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We physicists love simple problems. So much so
that our immediate reaction to complex puzzles is to keep
staring at them until some simple picture suggests itself.
Sometimes we invent mathematical versions of those pic-
tures: For example, a mean-field theory of atomic magnetism
replaces a lattice of millions of atomic spins with just one spin
interacting with a field that accounts for the mean effect of
all the others. The best simple ideas also carry with them an-
other notion—universality. Phase transitions in magnets
share the same essential structures with the apparently re-
mote behavior of fluids at their critical points. Universality
arises when the essential physics emerges at large length
scales. It also guides theorists who “renormalize” the com-
plex fine detail of a system into an emergent structure that
has just a few parameters. A classic example is the mean-field
theory of entangled polymer dynamics, one of the products
of the beautiful and still-youthful field of soft-matter physics.
The story begins half a century ago but continues to present
researchers with intriguing problems.

Macromolecules, giant strings of thousands of small mo-
lecular units, often display universal behavior. Many of the
physical properties of polymers arise purely from the con-
nectivity of their molecular chains rather than from the chem-
istry of their monomer units. As a result, for example, the spa-
tial correlations of concentration in fluids of linear polymers
have a long-range Coulomb-like decay. The phenomenon of
rubber elasticity, to take another example, is analogous to
ideal-gas pressure. In a gas the tendency toward greater
translational entropy is responsible for the outward springi-
ness of a pumped-up bicycle tire. In rubber it’s the lure of
more random, crumpled configurations of the polymer
chains that leads to the equally springy retraction of a
stretched elastic band. Rubber’s elasticity is not governed by
its detailed chemistry; rather, it is controlled by the density
of the cross-links that anchor the ends of the thermally
writhing polymer chains.

In the field of polymer rheology (the physics of flow and
deformation of materials), more is at stake than figuring out
a set of fascinating universal phenomena. Those who produce
the billions of tons of plastic materials manufactured globally
each year depend on getting right both the molecular consti-
tution and the processing of polymers in their fluid phases.
Even commonplace products, such as polyethylene sheeting,
are manufactured in processes full of the delicate interplay of
elastic stresses, beautiful fluid dynamics, and phase changes.
Figure 1 shows one such process, the blowing of a polymer
film. It is empirically essential to create the right blend of mol-
ecules—small and large, linear and branched—to stabilize the
flow, thin the film uniformly, and endow the finished product

with the right mechanical properties. 
For two generations new materials have been developed

essentially by trial and error: By varying the conditions of the
chemical polymerization, polymer producers arrive at a
range of good and bad materials. How much better it would
be if the rules that connected molecular structure to flow
properties were known. Then, in the words of BASF’s Erik
Wassner, one could “reverse the design arrow” in the plas-
tics industry and design new materials at the molecular level,
much as is beginning to happen with pharmaceuticals. Such
a capability is all the more desirable as new catalysts are de-
veloped that will allow much greater control of polymeriza-
tion at the industrial scale. With its mix of fascinating physics
and applications, polymer dynamics is one of those deeply
satisfying fields of physics that bring university and indus-
try teams together in a natural way.

Three physics themes
The quest for the fundamental rules of densely entangled
polymer dynamics is assisted greatly by the emergence of uni-
versality. As noted above, for example, rubber’s elasticity is
governed by cross-link density, not detailed chemistry. Now
if the cross-links are taken away, one might imagine that all
elasticity would vanish and yield a fluid, albeit a rather vis-
cous one. But when the chains are strongly overlapped, as in
a polymer melt, something wonderful happens instead; you
may have experienced it if you’ve pulled hot pizza cheese or,
more industrially relevant, worked with a melted plastic flow-
ing during its process route. A stretching or shearing strain on
the polymeric fluid produces an elastic stress just as it does
when cross-links tie the molecular chains to each other. The
difference is that the stress slowly dies away (the pizza cheese
strings slowly start to stretch), following a decay curve that
seems to reflect the structure of the macromolecules. At long
times the material is indeed a fluid characterized by its vis-
cosity η. But at shorter times the elastic response dominates,
almost as if some cross-links were still there in fleeting form.
That is the phenomenon of viscoelasticity. 

