CHARACTERISTIC p ANALOGUE OF MODULES
WITH FINITE CRYSTALLINE HEIGHT

VICTOR ABRASHKIN?!

ABSTRACT. In the case of local fields of positive characteristic we introduce an ana-
logue of Fontaine’s concept of Galois modules with crystalline height h € N. If h =1
these modules appear as geometric points of Faltings’s strict modules. We obtain
upper estimates for the largest upper ramification numbers of these modules and
prove (under an additional assumption) that these estimates are sharp.

0. Introduction.

Let p be a prime number. Let K be a complete discrete valuation field with
perfect residue field k of characteristic p. Choose a separable closure K., of K and
set 'k = Gal(Ksep/K). Denote by R the valuation ring of K and for any v > 0,

by I‘g) the ramification subgroup of I' with the upper number v.

Suppose, first, that K is of characteristic 0, i.e. K contains Q,, and consider e =
e(K) — the ramification index of K over Q,. In this situation for h € N, Fontaine
[Fo3] introduced the category of finite Z,[I'x]-modules with crystalline height h.
Examples of such modules are given by subquotients of crystalline representations
of I'x with Hodge-Tate filtration of length h or, more specifically, of Galois modules
of h-th etale coomology of projective schemes over K with good reduction. If h =1
then the corresponding Galois modules appear as points G(Kgep) of finite flat p-
group schemes (i.e. killed by a power of the endomorphism pidg) G over R . In
this case Fontaine [Fol] proved very important ramification estimate:

1 v .
if H € MG}O pVH =0 andv > e (N + —1> — 1 then Fg() acts trivially on H.
p —
This result was generalised in [Abl] (cf. also [Fo2], [Ab2]):
if H 1s a subquotient of crystalline representation of ' with the Hodge-Tate
h
filtration of length h <p—1, pNH =0 and e = 1 then for v > (N + —1> -1,
p —
F(Kv) acts trivially on H.

Now suppose that K is of characteristic p and k D F,, where ¢ is a power of p.
Introduce an analogue of Z,. This will be a subring O = F,[[r]] of R, where 7 € R
is not invertible in R. If F is the fraction field of O in K then denote by e = e(K/E)
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the ramification index of K over FE. In this situation an analogue of the category
of finite flat p-group schemes over R is the category of O-strict modules over R
with etale generic fibre. (The concept of O-strict module was introduced in [Fa].)
This category was studied in [Ab4], where the following ramification estimate? was
obtained:

if H= G(Kgp), where G is an O-strict module over R and 7™ H = 0 then for
1 v L
v>e <N + —1> -1, F%) acts trivially on H.
q _—

This estimate is a complete analogue of the above Fontaine’s estimate for p-group
schemes in the mixed characteristic case.

For h € N, we apply Fontaine’s idea from [Fo3] to introduce the category
of O[I'kx]-modules MG"(O)x with “crystalline height” h. Notice that if H €
MG'(O)k then H appears in the form G(Kyep), where G is an O-strict module

over R. Then we apply methods from [Ab4] to prove in section 3 the ramification
estimate:

if He MG"(O)k and 7N H = 0 then for v > e (N— 1+ %) -1, F(Kv) acts
trivially on H.

The proof uses essentially the existence of embedding of any H € MGh(O) K in
a m-divisible group consisting of objects of the category MG" (O) k. This statement
is parallel to the corresponding statement for h = 1 from [Ab4] and is proved in
section 2. Finally, we show in section 4 that the above ramification estimates can

. i —h

not be improved i ( N1
with the above mentioned estimate for subquotients of crystalline representations
in the mixed characteristic case. One can say that in the case of local fields of
positive characteristic the Galois modules with finite crystalline height do not give
a precise analogue of crystalline representations.

) % O0mod p. Notice that this estimate does not match

Everywhere in the paper if f : A — B and g : B — C are morphisms then
their composition will be denoted as fg, i.e. for any a € A, (fg)(a) = g(f(a)).

1. Main notation and results.

1.1. The categories mod(O)r and MG(O)k.

As in the introduction, let ¢ € N be a power of a prime number p. Let O = F,[[n]]
be a ring of formal power series in one fixed indeterminate m and denote by E the
fraction field of O. Let R be an O-algebra. Everywhere in the paper R is an integral
domain with the fraction field K. Choose a separable closure Ky, of K and set
'k = Gal(Ksep/K).

Denote by ¢ = 0, : R — R the ring endomorphism of R such that o(r) = r?
for any r € R.

Let MG(O)k be the category of O-modules of finite rank with continuous O-
linear action of I'c. Introduce the category mod(O)g of triples (L, F, [r]), where

e [ is a free R-module of finite rank;

oif L@ =T ®(R,o) R then F': L@ — [ is an injective R-linear morphism;

2the statement of this result in the Introduction to [Ab4] contains a misprint
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e [7r] € Endg L is nilpotent and F[r] = [x]{@F, where [7]@ = [r] ® id €
Endg(L@).

