
CHARACTERISTIC p ANALOGUE OF MODULES

WITH FINITE CRYSTALLINE HEIGHT

Victor Abrashkin1

Abstract. In the case of local fields of positive characteristic we introduce an ana-

logue of Fontaine’s concept of Galois modules with crystalline height h ∈ N. If h = 1

these modules appear as geometric points of Faltings’s strict modules. We obtain

upper estimates for the largest upper ramification numbers of these modules and

prove (under an additional assumption) that these estimates are sharp.

0. Introduction.

Let p be a prime number. Let K be a complete discrete valuation field with
perfect residue field k of characteristic p. Choose a separable closure Ksep of K and
set ΓK = Gal(Ksep/K). Denote by R the valuation ring of K and for any v > 0,
by Γ(v)

K the ramification subgroup of ΓK with the upper number v.
Suppose, first, that K is of characteristic 0, i.e. K contains Qp, and consider e =

e(K) — the ramification index of K over Qp. In this situation for h ∈ N, Fontaine
[Fo3] introduced the category of finite Zp[ΓK ]-modules with crystalline height h.
Examples of such modules are given by subquotients of crystalline representations
of ΓK with Hodge-Tate filtration of length h or, more specifically, of Galois modules
of h-th etale coomology of projective schemes over K with good reduction. If h = 1
then the corresponding Galois modules appear as points G(Ksep) of finite flat p-
group schemes (i.e. killed by a power of the endomorphism p idG) G over R . In
this case Fontaine [Fo1] proved very important ramification estimate:

if H ∈ MG1
K , pNH = 0 and v > e

(
N +

1
p− 1

)
− 1 then Γ(v)

K acts trivially on H.

This result was generalised in [Ab1] (cf. also [Fo2], [Ab2]):

if H is a subquotient of crystalline representation of ΓK with the Hodge-Tate

filtration of length h < p− 1, pNH = 0 and e = 1 then for v >

(
N +

h

p− 1

)
− 1,

Γ(v)
K acts trivially on H.

Now suppose that K is of characteristic p and k ⊃ Fq, where q is a power of p.
Introduce an analogue of Zp. This will be a subring O = Fq[[π]] of R, where π ∈ R
is not invertible in R. If E is the fraction field of O in K then denote by e = e(K/E)
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the ramification index of K over E. In this situation an analogue of the category
of finite flat p-group schemes over R is the category of O-strict modules over R
with etale generic fibre. (The concept of O-strict module was introduced in [Fa].)
This category was studied in [Ab4], where the following ramification estimate2 was
obtained:

if H = G(Ksep), where G is an O-strict module over R and πNH = 0 then for

v > e

(
N +

1
q − 1

)
− 1, Γ(v)

K acts trivially on H.

This estimate is a complete analogue of the above Fontaine’s estimate for p-group
schemes in the mixed characteristic case.

For h ∈ N, we apply Fontaine’s idea from [Fo3] to introduce the category
of O[ΓK ]-modules MGh(O)K with “crystalline height” h. Notice that if H ∈
MG1(O)K then H appears in the form G(Ksep), where G is an O-strict module
over R. Then we apply methods from [Ab4] to prove in section 3 the ramification
estimate:

if H ∈ MGh(O)K and πNH = 0 then for v > e

(
N − 1 +

hq

q − 1

)
− 1, Γ(v)

K acts

trivially on H.

The proof uses essentially the existence of embedding of any H ∈ MGh(O)K in
a π-divisible group consisting of objects of the category MGh(O)K . This statement
is parallel to the corresponding statement for h = 1 from [Ab4] and is proved in
section 2. Finally, we show in section 4 that the above ramification estimates can

not be improved if
(

−h

N − 1

)
6≡ 0 mod p. Notice that this estimate does not match

with the above mentioned estimate for subquotients of crystalline representations
in the mixed characteristic case. One can say that in the case of local fields of
positive characteristic the Galois modules with finite crystalline height do not give
a precise analogue of crystalline representations.

Everywhere in the paper if f : A −→ B and g : B −→ C are morphisms then
their composition will be denoted as fg, i.e. for any a ∈ A, (fg)(a) = g(f(a)).

1. Main notation and results.

1.1. The categories mod(O)R and MG(O)K .
As in the introduction, let q ∈ N be a power of a prime number p. Let O = Fq[[π]]

be a ring of formal power series in one fixed indeterminate π and denote by E the
fraction field of O. Let R be an O-algebra. Everywhere in the paper R is an integral
domain with the fraction field K. Choose a separable closure Ksep of K and set
ΓK = Gal(Ksep/K).

Denote by σ = σq : R −→ R the ring endomorphism of R such that σ(r) = rq

for any r ∈ R.
Let MG(O)K be the category of O-modules of finite rank with continuous O-

linear action of ΓK . Introduce the category mod(O)R of triples (L,F, [π]), where

• L is a free R-module of finite rank;

• if L(q) = L⊗(R,σ) R then F : L(q) −→ L is an injective R-linear morphism;

2the statement of this result in the Introduction to [Ab4] contains a misprint
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• [π] ∈ EndR L is nilpotent and F [π] = [π](q)F , where [π](q) := [π] ⊗ id ∈
EndR(L(q)).