The longer the chains, or the higher their molecular
weight M, the slower the decay; astonishingly, molecular cor-
relation times can extend to many seconds. Experimenting
with different chemistries revealed a universal aspect to that
relation, known as the 3.4 law: η ∝ M3.4. More beautiful chem-
istry unearthed further surprises. It is possible to couple
polymer chains in a controlled way to produce macromole-
cules with complex topology, such as star polymers with
three, four, or even many tens of polymeric arms. Melts of
such star polymers may be compared with those of linear
chains to see how stress relaxes at fixed strain; for the com-
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parison to be fair, the mean length of the linear chains should
be comparable to the diameter of the stars. The difference is
so startling that for years it was assumed that the star poly-
mers cross-linked in some way, for the viscosity of the star
polymers can be many orders of magnitude larger than that
of the linear chains. Changing the topology of a polymer melt
of high molecular weight by adding a branch at the spectro-
scopically undetectable level of one carbon atom in 100 000
was enough to increase relaxation times by 10 000 or more.

More intriguing phenomena emerged in the nonlinear
response to large strains or large strain rates. A long tradition
of nonlinear rheology had been motivated by engineering,
since all polymer-melt processing—manufacture of thin
films or fibers, for example—requires very large strain in the
course of the polymer’s deformation history. As the shear-
strain rate on a polymer melt increases, so initially does the
stress—the proportionality constant is just the viscosity. But
soon the linear relationship breaks down. At high shear rates,
the stress is lower than the extrapolation of simple viscous
behavior would indicate. However, the dominant geometry
of deformation in process flows is not shear but extension;
one or more dimensions of the material grow while others
shrink. Perhaps the corresponding extensional stresses also
“soften” at higher rates? The answer to the question serves
as another universal differentiator of molecular topology. Of
the two common industrial forms of polyethylene, for exam-
ple, one (high density, or HDPE) contains predominantly lin-
ear molecules, and the other (low density, or LDPE) highly
branched forms. Linear HDPE behaves similarly in shear and
extension. But LDPE develops opposite responses in the two
geometries, softening in shear yet hardening in extension.

Universality, topology, emergence—a strong collection
of physics themes together with significant experimental re-
sults demand some conceptual framework. The only candi-
dates as of about 1970 were modifications of theories for di-
lute chains by Prince Rouse and Bruno Zimm, but none of
those came even qualitatively close to the phenomenology of
the melt state. The missing ingredient was some characteris-
tic length scale corresponding to a level of temporary elas-

ticity. The breakthrough came
via a recognition of emergent
mean-field simplicity and an
idea whose components came
from two great theoreticians,
Sam Edwards in the UK and
Pierre-Gilles de Gennes of
France.

Wriggling in a tube
In 1967 Edwards was tackling a
problem in the elasticity of
cross-linked polymer net-
works. The measured modulus
was rather higher than pre-
dicted by the simple theory. He

realized that the naive calculations were wrongly assuming
the chains themselves could pass right through each other. In-
stead, Edwards postulated that the presence of neighboring
chains would effectively create a tube constraining any given
chain. The model required just one parameter, the tube diam-
eter a. Interestingly, the value needed for a was large enough
to require a truly polymeric section of chain to traverse it, and
that meant the local molecular detail would have a weak effect
on the nature of the tube—a route into universality. 

Inspired by Edwards’s idea, in 1971 de Gennes took a
step from equilibrium to dynamics. Suppose a chain that is
not cross-linked were free to diffuse in a polymer network.
Would its random motion not also be limited by the tube-like
constraints? If so, only the chain ends would be able to choose
random directions for thermal displacements; all other pieces
of chain would have to diffuse into sections of tube just va-
cated by others. De Gennes coined the term “reptation” for
the snake-like dynamics of an entangled chain. Crucially, he
also derived the emergence of a critical disengagement time
τd for a chain to diffuse out of its constraining tube, as illus-
trated in figure 2a, into a neighboring tube. Simple scaling
analysis gave τd ∝ M3. 