If £ = (L,F,[r]) and (Ly,F,[r]) are two objects from mod(O)r then
Homyoq(0), (£, £1) consists of R-linear morphisms f : L — L; such that fOF =

Ff and flr] = [x]f.

Remark. We have a natural embedding Endr L C Endg (L ®p K). Therefore, if
rkp L = s then [r]* = 0.

1.2. Functor Mr : mod(O)r — MG(O)g.

Let £L = (L, F,[r]) be an object of the category mod(O)g. Consider the R-
algebra A = A(L) := Symp L/I, where the ideal I is generated by the elements
17— F(®1) € SympL for all [ € L. Because F is injective, for Ay = A ®p K,
we have QL/K = 0, Ag is an etale K-algebra and rtkg A = dimg Ax = ¢"*r L.
In particular, if G = Spec A then G(Kgep) = Homp aig(A, Ksep) consists of ¢™&r -
elements. Notice that G has a natural structure of a group scheme over R given
by the comultiplication Ay : A — A ®g A and the counit e4 : A — K such
that As(l) = 1 ®1+1®1 and ex(l) = 0 for all [ € L. Set [o](l) = al for
a € F, and | € L. Introduce [7]4 : A — A, which is induced by the given above
[7] € Endg L. As a result, we obtain a structure of O-comodule on A. Therefore,
G(Ksep) is an O-module with a natural continuous action of the Galois group I'x
i.e. G(Ksep) € MG(O) k.

Clearly, the correspondence £ +— G(Kgep) determines a functor Mr from mod(O)r
to MG(O)k. As a matter of fact, with the above notation the correspondence
L — G induces an antiequivalence of the category mod(O)g and the category of
finite flat p-group schemes G over R with etale generic fibre, zero Verschiebung Vi
and a structure of O-module scheme.

1.3. The categories mod"(O)r and MG"(0)x-.

Let h € N. Introduce the category mod”(O)g as a full subcategory in mod(O)g
consisted of £ = (L, F, [r]) such that (7idy —[x])*(L) C Im F.

Denote by MG"(O)x the full subcategory in MG(O)g consisting of O[I'g]-
modules Mp(L), where £ is an object of the category mod"(O)x.

We are going to prove the following three results:

e if H € MG"(O)x then H can be embedded into a m-divisible group of finite
height, consisting of objects of the category MG™(O)k:;

e if H € MG"(O)g and 7V H = 0 then the ramification subgroups F(;()) act
h
trivially on H for v > e(N — 1+ q—l) —1;
q j—

—h

e with the above notation if
N -1

) # Omod p then the above ramification
estimate is sharp.

Remark. In the context of classical p-group schemes an analogue of the above first

result is Raynaud’s theorem stating that any finite flat group schems admits em-

bedding into a p-divisible group (even into an abelian scheme). In the context of

O-strict modules (the case h = 1) this result was proved in [Ab4]. The case of

arbitrary h will be proved in the next section by esssentially the same method. It
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seems our method can be also applied to prove an analogue of this statement for
Fontaine’s modules of finite cryatalline height in the mixed characteristic case.

2. Embedding into a w-divisible group.
2.1. The concept of w-divisible group.

Tate’s definition of p-divisible groups in the category of finite flat p-group schemes
admits the following interpretation in the categories MG"(O) g and mod™(O)g.

A 7-divisible group in the category MG"(O) g is an inductive system {Hn,intn>1,
where for any n € N, H,, € MGh(O)R and i, : H, — H,;1 are embeddings of
O[T k]-modules such that if n > m and iy, : H, — H, is the composition of

Im,---,in_1, then we have the short exact sequence
i J
0O—H, =H,~“>H, ,—0

and Jrumin—m,n = 7" idq,, .

The above definition can be also adjusted to the category modh(O) r by intro-
ducing the concept of strict embedding. If £ = (L, F, [7]) and £1 = (L1, F, [x]) then
i € Hompoq(0), (L1, L) is a strict embedding if it is induced by ¢ : Ly — L such
that L/i(L1) has no R-torsion. Such ¢ gives rise to a natural short exact sequence
0 — £y — L — L5 — 0 in the category mod(O)g. Then we can proceed
similarly to introduce a [r]-divisible group as an inductive system {L,,, %, }n>1 of
objects of the category modh(O) Rr, where all 7,, are strict embeddings.

2.2. The statement of the first main theorem.

Theorem A. If H € MG"(O)k then there is a w-divisible group {Hy,inYn>1 in
the category MG™(O)x such that if N € N is such that 7 idg = 0 then there is
an embedding of H into Hy in the category MG(O) .

The above theorem is implied by the following theorem.

Theorem A'. If £L € mod"(O)r then there is a [r]-divisible group {Ly,intn>1 in
mod™(O)g such that if N € N is such that [xN]£ = 0 then there is an epimorphic
map from Ly to L in the category mod(O)g.