If L = (L,F, [π]) and (L1, F, [π]) are two objects from mod(O)R then
Hommod(O)R

(L,L1) consists of R-linear morphisms f : L −→ L1 such that f (q)F =
Ff and f [π] = [π]f .

Remark. We have a natural embedding EndR L ⊂ EndK(L ⊗R K). Therefore, if
rkR L = s then [π]s = 0.

1.2. Functor MΓ : mod(O)R −→ MG(O)K .

Let L = (L,F, [π]) be an object of the category mod(O)R. Consider the R-
algebra A = A(L) := SymR L/I, where the ideal I is generated by the elements
lq − F (l ⊗ 1) ∈ SymR L for all l ∈ L. Because F is injective, for AK = A ⊗R K,
we have Ω1

A/K = 0, AK is an etale K-algebra and rkR A = dimK AK = qrkR L.
In particular, if G = Spec A then G(Ksep) = HomR-alg(A,Ksep) consists of qrkR L

elements. Notice that G has a natural structure of a group scheme over R given
by the comultiplication ∆A : A −→ A ⊗K A and the counit eA : A −→ K such
that ∆A(l) = l ⊗ 1 + 1 ⊗ l and eA(l) = 0 for all l ∈ L. Set [α](l) = αl for
α ∈ Fq and l ∈ L. Introduce [π]A : A −→ A, which is induced by the given above
[π] ∈ EndR L. As a result, we obtain a structure of O-comodule on A. Therefore,
G(Ksep) is an O-module with a natural continuous action of the Galois group ΓK

i.e. G(Ksep) ∈ MG(O)K .
Clearly, the correspondence L 7→ G(Ksep) determines a functorMΓ from mod(O)R

to MG(O)K . As a matter of fact, with the above notation the correspondence
L 7→ G induces an antiequivalence of the category mod(O)R and the category of
finite flat p-group schemes G over R with etale generic fibre, zero Verschiebung VG

and a structure of O-module scheme.

1.3. The categories modh(O)R and MGh(O)K .
Let h ∈ N. Introduce the category modh(O)R as a full subcategory in mod(O)R

consisted of L = (L,F, [π]) such that (π idL−[π])h(L) ⊂ Im F .
Denote by MGh(O)K the full subcategory in MG(O)K consisting of O[ΓK ]-

modules MΓ(L), where L is an object of the category modh(O)R.
We are going to prove the following three results:

• if H ∈ MGh(O)K then H can be embedded into a π-divisible group of finite
height, consisting of objects of the category MGh(O)K ;

• if H ∈ MGh(O)K and πNH = 0 then the ramification subgroups Γ(v)
K act

trivially on H for v > e(N − 1 +
qh

q − 1
)− 1;

• with the above notation if
(

−h

N − 1

)
6≡ 0 mod p then the above ramification

estimate is sharp.

Remark. In the context of classical p-group schemes an analogue of the above first
result is Raynaud’s theorem stating that any finite flat group schems admits em-
bedding into a p-divisible group (even into an abelian scheme). In the context of
O-strict modules (the case h = 1) this result was proved in [Ab4]. The case of
arbitrary h will be proved in the next section by esssentially the same method. It
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seems our method can be also applied to prove an analogue of this statement for
Fontaine’s modules of finite cryatalline height in the mixed characteristic case.

2. Embedding into a π-divisible group.

2.1. The concept of π-divisible group.

Tate’s definition of p-divisible groups in the category of finite flat p-group schemes
admits the following interpretation in the categories MGh(O)K and modh(O)R.

A π-divisible group in the category MGh(O)K is an inductive system {Hn, in}n>1,
where for any n ∈ N, Hn ∈ MGh(O)R and in : Hn −→ Hn+1 are embeddings of
O[ΓK ]-modules such that if n > m and imn : Hm −→ Hn is the composition of
im, . . . , in−1, then we have the short exact sequence

0 −→ Hm
imn−→Hn

jnm−→Hn−m −→ 0

and jnmin−m,n = πn idHn
.

The above definition can be also adjusted to the category modh(O)R by intro-
ducing the concept of strict embedding. If L = (L,F, [π]) and L1 = (L1, F, [π]) then
i ∈ Hommod(O)R

(L1,L) is a strict embedding if it is induced by i : L1 −→ L such
that L/i(L1) has no R-torsion. Such i gives rise to a natural short exact sequence
0 −→ L1 −→ L −→ L2 −→ 0 in the category mod(O)R. Then we can proceed
similarly to introduce a [π]-divisible group as an inductive system {Ln, in}n>1 of
objects of the category modh(O)R, where all in are strict embeddings.