De Gennes’s result is, of course, suggestively close to the
3.4-law experimental scaling of polymer-melt viscosity with
molecular weight. What was more remarkable, the conse-
quences of a tube theory for a chain free at one end but linked
to the network at the other were clear. The chain cannot re-
configure by reptation but only by deep retractions of the free
arm along the entire length of its tube—a process exponen-
tially slow in the molecular weight of the arm. But in 1972 the
connection with melts of linear polymers in the first case and
star polymers in the second (figure 2b) was made neither by
de Gennes nor anyone else. After all, how could a tube of con-
straints survive for the lifetime of the chain they contain,
when those constraints themselves would typically disap-
pear on the same time scale? The argument that the turning
on and off of constraining tubes would actually be a second-
ary effect rather than a primary one was due to Masao Doi,
a visiting scholar from the University of Tokyo to Edwards’s

Figure 1. In the industrial 
film-blowing process shown
here, a molten cylinder of
polymer is pumped vertically
from a circular die, then
hauled up in a stream of cool-
ing air as it expands and crys-
tallizes. (Courtesy of Dow
Chemical Co.)
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Cambridge University group in the late 1970s. Doi and Ed-
wards crafted the idea of reptation into a first theory of vis-
coelasticity. Interestingly, it was not the agreement, qualita-
tive at best, of the linear response that attracted the attention
of the rheological community but the fact that the theory gave
correct predictions—sometimes with no free parameters—
for a nonlinear response.

Suddenly the field of molecular polymer rheology was
opened up, and the next 20 years saw a creative flowering of
experimental techniques newly applied to entangled poly-
mer systems, developments of the theory, and a serendipi-
tous harnessing of the increasing power of simulation. The
community was quick to realize that a microscopic theory of
rheology had much more to say about a fluid than simply
how stress and strain were related: Aspects of the polymer
conformation and dynamics themselves were also testable.
Arguably, the first technique to “see” the tube constraints was
the neutron spin-echo scattering technique, applied first to a
deuterium-labeled melt by Julia Higgins of Imperial College
London and further developed by Dieter Richter and col-
leagues at Research Center Jülich. The spatial and temporal
range of NSE is ideal for the study of entangled polymers.
For such polymers as polyethylene, which is made from fast-
moving and light monomers, the technique allows one to see
early-time behavior dominated by local pieces of essentially
free chain, then slower motion as the chains begin to feel the
tube constraints (see figure 3).

Other experiments, which combined rheology with op-
tical methods on partially labeled chains, began to identify
which parts of entangled chains were responsible for stress
relaxation at different time scales. If, after a sample chain is
deformed, a chemically labeled section is optically followed,
then the contribution of the labeled section can be compared
with the overall relaxation. In that way the groups of Gerald
Fuller at Stanford University and Lucien Monnerie at the
École Supérieure de Physique et de Chimie Industrielles were
able to detect much faster stress relaxation near the ends of
chains than toward their centers. Those end bits are just the
segments that require smaller diffusion distances to explore
new tube constraints.

Star power
The largest differences between spatially resolved relaxations
were seen by the École Supérieure group in carefully labeled
star polymers. Trapped in a nexus of many converging tubes,
the star-polymer branch point cannot diffuse but, as de
Gennes saw for dangling arms in a network, must explore
new configurations by deep, thermally activated retractions
and reextensions into the surrounding melt, as shown in fig-
ure 2b. Working with synthetic chemist Lewis Fetters at
Exxon Research and Engineering Co and Eugene Helfand at
Bell Telephone Laboratories, the late Dale Pearson (also at
Exxon Research) brought both theory and experiment to bear
on a remarkable conclusion: Since star-polymer arms relax

stress independently of the diffusion of the
whole molecule, the viscosity of a star melt is in-
dependent of the number of arms but exponen-
tially dependent on the arm’s molecular weight.