The proof of theorem A’ will be given in nn.2.3-2.6 below.
2.3. Suppose £ = (L, F, [x]) € mod™(O)x.

Lemma. There is a unique R-linear V.=V : L — L9 such that

a) Vin]@ = [n]V;

b) VF = (widp —[x])";

C) FV = (TfidL(q) —[ﬂ](Q))h

Proof. Because F is injective and Im F' D Im(widy —[r])", there is a unique R-
linear V' such that VEF = (ridy —[x])". Then V[z] 9 F = V F[r] = [r]V F implies
that V[r](@ = [7]V, because F is injective. Similarly,

FVF = F(ridg, —[r))" = (ridp@ —[x] ) F

implies the part ¢) of our lemma.



2.4. Matrix identities.

Suppose £ = (L, F,[r]) is an object of the category mod"(O)r and V = V,
is the morphism from n.2.3. Choose an R-basis € = {ep}1<p<s of L and consider
square matrices C' = (cqp), D = (dap), Il = (Yap) € M(R) such that for 1 < b < s,

eb) — Z €q ® Cab7 €b & 1 Z ea aby (eb) = Z €aYab-
a b

Then in obvious notation
Vie)=ex®(C, Fle®1l)=eD, [r](e) =ell
and we have the following rules of composition
VF:eewC-eDC
FV:.eol-eb Y ewCD.
The proof of the following proposition is quite straightforward.

Proposition. Suppose € = (ep)i1<p<s @5 a basis of a free R-module L and D =
(dap), T = (Yap) € My(R). Suppose F : L9 — L is given by the correspondence
eE®1l — eD and [r] : L — L is given via € — ell. Then L = (L, F,[n]) €
mod"(O) g if and only if

(1) DII =19 D, where 19 = (v9,);

(2) detD #0;

(3) C:=DYaE-T)" € My(R);

(4) II is nilpotent.

Remark. a) If above conditions (1)-(3) hold then V : é — é®C, CD = (rE—TI(D)*
and CII9 =TIC.

b) Because II is nilpotent, det(mE — II) # 0 and, therefore, det C' # 0.

2.5. Construction of a w-divisible group in mod"(O)x.

For m > 1, let €, be a copy of € = (ep)1<p<s- Set by definition e, = 0 if m < 0.

For n > 1, construct objects L,, = (Ly, Fy, [7],) of the category mod"(0)g as
follows.

L,, will be the free R-module of rank 2ns with the basis consisting of all coor-
dinates of the vectors éi,...,é2,. Define the linear maps F;, : L%q) — L,, and
Vo: L, — L(Q) by the following relations, where 1 < m < n:

(62m ® 1) - é2m]) + €2m—1
Vi(€am) = €2m @ C + €911 ® 1
Fo(€2m—1®1) = =210 + ZEQm—%Yi;
i>0
Vi(eam-1®1) = €21 ®@ D + Z €am—2i ® X
>0
where for i > 0, the matrices X;,Y; € M (R) are such that
e CD+ Xo=7"E and DC+Y, =n"E;
/h ‘
o for1<i<h, X;=Y;=(— 1)2(,)#—%;
i
o fori>h, X; =Y, =0.
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Lemma 1. For: >0, DX; =Y;D.
Proof. 1t is obviously true if ¢ > 1, because in this case X; = Y; are just scalar
matrices. If ¢ = 0 then

YoD = (n"E — DC)D = D(x"E — CD) = DX,.

The lemma is proved.
Lemma 2. Y [7]'(€)Y; = 0.
Proof. We must prove that Zz;o II'Y; = 0. But

R\ .
Yo=-DC+r"E=—(nE -1+ 7"E = — Z(—wwh—@( >HZ =-) 'y,
i>1
The lemma is proved.
For 1 2n set [ ] (él) =€;_92.

Proposition. For any n > 1, L, = (Ly, Fy,[w],) is an object of the category
mod”"(0)g.

Proof. Clearly, F,, is injective (use that det D # 0 and detC' # 0). It will be
sufficient to verify the following two properties:

a) Fylnl, = [ Fy;
b) V,F, = (ridg,, —[7 ]n)h.