2.2. The statement of the first main theorem.

Theorem A. If H ∈ MGh(O)K then there is a π-divisible group {Hn, in}n>1 in
the category MGh(O)K such that if N ∈ N is such that πN idH = 0 then there is
an embedding of H into HN in the category MG(O)K .

The above theorem is implied by the following theorem.

Theorem A′. If L ∈ modh(O)R then there is a [π]-divisible group {Ln, in}n>1 in
modh(O)R such that if N ∈ N is such that [πN ]L = 0 then there is an epimorphic
map from LN to L in the category mod(O)R.

The proof of theorem A′ will be given in nn.2.3-2.6 below.

2.3. Suppose L = (L,F, [π]) ∈ modh(O)R.

Lemma. There is a unique R-linear V = VL : L −→ L(q) such that
a) V [π](q) = [π]V ;
b) V F = (π idL−[π])h;
c) FV = (π idL(q) −[π](q))h.

Proof. Because F is injective and Im F ⊃ Im(π idL−[π])h, there is a unique R-
linear V such that V F = (π idL−[π])h. Then V [π](q)F = V F [π] = [π]V F implies
that V [π](q) = [π]V , because F is injective. Similarly,

FV F = F (π idL−[π])h = (π idL(q) −[π](q))hF

implies the part c) of our lemma.
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2.4. Matrix identities.
Suppose L = (L,F, [π]) is an object of the category modh(O)R and V = VL

is the morphism from n.2.3. Choose an R-basis ē = {eb}16b6s of L and consider
square matrices C = (cab), D = (dab),Π = (γab) ∈ Ms(R) such that for 1 6 b 6 s,

V (eb) =
∑

a

ea ⊗ cab, F (eb ⊗ 1) =
∑

a

eadab, Π(eb) =
∑

b

eaγab.

Then in obvious notation

V (ē) = ē⊗ C, F (ē⊗ 1) = ēD, [π](ē) = ēΠ

and we have the following rules of composition

V F : ē
V−→ ē⊗ C

F−→ ēDC

FV : ē⊗ 1 F−→ ēD
V−→ ē⊗ CD.

The proof of the following proposition is quite straightforward.

Proposition. Suppose ē = (eb)16b6s is a basis of a free R-module L and D =
(dab),Π = (γab) ∈ Ms(R). Suppose F : L(q) −→ L is given by the correspondence
ē ⊗ 1 7→ ēD and [π] : L −→ L is given via ē 7→ ēΠ. Then L = (L,F, [π]) ∈
modh(O)R if and only if
(1) DΠ = Π(q)D, where Π(q) = (γq

ab);
(2) det D 6= 0;
(3) C := D−1(πE −Π)h ∈ Ms(R);
(4) Π is nilpotent.

Remark. a) If above conditions (1)-(3) hold then V : ē 7→ ē⊗C, CD = (πE−Π(q))h

and CΠ(q) = ΠC.
b) Because Π is nilpotent, det(πE −Π) 6= 0 and, therefore, detC 6= 0.

2.5. Construction of a π-divisible group in modh(O)R.
For m > 1, let ēm be a copy of ē = (eb)16b6s. Set by definition ēm = 0̄ if m 6 0.
For n > 1, construct objects Ln = (Ln, Fn, [π]n) of the category modh(O)R as

follows.
Ln will be the free R-module of rank 2ns with the basis consisting of all coor-

dinates of the vectors ē1, . . . , ē2n. Define the linear maps Fn : L
(q)
n −→ Ln and

Vn : Ln −→ L
(q)
n by the following relations, where 1 6 m 6 n:

Fn(ē2m ⊗ 1) = ē2mD + ē2m−1

Vn(ē2m) = ē2m ⊗ C + ē2m−1 ⊗ 1;

Fn(ē2m−1 ⊗ 1) = −ē2m−1C +
∑
i>0

ē2m−2iYi;

Vn(ē2m−1 ⊗ 1) = −ē2m−1 ⊗D +
∑
i>0

ē2m−2i ⊗Xi

where for i > 0, the matrices Xi, Yi ∈ Ms(R) are such that
• CD + X0 = πhE and DC + Y0 = πhE;

• for 1 6 i 6 h, Xi = Yi = (−1)i

(
h

i

)
πh−iE;

• for i > h, Xi = Yi = 0.
5



Lemma 1. For i > 0, DXi = YiD.

Proof. It is obviously true if i > 1, because in this case Xi = Yi are just scalar
matrices. If i = 0 then

Y0D = (πhE −DC)D = D(πhE − CD) = DX0.

The lemma is proved.

Lemma 2.
∑

i>0[π]i(ē)Yi = 0.

Proof. We must prove that
∑

i>0 ΠiYi = 0. But

Y0 = −DC + πhE = −(πE −Π)h + πhE = −
∑
i>1

(−1)iπh−i

(
h

i

)
Πi = −

∑
i>1

ΠiYi.

The lemma is proved.

For 1 6 i 6 2n, set [π]n(ēi) = ēi−2.

