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1 Introduction

Holographic models for gauge theories with matter exhibit a rather generic three-phase

structure. For low temperatures, the background is a regular geometry, representing the

confined phase of the gauge theory. At sufficiently high temperature, the background

undergoes a Hawking-Page transition to a black brane geometry. In the dual gauge theory,

this transition corresponds to the deconfinement of gluons. Mesons still remain bound,

as long as the brane representing the matter degrees of freedom does not intersect the

background horizon. When this finally happens, a second transition occurs, to a phase

in which mesons melt and the gauge theory is fully deconfined. We will call these three

phases the low, intermediate and high temperature phase respectively.1

After the mesons have melted, one is left with a strongly-coupled quark-gluon fluid.

This fluid exhibits a discrete spectrum of unstable excitations [4], which are described by

quasi-normal modes on the probe brane. It has been suggested [5, 6] that the thermal pole

masses of mesons before the transition should be related to the real parts of the quasi-

normal modes after the transition. It would then be possible to follow the stable mesons of

1There is by now a large list of references dealing with this three-phase structure; seminal

papers are [1] for the D3/D7 system, [2] for the D4/D6 case and [3] for the D4/D8 model. In

special situations the intermediate phase can be absent, but we will not discuss those cases here.
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the intermediate temperature phase into the high-temperature phase, where they become

unstable quasi-particles with finite decay width. The fact that the widths are of order one

is consistent with the expected behaviour of meson decay widths in the deconfined phase.2

Moreover, lattice results indicate that finite-width mesonic resonances indeed survive above

the deconfinement temperature (see e.g. [8–10]).

While such a connection between stable and unstable meson modes thus seems rea-

sonable, it so far relies on numerical evidence. Other known facts about the generic ther-

mal behaviour of meson masses suggest that the connection might be more subtle. In

the intermediate temperature phase, the pole masses of mesons are known to decrease

as the temperature goes up [11]. This shows qualitative resemblance with lattice QCD

studies [12, 13]. In QCD proper, chiral partners such as the ρ and a1 meson eventually

become degenerate when chiral symmetry is restored. In contrast, all holographic models

go through the first-order meson melting phase transition before such degeneracies can be

observed. However, the graphs of the thermal behaviour of the masses [11] suggest that

a degeneracy may still occur when the system is overheated. If such a degeneracy occurs,

then an identification of the discrete spectrum before and after the transition becomes

more subtle (we will indeed see that this happens).

A further problem occurs in the Sakai-Sugimoto model with zero bare quark mass.

The embeddings after the transition are all equivalent, which implies that the quasi-normal

mode spectrum after the transition is fixed, i.e. it never becomes degenerate. If the meson

spectrum, on the other hand, does become degenerate at the junction, then no smooth

identification seems possible. In addition,3 mesons of this model transform under the

adjoint of the diagonal SU(Nf ), while the quasi-normal modes sit in the adjoint of SU(Nf )L
or SU(Nf )R. This again makes a straightforward identification of the spectra unlikely.

In the present paper we therefore try to answer two key questions: what is the precise

behaviour of meson pole masses as the critical embedding is approached from below the

transition temperature, and does this leave any room for a connection to the real parts of

the frequencies of the quasi-normal modes just above the critical temperature? We will

restrict ourselves to an analysis of the spectrum of vector excitations close to the critical

embedding, and comment only briefly on a similar analysis for scalar excitations. For the

sake of simplicity, we will also only consider modes homogeneous in the internal spheres;

generalisation to other cases should be straightforward.

We will first provide numerical evidence which indicates that the potential of the

associated Schrödinger problem takes a particularly simple form as the critical embedding

is approached. Inspired by these numerical results, we then present an analytic procedure

to compute the spectrum close to either side of the phase transition. We will show that

any finite number of mesons in the discrete spectrum of the intermediate phase become

degenerate in mass at the critical (overheated) embedding (our findings avoid the no-

2In the intermediate-temperature phase the decay of a meson to a quark-antiquark pair would

also be of order one, but because mesons are anomalously light (of order 2mq/
√
λ where mq is the

constituent quark mass), there is no phase space available for their decay. Meson to two-meson

decays [7] are of order 1/Nc.
3We thank Ofer Aharony for emphasising this point to us.
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crossing theorem of Von Neumann & Wigner [14] because a finite change in the temperature

leads to an infinite change of the potential).

A similar degeneracy occurs, but only in the D3/D7 case and the polar embedding

of the D4/D6 systems (see figure 1), for the quasi-normal frequencies when the critical

embedding is approached from the high-temperature side (undercooled). Since the masses

and quasi-normal modes are labelled by a single excitation number n, there is in principle an

infinite number of ways to relate the states in these two spectra, and the connection between

mesons and quasi-normal modes thus seems more subtle than previously suggested [5, 6].

For the D4/D8 and equatorial D4/D6 systems, the quasi-normal modes never degenerate,

and there is thus no smooth connection to the meson spectrum.

2 Setup and numerical motivation

Before we discuss our main analytic results for the behaviour of the meson spectrum near

the melting transition, let us first set the stage and motivate our approach by some nu-

merical results.

Our starting point is the generic expression for the background metric of a Dp-brane.

It is given by

ds2 =
(u
L

) 7−p
2

(
− fp(u)dt2 + δijdx

idxj
)

+
(u
L

) p−7
2

(
du2

fp(u)
+ u2 dΩ2

8−p

)
, (2.1)

where i, j = 1 . . . p and fp(u) = 1− (uT /u)7−p. There is also a non-trivial dilaton

e−φ =
(u
L

)(p−7)(p−3)/4
. (2.2)

The temperature of this background is given by

T =
7− p
4π L

(uT
L

) 5−p
2
. (2.3)

Probe branes can be embedded in various ways, depending on the value of p. In all cases

which we will discuss, four of the directions of the probe brane are aligned with t and

three of the xi. For the D4/D6 system one has a choice of two different subspaces for the

embedding of the probe. One of these occurs again for the D3/D7 system and the other

one occurs for the D4/D8 system. See figure 1 for details.