Let1<m<n
Verify a):

(F’n[ﬂ-]n)(é?m ® 1) = [W]n<Fn(éQm & 1) = [W]n(é2mD + éQm—l) = éZm—QD + ea2m—3
([ﬂ-]%q)Fn)(éZm & 1) = Fn<é2m—2 & 1) = é2m—2D + €am—3

(Fn[ﬂ']n)(é%n—l ® 1) - [ﬂ']n(_éZm—lc + Z éZm—2'L'Yvi) - _éZm—SC + Z é2(m71)72iyvi
>0 >0

([P Fy) (Eam—1 @ 1) = Fo(om—3 @ 1) = —Eam—3+ Y _ Ea(m—1)-2:Y;
i>0

Now verify b):

(VnFn)(é2m) = Fn(vn(EZm)) = F(é2m & C) + F(é2m—1 ® 1)
= o DC + €2, 1C — €94y, —1C + Z €2m—2i Y

i>0

= 2 (DC +Y0) + Y amni(—1)'n" <h>

; (3
i>1

= 3 a7 () = (ridia, (7 ()

1
h>i>0
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(ViFpn)(eam—1) = Fr(Viéeam—1) = —F(é2m—1 ® D) + Z F(eam—2 @ X;)

i>0

= egm—10D — Z €om—2:Y; D + Z(ézm—ziDXi + €2m—2i—1Xi)
i>0 i>0

= Com-1(CD + X0) + Y Eam—2i-1X; + Y _ Eam—2i(~Y;D + DX;)

i>1 i>0

=S a1 (1) = (i, ~[rl) o)

, 1
>0
The proposition is proved.

Notice that for any n > 1 we have natural strict embeddings ,, : £, — L,,41 in
the category modh(O) r. Then the above proposition implies the following corollary.

Corollary. The inductive system {Ly,in}n>1 is a [7]-divisible group in the cate-

gory mod"(O) .

2.6. Epimorphic map f : Ly — L.

For 1 < m < N, set f(€a) = [7]V"™(e) = ellV "™ and f(€2,,_1) = 0. This
gives an R-linear map f : Ly — L. This map is epimorphic because f(éan) = €.
It remains to verify that f is a morphism in the category mod”(O)p.

Proposition. a) f[r] = [7]nf;
b) fOF = Fyf.

Proof. Let 1 < m < N. Verify a):

Now verify b):
(Fn f)(e2m ® 1) = f(eamD) + f(E2m-1 ®1) =[]V "™(e)D = ellN""D

(FDF)(enm ®1) = F([r]N"™e® 1) = Fle @ 10" ™) = eDI1(@

and use that IID = DII(@.
Finally, (9 F)(é3,_1 ®1) = 0 and

(Fnf)(Eam—1®@1) = f(—€2—1C + Zézm—zz‘yi) = [m]N Z[W]i(é)Yi =0

i>0 i>0

by Lemma 2 from n.2.5. The proposition is proved.



3. Ramification estimates.

Suppose h € N and H € MGh(O)K, where O = Ogp is the valuation ring of the
field of formal Laurent series £ = F ((7)), K = k((u)) is an extension of £ with
perfect residue field k, R = O is the valuation ring of K and e is the ramification
index of the extension K/FE.

Theorem B. If N € N is such that ©™N H = 0 then for

h
v>e(N—1+—q>—1
q—1

the ramification subgroup I‘(Kv) acts trivially on H.

The proof of Theorem B follows the strategy from [Ab4] (where the case h =1
was considered) and will be given in nn.3.1-3.4 below.

3.1. We can assume that H is a 7~-torsion part of a m-divisible group in the
category MG"(O)k. So, if H comes from £ = (L, F,[r]) € mod"(O)r then we
can choose an R-basis of L consisting of elements of vectors éy,...,én, where
for i = 1,...,N, each ¢; is a copy of € = (ey,...,es) and it holds [r](e;) = 0,
[7](é2) = é1, ... ,[m](én) = én—1. Then the structure of an object of the category
modh(O)R on L is given via matrices C1,...,Cn € Mg(R), where det(C7) # 0 and

F(él & 1)01 = Whél
h
F(él ® ]-)Ol + F(él ® 1)02 = 7Th’é2 _ (1>7Th_1€1

F(5N®1)O1+'-~+F(é1®1)CN:WhéN

(h ‘
ot (—1)1(2,)#—161\[_1- 4o+ (=1)enn

with the agreement &; = 0 if 4 < 0.
Then H is a set of Kp-points of the K-scheme B given by the equations

X?Cl = Wth

_ _ _ h _
XQqu —f—Xi]CQ == 7ThX2 - (1)7Th1X1

XJqVCl —f—---—f—XfCN :ﬂ'hXN

+--~+(—1)i(h 'X X

Z.)']ThZXNi +o+ (D" XNy

Here Xi,..., Xy are copies of the vector X, which contains as its coordinates s
independent variables and by definition X; = 0 if ¢ < 0.

3.2 Auzilliary field K, [Ab3].
Let a be a rational positive number with zero p-adic valuation. Then there are
m € N, ged(m,p) = 1, and M € N such that a = m/(¢g™ — 1). Notice that for a
8



given «, the corresponding numbers m and M are not unique and can be chosen
to be arbitrarily large if neccessary.

Then there is a field extension K, of K with the same residue field k£ such that
[K, : K] = ¢™ and its Herbrand function equals

T, if0<x <o

ngQ/K(m) - o+ xquaa

if x> a.