Proposition. For any n > 1, Ln = (Ln, Fn, [π]n) is an object of the category
modh(O)R.

Proof. Clearly, Fn is injective (use that det D 6= 0 and det C 6= 0). It will be
sufficient to verify the following two properties:

a) Fn[π]n = [π](q)n Fn;

b) VnFn = (π idL2n
−[π]n)h.

Let 1 6 m 6 n.
Verify a):

(Fn[π]n)(ē2m ⊗ 1) = [π]n(Fn(ē2m ⊗ 1) = [π]n(ē2mD + ē2m−1) = ē2m−2D + ē2m−3

([π](q)n Fn)(ē2m ⊗ 1) = Fn(ē2m−2 ⊗ 1) = ē2m−2D + ē2m−3

(Fn[π]n)(ē2m−1 ⊗ 1) = [π]n(−ē2m−1C +
∑
i>0

ē2m−2iYi) = −ē2m−3C +
∑
i>0

ē2(m−1)−2iYi

([π](q)n Fn)(ē2m−1 ⊗ 1) = Fn(ē2m−3 ⊗ 1) = −ē2m−3 +
∑
i>0

ē2(m−1)−2iYi

Now verify b):

(VnFn)(ē2m) = Fn(Vn(ē2m)) = F (ē2m ⊗ C) + F (ē2m−1 ⊗ 1)

= ē2mDC + ē2m−1C − ē2m−1C +
∑
i>0

ē2m−2iYi

= ē2m(DC + Y0) +
∑
i>1

ē2m−2i(−1)iπh−i

(
h

i

)

=
∑

h>i>0

ē2m−2i(−1)iπh−i

(
h

i

)
= (π idL2n

−[π]n)h(ē2m);
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(VnFn)(ē2m−1) = Fn(Vnē2m−1) = −F (ē2m−1 ⊗D) +
∑
i>0

F (ē2m−2i ⊗Xi)

= ē2m−1CD −
∑
i>0

ē2m−2iYiD +
∑
i>0

(ē2m−2iDXi + ē2m−2i−1Xi)

= ē2m−1(CD + X0) +
∑
i>1

ē2m−2i−1Xi +
∑
i>0

ē2m−2i(−YiD + DXi)

=
∑
i>0

ē2m−1−2i(−1)iπh−i

(
h

i

)
= (π idL2n

−[π]n)h(ē2m−1).

The proposition is proved.

Notice that for any n > 1 we have natural strict embeddings in : Ln −→ Ln+1 in
the category modh(O)R. Then the above proposition implies the following corollary.

Corollary. The inductive system {Ln, in}n>1 is a [π]-divisible group in the cate-
gory modh(O)R.

2.6. Epimorphic map f : LN −→ L.
For 1 6 m 6 N , set f(ē2m) = [π]N−m(ē) = ēΠN−m and f(ē2m−1) = 0̄. This

gives an R-linear map f : LN −→ L. This map is epimorphic because f(ē2N ) = ē.
It remains to verify that f is a morphism in the category modh(O)R.

Proposition. a) f [π] = [π]Nf ;
b) f (q)F = FNf .

Proof. Let 1 6 m 6 N . Verify a):

(f [π])(ē2m) = [π]N+1−m(ē) = f(ē2m−2) = ([π]Nf)(ē2m)

(f [π])(ē2m−1) = 0̄ = f(ē2m−3) = ([π]Nf)(ē2m−1).

Now verify b):

(FNf)(ē2m ⊗ 1) = f(ē2mD) + f(ē2m−1 ⊗ 1) = [π]N−m(ē)D = ēΠN−mD

(f (q)F )(ē2m ⊗ 1) = F ([π]N−mē⊗ 1) = F (ē⊗Π(q)N−m
) = ēDΠ(q)N−m

and use that ΠD = DΠ(q).
Finally, (f (q)F )(ē2m−1 ⊗ 1) = 0 and

(FNf)(ē2m−1 ⊗ 1) = f(−ē2m−1C +
∑
i>0

ē2m−2iYi) = [π]N−m

∑
i>0

[π]i(ē)Yi

 = 0

by Lemma 2 from n.2.5. The proposition is proved.
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3. Ramification estimates.

Suppose h ∈ N and H ∈ MGh(O)K , where O = OE is the valuation ring of the
field of formal Laurent series E = Fq((π)), K = k((u)) is an extension of E with
perfect residue field k, R = OK is the valuation ring of K and e is the ramification
index of the extension K/E.

Theorem B. If N ∈ N is such that πNH = 0 then for

v > e

(
N − 1 +

hq

q − 1

)
− 1

the ramification subgroup Γ(v)
K acts trivially on H.

The proof of Theorem B follows the strategy from [Ab4] (where the case h = 1
was considered) and will be given in nn.3.1-3.4 below.