There are two types of embeddings of the probe brane, depending on whether or not

it intersects the horizon of the background. The “Minkowski embeddings” do not reach

the horizon. The non-equatorial embeddings of this type are described most conveniently

in the r–λ coordinate system using the λ coordinate on the world-volume. The “black hole

embeddings”, on the other hand, do reach the black hole horizon, intersecting it orthogo-

nally. The non-equatorial embeddings of this type are best described in a polar coordinate

system ρ–θ, as indicated in figure 1 (see appendix A.1 for details on our coordinate sys-

tems). The embedding which lies along the horizontal axis plays a special role, as it occurs

in all models which we analyse here.
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Figure 1. The generic holographic setup for the D4/D6 system. The r–λ plane is a

conformally flat plane arising from the second term in (2.1), and τ ≡ x4 (see the appendix

for details). The embeddings in the horizontal τ–λ plane will be called “equatorial”. The

embeddings of the D4/D8 system are similar to these equatorial ones. The D3/D7 system

only has embeddings corresponding to the ones in the vertical r–λ plane, which we will

call “polar”. Critical embeddings are displayed in red, while the horizon is indicated by

the blue surface.

Statements concerning a possible relation between meson modes and quasi-normal

modes have all been concerned with the behaviour of embeddings in the r–λ plane, in other

words, with the D3/D7 and D4/D6 system. There is, however, also a critical embedding

separating a Minkowski from a black hole phase in the D4/D8 system, i.e. in the τ–λ plane.

We will analyse this system separately in section 4.

Let us now turn to the vector fluctuations on the probe branes. The equations gov-

erning them follow from an expansion of the induced action in powers of the abelian field

strength. At lowest order one has

Svector ∝
∫

d4xdλdΩ6−p e
−φ√−ĝ FMNFPQĝ

MP ĝNQ , (2.4)

(and similar for the ρ–θ and τ–λ system) where ĝ denotes the induced metric. The spatial

components of the fields which describe the massive vector mesons arise from the expansion

F0a =
∑
n

∂0B
(n)
a ψ(n)(λ) , Fλa =

∑
n

B(n)
a ∂λψ(n)(λ) . (2.5)

We will focus solely on thermal pole masses of the vector mesons, which are defined by

∂2
0B

(n)
a = −m2

(n)B
(n)
a . The equation of motion for the modes ψ(n) which then follows reads

∂λ

[
e−φ
√
−ĝĝaaĝλλ∂λψ(n)

]
+m2

(n)e
−φ√−ĝĝaaĝ00ψ(n) = 0 . (2.6)

These equations can be solved in a series expansion near the tip of the brane, and then

extended numerically using standard shooting methods. In the Minkowski phase, the
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Figure 2. The Schrödinger potential for Minkowski embeddings in the D3/D7 system,

close to criticality, for various values r0 of the intersection with the vertical axis. The green

dashed line indicates the asymptotic potential in the box, given by (3.17); the vertical

dashed lines mark the edges of the plateau (which will be defined in section 3.3).

discrete mass spectrum arises after imposing that the fluctuations are regular in the IR

and normalisable in the UV. In the black hole phase, the discrete quasinormal spectrum

comes from incoming boundary conditions in the IR and normalisability in the UV.

In order to get a better insight into the structure of the spectrum, it is useful to

perform a coordinate transformation and a wave function rescaling which brings (2.6) in

Schrödinger form. Following the notation of [15], we write the equation in the general form

1

Γ(λ)
∂λ

[
Γ(λ)

Σ2(λ)
∂λψ(n)

]
+m2

n ψ(n) = 0 . (2.7)

(The functions Γ and Σ of course implicitly depend on the probe brane embedding func-

tion r(λ)). By introducing a new coordinate and a rescaled wave function according to

dλ

dσ
=

1

Σ
, ψ̃(n) = Ξψ(n) , Ξ =

√
Γ

Σ
, (2.8)

the problem is transformed into a Schrödinger type problem,

− ∂2
σψ̃(n) + V ψ̃(n) = Enψ̃(n) , with V =

∂2
σΞ

Ξ
, En = m2

(n) . (2.9)

We will see how to approximate the potential V analytically in the following sections.

However, to get an idea of what we are aiming for, let us first give the results of a numerical

analysis, valid for the embeddings in the r–λ plane.

The resulting potential for the Minkowski embedding is displayed in figure 2, where r0

is the position at which the probe brane intersects the vertical axis of figure 1. The σ

coordinate is bounded on both sides. As the critical embedding is approached, the potential

becomes more and more rectangular, while the box size (i.e. the range of σ) grows, until it

eventually becomes unbounded.

The result for the black hole embedding is shown in figure 3, where χ0 = cos θ0 is

related to the value of the angular coordinate at which the brane intersects the horizon,

as shown in figure 1. Now the σ coordinate is bounded only in the UV direction, and the

potential develops a clear step-shape. As the critical embedding is approached, the step

becomes infinitely long.
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Figure 3. The Schrödinger potential for black hole embeddings in the D3/D7 system, close

to criticality, for various values of the angle χ0 of intersection with the horizon. Green and

black dashed lines have the same meaning as in 2.

These figures suggest that it should be possible to find a simple description of the

potential very close to the critical embedding. We will do that in the next section. A

somewhat similar story holds true for the D4/D8 embeddings, which we will analyse in

more detail in section 4.

3 The D3/D7 system

3.1 Zero-temperature potentials

Before giving our analytic results at finite temperature, it is instructive to recall the struc-

ture of the Schrödinger potential at zero temperature. Although we mainly focus on the

D3/D7 system (p = 3), we have kept part of the discussion general so the D4/D6 system

can be obtained (by setting p = 4). At zero temperature, there are two types of embed-

dings. One is the conformal embedding of the D7-brane (when the constituent quark mass

mq is zero), and the other one is the non-conformal embedding, when mq 6= 0. In the for-

mer case the induced metric on the worldvolume of the brane is exactly that of AdS5×S3,

while in the latter case the induced metric approaches this only in the UV, i.e. near the

AdS boundary. The embedding is trivial in these cases, given by r = mq, which leads to

the vector fluctuation equation [16]4

1

λ3
∂λ

(
λ3∂λψ(n)

)
+

m2
(n)

(λ2 +m2
q)

2
ψ(n) = 0 . (3.1)

The Schrödinger potentials for the mq = 0 and mq > 0 are easily computed to be,

Vmq=0(σ) =
3

4σ2
, λ = −σ−1 ,

Vmq 6=0(σ) = m2
q

[
1

2
+

3

4

(
tan2(mqσ) +

1

tan2(mqσ)

)]
, λ = mq tan(mqσ) .

