X̃ = X ×S S̃ . (We are implicitly identifying

U with a component of ρ−1(U).)
For convenience write Ṽ = VF ⊂ X̃ , Vs = Vfs = Ṽ ∩ Xs , XU = π−1U and

VU = Ṽ ∩ XU , shrinking U if necessary so that XU\VU and (Xs\Vs) × U are
diffeomorphic for any s ∈ U . This ensures rank{Hn−1(Xs\Vs,C)} is constant so
that it makes sense to apply the Gauss–Manin connection to a section� of Hn−1

Xs\VS

on U . Let 0 ∈ U be a point.
Corresponding to {F} and {fs} there are regulator currents RF ∈ �(′Dn−1

X̃ ) gener-

ating by fiberwise pullback ι∗Xs
RF = Rfs ∈ �(′Dn−1

Xs
), so that [Rfs ] ∈ �(U ,Hn−1

Xs\Vs
⊗

C/Q(n)). By differentiating the periods of Rfs (modulo Q(n)) on (n − 1)-cycles
Cs ⊂ Xs\Vs to obtain ∇[Rfs ] ∈ �(U ,,1

S ⊗Hn−1
XS\Vs

), we will prove the following
theorem.

THEOREM 7.1 [Rigidity]. In the situation just described with {fs} ∈ ker(Tame) ⊆
KM

n (C(Xs)), ∇[Rfs ] is zero unless Xs are elliptic curves; that is, unless n = 2
(dimXs = 1) and deg(KXs

)[=∑
Dj − (n+ r + 1)] = 0, [Rfs ] is flat.

Remark. In the case of elliptic curves Collino [6] has constructed a family
{fs} ∈ ker(Tame), whose infinitesimal invariant ∇[Rfs ] he shows to be nonzero
by means of theta nulls.

7.2. THE PROOF

The first step is to lift [Rfs ] to [R′fs ]∈�(U ,Hn−1
Xs\Vs

), in such a way that they come

from fiberwise pullback of some R′F ∈�(XU , ′Dn−1
X̃ ). Now while ,fs = 0 (n >

�We avoid the Rn−1
π∗ notation to prevent confusion between Hn−1

Xs
and Hn−1

Xs\Vs
[= Rn−1

π∗ C for

X̃ → S̃ and X̃\Ṽ → S̃, resp.].
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d = n − 1), {F} ∈ ker(Tame) does not imply ,F= 0 [compare Lemma 2.2]. This
is because X̃ is quasi-projective; in fact we have (in taking ′S ⊂S) purposely
omitted from X̃ fibers (which would have been ‘vertical’ components of Ṽ ) along
which Tame{F} may not be 0. On the other hand, {F} ∈ ker(Tame) does imply
d[,F]= 0 [as in proof of 2.2], and so ,F gives a class [,F]U ∈Hn(XU\VU ,C)

with ι∗X0
[,F]U = [,f0]= 0; by acyclicity of U and rigidity of H ∗

DR, [,F]U = 0.
Since (on XU\VU ) d[RF]=,F − (2π i)nδTF , [TF]= 0 in H∗(XU , VU ∪ X∂U ). Set
R′F :=RF+ (2π i)nδ∂−1TF

, where ∂−1TF is a relative bounding chain.
Let {ti} be a coordinate system on U with ti(0)= 0 (∀i); and let εi ∈U denote

the point with tj (εi)= ε ·δij. Paths [0, εi] are taken to lie in the disks Ui :=U∩{tj =
0|∀j "= i}. If {Cs ∈ Cn−1(Xs\Vs)}s∈U is a continuous family of topological cycles,
then ∫

Cs

Rfs ≡
∫
Cs

R′fs =
∫
Cs

[ι∗Xs
]R′F mod Z(n) =⇒

(∇∂/∂ti [Rfs ])s=0(C0) :=
(

∂

∂ti

∫
Cs

Rfs

)
s=0

= lim
ε→0

(∫
Cεi

R′F −
∫
C0

R′F

)

= lim
ε→0

1

ε

∫
C[0,εi ]

d[R′F] = lim
ε→0

1

ε

∫
C[0,εi ]

,F =
∫
C0

ι∗X0
〈∂̃/∂ti, ,F〉

(since d[R′F]=,F on XU ), and we conclude that

∇[Rfs ] =
∑
i

dti ⊗ [ι∗X̃ /S̃〈∂̃/∂ti, ,F〉] ∈ �(U ,,1
S̃ ⊗Hn−1

Xs\Vs
).