From the construction of this field extension K,/K, cf.[Ab3], it follows the
existence of a uniformising element u,, of K, such that vy (u— ugM) =a(l—qg M),
where vk is the valuation on K such that vg(u) = 1.

Introduce the field isomorphism h,, : K — K, = k((uy)) such that h,(u) = ug
and h|p = id. We have the following property:

qM

Va € R, vg(a—hao(a)? ) =14+ a(l —q¢M).

Agree to use the following notation:

e ifa € K then a:=a— ha(a)qM;

o Ty := ho(m) = Ty

oo =a(l—qgM).

Notice that for any a € K, it holds vk (a) > vk (a) + a*.

3.3. Consider the K,-scheme B, given by the equations
quha((]l) = W],;Yl

Yiha(Ch) + Yha(Co) = 7Yy — (h) S

_ _ _ /h -
Yiha(C1) + -+ Yha(Cn) = 7l VN + - 4 (1) (i>ﬂg_1YN—z‘

4t (_1>hYN—h

Here Yi,...,Yy are copies of the Vector_i_/, which contains as its coordinates s
independent variables, and by definition Y; = 0if4i <0.

Denote by hg : Kgep — Kgsep any field isomorphism, which extends the field
isomorphism h, from n.3.2. Clearly, h, induces a one-to-one map between the
points B(Ksep) and By (Ksep). In particular, if L, resp. Lq, is the field of definition
of all points from B(Ksep), resp. Ba(Ksep), then hy (L) = L.

h _ _
Lemma. a) If a* > ¢ (N— 1+ —ql) — 1 and (Y?,...,YY) € Ba(Ksep) then
q —
_ _ _ _ h
there is a unique (X,...,X%) € B(Ksep) such that vy (XD — YOqM) > . for
q—

% 7
alll <i<N.
b) With the above notation the correspondence

(Y2, .Y — (XY,...,X%)
gives a one-to-one map between the points of By (Ksep) and B(Ksep)-

This Lemma implies obviously the following corollary.
9



h
Corollary. If o™ > ¢ (N -1+ —ql) —1 then LK, = L,,.
q J—
Proof of Lemma. Prove first the part a).
— — — M ~ .
For 1 < 1 < N, let Zz = Xz _YiOq y Cz = Cz - ha(ci)(qM) and ﬁ-ai == 7'('2‘ -
@a(w"')qM. Then Z1,...,Zy satisfy the following equations (where by definition
Z;=0if i <0)
chl - 7Th21 = Fl

_ _ _ h _ _
chl + ZiICQ = ﬂ'hZQ - (1>7Th_1Z1 + F2

_ _ _ (h o
quvcl 4 "’Zi]CN — 7ThZN 4+ .+ (_1)z(i>7rh—zZN_i
+ -+ (—1)h7TN_hZN_h —|—FN

where

5~ _OqM _OqM+1~

_ _ h _ _ M
= ﬁahYQOqM - <1>7~Ta,h—1Y10qM - (Y20qM+lc1 + Ylqu Cs)

_ . —aaM h\ _ — 0aM 17 ~ o0gM
Fy =fan YN0+ + (i)ﬁa,hiyz(\)fq—i +o ()T AR YL -
M4+1 ~

_ — M+1 ~
— (VO 70 O

Notice that by the choice of «,

_ _ h
vk (F;) = min{vg (coordinates of F;} > e (N — 1+ —ql)
q J—

Prove that the system (3) has a unique solution Z7, ..., Z% such that all vg (Z;) >
h - L
€ T Let m; € Kgep be such that 7f '—randfor 1<i< N, W, = Z;/7h and
q—
G; = F; /7%, Then system (3) can be rewritten in the following form

Wi, — T = Gy
_ _ h _ _ _
WoCi — Wy = —%Wl — quCl + Gy

7 7 L (h\ < —1) (h —1)h
WJ({,Cl—WN:—;< )WN—1+"‘+( ) (>_|__|_( ) Wxn

- (Wg/,lcz +'--+W1qCN) +Gn

Then the inequality vx(G1) > e(N — 1) > 0 implies the existence of a unique
solution W7 of the first equation such that vi (W) > 0. If N = 1 then the lemma
10



is proved. If N > 1 then vg(W?) = vg(G1) > e(N — 1) > e and we obtain a
unique solution W29 of the second equation such that vy (W2) > 0. Again if N = 2
then the lemma is proved. If N > 2 use that v (W2) > e(N —2) > e and continue
similarly. This means that the above system has a unique solution W}, ..., W]%
such that all vgx (W;) > 0. But this is equivalent to the statement of our lemma
because for 1 <i < N, Z; = 7f'W;. The part a) of lemma is proved.

The part b) follows from the following observation. Any two solutions (X9,..., X%)
and (X1,...,X3) of (1) such that for 1 <i < N, vg(X? — X}) > eh/(qg—1), must
coincide.

The lemma is proved.