(3.2)

4The curvature radius L has been set to one, hence the mq variable has dimension length. The

coordinates used are r = u cos θ and λ = u sin θ as in [16], but different from the coordinates of

appendix A.1.
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In the conformal case the potential goes to a constant (zero) in the IR, while it diverges

in the UV. In the non-conformal case, the potential diverges both in the UV and IR. The

box shape of the potential Vmq 6=0 obviously leads to a discrete spectrum, in contrast to the

continuum spectrum of the conformal case. If one replaces Vmq 6=0 with an infinitely high

box of size π/(2mq), the spectrum asymptotically becomes m2
(n) = 4m2

q n
2, in agreement

with the large-n limit of the exact spectrum found in [16]. Hence, we see that while in the

UV both branes are the same (i.e. AdS), with a diverging potential, the main difference

between the two comes from the IR, i.e. from near the Poincaré horizon.

Let us now turn to the T 6= 0 case. In this case the analytic form of the embed-

dings of the branes is unknown, and so one would perhaps expect the analysis to be more

complicated than above. However, the key element is that, for branes close to the critical

embedding, only the near horizon region of the background is relevant, a region which is

quite different from the T = 0 background discussed above. Brane embeddings near the

horizon were analysed by [17, 18]. As we will show below, when we get closer and closer

to the critical embedding, the region in Schrödinger coordinate which corresponds to the

near-horizon region becomes larger and larger, growing without bound. In the strict limit,

we end up with an extremely simple, flat potential of infinite length, only corrected by

finite-size effects whose relative effect scales to zero. The simple potential then allows us

to make an exact statement about the spectrum.

3.2 Brane embeddings in the Rindler approximation

Having illustrated the behaviour of the Schrödinger potential with some numerical results

and having sketched our approach, let us now provide an analytic argument which will lead

to an exact potential in the critical limit. We first need to summarise the brane embeddings

close to the horizon. As in [18], we write the metric of the 8− p sphere as

dΩ2
8−p = dθ2 + sin2 θdΩ2

6−p + cos2 θdϕ2 . (3.3)

We will consider the probe embedding extended in three x-directions, wrapping the 6− p-
sphere at fixed ϕ and having non-trivial θ(r). We now want to zoom in a region near the

horizon, for a brane which is near its critical embedding. This means a region close to

θ = 0, r = r0. Let us choose a parametrisation

u = uT + πTz2 , θ =
y

L

(
L

uT

) p−3
4

, x̃ =
(uT
L

) 7−p
4
x . (3.4)

Then, considering the limit where

u− uT
uT

=
πTz2

uT
� 1 , θ =

y

L

(
L

uT

) p−3
4

� 1 , (3.5)

we find Rindler space 5

ds2 = −(2πT )2z2dt2 + dz2 + dy2 + y2dΩ2
6−p + dx̃2

3 + . . . , (3.6)

5The relation with the ρ, χ variables of figure 1 is, for the D3/D7 system, given by ρ− 1 = z/L,

χ = 1− 1
2y

2/L2, valid near ρ ≈ 1, χ ≈ 1; see appendix A.1 for details.
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while the dilaton approaches a constant. Notice the horizon is now at z = 0. The Rindler

approximation ceases to be valid at distances set by

RRindler ≡
√
uT
πT

=

L p = 3;

2√
3

(
uTL

3
)1/4

p = 4 .
(3.7)

The equation describing the probe embedding y(z) in this region is

zyÿ +
(
yẏ − (6− p)z

)(
1 + ẏ2

)
= 0 . (3.8)

An important aspect of (3.8) is its scaling symmetry, z → λz, y → λy. This means that

changing z0 or y0 does not really influence the shape of the embedding but just rescales it.

The obvious solution of this equation gives the critical embedding,

ycrit =
√

6− p z . (3.9)

If the brane does not touch the horizon, there is a family of smooth Minkowski embeddings

parametrised by z0, the distance of the tip of the brane to the horizon. The solution near

z = z0 reads

yMink = z0

[√
2(7− p)

√
z − z0

z0
+O

((
z − z0

z0

) 3
2

)]
. (3.10)

For z � z0 one can find the asymptotic solution [17] which shows that the embedding

approaches the critical one ycrit up to corrections which scale as a negative power of z.

Taking the limit z0 → 0 corresponds to approaching the critical embedding.6 If the brane

intersects the horizon, there is a family of black hole embeddings parametrised by y0, which

near z = 0 reads

yBH = y0

[
1 +

6− p
4

z2

y2
0

+O

((
z

y0

)3
)]

. (3.11)

Again, the parameter y0 measures the deviation from the critical embedding, and taking

the limit y0 → 0 corresponds to the limit in which the critical embedding is reached. In

the other regime z � z0 the embedding again approaches the critical one [17].

3.3 Structure of the Schrödinger potentials

Let us now analyse the Schrödinger potentials for the spectrum of vector meson fluctuations.