We show this lifts to a section νs ∈�(U ,,1
S̃ ⊗ Fn−1Hn−1

Xs
), by checking that

ι∗Xs
〈∂̃/∂ti, ,F〉 ∈ Z0

d(F
n−1′Dn−1

Xs
) at s= 0. Take any α0 ∈�(,n−2

(X0)
∞), β0 ∈Z0

d

(F 1,n−1
(X0)

∞), and let α̃ ∈ �(,n−2
(XU )∞), β̃ ∈ �(F 1,n−1

(XU )∞) be local lifts. Then

±
∫
X0

α0 ∧ d[〈∂̃/∂ti , ,F〉] :=
∫
X0

dα0 ∧ 〈∂̃/∂ti, ,F〉 = lim
ε→0

1

ε

∫
X[0,εi ]

dα̃ ∧,F

= lim
ε→0

(∫
X{0,εi ]

α̃ ∧ d[,F]+
∫
Xεi

αεi ∧,fεi
−
∫
X0

α0 ∧,f0

)
= 0

since d[,F] = 0, while∫
X0

β0 ∧ 〈∂̃/∂ti, ,F〉 = lim
ε→0

1

ε

∫
X[0,εi ]⊂XUi

β̃ ∧,F = 0

since XUi
can only support n dz’s

So if KXs
< 0, then Fn−1Hn−1

Xs
= 0=⇒ νs trivial =⇒ its image ∇[Rfs ] is also

trivial (the desired result). Henceforth assume
∑

Dj � n+ r + 1(KX � 0).
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Now since Fn−1Hn−1
Xs
⊂Hn−1

Xs,pr, ∇νs ∈�(U ,,2
S̃ ⊗ Hn−1

Xs,pr); moreover,

∇ ◦ ∇[Rfs ]= 0 ∈ �(U ,,2
S̃ ⊗Hn−1

Xs\Vs
), so νs is actually a section of

,2
S̃ ⊗ ker{Hn−1

Xs,pr → Hn−1
Xs\Vs

} = ,2
S̃ ⊗ ker{Hn−1

Xs,pr
θ→Hn−1

Xs
/Ks},

where

Ks := im{Hn−1
Vs

(Xs,C)→ Hn−1(Xs,C)}.

If in fact this Ks = im{Hn−1(Pn+r )→Hn−1(Xs)},� then θ : Hn−1
Xs,pr→Hn−1

Xs,var is an
isomorphism and ∇νs = 0.

Since Ks is generated over Q, one can choose a local basis of (flat!) rational sec-
tions {σ8} ∈ �(U , Rn−1

π∗ Q) for �(U ,Ks). Since Ks ⊆F1Hn−1
Xs

, the {σ8} are in fact

sections of ker{F1Hn−1
Xs

∇→,1
S̃ ⊗ (F0)Hn−1

Xs
}. Taking the quotient by im{Hn−1

Pn+r →
Hn−1

Xs
} gives sections {σ8} of the middle term in the short exact sequence

0 −→ ker{F2Hn−1
Xs,var

∇→,1
S̃ ⊗F1Hn−1

Xs,var}
−→ ker{F1Hn−1

Xs,var
∇→,1

S̃ ⊗ (F0)Hn−1
Xs,var}

−→ ker{Gr1
FHn−1

Xs,var

∇̄1
(1)→,1

S̃ ⊗ Gr0
FHn−1

Xs,var} −→ 0.