3.4. For any finite extension A C B of complete discrete valuation fields A and
B with perfect residue fields denote by v(B/A) the biggest ramification number of
this extension. This is the second coordinate of the last corner of the graph of the
Herbrand function ¢p,4 and it can be charcaterized by the the following property:

(%) the ramification subgroup Fff) acts trivially on B if and only if v > v(B/A).

The existence of the field isomorphism h, from n.3.3 implies that we have the
equality of the Herbrand functions ¢,k = ¢r_/k, and, therefore, v(L/K) =
v(Lo/Ky). If Ly, = LK, then clearly the above condition () implies that (because
a=v(K,/K))

v(Lo/K) = max{v(L/K), a}.
On the other hand, if we apply the composition property of Herbrand’s functions
SOLQ/K(ZU) = SOKQ/K(SOLQ/KQ (z))

where x > 0, to their last corner points then we obtain
v(La/K) = max{c, pr, sk (v(L/K))}.

Now suppose that
qh
v=v(L/K)>e N—1+—1 — 1.
q_

Choose a € Q and the corresponding M € N, cf. n.3.2, such that

h
v>a>a*>e(]\7—1+q—1>—1.
q_

Then by Corollary from n.3.3 we have L, = LK, and

v(Ly/K) = max {a,a-l— Y ;/[Oé} =a+ % < v =max{v,a} =v(Lys/K).
q q

The contradiction. Therefore, the above assumption about v = v(L/K) is false and
our Theorem is completely proved.
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4. Computation of an upper ramification number.

As earlier, h, N € N, K = k((u)) with perfect k of characteristic p, q is a power
of p, E =TF,((m)) is a subfield in K, R and O are valuation rings in K and, resp.
E, and e = ¢(K/FE) is the ramification index of the field extension K/FE.

4.1 The statement of the main result.
Introduce £ = (L, F, [x]) € mod™(O)g as follows.

Let L be a free R-module with the basis e1,...,en,eY,...,e%. Define [r] €
Endg L by the relations [7](e2) = €2 ;| and [n](e,) = e,_1, where 1 < n < N.

Define an R-linear morphism F : L(9) — L by the following relations:

h .
) e, — uel,

Fleh@l)=e), Flen®@1)= Y (=1) (j

0<i<h
where 1 < n < N, and by definition e, = €2 = 0 if n < 0. Clearly, for any
1 < n <N, (rid —[7])"(e2) is an R- linear combination of F(e? ® 1) = &Y,
1 <i < n,and also (widy —[7])*(e,) = F(e, ® 1) — ue? € Im F. Therefore,
L= (L,F,[x]) € mod"(O)g.

Let £ := (L°, F°, [r]°"), where L°" is the submodule of L generated by
e9,...,€e% and F°* and [r]°* are induced by F and, resp., []. Then £ € mod®(0)r C
mod”(O)r and we have a natural embedding of £°* into £ in mod”(O)x. This em-
bedding is strict and gives rise to the following short exact sequence in the category
mod"(0) g

0— L — £ — MW 0,
where £ = (LMW F® [7]M) e mod"(0)gr, L™ is the free R-module with
the basis e],...,ek, [7]"(el) = el_; and FM(el) = (rid ) —[r]"M)rel with
1<n< N ande} =0.
—h
N —1
tion subgroups F(KU) act trivially on H if and only if v >e(N —1+hq/(¢—1)) — 1.

Theorem C. Suppose H = Mrp(L) and ( ) % Omod p. Then the ramifica-

Remark. The above result has an analogue in the mixed characteristic case. Namely,
if K D Qp then there is a finite flat group scheme G over R = Og such that
G = SpecA, A = @KKPNR[I’W] and v = 1 + u, where u is a uniformis-
ing element of K. This group scheme appears as an extension of the constant
etale group scheme (Z/p™ Z) g over R via the constant multiplicative group scheme
ppn = Spec R[X]/(X?" — 1) over R. One can verify that I‘(KU) acts trivially on
G(Ksep) if and only if v > e(N + 1/(p — 1)) — 1, i.e. Fontaine’s estimate from
[Fol] is sharp. The above Theorem C shows that under the additional condition
—h
( N 1) % Omodp the estimate from Theorem B is sharp. If this additional
condition does not hold one should expect the existence of better estimates.
The proof of theorem C will be given in the remaining part of the paper.

42. Let Xy,...,Xn,Y1,..., YN be independent variables. Then the O[l'k]-
module H appears as the set of all solutions of the following system of equations:

(h .
Xi=X,, Vi= > (-1) ( ,)wh—ﬂyn_j —uX,
0<j<h J
12



where 1 < n < N and by definition X,, =Y,, = 0if n < 0. Notice that the structure
of O[I'k]-module on this set of solutions is induced by the usual addition and the
action of O is given by the relations [7|(X,) = X,,—1, [7](Yn) = Y1 and for any
acF,, [o](X,) = aX,, [@(Y,) = aY,.