3.1. We can assume that H is a πN -torsion part of a π-divisible group in the
category MGh(O)K . So, if H comes from L = (L,F, [π]) ∈ modh(O)R then we
can choose an R-basis of L consisting of elements of vectors ē1, . . . , ēN , where
for i = 1, . . . , N , each ēi is a copy of ē = (e1, . . . , es) and it holds [π](ē1) = 0̄,
[π](ē2) = ē1, . . . ,[π](ēN ) = ēN−1. Then the structure of an object of the category
modh(O)R on L is given via matrices C1, . . . , CN ∈ Ms(R), where det(C1) 6= 0 and

F (ē1 ⊗ 1)C1 = πhē1

F (ē1 ⊗ 1)C1 + F (ē1 ⊗ 1)C2 = πhē2 −
(

h

1

)
πh−1ē1

...........................

F (ēN ⊗ 1)C1 + · · ·+ F (ē1 ⊗ 1)CN = πhēN

+ · · ·+ (−1)i

(
h

i

)
πh−iēN−i + · · ·+ (−1)hēN−h

with the agreement ēi = 0̄ if i 6 0.
Then H is a set of Ksep-points of the K-scheme B given by the equations

(1)

X̄q
1C1 = πhX̄1

X̄q
2C1 + X̄q

1C2 = πhX̄2 −
(

h

1

)
πh−1X̄1

............................

X̄q
NC1 + · · ·+ X̄q

1CN = πhX̄N

+ · · ·+ (−1)i

(
h

i

)
πh−iX̄N−i + · · ·+ (−1)hX̄N−h

Here X̄1, . . . , X̄N are copies of the vector X̄, which contains as its coordinates s
independent variables and by definition X̄i = 0̄ if i 6 0.

3.2 Auxilliary field Kα, [Ab3].
Let α be a rational positive number with zero p-adic valuation. Then there are

m ∈ N, gcd(m, p) = 1, and M ∈ N such that α = m/(qM − 1). Notice that for a
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given α, the corresponding numbers m and M are not unique and can be chosen
to be arbitrarily large if neccessary.

Then there is a field extension Kα of K with the same residue field k such that
[Kα : K] = qM and its Herbrand function equals

ϕKα/K(x) =

 x, if 0 6 x 6 α;

α +
x− α

qM
, if x > α.

From the construction of this field extension Kα/K, cf.[Ab3], it follows the
existence of a uniformising element uα of Kα such that vK(u−uqM

α ) = α(1−q−M ),
where vK is the valuation on K such that vK(u) = 1.

Introduce the field isomorphism hα : K −→ Kα = k((uα)) such that hα(u) = uα

and h|k = id. We have the following property:

∀a ∈ R, vK(a− hα(a)qM

) > 1 + α(1− q−M ).

Agree to use the following notation:
• if a ∈ K then ã := a− hα(a)qM

;
• πα := hα(π) = πα;
• α∗ = α(1− q−M ).
Notice that for any a ∈ K, it holds vK(ã) > vK(a) + α∗.

3.3. Consider the Kα-scheme Bα given by the equations

(2)

Ȳ q
1 hα(C1) = πh

αȲ1

Ȳ q
2 hα(C1) + Ȳ q

1 hα(C2) = πh
αȲ2 −

(
h

1

)
πh−1

α Ȳ1

............................

Ȳ q
Nhα(C1) + · · ·+ Ȳ q

1 hα(CN ) = πh
αȲN + · · ·+ (−1)i

(
h

i

)
πh−i

α ȲN−i

+ · · ·+ (−1)hȲN−h

Here Ȳ1, . . . , ȲN are copies of the vector Ȳ , which contains as its coordinates s
independent variables, and by definition Ȳi = 0̄ if i 6 0.

Denote by h̄α : Ksep −→ Ksep any field isomorphism, which extends the field
isomorphism hα from n.3.2. Clearly, h̄α induces a one-to-one map between the
points B(Ksep) and Bα(Ksep). In particular, if L, resp. Lα, is the field of definition
of all points from B(Ksep), resp. Bα(Ksep), then h̄α(L) = Lα.

Lemma. a) If α∗ > e

(
N − 1 +

hq

q − 1

)
− 1 and (Ȳ 0

1 , . . . , Ȳ 0
N ) ∈ Bα(Ksep) then

there is a unique (X̄0
1 , . . . , X̄0

N ) ∈ B(Ksep) such that vK(X̄0
i − Ȳ 0qM

i ) >
eh

q − 1
for

all 1 6 i 6 N .
b) With the above notation the correspondence

(Ȳ 0
1 , . . . , Ȳ 0

N ) 7→ (X̄0
1 , . . . , X̄0

N )

gives a one-to-one map between the points of Bα(Ksep) and B(Ksep).

This Lemma implies obviously the following corollary.
9



Corollary. If α∗ > e

(
N − 1 +

hq

q − 1

)
− 1 then LKα = Lα.