LEMMA 7.2. ∇̄1
(k) : GrkFHn−1

Xs,var → ,1
S̃
⊗Grk−1

F Hn−1
Xs,var is injective for 1 � k � n−

1, provided
∑

Dj � n+ r + 1[=⇒ Gr0
FHn−1

Xs
"= 0].

So the last term is zero and the {σ8} pull up to the first term. Now one simply
increases all the F and GrF superscripts by 1, writes this out again with {σ8} in the
middle and repeats the bootstrapping procedure. This continues, using injectivity
of ∇̄1

(2), ∇̄1
(3), etc. until the {σ8} wind up in F n

2 Hn−1
Xs,pr ∩ Rn−1

π∗ Q (for n even) or

F (n+1)/2Hn−1
Xs,var∩Rn−1

π∗ Q (for n odd), which are both zero. So there was only one σ8

(as they were a basis) and it was in �(U , im{Hn−1
Pn+r → Hn−1

Xs
}). We have established

∇νs = 0.
Therefore νs is a section of

ker
{
,1

S̃ ⊗ Fn−1Hn−1
Xs(,var)

∇̄2
(n−1)→ ,2

S̃ ⊗ Grn−2
F Hn−1

Xs,var

}
.

�In fact, K̄s :=Ks/im{Hn−1(Pn+r )} can also be shown zero by means of a monodromy argu-
ment over S̃ (since we are working over U we have opted for the local argument given above). Here
is the idea: one can show that K̄0⊆Hn−1

Xs,var is an invariant π1(S̃)-module, and clearly K̄0 "= Hn−1
X0,var

if deg(KX0 )� 0. Since the action of π1(S̃) on Hn−1
X0,var is irreducible, K̄s = 0.
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LEMMA 7.3. ∇̄2
(n−1) is injective for

∑
Dj > n+ r + 1, n = 2,

∑
Dj � n+ r + 1, n� 3.

So unless n= 2 and deg(KXs
)= 0, νs = 0 [=⇒ ∇[Rfs ] = 0]. This completes

the proof in the case KXs
� 0.

7.3. THE ALGEBRAIC LEMMAS

We give a brief indication of how the two algebraic lemmas (due to Nagel) are
proved. See [18] for more details. Notation is as follows: we write Sa,b for the ele-
ments in C[z0, . . . , zn+r; x0, . . . , xr ] of bihomogeneous bidegree (a, b), where zi
and xj are taken to have, respectively, bidegrees (0, 1) and (1,−Dj). If Fj (z)∈ SDj

are the homogeneous polynomials cutting out X0 ⊆ Pn+r , then set F=F(x, z) :=
x0F0(z)+· · ·+xrFr (z) ∈ S1,0; the corresponding bigraded Jacobi rings are defined
by

R
a,b

F := Sa,b

/(
∂F
∂z0

, . . . ,
∂F

∂zn+r

; ∂F
∂x0

, . . . ,
∂F
∂xr

)
.

Finally put D :=∑
Dj .

Proof of Lemma 7.2. The dual θ1
S̃ ⊗ Grn−k

F Hn−1
Xs,pr → Grn−k−1

F Hn−1
Xs,pr of ∇̄1

(k) is

isomorphic (at s = 0) to S1,0/(F)⊗ R
k−1,D
F

µ1
(k)→ R

k,D

F , surjectivity of which follows
from [25] Lemma 3.4. �

Proof of Lemma 7.3. This lemma generalizes [7]. The dual θ2
S̃ ⊗Gr1

FHn−1
Xs,pr →

θ1
S̃ ⊗ Gr0

FHn−1
Xs,pr

of ∇̄2
(n−1) is isomorphic (at s = 0) to ∧2S1,0/

(F) ⊗ R
n−2,D
F

µ2
(n−1)→ S1,0/(F) ⊗ R

n−1,D
F , surjectivity of which follows� from [25]