All looked at first to be in perfect agreement
with experiment, but it turned out that in the star
melts lurked a puzzle that would help unlock a

a b Figure 2. Entanglements act-
ing like constraining tubes
have quite different effects on
the dynamics of linear and
star-branched polymers. (a)
The linear chains find new
configurations by diffusing
from the tube. The character-
istic time for that disengage-
ment process scales with the

cube of molecular weight. (b) The star polymer has to rely on much slower retractions and reextensions into the surround-
ing melt to renew independently the configuration of its arms. The characteristic time for the star polymer’s reconfiguration
scales exponentially with molecular weight. (Courtesy of Richard Blackwell.)
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Figure 3. Neutron spin-echo decays show the ef-
fects of constraining tubes. The plot summarizes
six experiments in which an identical labeled
chain was embedded in matrices of increasing
molecular weight, with blue being the lightest,
black the heaviest. Filled and unfilled symbols in-
dicate two different wavenumbers. The signal
strength and time are normalized so that free-
chain data would all lie on the same curve, indi-
cated in blue on the plot. Deviations from the
curve arise as the labeled chains sense their con-
straining tubes. (Adapted from M. Zamponi et
al., Phys. Rev. Lett. 96, 238302, 2006.)
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vital unresolved piece of the physics. To fit Fet-
ters’s data on star relaxation, Pearson and
Helfand had had to adjust the value of an
order-unity constant ν in the formula for the re-
laxation time τarm of an entire entangled arm of
molecular weight Marm. The exponential rela-
tion τarm ∝ exp(νMarm/Me) includes a measura-
ble “entanglement molecular weight” Me. The
theory had no room for ν as a free parameter,
predicting its value to be 3/2. But the star data
only worked with ν = 1/2. The factor of three
might seem a small price to pay, but ν is multi-
plied by a large number and exponentiated.
The theory actually overpredicted the viscosity of star poly-
mers by a factor of many millions—a problem amusingly 
unnoticed for a few years. 

The star polymers were shining a spotlight onto an old
problem: What is the real nature of constraint release? In other
words, how should one handle a tube of temporary topolog-
ical constraints that winks into and out of existence at the
same rate as a chain escaping from the tube itself? Clearly, the
star-polymer data demanded a self-consistent theory. In the
case of well-entangled star melts, the exponentially large
range of time scales—from fast retractions near the chain ends
to very slow, deep reconfigurations of entire arms—leads to a
great simplification: Any relaxing segment interacts only with
some far faster ones, which cannot entangle it, and some far
slower ones, which always do. The effective constraining tube
can arise only from the population of slow constraints, so it
must be larger in diameter than the tube for linear polymers
of the same chemistry. Robin Ball (University of Warwick) and
I considered that dynamic tube dilation idea and constructed
a mathematical formulation that with later refinements with
Scott Milner of Exxon Research (now at the Pennsylvania State
University) was widely used to model data from poly-
styrenes, polybutadienes, and more. Almost as a byproduct
of thinking about stars, we came to understand why linear
polymers are governed by an apparent 3.4 law rather than an
“exactly 3” law: The same types of fluctuations that are the
only means of entanglement escape for star polymers are cer-
tainly present in linear chains as well.

What of constraint release in linear polymers? In that
case another beautifully simple picture emerges. The tube
mimics many of the properties of a polymer, including its dy-
namics. If an entanglement is rearranged locally, then the
tube just suffers a local “hop” in its configuration. Because
the tube itself is not constrained, its hop is exactly analogous
to a diffusive hop of a monomer in an unentangled poly-
mer—for which the Rouse model had for decades been the
known solution. The current picture of entangled linear
chains therefore combines two idealized forms of polymer

dynamics: the reptating and fluctuating chain in a fixed tube
and Rouse-like unentangled dynamics for the tube itself. The
existence of the tube was confirmed in 1990 with a protean
effort and application of then-vast computational resources
by Gary Grest (Sandia National Laboratories) and Kurt Kre-
mer (Max Planck Institute for Polymer Research). Their
many-chain simulations produced tube-like regions of con-
straint around every test chain; those survived while the
chains diffused along the tube lengths.