The dominant part of the potential will turn out to be located in the Rindler region, so we

will first focus on the embeddings described in the previous subsection.7 We will focus on

a simple subset of the possible excitations, namely those described (in the A0 = 0 gauge)

by Ai = e−iωtψ(z). In Rindler coordinates, the equation for the fluctuation is

∂z

(
y6−pz(1 + ẏ2)−

1
2∂zψ

)
+
y6−p

z
(1 + ẏ2)

1
2 ω̃2ψ = 0 , (3.12)

6However, note that the limit is subtle. Since the expansion parameter is (z− z0)/z0 one cannot

first take z0 → 0, but rather one has to simultaneously scale z → 0. This is similar to the situation

we had for the T = 0 embedding and the limit mq → 0.
7Several other properties of holographic QCD are also fully determined by the Rindler region;

see e.g. [19].
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Figure 4. The approximations used for the potentials close to the critical embedding, to

be compared with the exact numerical results in figure 2 and 3.

where ω̃ ≡ ω
2πT . Using (3.8) this equation can be written as

∂2
zψ +

1 + ẏ2

z
∂zψ +

1 + ẏ2

z2
ω̃2ψ = 0 . (3.13)

The IR boundary conditions to be imposed on the wave function ψ are regularity in the

Minkowski case and incoming boundary conditions in the black hole case,

ψMink = 1 +O(z − z0) , ψbh = z−iω̃(1 +O(z)) . (3.14)

It is useful to recast equation (3.12) in Schrödinger form, as we did for the full problem in

the previous section. In terms of the notation used in [15] we now have

Γ =
y6−p

z
(1 + ẏ2)

1
2 , Σ =

(1 + ẏ2)
1
2

z
, Ξ = y

6−p
2 , ψ̃ = Ξψ . (3.15)

The new radial variable σ is defined through dσ/dz = Σ, as before. With these redefini-

tions, equation (3.12), describing fluctuations in the IR, can be rewritten as

−∂2
σψ̃+VIRψ̃ = ω̃2ψ̃ , with VIR =

∂2
σΞ

Ξ
=

(6− p) z2

2y2

6− p+ ((6− p)/2− 1)(∂zy)2

1 + (∂zy)2
.

(3.16)

Using the explicit solutions for brane embeddings, described in the previous subsection, we

can compute the potentials. They are plotted in figure 6 for the p = 3 case.

Let us first discuss the potential for the critical embedding (3.9). It turns out to be

constant everywhere in the Rindler region, with a value given by

V IR
crit =

(6− p)2

4(7− p)
. (3.17)

The σ coordinate is related to the z coordinate by σ =
√

7− p log z, so the point z = 0 is

mapped to σ = −∞ while the edge of the Rindler region in the UV is mapped to σ = +∞.

The potential for the critical embedding is thus a constant on σ = 〈−∞,+∞〉.8

8If one repeats the computation for a scalar excitation y = ycl(z) + δy(t, z), one gets for the

critical embedding Vcrit = p2−8p+8
4(7−p)2 which is negative for the cases of interest p = 3, 4, signalling

unambiguously the appearance of scalar tachyons in this channel near the critical embedding. These

tachyonic modes were first explicitly discussed in [20].
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Figure 5. Schematic indication of the three regions defined in the text. The light shaded

area is the Rindler region. For a fixed embedding, the segment before entering the dark

shaded area is the “deep IR”, the segment after exiting is the “UV” while the segment

inside the dark shaded area is the “intermediate IR”. The latter grows, in the Schrödinger

coordinate, as −2 log(r0 − 1/
√

2) or − log(1− χ0).

We have already seen numerical evidence for the formation of this plateau both from

the Minkowski side as well as from the black hole side (figure 2 and 3). In the Minkowski

case, the plateau arises from an approximately square well, while in the black hole case

it arises from a step-like potential (note that the step is a generic feature of black hole

embeddings [21]). We thus want to approximate these potentials as in figure 4.9 Using the

results of the present section, we can now make explicit how the lengths of the long flat

segments of these potentials depend on the distance to the critical embedding.

For all embeddings, three regions can be distinguished. First, there is a “deep IR

region”, where the near-critical Minkowski and near-critical black hole embeddings still

deviate from the critical embedding. Somewhat further out, but still in the region where

the Rindler approximation makes sense, there is an “intermediate IR region” or “plateau”.

In this region the embeddings are well-approximated by the critical embedding. Finally,

for z ≈ RRindler, we leave the regime of validity of the Rindler approximation, and we have

no analytic control anymore over the shape of the embeddings in this “UV region”. The

three regions are shown in figure 5.

The potential in the intermediate IR region is essentially constant, because the brane

is there almost the same as the critical one. The key observation is that, as we argue below,

the size of this intermediate region in the Schrödinger coordinate diverges logarithmically

as the critical embedding is approached. The other two regions (“deep IR” and “UV

region”), on the other hand, have a size which is independent of z0 or y0. Hence, as

observed numerically, when we approach the critical embedding (either from the black hole

or from the Minkowski side) the Schrödinger potential becomes constant, due to the fact

9For Minkowski embeddings in the D4/D6 case, the Schrödinger potential does not diverge at

z = z0 but goes to a finite constant. However, regularity of the fluctuation requires ψ̃ to vanish at

the finite value σIR = σ(z = z0). Thus, a box potential is also a good approximation in this case.
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Figure 6. Schrödinger potentials for the D3/D7 vector excitation in Rindler space, as

well as an estimate of the left-hand side of the plateau, for the Minkowski and black hole

embeddings respectively.

that the size of the intermediate IR region in the Schrödinger coordinate diverges.

Let us now compute the lengths of the various regions. First, in order to show that

the deep IR region has a size which is independent of z0 or y0, we make use of the scaling

symmetry of (3.8). Suppose that we have a Minkowski solution

y = f1(z) , which satisfies y(z̄0) = 0, (3.18)

i.e. z̄0 is the point where the brane is closest to the horizon. Using scaling symmetry, there

is then another solution

y = f2(z) ≡ f1

(
z
z̄0

z0

)
z0

z̄0
, which satisfies y(z0) = 0. (3.19)

Next, let us introduce a threshold ∆, which is a fixed and small positive number. When

the distance between two branes is smaller than ∆, we will consider them to be coincident.

Assume now that we have found a point z = z̄left for which the distance between the first

embedding and the critical one is equal to this ∆,

f1(z̄left)−
√

6− p z̄left = ∆ . (3.20)

This tells us immediately that, at a point zleft = (z̄left/z̄0) z0, the distance of the second

embedding to the critical one satisfies

f2(zleft)− fcrit(zleft) = f1

(
z0
z̄left

z̄0

z̄0

z0

)
z0

z̄0
−
√

6− p z0
z̄left

z̄0
=
z0

z̄0
∆ < ∆ if z0 < z̄0.