Proof of Lemma. Prove first the part a).
For 1 6 i 6 N , let Z̄i = X̄i − Ȳ 0qM

i , C̃i = Ci − hα(Ci)(q
M ) and π̃αi = πi

α −
hα(πi)qM

. Then Z̄1, . . . , Z̄N satisfy the following equations (where by definition
Z̄i = 0̄ if i 6 0)

(3)

Z̄q
1C1 − πhZ̄1 = F̄1

Z̄q
2C1 + Z̄q

1C2 = πhZ̄2 −
(

h

1

)
πh−1Z̄1 + F̄2

................................

Z̄q
NC1 + · · ·+ Z̄q

1CN = πhZ̄N + · · ·+ (−1)i

(
h

i

)
πh−iZ̄N−i

+ · · ·+ (−1)hπN−hZ̄N−h + F̄N

where

F̄1 = π̃αhȲ 0qM

1 − Ȳ 0qM+1

1 C̃1

F̄2 = π̃αhȲ 0qM

2 −
(

h

1

)
π̃α,h−1Ȳ

0qM

1 − (Ȳ 0qM+1

2 C̃1 + Ȳ 0qM

1 C̃2)

...........................

F̄N = π̃αhȲ 0qM

N + · · ·+
(

h

i

)
π̃α,h−iȲ

0qM

N−i + · · ·+ (−1)h−1hπ̃α1Ȳ
0qM

N−h+1−

− (Ȳ 0qM+1

N C̃1 + · · ·+ Ȳ 0qM+1

1 C̃N )

Notice that by the choice of α,

vK(F̄i) = min{vK(coordinates of F̄i} > e

(
N − 1 +

hq

q − 1

)
Prove that the system (3) has a unique solution Z̄0

1 , . . . , Z̄0
N such that all vK(Z̄i) >

eh

q − 1
. Let π1 ∈ Ksep be such that πq−1

1 = π and for 1 6 i 6 N , W̄i = Z̄i/πh
1 and

Ḡi = F̄i/πqh
1 . Then system (3) can be rewritten in the following form

W̄ q
1 C1 − W̄1 = Ḡ1

W̄2C1 − W̄2 = −h

π
W̄1 − W̄ q

1 C1 + Ḡ2

.........................

W̄ q
NC1 − W̄N = − 1

π

(
h

1

)
W̄N−1 + · · ·+ (−1)i

πi

(
h

i

)
+ · · ·+ (−1)h

πh
W̄N−h

− (W̄ q
N−1C2 + · · ·+ W̄ q

1 CN ) + ḠN

Then the inequality vK(Ḡ1) > e(N − 1) > 0 implies the existence of a unique
solution W̄ 0

1 of the first equation such that vK(W̄ 0
1 ) > 0. If N = 1 then the lemma

10



is proved. If N > 1 then vK(W 0
1 ) = vK(Ḡ1) > e(N − 1) > e and we obtain a

unique solution W̄ 0
2 of the second equation such that vK(W̄ 0

2 ) > 0. Again if N = 2
then the lemma is proved. If N > 2 use that vK(W̄ 0

2 ) > e(N − 2) > e and continue
similarly. This means that the above system has a unique solution W̄ 0

1 , . . . , W̄ 0
N

such that all vK(W̄i) > 0. But this is equivalent to the statement of our lemma
because for 1 6 i 6 N , Z̄i = πh

1 W̄i. The part a) of lemma is proved.
The part b) follows from the following observation. Any two solutions (X̄0

1 , . . . , X̄0
N )

and (X̄1
1 , . . . , X̄1

N ) of (1) such that for 1 6 i 6 N , vK(X̄0
i − X̄1

i ) > eh/(q− 1), must
coincide.

The lemma is proved.

3.4. For any finite extension A ⊂ B of complete discrete valuation fields A and
B with perfect residue fields denote by v(B/A) the biggest ramification number of
this extension. This is the second coordinate of the last corner of the graph of the
Herbrand function ϕB/A and it can be charcaterized by the the following property:

(∗) the ramification subgroup Γ(v)
A acts trivially on B if and only if v > v(B/A).

The existence of the field isomorphism h̄α from n.3.3 implies that we have the
equality of the Herbrand functions ϕL/K = ϕLα/Kα

and, therefore, v(L/K) =
v(Lα/Kα). If Lα = LKα then clearly the above condition (∗) implies that (because
α = v(Kα/K))

v(Lα/K) = max{v(L/K), α}.

On the other hand, if we apply the composition property of Herbrand’s functions

ϕLα/K(x) = ϕKα/K(ϕLα/Kα
(x))

where x > 0, to their last corner points then we obtain

v(Lα/K) = max{α, ϕKα/K(v(L/K))}.

Now suppose that

v = v(L/K) > e

(
N − 1 +

qh

q − 1

)
− 1.

Choose α ∈ Q and the corresponding M ∈ N, cf. n.3.2, such that

v > α > α∗ > e

(
N − 1 +

qh

q − 1

)
− 1.