Constraint release came to the rescue once more as the
theory addressed continuous flows. The original Doi–
Edwards pure reptation formulation predicted that for a
steady shear flow, the stress would go through a maximum
as a function of shear-strain rate, simply because chains tend
to align with the flow. A fluid possessing a branch of its stress
response curve with negative slope must give rise to instabil-
ities in shear flow. Such unstable flow has been measured in
certain surfactant fluids, in which entangled chains of self-
assembled worm-like micelles undergo continual breaking
and reformation as well as reptation. Michael Cates, then at
Cambridge University, showed in 1987 that such coupled dy-
namics narrows the distribution of stress relaxation times and,
later, that one consequence is a regime of unstable flow that
breaks up into shear bands where fluid regions of different
viscosity coexist. More recently Peter Olmsted and Suzanne
Fielding at the University of Leeds showed that a rich non-
linear dynamical system arises from such banding instabili-
ties, some of which had already appeared in beautiful flow-
visualization nuclear magnetic resonance experiments by
Paul Callaghan’s group at Victoria University of Wellington. 

Physicists are currently debating whether banding in-
stabilities arise in the case of linear polymers, partly because
the actual response of those polymers at high shear-strain
rates can show a near plateau rather than a maximum. Re-
cent experiments by Shi-Qing Wang (University of Akron)
and Thomas Hu (Unilever) have demonstrated a rich family
of inhomogeneous flow behavior in entangled solutions, in-
cluding the apparent formation of slip planes and transient
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Figure 4. While flowing around a sharp corner, an entangled polystyrene melt
shows distinctive small-angle neutron scattering patterns. The colored bands on
the plots represent scattering intensities (red high, blue low) as a function of
components of the wave vector q. The red curves overlaid on the data are theo-
retical scattering contours. Since wave vectors scale inversely with length, a
scattering ellipse that is vertically oriented in wave-vector space corresponds to
horizontally oriented scattering polymers. Thus the scattering plots indicate that
the polymers align with the walls. That the eccentricity of the ellipses diminishes
with wavenumber means that shape inhomogeneities are greatest at large
length scales. (Data from Eduardo de
Luca, Nigel Clarke, and Tim Gough; cal-
culations by Richard Graham, Harley
Klein, and Kamakshi Jagannathan.)
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shear bands. Those experiments and their theoretical inter-
pretation are being hotly debated. 

Whatever the extent to which entangled linear melts
may thin in high shear, it is certainly not to the violent de-
gree predicted by the tube model with reptation alone. The
elegant solution came from Giuseppe Marrucci and col-
leagues at the University of Naples, who realized that an-
other mechanism contributes to control release once flow
rates overcome reptation. Neighboring chains are convected
past each other by the flow and by diffusion, and the con-
straint-release rate becomes geared to the flow rate itself. At
the structural level, such “convective constraint release” con-
stantly injects new kinks into the chains in the sheared melt.
So the polymers are never combed entirely flat by the flow
and the stress remains monotonic with shear-strain rate.

A broad UK-based collaboration recently developed the
technique of neutron flow-mapping, in which the chain con-
figurations in a flowing melt are scanned by neutron diffrac-
tion. That development represents a key step to connecting
microscopic dynamics of linear polymer melts all the way
through to their process flows. Figure 4 shows measured
chain diffraction patterns for a melt flowing around a sharp
corner, compared with the predictions of a state-of-the-art
tube theory. Ultimately such work could allow manufactur-
ers to place polymer chains in their optimal orientations for
product properties.

More general forms
Dilating stars forced physicists to address more carefully the
temporary nature of constraining tubes, but the story of
branched polymers doesn’t end there. In the 1980s, more
imaginative architectures already were being created.
Jacques Roovers, then at the University of Waterloo, had
made a series of polystyrene “H-polymers,” for example, in
which each molecule contained two branch points separated
by a cross-bar section. I was fascinated by the complex rheo-
logical spectra that Roovers had measured from those won-
derful materials and became convinced that the tube model
had in itself the capability to predict the relaxation dynamics
for any architecture. If so, then the H-polymer looked like the
next step. The theoretical recipe was becoming clearer: Take
your molecule, dress it up in a self-consistent tube, and allow
fluctuations that retract the arms to reconfigure the tube.
Doing so for the H-polymer gave a star-arm-like relaxation
for the arms and then, at much longer time scales, a diluted

reptation dynamics for the cross bar. Experi-
ments with synthetic H-melts of more highly
entangled polyisoprene by a team of which I
was a part confirmed that picture and opened
the door to still more complex architectures.
Figure 5 shows some of our data.