(3.21)

In other words: if we define the end of the deep IR region to scale like linearly in z0, and if

we fix the proportionality constant for some value of z0, then the approximation is better

for all embeddings which are closer to critical. We can thus define the deep IR region to

be z0 < z < Λz0 for some Λ which is independent of z0.

The length of the deep IR region in the Schrödinger coordinate σ now comes out to

be independent of z0, because ∂zy is a function of z/z0 only (this is a consequence of the

– 11 –



scaling symmetry). Therefore, using the value of Σ in (3.15), we find

∆σMink
deep IR =

∫ Λz0

z0

(
1 + Y 2(z/z0)

)1/2
z

dz =

∫ Λ

1

(
1 + Y 2(q)

)1/2
q

dq , (3.22)

where Y (z/z0) ≡ ∂zy. This expression is independent of z0. The length of the “intermediate

IR” region, Λz0 < z < εRRindler for some ε < 1, can be computed using the critical

embedding.

We now concentrate on the D3/D7 case, for which the edges of the plateau are given

by Λ ≈ 3 and ε ≈ 1/5. One finds

∆σMink
plateau ≈

∫ εL

Λz0

2

z
dz = 2 log

εL

Λz0
≈ −2 log(r0 − 1/

√
2)− 6.11 . (3.23)

The numerical factors ε and Λ are of course somewhat arbitrary, but the scaling with r0

is fixed by the critical embedding. This scaling is reproduced well by the numerical data,

see figure 7a (the black dashed vertical lines in figure 2 indicate the edges of the plateau).

Finally, there is a UV region which is out of reach of the Rindler approximation. However,

this UV region is similar to the one for zero-temperature embeddings, i.e. has finite size in

the Schrödinger coordinate, independent of r0.

A similar logic applies to the black hole embeddings. The agreement with the critical

embedding (or equivalently, the start of the plateau) again occurs at around z ≈ 3y0, and

the Rindler approximation breaks down at z ≈ L/5. We then find that the plateau region

scales as

∆σBH
plateau ≈

∫ εL

Λy0

2

z
dz = 2 log

εL

Λy0
≈ − log(1− χ0)− 6.11 , (3.24)

Again, this scaling with χ0 agrees well with the size of the plateau as measured from the

numerical data, see figure 7b (the black dashed vertical lines in figure 3 indicate the edges

of the plateau). There is also again a UV region, which looks like the UV part of the

potential at zero-temperature, which has finite size in the Schrödinger coordinate.

We thus see that in both cases, we can determine the size of the plateau as a function of

the distance to the critical embedding. The plateau becomes of infinite length, and all other

IR and UV features of the potentials get infinitely pushed away. They remain of finite size,

however, and their contributions to the spectrum scale to zero in the critical limit (some

caricature potentials in which this can be seen explicitly are discussed in appendix A.2).

Therefore, we conclude that the mass spectrum can be approximated by using a square

well potential on the Minkowski side, and a square step when one approaches from the

black hole side (see figure 4), where the plateau sizes scale as in (3.23) and (3.24).

3.4 Meson and quasi-normal modes

Having obtained simple potentials for the two types of brane embeddings, let us now look at

the spectrum. For the Minkowski embedding, the masses are simply given by the solution

of the Schrödinger equation in a box of height Vcrit. This yields√
ω̃2
n − Vcrit ≈

nπ

σUV − σIR
, n ∈ N . (3.25)
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Figure 7. Numerical values (for the D3/D7 system) for the width of the plateau in the

Schrödinger σ coordinate, for the Minkowski and black hole embeddings, together with

their analytic approximations (3.23) and (3.24).

However, the box size σUV−σIR depends on z0, and diverges in the critical limit. Thus, all

meson masses tend to
√
Vcrit, as alluded to in the introduction. Verifying this numerically,

on the other hand, is slightly subtle because the masses approach the limit only slowly.

For the black hole embedding, we need to consider a potential with two regions.

In the first region, with range −∞ < σ < σstep, the potential vanishes. The solution

of the Schrödinger equation which has incoming boundary conditions at σ = −∞ is

ψ̃(1) = e−iω̃σ. To simplify notation, we will set σUV = 0. In the second region, with

range σstep < σ < 0, the potential has the value given in (3.17). The solution now reads

ψ̃(2) = A sin(
√
ω̃2 − Vcritσ) where A is a constant to be determined and we have imposed

ψ̃(σ = 0) = 0 since there is an infinite wall. By matching the values of ψ̃ and its derivative

at σ = σstep, we find a single equation for the values of the quasi-normal frequencies,

iω̃ sin(
√
ω̃2 − Vcrit σstep) +

√
ω̃2 − Vcrit cos(

√
ω̃2 − Vcrit σstep) = 0 . (3.26)

Given Vcrit and σstep, one can find numerically the complex values of ω̃ that solve this

equation. However, let us look at a particularly interesting limit,

|σstep|
√
Vcrit � 1 . (3.27)

Since in our problem Vcrit is fixed to be the constant in (3.17), this is satisfied for large

(negative) σstep. Remembering that |σstep| grows unbounded when the flavour brane ap-

proaches the critical embedding (y0 → 0), this is in fact the limit in which we are interested.

But now we can obtain ω̃ as an expansion in (σstep

√
Vcrit)

−1,

ω̃n =
√
Vcrit

±1± n2π2

2σ2
stepVcrit

+ iF
n2π2

σ3
stepV

3
2

crit

+O
(

(σstep

√
Vcrit)

−4
) , n ∈ N .

(3.28)

Here F is the first coefficient in this expansion which depends on the finite-size details of

the potential; for the step potential of figure 4 we have F = 1 (for details see appendix A.2).
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Figure 8. Behaviour of the first quasi-normal mode of the D3/D7 system with a black hole

embedding, as a function of the distance χ0 to the critical embedding. The blue dotted

line represents the analytic result obtained by using a step potential (where F = 0.84 was

used in (3.28)). The values χ0 = 0.94 and χ0 = 0.9621 correspond to the points where the

embedding becomes metastable and unstable, respectively.