Let m € Kgep be such that 77t = 7. For 1 <n < N, set T, = Y,n; ™. Then
the field Lp of definition of all points of H over Ky = K(m) is generated by the

coordinates of any solution (17, ...,T%) of the following system of equations
_1(h\ 1 u
(4) To—Ti= Y (=17 ) =Ty ——5 1<n<N,
1<5<h I/ ™

where by definition T}, = 0 if n < 0. Notice that L; is the composite of K7 and the
field L of definition of all points of H over K. Because K is tamely ramified over
K, our theorem will be proved if we show that

o(Li/K) = e(N = 1+ hq/(g— 1)) — L

4.3. Let vg be the valuation of K, normalised by the condition vg (u) = 1.

Proposition. Suppose 1 < n < N and r € Zxq is such that rh < n < (r + 1)h.

Then b .
0\ . (&
UK(Tn)_ q_1+qr—|—1'
Proof. Use induction on 1 < n < N.
If n = 1 the statement is obviously true, because T — T4 = —um; 7", v (T?) =

1 _
“vg (umy ) and r = 0.
q

Suppose the proposition is proved for all n’ < n.

If n < h then the proposition follows from the equation for 7 and the inequal-

N 1 1 eh 1 ehq
ities vi <;T,?_1) ey UK (w”—lTl) = —(n—l)e— -1 —|—5 > _q—l +1=

U
VK | —¢
W?h

If n > h then r > 1 and we have the following inequalities

1 1 1
VK <_Tn1) yee ey UK (ﬁTnhH) > vk <_thh> :
T T T

Indeed, by the induction assumption all terms in the left-hand side are not less

eh
than —(h — 1)e + (_q— | + s,

1 1
—he+ | — ch +— ) =vr | —Th-n|.
q—1 q mh

Therefore, the equation for TV implies that

) and this number is strictly larger than

1 1 eh 1
0y _ — _
v (1)) = gvK <7Tth—h> R + g
13



The proposition is proved.

4.4. Let o =

1 € Q be a rational number from n.3.2, then we have the

field extension K, of K and a field automorphism hg : Kgep — Ksep such that
holk = he maps K onto K,. As earlier, introduce the notation h(7) = 74,
ho(m1) = Tia, ha(t) = us. Obviously, we can assume that h, is chosen in such
a way that K1, := Kuo(T1a) = ho(K1) will coincide with the composite KiK.
Set for any a € K1, a = a — ha(a)qM. Then if (as earlier) a* = a(1 — ¢*), then
vk (@) =14 «o*. This implies that

(5) o eah

1 *.
q—1+ + a

Also notice that for any a € K, it holds vk (a) > vi(a) + o*.

If L, is the field of definition of all points of O[I'k|-module H over Ky = K ()
cf. 1.4.2, then ho(L1) = L1, is the field of definition of all solutions (equivalently,
of any solution) of the system of equations

_1(h\ 1 U
-1 o

1<G<h 1/ Ta

over the field K1,,.

Fix a solution (172,,...,T%,,) of this system and introduce for 1 < n < N, new

variables Z, such that Z, = T, — T%".

—h
Proposition. Fori € Zxg, set v, = ( _ ) Then Z1, ..., Zn satisfy the following
i

o)

system of equations

(T Zo-Zi=Y. 7(%) Toe + > 2z Y %(

1<i<n 1<2<n o<i<n

where 1 <n < N.
Proof. Notice first that

(midy, —[n])~ h= g Z% ek

>0

and, therefore, system (4) from n.4.2 can be rewritten in the following equivalent
form i u "
(2 (2
1<i<n T ogi<n

Similarly, the system

0 2 : 72 Uq, Yi
Tq_ 3 nla—f—? —Z,lénéN
a T . To
1<i<n a 0i<n

is equivalent to system (6). It remains only to substitute T,, = Z,, + ngM and to

q
use that for all 7 > 0, 7T_Z=7T;qu+7T_7’ and ah .:< qha.> +< qh__ )

7
T mT

The proposition is proved.
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Corollary. If (Z9,...,Z3) € KX, is a solution of the above system (7) then
LLo = Lo(29,...,2%).

4.5. Until the end of this paper we assume that o =

m

1 € Q from the above
. . M N eqh

n.4.4 is chosen such that if a(1 —¢~ ") =a" =e(N —-1) + . 1 —¢(a), then

q E—

e(a) < ¢ V. (Use that rational numbers with zero p-adic valuation are dense in

the set of all rational numbers). Notice that a*¢™ = m € N is prime to p and this
implies that the p-adic valuation of e(a)q™ is zero.

Proposition 1. System (7) has a solution (ZY,...,Z%) such that for all1 <n <
N, Z9 € Lo, and v (Z2) > e(N —n) — 1.

Proof. If N =1 there is nothing to prove.