Ronald Larson (University of Michigan)
had had a long-standing interest in the highly branched in-
dustrial material LDPE. As a chemical engineer with a strong
interest in molecular physics, he was puzzled that the strange
nonlinear response of LDPE was not captured even qualita-
tively by any phenomenological model. He and I suspected
that if the tube physics for more highly branched molecules
such as the H-polymer were pushed to the nonlinear regime,
it might provide a clue. The hunch proved correct. Our analy-
sis of the more general “pom-pom” molecule, in which the
two branch points carry arbitrary numbers of arms, showed
that the key ingredient was the existence of two relaxation
times of any entangled segment of a branched polymer. The
slower time controls the molecule’s linear response and is set
by the diffusive entanglement escape—that is, arm relaxation
and reptation. The faster relaxation time appears only in non-
linear flows and is set by the retraction of chain stretch anal-
ogous to a rubber band snapping. A mathematical toolkit
built out of pom-pom modes turns out to be able to encom-
pass quantitatively the rheology of any industrial LDPE.

Nonetheless, a problem remained with calculating the
dynamics of complex branch-on-branch architectures. When
a dangling arm relaxes back to its branch point, deeper sec-
tions of the molecule can be mobilized. But by how much are
they mobilized, and with what effective drag? Recently
those questions were addressed by Daniel Read and Chin-
may Das at the University of Leeds, who realized that the re-
laxation of highly branched polymers is controlled by two
“relaxation fronts” that move from the extremities to the
core. One traces the disentanglement wave itself, but it is
preceded by a “mobility front” that signals the effective
branching point for all the active retraction modes that are
currently releasing entanglements. Their enhanced theory
re-created the experimental relaxation spectra of an entire
series of test polyethylenes. If that essentially complete the-
ory of the linear response of arbitrary architectures can be
extended to the nonlinear response—no mean feat—then the
exciting prospect of in silico design of polymer materials
comes a lot nearer.

While some soft-matter physicists have been pushing on
the outer frontier of complexity and application, others have
exemplified the renewed interest at the inner frontier of fun-
damentals. Where and how do chain–chain topological in-
teractions arise? What microscopic features of the polymers
themselves set the parameters of the tube model? Ralf Ever-
aers (University of Mainz), Kremer, and others have explored
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Figure 5. Spectral features reveal behavior of
a polyisoprene melt of H-shaped polymers. In
this relaxation spectrum the viscous stress
modulus is plotted against frequency. The in-
dicated shoulder at high frequency is from
arm relaxation and the low-frequency peak is
from snake-like motion (reptation) of the cross
bar. Experimental data are blue circles; 
theory predictions are given by the curve.
(Adapted from T. C. B. McLeish et al., 
Macromolecules 32, 6734, 1999.)



www.physicstoday.org August 2008    Physics Today 45

those questions numerically by an ingenious application of
an early thought experiment. Doi and Edwards had imagined
that winding through the melt was an irreducible “primitive
path” that defined the tube geometry for a test chain; it was
obtained by a process of “reeling up” the chain length in all
the molecules of an entangled volume. That is, all chains
shorten until they become tense and cannot reduce further in
length because they are entangled with other chains. Statis-
tics of the path length can be explored, as can the critical
chain–chain interactions that determine them, since entan-
glements can be associated with kinks in the primitive paths.
The scaling of primitive-path length—or, equivalently, en-
tanglement density—with polymer concentration does not
follow the same scaling rule as melts seem to show. The rea-
son may lie in many-body topological interactions that more
subtle primitive-path analyses will uncover.