This expression is rather appealing. The real part is the one obtained if one had an

IR infinite wall at σstep. That is, it corresponds to the meson masses of the Minkowski

embedding if one identifies σstep with σIR there. In fact, from figures 2 and 3 we see that

these values are comparable if z0 and y0 are of the same order. On top of that, there is a

small, negative imaginary part (remember σstep < 0).

The numerical analysis of the quasi-normal frequency spectrum away from the critical

embedding, as presented in [4] for a scalar excitation, requires some care if one wants to

extend it to the regime of near-critical embeddings. In the coordinates used here, we found

reliable numerical results for the first quasi-normal mode, which match smoothly onto our

analytic results. The result for the D3/D7 system is shown in figure 8. Equation (3.28)

thus provides us with an endpoint for the vector analog of the spiralling trajectories of the

quasi-normal modes shown in figure 4 of [4].

Summarising the present section, we have seen that any finite number of meson masses

in the D3/D7 system come down to a single value
√
Vcrit. Similarly, any finite number of

quasi-normal modes come down to the same value as the critical embedding is approached

from the black hole phase. Since the masses and quasi-normal modes are labelled by a

single excitation number n, there is in principle an infinite number of ways to relate the

states in these two spectra, and the connection between mesons and quasi-normal modes

thus seems more subtle than previously suggested [5, 6]. Note that the degeneracy is not in

contradiction with the Von Neumann & Wigner theorem [14]. In our case, a finite change

of the parameter (here given by T/mq) leads to an infinite change of the potential (the

logarithmic growth which diverges at the critical embedding), while the Von Neumann &

Wigner theorem requires the potential to change smoothly.
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4 The D4/D8 system

4.1 Schrödinger potentials

The D4/D8 embeddings used in the Sakai-Sugimoto model are different from the cases

analysed so far. Instead of being described by a curve in the r−λ plane, these embeddings

are given by curve in the u−τ subspace, i.e. these are more like the “equatorial embeddings”

of the D3/D7 system. There is a family of Minkowski-type embeddings, labelled by the

lowest point u0 of the D8 brane in the u-direction. The black hole embeddings are labelled

by the distance in the τ direction between the two halves of the D8 brane, but this distance

is a modulus and the spectrum is independent of it.

In the intermediate-temperature phase, where chiral symmetry is broken, the vector

meson fluctuation equation reads [11] (we set uT = L = 1 from now on)

∂u

(
u5/2γ−1/2f4(u)1/2∂uψ(n)

)
+ u−1/2γ1/2f4(u)−1/2m̃2

(n)ψ(n) = 0 . (4.1)

where

γ =
u8

u8f4(u)− u8
0f4(u0)

. (4.2)

Following the by now familiar procedure we thus construct the Schrödinger radial variable σ

through

σ(u) = ±
∫ u

u0

u4 du√
u3 − 1

√
u5(u3 − 1)− u5

0(u3
0 − 1)

. (4.3)

We have defined σ = 0 as the tip of the brane (u = u0) and the two signs correspond to the

two branches of the brane worldvolume. For any u0 > 1, it is clear that σmax = σ(u =∞)

is finite, so σ lives in a finite range. However, as u0 → 1, σmax diverges. The rate of

divergence can be computed by making a coordinate change δ = (u/u0)3 − 1, which leads

to

σmax(ε) =
1

3

∫ ∞
0

(1 + δ)−
1
6

√
δ
√
δ + ε

dδ , where ε = 1− u−3
0 . (4.4)

This integral can be evaluated by splitting it into two regions, 0 < δ <
√
ε and

√
ε < δ <∞.

This leads to two integrals which can be evaluated analytically, up to corrections which

vanish as
√
ε. The result is

σmax(ε) =
1

6

(√
3π + 8 log 2 + log 3− 2 log(u0 − 1)

)
+O(

√
ε) . (4.5)

The Schrödinger potential in the u-variable is:

V =
u5(2u6 + 2u3 − 4) + u5

0(u3
0 − 1)(6u3 − 9)

4u10
. (4.6)

Its limiting behaviour at the tip and far away from it is given by

V (u = u0) =
8u6

0 − 13u3
0 + 5

4u5
0

, V (u→∞) =∞ . (4.7)

The dependence of V on the σ variable can be computed numerically. The result for

various values of u0 is plotted in figure 9. These plots suggest that it should be possible to
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Figure 9. The Schrödinger potential for the Sakai-Sugimoto system in the phase with

broken chiral symmetry, for various decreasing values of the position u0 of the tip of the

brane. The dashed red lines (outer box) denote the potential used for the computation

of the lower bound, while the dotted black lines (inner box) denote the potential for the

upper bound (with q = 2).

find two square well potentials, which provide an upper resp. lower bound on the potential.

The lower bound is obtained by using a width which is twice the expression (4.5) (the red

dashed outer box in figure 9).

For the width of the upper bound potential, we pick a point σi on the σ axis for

which we can show that the potential goes to zero in the limit u0 → 1, and which is such

that σi →∞ in this limit. A suitable point is defined by δ = ε1/q for some positive q. This

point satisfies

σi =
1

3

∫ ε1/q

0

1√
δ
√
δ + ε

dδ =
2

3
log 2− q − 1

3q
log ε+O(ε

q−1
q ) . (4.8)

The potential V (σi) behaves as O((u0 − 1)1/q) and thus goes to zero. For sufficiently

small u0 the potential is monotonic, and thus we conclude that V (σ < σi) goes to zero as

well. Furthermore, we can take the formal limit q → ∞ in (4.8). In this limit, the box

size again diverges logarithmically as u0 → 1, with the same coefficient of the logarithm as

in (4.5). We will use a box with width twice that of (4.8) for q → ∞ to obtain an upper

bound to the potential (the black dashed inner box in figure 9).