If N > 1 use induction on n. If n =1 then Z; — Z{ = % := A and because
m
vg(A) =1—eqh/(g—1)+a" =e(N —1) —e(a) > e(N —1) =1 > 0, we can take
ZY =50 A", Clearly, vg (Z9) = ¢(N — 1) —e(a) > e(N — 1) — 1.
Suppose 1 < n < N and we have chosen the corresponding Z?, ... ,Z%_,. Then
by Proposition of n.4.3 for 1 < ¢ < n, we have the following estimates:

T 0gM , . he 1
Vi (7r Zan_i7a)>—ze—|—oz +q(—q_1+qr+1>

=e(N—-1+4+i)—1—e(a)+q¢ " >e(N—n)—1,

v (r7'Z8 ) > —ie+q(e(N —n+i)—1) >e(N —n) — 1,

h
UK( qff Z) =1- ezl+a*—ie:e(N—i—1)—e(a)>e(N—n)—1,
m Ty q

Therefore, Z,, —Z1 € L, has the vi-valuation, which is larger than e(N —n)—1 >0
and we can choose a solution Z° such that vg(Z9) > e(N —n) — 1.
The proposition is proved.

Corollary. With the above notation and assumptions it holds

LL, = L(Z%).

Proposition 2. There is a w € Ky, such that vg(w) = —e(a) and if
Ey = K1o(W), where W — W9 = w, then Lo(Z%) = LoE.

Proof. Z% satisfies the equation




Use the estimates from above proposition 1 and proposition of n.4.3 to prove that

. . 0gM . L u
forz}l,vK(ﬂ ZTNfi’a):e(N—@—l)—l—Z—i—qr>0ande o >0
T Tt

if i < N—2 and vg(n7'Z% ) >e(qg—1)i—qg>0unlesse=17=1.
1
Prove that in the remaining case e = i = 1 we still have that vy (—Z]O\,q_l) > 0.
T

Denote by A the right-hand side of the equation for Zy_;. Then Z%_ | = Z AT
i>0
Using again the above mentioned estimates we obtain that vg(A) > 1 — e(w).
Therefore, vK(W_lZR?_l) =—14+qug(A) > -1+4+¢q(1 —¢e()) > 0.
So, Lo(Z%) = Lo (W), where W1 is a solution of the equation

/T/ M+1 u
T o Og -
W]_ W1 - fYN—]. (WN_I) Tla +7N—1 (ﬂ_(l]hﬂ_N_l)

Denote by m, the maximal ideal of the valution ring of L.

Lemma. With the above notation

1 0gM+1 u | u 1
<—7TN_1> T + (—W‘llhﬂ-N—l> = <7r_‘11h> N1 mod m,, .

Proof. Notice that vk (wl—NngM) =eh—1—¢e(a)+q "' > 0. Then the relation

TO, — T =y, " implies that

1 0gM+1 1 U
— | Ty — mod m,, .
— la — h — o
(WN 1 TN-1 Wgaﬂé\[ 1

It remains to notice that with a = um, " and b = 7'V, we have

M

(ab) = (a%" +a)(be" +b) =ab+al b.

« 4

The lemma is proved.

u 1
Finally, notice that if w = Lh then w € K1, and vg (w) = —&(a).
" ) TN-1

The proposition is proved.

4.6. Now we can finish the proof of theorem C.

h
By theorem B, v :=v(L/K) < C(h,N) :=e(N — 1) + “ . 1. Suppose this
q j—

inequality is strict. Choose a = m/(¢g™ — 1) € Q from n.4.4, which satisfies the
additional conditions from the beginning of n.4.5 and such that
v<a*=a(l-¢gM)<a<a*+e(a)=C(h,N) and e(a)¢™ > C(h,N).

The first above new requirement can be satisfied because ¢(a)) can be chosen
arbitrarily small and the second one will be satisfied if we choose a sufficiently large
M for a given a.
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Now proceed as in the proof of theorem B.
Clearly, v(L/K) = v(Lo/Ky). This implies that

V(Lo/K) = max{¢g, /k(v),a} = max{v,a} = «

and v(LLy/K) = max{v(L/K),v(L,/K)} = a.

On the other hand, let E,, be the field from proposition 2 of n.4.5. Then
V(Lo Eyw/K) = max(a,v(E/K)) and v(E,/K) = max(o, ¢, /x(v(E/Ky)). But
E, = K,(W) with W — W4 = w € K,, where vk, (w) = ¢Mvg(w) = —e(a)¢¥
has the zero p-adic valuation. Therefore, v(E,,/K,) = ¢(a)¢™ > C(h,N) > a and

e(a)g™ — «

K. K (V(Ew/Ka)) = M +a=¢(a)+a"=C(h,N) > a.

Therefore, o < v(E,/K) = v(L,FE/K). This contradicts to the equality LL, =
L.E.
Therefore, v = C(h, N) = e(N — 1+ hq/(¢ — 1)) — 1 and Theorem C is proved.
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