Then by Corollary from n.3.3 we have Lα = LKα and

v(Lα/K) = max
{

α, α +
v − α

qM

}
= α +

v − α

qM
< v = max{v, α} = v(Lα/K).

The contradiction. Therefore, the above assumption about v = v(L/K) is false and
our Theorem is completely proved.
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4. Computation of an upper ramification number.

As earlier, h, N ∈ N, K = k((u)) with perfect k of characteristic p, q is a power
of p, E = Fq((π)) is a subfield in K, R and O are valuation rings in K and, resp.
E, and e = e(K/E) is the ramification index of the field extension K/E.

4.1 The statement of the main result.
Introduce L = (L,F, [π]) ∈ modh(O)R as follows.
Let L be a free R-module with the basis e1, . . . , eN , e0

1, . . . , e
0
N . Define [π] ∈

EndR L by the relations [π](e0
n) = e0

n−1 and [π](en) = en−1, where 1 < n 6 N .
Define an R-linear morphism F : L(q) −→ L by the following relations:

F (e0
n ⊗ 1) = e0

n, F (en ⊗ 1) =
∑

06j6h

(−1)j

(
h

j

)
πh−jen−j − ue0

n,

where 1 6 n 6 N , and by definition en = e0
n = 0 if n 6 0. Clearly, for any

1 6 n 6 N , (π idL−[π])h(e0
n) is an R- linear combination of F (e0

i ⊗ 1) = e0
i ,

1 6 i 6 n, and also (π idL−[π])h(en) = F (en ⊗ 1) − ue0
n ∈ Im F . Therefore,

L = (L,F, [π]) ∈ modh(O)R.
Let Let := (Let, F et, [π]et), where Let is the submodule of L generated by

e0
1, . . . , e

0
N and F et and [π]et are induced by F and, resp., [π]. Then Let ∈ mod0(O)R ⊂

modh(O)R and we have a natural embedding of Let into L in modh(O)R. This em-
bedding is strict and gives rise to the following short exact sequence in the category
modh(O)R

0 −→ Let −→ L −→ L(h) −→ 0,

where L(h) = (L(h), F (h), [π](h)) ∈ modh(O)R, L(h) is the free R-module with
the basis e1

1, . . . , e
1
N , [π](h)(e1

n) = e1
n−1 and F (h)(e1

n) = (π idL(h) −[π](h))he1
n with

1 6 n 6 N and e1
0 = 0.

Theorem C. Suppose H = MΓ(L) and
(

−h

N − 1

)
6≡ 0 mod p. Then the ramifica-

tion subgroups Γ(v)
K act trivially on H if and only if v > e(N − 1 + hq/(q− 1))− 1.

Remark. The above result has an analogue in the mixed characteristic case. Namely,
if K ⊃ Qp then there is a finite flat group scheme G over R = OK such that
G = Spec A, A = ⊕06i<pN R[ pN√

vi] and v = 1 + u, where u is a uniformis-
ing element of K. This group scheme appears as an extension of the constant
etale group scheme (Z/pNZ)R over R via the constant multiplicative group scheme
µpN = Spec R[X]/(XpN − 1) over R. One can verify that Γ(v)

K acts trivially on
G(Ksep) if and only if v > e(N + 1/(p − 1)) − 1, i.e. Fontaine’s estimate from
[Fo1] is sharp. The above Theorem C shows that under the additional condition(

−h

N − 1

)
6≡ 0 mod p the estimate from Theorem B is sharp. If this additional

condition does not hold one should expect the existence of better estimates.
The proof of theorem C will be given in the remaining part of the paper.

4.2. Let X1, . . . , XN , Y1, . . . , YN be independent variables. Then the O[ΓK ]-
module H appears as the set of all solutions of the following system of equations:

Xq
n = Xn, Y q

n =
∑

06j6h

(−1)j

(
h

j

)
πh−jYn−j − uXn

12



where 1 6 n 6 N and by definition Xn = Yn = 0 if n 6 0. Notice that the structure
of O[ΓK ]-module on this set of solutions is induced by the usual addition and the
action of O is given by the relations [π](Xn) = Xn−1, [π](Yn) = Yn−1 and for any
α ∈ Fq, [α](Xn) = αXn, [α](Yn) = αYn.

Let π1 ∈ Ksep be such that πq−1
1 = π. For 1 6 n 6 N , set Tn = Ynπ−h

1 . Then
the field L1 of definition of all points of H over K1 = K(π1) is generated by the
coordinates of any solution (T 0

1 , . . . , T 0
N ) of the following system of equations

(4) Tn − T q
n =

∑
16j6h

(−1)j−1

(
h

j

)
1
πj

Tn−j −
u

πqh
1

, 1 6 n 6 N,

where by definition Tn = 0 if n 6 0. Notice that L1 is the composite of K1 and the
field L of definition of all points of H over K. Because K1 is tamely ramified over
K, our theorem will be proved if we show that

v(L1/K) = e(N − 1 + hq/(q − 1))− 1.