Lemma 3.5 and vanishing of Rn,D

F . �

8. Vanishing

8.1. TARGET OF THE HOLOMORPHIC REGULATOR

We now return to the family X π→S of smooth complete intersections, and take X0

to be a very general member of this family. Given {f0} ∈ ker(Tame)⊆Km
n (C(X0)),

�With his p, n= the present n, n + r (resp.). For both lemmas one needs to check that Nagel’s
restriction (his r �n− 3) to dim(X)� 2 is not essential.
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there exists an extension to {F} ∈ ker(Tame)⊆KM
n (C(X̃ )) as in Section 7, and

[S̃ ⊃]U 2 0 sufficiently small that XU\VU , (X0\V0) × U . (This is proved
by a standard ‘spread’ argument, see [18].) Section 7.2 then shows ∇[Rfs ]= 0,
where fs are the restrictions of F to Xs∈U ; but this is not enough to accomplish the
monodromy argument that will give the vanishing theorem below.

Instead we will start from the (for n � 4) stronger assumption that {f0} ∈
KM

n (X0), and recall from Section 6.2 that

[R′f0
] ∈ im{Hn−1(X0,C/Q(n))

→ Hn−1(ηX0 ,C/Q(n))} =: Hn−1(ηX0 ,C/Q(n)).

An immediate consequence of the argument involving Ks and Lemma 7.2, is the
following statement about the target group of the holomorphic regulator:

PROPOSITION 8.1. For X0 a very general (smooth) complete intersection ⊆Pn+r

with KX0 � 0,

Hn−1(ηX0 ,C/Q(n)) ∼=n.c. lim−→V⊂X

Hn−1(X0,C/Q(n))

im{Hn−1
V (X0,C/Q(n))}

∼= Hn−1
var (X0,C/Q(n))["= 0].

Remark.

(i) The statement here is in the second isomorphism.
(ii) The limit is over all (arbitrary unions of) divisors.

(iii) By definition Hn−1
var (X0) := coker{Hn−1(Pn+r )→ Hn−1(X0)}.

(iv) Proposition is clearly false for
∑

Dj < n+r+1; e.g. a general quadric surface
⊂P3 is birational to P1×P1, and removing the divisors {0}×P1 and P1×{0}
eliminates H 2 completely.

Since X0 is a smooth complete intersection in Pn+r ,

im{Hn−1(ηX0 ,Q)→ Hn−1(X0,Q)} ⊂ ker{Hn−1(X0,Q)→ Hn−1(P
n+r ,Q)}.

COROLLARY 8.2. This inclusion is actually an equality; that is, any topological
cycle in the r.h.s. may be ‘moved’ by a Q-coboundary (on X0) to avoid an arbitrary
configuration of divisors.

It is on a basis (for the r.h.s.) consisting of ‘moved’ cycles that one computes
periods ∈C/Q(n) of Rf0 , in order to determine the class [R′f0

]. Now we prove these
periods are essentially always zero.

8.2. THE VANISHING ARGUMENT

Let f0 ∈⊗nZ{C(X)∗} be a good representative of {f0} ∈KM
n (X0)⊆KM

n (C(X)),
so that γf0 is the codimension-0 component of a (∂B-closed) higher Chow cycle
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�0 ∈Zn(X0, n). Writing X̄ → S̄ =PH 0(Pn+r ,O(D0)⊕ · · · ⊕O(Dr)) for the full

family (including singular fibers), there exists a finite branched cover ˜̄X π→ ˜̄S 2 0

and a ‘spread’ ˜̄� ∈Zn( ˜̄X , n) restricting to �0 at 0. Now supp ˜̄
X
(∂B

˜̄�)⊆π−1 {codim.