In the phase where chiral symmetry is restored, the vector meson fluctuations are

governed by the equation

− u1/2(1− u−3)∂u

(
u5/2(1− u−3)∂uψ(u)

)
= ω̃2ψ(u) . (4.9)

A Schrödinger equation is obtained by using

Γ =
1

u1/2(1− u−3)
, Σ =

1

u3/2(1− u−3)
, Ξ = u1/2 , ψ̃ = Ξψ . (4.10)

The Schrödinger coordinate, obtained using dσ/du = Σ, is a complicated function of u

which does not admit a simple inverse. We therefore restrict to a numerical plot of the

potential in figure 10. In the u coordinate it is given by

V =
u6 + u3 − 2

2u5
. (4.11)
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Figure 10. The Schrödinger potential for the Sakai-Sugimoto system in the phase where

chiral symmetry is restored. The σ coordinate spans the half-line −∞ < σ < 0.

This potential is quite featureless and we will hence resort to a numerical determination of

the quasi-normal mode spectrum for the D4/D8 case (this potential is similar to the one

for the equatorial D3/D7 embedding).

4.2 Mesons and quasi-normal modes

Using the square well potentials which we have shown in the previous section to be upper

resp. lower bounds for the full Sakai-Sugimoto potential, it is easy to compute the mass

spectrum in the u0 → 1 limit. From the box with a width given by twice (4.5) we find

m̃(n)(u0) &
nπ

2
(√

3π
6 + 4

3 log 2 + 1
6 log 3− 1

3 log(u0 − 1)
) , n ∈ N , (4.12)

whereas the box with width given by twice (4.8) we get

m̃(n)(u0) .
nπ

2
(

2
3 log 2− 1

3 log 3− 1
3 log(u0 − 1)

) , n ∈ N . (4.13)

To re-instate the L and uT dependence, note that

m̃ =
L3/2

u
1/2
T

m =
3m

4πT
. (4.14)

These expressions both go to zero as u0 → 1; see figure 11 for a comparison with the

numerically determined spectrum.

Because the potential in the high-temperature phase (4.11) does not take a simple form,

we again have to resort to numerics in order to find the quasi-normal mode spectrum. The

first six vector meson masses are given in figure (12) (each of these is twofold degenerate

because of chiral symmetry). A fit to a linear function yields

ω̃n = ±(0.31 + 1.305n)− (0.145 + 0.752n)i , (4.15)

(where ω̃ is related to ω by a relation similar to (4.14)). The numbers agree with the

analysis presented in [22].
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Figure 11. The first vector (left) and axial vector (right) meson masses computed numer-

ically, versus the analytic upper and lower bounds computed (4.13) and (4.12).

n ω

1 ±1.61− 0.90i

2 ±2.93− 1.65i

3 ±4.23− 2.40i

4 ±5.54− 3.16i

5 ±6.84− 3.91i

6 ±8.13− 4.66i

Figure 12. The spectrum of the first twelve quasi-normal vector modes of the chirally

symmetric phase of the Sakai-Sugimoto model (each mode is twofold degenerate because

of chiral symmetry).

Comparing the real parts of the quasi-normal modes with the meson masses in the

intermediate-temperature regime, we see that there is no room to connect the two in a

smooth way. The masses of any finite number of mesons come down to zero as the critical,

overheated embedding is approached. In contrast to this, the quasi-normal modes take

values which are equally spaced in the complex plane, with a lower bound on the real part

which is non-zero. An identification along the lines of [5, 6] thus does not seem possible

for the Sakai-Sugimoto model.

5 Conclusions and discussion

We have analysed the form of the Schrödinger potential for vector meson fluctuations in

various holographic duals to gauge theories with matter. These potentials exhibit some

generic structure which we expect to see for more general classes of models. In the Rindler

region, a Minkowski embedding will lead to a box-shaped potential, while a black hole

embedding will lead to a step. When no Rindler approximation can be made, which is the

case for the equatorial embeddings, more of the background can be seen, and the potential

is typically more complicated.
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In the non-equatorial type transition of the D3/D7 system, we have shown how any fi-

nite number of meson masses come down to a fixed value. Similarly, when the embedding is

approached from the black hole side, any finite number of quasi-normal modes approaches

this same value. Lacking any quantum numbers to distinguish them, the connection be-

tween these spectra is thus more subtle than previously suggested.10

For the D4/D8 embeddings (“equatorial”), we have shown that all meson masses come

down to zero. This is consistent with the fact that there is a proper chiral symmetry

restoration after the transition, in sharp contrast to the D3/D7 system. The quasi-normal

mode spectrum, on the other hand, is equally-spaced with a non-zero lowest frequency

mode. This result does not support the idea that quasi-normal modes are continuously

connected to meson modes. It is conceivable that, if one would introduce a bare quark

mass into the Sakai-Sugimoto model (along the lines of [23–25]), its behaviour would be

more similar to the D3/D7 case. It would also be interesting to verify if the qualitative

results we have obtained for the D4/D8 model are realised in its non-critical version [26],

whose thermal phase structure was analysed in [27].

We have not yet touched the issue of chemical potentials. In the presence of a baryon

chemical potential, the spectral function exhibits, for large enough mq/T , sharp peaks close

to the critical embedding [6]. Moreover, these peaks converge on the meson masses for the

Minkowski embeddings. However, while the embeddings for large chemical potential are

very close to the Minkowski embeddings (and hence the agreement in the spectrum), they

are not related to each other by a small deformation in the gauge theory parameter space.

The situation is reminiscent of a strong/weak duality in chemical potential. It would be

interesting to understand this behaviour for isospin potentials as well [28].
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A Appendix

A.1 Coordinate frames

We collect here a number of technical details related to the coordinate choices made in the

main text. We will rewrite the metric (2.1) in two different ways, as depicted in figure 1.

One coordinate frame is better adapted for computations with Minkowski embeddings,

while the other one is more suitable for black hole embeddings.