Ringing changes
New ideas on the origin of the tube are being stimulated by
the one polymer architecture that still eludes a quantitative
model of any kind: the ring. A moment’s reflection indicates
that ring molecules must behave in an idiosyncratic way,
since all other entangled dynamics, whether reptation of lin-
ear polymers or fluctuation of branched ones, are driven by
the free ends. Ring polymers just don’t have them. Early sta-
tistical mechanics calculations by Cates (now at the Univer-
sity of Edinburgh) and Joshua Deutsch (University of Cali-
fornia, Santa Cruz) suggested that even the static
configurations of rings would be more compact than random
chains in the melt. Later work by Sergei Obukhov (Univer-
sity of Florida), Michael Rubinstein (Eastman Kodak Co), and
Thomas Duke (Princeton University) proposed that ring
polymers would self-organize into multiply branched objects
that changed configuration by amoeba-like extension and re-
traction of doubly looped limbs, as shown in figure 6. 

The experiments were even stranger. Some claimed that
ring melts were more viscous than their linear counterparts
of equal molecular weight, others claimed the opposite.
Dimitris Vlassopoulos and his group at IESL-FORTH in
Crete seem to have found the culprit in low levels of linear
contaminants. For some reason even tiny amounts of linear
material threading a ring melt can greatly extend relaxation
times beyond those of either pure component. When rings
are made as pure as possible, the relaxation spectrum indeed
follows that predicted by the self-similar dynamics of
Obukhov, Rubinstein, and Duke. That’s actually somewhat
surprising because the predictions were made for a ring in a
fixed network, not in a melt, and they took no account of con-
straint release. Since constraint release is so important in all
other architectures, it is hard to see how it could somehow
switch off in rings. 

The problematic case of ring melts has been at the back
of my mind since I had a very pleasant encounter with two
solar physicists a few years ago. They were busily doing cal-
culations in a model I recognized as an extension of Rouse
polymer dynamics—but their calculations were for bundles
of magnetic flux in the Sun. It is still unclear to what extent
the effective polymer physics of the solar magnetic fields con-
tributes to the plasma viscosity, but the absence of magnetic
monopoles means that if relevant at all, the polymer archi-
tecture is that of rings. 

The field of entangled polymer dynamics now stands at
a crucial and exciting point. On the one hand, the funda-
mental emergent processes in the standard case of flexible,
noninteracting chains seem to have been established. The
challenge is to fulfill the promise to “reverse the design

arrow” in industrial materials science. Is it really possible to
develop a methodology of quantitative molecular engineer-
ing in which the particular demands of a materials applica-
tion are used to create new materials? If so, that would apply
across the chemical spectrum from polyolefins to acrylics, or
even to a new generation of polymeric materials that use non-
oil-based sustainable chemistry. One of the “design features”
industrial scientists must understand, if only to avoid it in
practice, is the family of purely viscoelastic fluid instabilities
that depend sensitively on the melt rheology. The shear-
banding subset is perhaps the most striking of those insta-
bilities, but others generate oscillations, helical swirling, or
chaotic flow inimical to successful processing—even if they
are beautiful in their own right.

On the other hand, an understanding of the topological
interactions constitutes a foundation for theories of more com-
plex entangled macromolecules. The rheology of charged
polymers, or polyelectrolytes, is still extremely mysterious
and would be enough to fill a second article by itself. A dif-
ferent class of viscoelasticity emerges from polymers with
strong local interactions that allow them to stick together for
macroscopic time scales. Both charge and association con-
tribute to tangled macromolecules in biology. A bacterium ac-
tually recruits special enzymes called topoisomerases to dis-
entangle its own DNA, a fascinating example in the new field
of active rheology. Other biological examples of entangled
polymers can be found in the cytoskeletal components of
actin, filamin, and microtubules. Those three materials are
highly stiff macromolecules, whose flexibility appears only at
length scales longer than the entanglement spacing. All sub-
jects of current research, the novel macromolecules briefly in-
troduced point to the familiar phenomenon in physics of
every answer opening up a host of questions.
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Figure 6. An entangled ring polymer changes configura-
tion by amoeba-like extension and retraction. (Adapted
from S. P. Obukhov, M. Rubinstein, T. Duke, Phys. Rev.
Lett. 73, 1263, 1994.)