-1 subset of ˜̄S}, so one may choose a Zariski-open subfamily X̃→ S̃ (with smooth

fibers) on which the restriction �̃ ∈Zn(X̃ , n) of ˜̄� is a higher Chow cycle.
Writing γ i

s for components of codimension i � 1 (on Xs), � produces by fiber-
wise restriction a family of higher Chow cycles

�s = γfs +
∑
i � 1

γ i
s

(⋃
i

suppXs
(γ i

s ) =: Vs

)

giving rise to currents R�s
=Rfs +

∑
i � 1 Rγ i

s
[by the formula in Section 6.1]. Since

,�s
= 0 by type considerations, d[R�s

]=−(2π i)nδT�s ; and so R′�s
=R�s

+
(2π i)nδ∂−1T�s

is d-closed.
We can put these R′�s

into families locally, over any sufficiently small ball

U ⊆ S̃ . On X̃ one has d[,�̃]=,∂B�̃ = 0 and ι∗Xs
,�̃ =,�s

= 0; so ,�̃ has trivial

class on X̃U , and one can write an R′
�̃

with ι∗Xs
R′

�̃
=R′�s

(∀ s ∈U ), d[R′
�̃

]=,�̃.
Moreover ,�̃ has (by further type considerations) no codim. � 1 ‘components’,
and so ,�̃ =,F.

Lifting fs to �s has saved us from the headache of working away from Vs . There
are actually two lifts going on here: since {fs} ∈KM

n (Xs)⊆KM
n (C(Xs)) the class

[Rfs ]∈ im{Hn−1(Xs,C/Q(n))→Hn−1(Xs\Vs,C/Q(n))}; [R�s
]∈Hn−1(Xs,C/

Q(n)) gives a global lift over S̃, of which [R′�s
]∈Hn−1(Xs,C) is a local lift, e.g.

over U . However, it may be analytically continued to a ‘multivalued section’ over
all of S̃ , and one can look at its monodromy in Hn−1(Xs,Q(n)).

Before doing this we show locally that [R′�s
] is flat, i.e. ∇R′�s

= 0. Since locally
d[R′

�̃
]=,F we have

∇R′�s
=
∑

dti ⊗ 〈∂̃/∂ti, ,F〉
∈ ker{,1

S̃
⊗ Fn−1Hn−1

Xs
→ ,2

S̃ ⊗ Grn−2
F Hn−2

Xs,var},
which is zero except for n= 2, KX0 trivial (by Lemma 7.3).

Describing monodromy by the map

ρ : π1(S̃, 0)→ Aut{Hn−1(X0,C)},
we note the difference of classes

ρ(α)[R′�0
]− [R′�0

] ∈ Hn−1(X0,Q(n)) (8.1)

since they both go to the same [R�0]∈Hn−1(X0,C/Q(n)). Now recall that if α

goes around a divisor in ˜̄S\S̃ over which Xs acquires a node ([R�s
] need not be

defined there), we may speak of the vanishing cycle δ ∈Hn−1(X0,Q) associated
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to α, whose ‘flat transport’ to the nodal Xs is homologous to zero. It is a fact
that such δ span ker {Hn−1(X0,Q)→Hn−1(Pn+r ,Q)}; let {δi} be a basis (with
associated loops αi) and {δ̂i} a dual basis� for Hn−1

var (X0,Q), which one easily lifts
to Hn−1

pr (X0,Q).
Since [R′�s

] is flat, the Picard–Lefschetz formula (see [15] or [22]) applies to
compute

ρ(αi)[R
′
�0

]− [R′�0
] = ±

(∫
δi

R′�o

)
· δ̂i .

Combined with (8.1) this gives immediately∫
δ

R′�0
∈ Q(n) ∀δ ∈ ker{Hn−1(X0,Q)→ Hn−1(P

n+r ,Q)},

which is to say

[R�0] ∈ im{Hn−1(Pn+r ,C/Q(n))→ Hn−1(X0,C/Q(n))};
and so (except for elliptic curves)

[Rf0] = 0 ∈ Hn−1(X0\V0,C/Q(n)),

since the composition Hn−1(Pn+r )→ Hn−1(Xs)→ Hn−1(Xs\Vs) is zero.

8.3. STATEMENT AND INTERPRETATIONS

We formally state what we have proved.