10In [5] it was observed that peaks appear in the spectral function, which is consistent with our

results. However, our calculations show that these peaks all converge on ω̃ = 0.75. The spectra are

symmetric only for the artificial choice of fixed z0/y0.
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The first step is to define coordinates such that the second part of the metric (2.1)

becomes conformally flat. This is achieved with

u = uT

(
ρ̃

7−p
2 +

1

4 ρ̃
7−p
2

) 2
7−p

, Kp(ρ̃) =
u

p−3
2

ρ̃2
. (A.1)

The metric (2.1) becomes

ds2 =
(u
L

) 7−p
2
(
− fpdt2 + δijdx

idxj
)

+ L
7−p
2 Kp(ρ̃)

(
dρ̃2 + ρ̃2dΩ2

8−p

)
. (A.2)

We can reexpress the flat factor inside the last bracket by defining ρ̃2 = r2 + λ2, and we

get

ds2 =
(u
L

) 7−p
2
(
− fpdt2 + δijdx

idxj
)

+ L
7−p
2 Kp

(
dλ2 + λ2dΩ2

6−p + dr2 + r2dφ2
)
. (A.3)

This is the r−λ system depicted in figure 1, and for p = 4, it corresponds to the coordinate

system defined in [2]. We have found this frame convenient to numerically analyse the

Minkowski embeddings which reach λ = 0 at some r = r0, which parametrises the one-

parameter family of embeddings (Schrödinger potentials for various values of r0 in the

D3/D7 case are plotted in figure 2). The critical embedding corresponds to r0 = 2
2

p−7 .

We now define a ρ − χ coordinate system (as shown in figure 1) following [18]. We

first rescale the ρ coordinate defined above as:

ρ = 2
2

7−p ρ̃ , (A.4)

such that the horizon is at ρ = 1 and write the metric of the sphere as dΩ8−p = dθ2 +

sin2 θdΩ6−p + cos2 θdφ2. If we now define χ = cos θ, we get

ds2 =
(u
L

) 7−p
2
(
− fpdt2 + δijdx

idxj
)

+ L
7−p
2 u

p−3
2

(
dρ2

ρ2
+

dχ2

1− χ2
+ (1− χ2)dΩ2

6−p + χ2dφ2

)
, (A.5)

where u should be understood to be a function of ρ. This coordinate system is convenient

to study the black hole embeddings, parametrised by χ0 ≡ χ|ρ=1 (with χ0 = 1 being the

critical embedding). Some Schrödinger potentials for various values of χ0 in the D3/D7 case

are shown in figure 3. In this set of coordinates, Minkowski embeddings are parametrised

by ρ0 ≡ ρ|χ=1. For embeddings near the critical one, there are simple relations between

these parameters and y0, z0 as defined in section 3.2. For the D3/D7 case (p = n = 3),

they read:

y0 =
√

2
√

1− χ0 L (1 +O(1− χ0)) z0 = L (ρ0 − 1) (1 +O(ρ0 − 1)) (A.6)

These relations, together with ρ0 =
√

2r0, were used to obtain the last equality in equa-

tions (3.23) and (3.24).
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A.2 Quasinormal frequencies in toy potentials

We have argued in the main text that for the D3/D7 and D4/D6 cases near the crit-

ical embedding, the Schrödinger potential presents a plateau of diverging width in the

σ-coordinate. At its edges, there are some IR and UV features which remain of finite size.

Since the plateau is infinitely big as compared to these finite size details, one expects that

these details only affect the quasinormal frequencies (or meson masses) in a subleading

way. In this appendix, we will explicitly check this for two toy Schrödinger potentials that

approximate the near critical Schrödinger potential for D3/D7 black hole embeddings.

By looking at the plots in figure 3, one sees that there is a bump before the plateau and

a dip after the plateau, before the infinite wall. We stress that the size of the bump and

dip remain constant as the plateau grows unbounded when the embedding approaches the

critical one. Let us, accordingly, consider the following approximation for the Schrödinger

potential which we insert in (2.9):

V = 0 for σ < σstep + x1 ,

V = Vcrit + h1 for σstep + x1 < σ < σstep ,

V = Vcrit for σstep < σ < x2 ,

V = Vcrit − h2 for x2 < σ < 0 ,

(A.7)

and an infinite wall at σ = 0. We want to consider Vcrit, h1, h2 > 0 and σstep, x1, x2 < 0,

in a limit σstep → −∞ with Vcrit, h1, h2, x1, x2 fixed. We can obtain a solution of the

Schrödinger problem with IR incoming boundary conditions (ψ̃ = e−iωσ in region 1) as a

series in 1
σstep

√
Vcrit

. The solution is the same as in the simple step potential, see (3.28),

with F depending on the various parameters,

F = −i
(√

h1h2Vcrit cosh(
√
h1x1)− ih1

√
h2 sinh(

√
h1x1)

)−1

×
(

cosh(
√
h1x1)

[√
h1h2Vcritx2 + i

√
h1h2Vcrit −

√
h1Vcrit tan(

√
h2x2)

]
+ sinh(

√
h1x1)

[
−ih1

√
h2Vcritx2 −

√
h2Vcrit + ih1

√
Vcrit tan(

√
h2x2)

])
.

(A.8)

If we insert h1 = h2 = .1, x1 = x2 = −2, which is approximately appropriate for the

potentials we are dealing with, and also use Vcrit = 9/16, we get: F ≈ .65− 1.72i.

One may also worry if the exponential tail of the Schrödinger potentials, which is

proportional to e2σ as σ → −∞ could affect the computation. Let us address this point by

considering another toy potential slightly more complicated than the one in figure 4:

V = Vcrite
2σ−2σstep for σ < σstep ,

V = Vcrit for σstep < σ < 0 ,
(A.9)

Again, one can make an expansion for the σstep → −∞ limit and the solution for the

quasinormal frequencies is again (3.28) where F now can be written in terms of the modified

Bessel function:

F =
−2i I−i

√
Vcrit

(
√
Vcrit)

I−1−i
√
Vcrit

(
√
Vcrit) + I1−i

√
Vcrit

(
√
Vcrit)

(A.10)
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If we insert Vcrit = 9/16, we find F ≈ 1.1− .32i.

These two examples explicitly show how in the σstep → −∞ limit, the details of

the potential only appear in ω̃(n) at order (σstep

√
Vcrit)

−3 (which is however the leading

imaginary part for the quasinormal frequencies). In summary, this shows that finite details

do not change the discussion based on the infinite plateau.
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