THEOREM 8.3 [Vanishing]. Let X0⊂Pn+r be a very general smooth complete
intersection of multidegree (D0, . . . ,Dr), where if n= 2 then

∑
Dj "= n + r + 1.

Then the image of the holomorphic Milnor regulator

R: KM
n (X)→ Hn−1(ηX,C/Q(n)).

is zero.

Remark. This does not rule out interesting images for the holomorphic reg-
ulator on very general members of a proper subfamily of X̄→ S̄ . However in
the codimension 2 case (r = 1) we have the following refinement. If instead of
a very general member of the family over PH 0(Pn+1,O(D1)⊕O(D2)), one fixes
a degree-D1 smooth hypersurface Y ⊆Pn+1 and considers a very general ′X0 in
the family PH 0(Y,O(D2)), the vanishing result holds for D2 sufficiently (possibly
very) large. While less spectacular this is in fact harder to prove (see [18] for the
argument, which extends techniques from [13]).

�That is,
∫
δi

δ̂j = δij.
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The vanishing theorem has an interesting interpretation in terms of Goncharov’s
[=Beilinson’s] real regulator r : CHn(X0, n) → Hn

D(X0,R(n)) ∼= Hn−1(X0,R).
Clearly for n even it is just zero, since Hn−1(Pn+r )= 0 (and so Hn−1(X0)=
Hn−1

var (X0) ∼= Hn−1(ηX0)). For n odd let �= γ 0+∑i � 1 γ
i ∈Zn(X, n) be a higher

Chow cycle (codimX{suppXγ
i}= i), and write V� := suppX(

∑
i � 1 γ

i). To state
the result, denote the intersection of �⊂X×�n⊂Pn+r×�n with P(n+1)/2+r×�n

by � ·[H ](n−1)/2; and note that π�([H ](n−1)/2 ·�) ∈ Z(n+1)/2(C, n). Also write [H ]
for the homology class of a hyperplane section of X, and r̃n� for the real n-current
on �n defined in [11] (as modified slightly in [18]).

Then r(�) is computed by a real (n− 1)-current r̃� on X0 whose periods are

(i)
∫

[H ] r̃� =
∫
π�([H ](n−1)/2·�)

r̃n�= a value of Goncharov’s Chow ((n + 1)/2)-
logarithm (conjecturally computable in terms of L(n+1)/2),

(ii)
∫
σ

r̃� = 0 for all σ avoiding V� ⊂ X

(which, together with [H ], span Hn−1(X0,Q) by Proposition 8.1).

This result is consistent with the Beilinson conjecture (see for instance [26]), which
predicts the nontriviality of [the covolume of] the image of r for X defined over
a number field (and therefore not very general). If X is a complete intersection
defined over Q, one should except a nontorsion image for the holomorphic Milnor
regulator (provided KX � 0 so that the target group is nonzero).

For X/Q a version of the Bloch–Beilinson conjecture also predicts injectivity
(modulo torsion) of the composition KM

n (Q(X))→KM
n (C(X)) →

Hn−1(ηX,C/Q(n)).

PART 4. RELATIVE MILNOR REGULATORS

For an (n − 1)-dimensional smooth algebraic variety X with proper subvariety Y ,
one may defined Milnor groups

K̃M
n (C(X, Y )) := Z{C(X, Y )} ⊗ (⊗n−1Z{C(X)∗})

num ∩ {Steinberg relations ⊂ ⊗nZ{C(X)∗}} ,

where C(X, Y )⊆C(X)∗ is the multiplicative subgroup consisting of functions ≡ 1
along Y. The association f �→Rf gives a well-defined map

R: K̃M
n (C(X, Y ))→ lim−→V⊂(X,Y ) Hom{Hn−1(X\V, Y ∩X\V ;Z),C/Q(n)},

where V ⊂ (X, Y ) means V intersects Y properly.

9. The Simplest Nontrivial Regulator Computation

To give a simple demonstration of a Milnor regulator computation we work on a
degenerate elliptic curve – or what is the same, the relative variety (P1, {0,∞}).
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For f=∑ 8αfα ⊗ gα ∈Z{C(P1, {0,∞})} ⊗ Z{C(P1)∗}, assuming for simplicity
|(fα)|∩ |(gα)| = ∅∀α, we say {f} ∈ ker(Tame) if

∏
α(fα(p)

νp(gα)/gα(p)
νp(fα))8α = 1

for all p ∈Vf=⋃α |(fα)| ∪ |(gα)|⋂C∗. The regulator image of such an element
is determined entirely by the value�

∫
C Rf ∈C/Q(2), where C is any generator of

H1(P1, {0,∞};Z) avoiding Vf.
We shall compute this value for the element {f} ∈ ker(Tame) ⊆ K̃M

2 (C(P1,

{0,∞})) define by f= f 2 ⊗ g2, where

f = 1− i/w

1+ i/w
and g = 1− w

1+ w
.

Let γε be the path along R− from {0} to {∞}, perturbed by e−iε to avoid {1} ∈ |(g)|.
(There will be no need to take ε→ 0.)

We want to evaluate

∫
γε

Rf =
∫
γε

log f 2 dlog g2 −
∑

γε∩Tf 2

2π i log g

but do not want to deal with the branch log f 2 or [the point] γε ∩ Tf 2 . (Here Tf 2

is the preimage of R− under f 2, which is the unit circle; log g blows up very close
to the intersection.) Take the Z(1)-valued 0-current ;2

f := 2 log f − log f 2 with
(1/2π i) d[;2

f ] = δT
f 2 − 2δTf , and observe that on P1

d[;2
f · log g2] = 4(log f dlog g − 2π i log g · δTf )− Rf

modulo the Z(2)-valued 1-current 2π i{2;2
g · δTf −;2

f · δTg2 }. Since γε ∩ Tf ={0}
and log g= 0 there, it follows that modulo Z(2)

∫
γε

Rf = 4
∫
γε

log f dlog g.

Up to this point our branches of log have strictly had arg∈ (−π, π ]. It makes no
difference for the computation of the right hand side. if we now perturb Tf and Tg

(and the accompanying branches of log) slightly so they avoid�� {0}, {∞}, and γε .
We shall also use the slightly altered branch of log z corresponding to Tz=−γε .
Here is the resulting ‘perturbed’ picture:

�Note: it is o.k. to replace Q(2) by Z(2) here.
��While remaining paths (resp.) from {−i} to {i} and {−1} to {1}.
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Now

0 =
∫

P1
d

[
− 1

2π ī
log z log f dlog g + log z log g|Tf

]

=
∫

P1
{log f dlog g|γε − log z dlog g|Tf + log z dlog g|Tf +
+ log g dlog z|Tf − log z log f |(g) + log z log g|(f ) +
+ 2π i log z|Tf∩Tg − 2π i log g|Tf∩γε }

=
∫
γ ε

log f dlog g +
∫
Tf

log g dlog z −
∑
(g)

log z log f +
∑
(f )

log z log g,

since the two intersections are empty. Multiplying by 4, the last two terms are Z(2).
Now log g= log(1− z)− log(1+ z) exactly (i.e., not mod Z(1)), and so∫

γε

log f dlog g = −
∫
Tf

log(1− z) dlog z +
∫
Tf

log(1+ z) dlog z.

Since the dilogarithm has no monodromy about 0, this

= −2
∫
Tf

log(1− z) dlog z = 2(Li(i)− Li(−i))

= 2

( ∞∑
k=1

ik

k2
−

∞∑
k=1

(−i)k

k2

)
= 4i

∞∑
k=0

(−1)k

(2k + 1)2
,

and four times this is the final result: 16i ·G, where G is the Catalan constant (a
famous transcendental number).

The interested reader may consult [18, Section 3.2] for more general relative
regulator computations on (P1, {0,∞}) and (P2, triangle).
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