4.3. Let vK be the valuation of Ksep normalised by the condition vK(u) = 1.

Proposition. Suppose 1 6 n 6 N and r ∈ Z>0 is such that rh < n 6 (r + 1)h.
Then

vK(T 0
n) = − eh

q − 1
+

1
qr+1

.

Proof. Use induction on 1 6 n 6 N .
If n = 1 the statement is obviously true, because T 0

1 −T 0q
1 = −uπ−qh

1 , vK(T 0
1 ) =

1
q
vK(uπ−qh

1 ) and r = 0.

Suppose the proposition is proved for all n′ < n.
If n 6 h then the proposition follows from the equation for T 0

h and the inequal-

ities vK

(
1
π

T 0
n−1

)
, . . . , vK

(
1

πn−1
T1

)
> −(n − 1)e − eh

q − 1
+

1
q

> − ehq

q − 1
+ 1 =

vK

(
u

πqh
1

)
.

If n > h then r > 1 and we have the following inequalities

vK

(
1
π

Tn−1

)
, . . . , vK

(
1

πh−1
Tn−h+1

)
> vK

(
1
πh

Tn−h

)
.

Indeed, by the induction assumption all terms in the left-hand side are not less

than −(h− 1)e +
(
− eh

q − 1
+

1
qr+1

)
and this number is strictly larger than

−he +
(
− eh

q − 1
+

1
qr

)
= vK

(
1
πh

Tn−h

)
.

Therefore, the equation for T 0
n implies that

vK(T 0
n) =

1
q
vK

(
1
πh

Tn−h

)
= − eh

q − 1
+

1
qr+1

.
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The proposition is proved.

4.4. Let α =
m

qM − 1
∈ Q be a rational number from n.3.2, then we have the

field extension Kα of K and a field automorphism h̄α : Ksep −→ Ksep such that
h̄α|K = hα maps K onto Kα. As earlier, introduce the notation hα(π) = πα,
hα(π1) = π1α, hα(u) = uα. Obviously, we can assume that h̄α is chosen in such
a way that K1α := Kα(π1α) = h̄α(K1) will coincide with the composite K1Kα.
Set for any a ∈ K1, ã = a − hα(a)qM

. Then if (as earlier) α∗ = α(1 − qM ), then
vK(ũ) = 1 + α∗. This implies that

(5) vK(ũπ−qh
1 ) = − eqh

q − 1
+ 1 + α∗.

Also notice that for any a ∈ K, it holds vK(ã) > vK(a) + α∗.
If L1 is the field of definition of all points of O[ΓK ]-module H over K1 = K(π1)

cf. n.4.2, then h̄α(L1) = L1α is the field of definition of all solutions (equivalently,
of any solution) of the system of equations

(6) Tnα − T q
nα =

∑
16j6h

(−1)j−1

(
h

j

)
1
πj

α

Tjα −
uα

πqh
1α

, 1 6 n 6 N,

over the field K1α.
Fix a solution (T 0

1α, . . . , T 0
Nα) of this system and introduce for 1 6 n 6 N , new

variables Zn such that Zn = Tn − T 0qM

nα .

Proposition. For i ∈ Z>0, set γi =
(
−h

i

)
. Then Z1, . . . , ZN satisfy the following

system of equations

(7) Zn − Zq
n =

∑
16i<n

γi

(
1̃
πi

)
T 0qM+1

n−i,α +
∑

16i<n

γi

πi
Zq

n−i +
∑

06i<n

γi

(
ũ

πqh
1 πi

)
,

where 1 6 n 6 N .

Proof. Notice first that

(π idL−[π])−h = πh
∑
i>0

γiπ
−i[π]i

and, therefore, system (4) from n.4.2 can be rewritten in the following equivalent
form

Tn − T q
n =

∑
16i<n

γi

πi
T q

n−i +
u

πqh
1

∑
06i<n

γi

πi
, 1 6 n 6 N

Similarly, the system

T 0
nα − T 0q

nα =
∑

16i<n

γi

πi
α

T 0q
n−i,α +

uα

πqh
1α

∑
06i<n

γi

πi
α

, 1 6 n 6 N

is equivalent to system (6). It remains only to substitute Tn = Zn + T 0qM

nα and to

use that for all i > 0, π−i = π−iqM

α + π̃−i and
u

πqh
1 πi

=

(
uα

πqh
1απi

α

)qM

+

(
ũ

πqh
1 πi

)
.

The proposition is proved.
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Corollary. If (Z0
1 , . . . , Z0

N ) ∈ KN
sep is a solution of the above system (7) then

LLα = Lα(Z0
1 , . . . , Z0

N ).

4.5. Until the end of this paper we assume that α =
m

qM − 1
∈ Q from the above

n.4.4 is chosen such that if α(1− q−M ) = α∗ = e(N − 1) +
eqh

q − 1
− 1− ε(α), then

ε(α) < q−N . (Use that rational numbers with zero p-adic valuation are dense in
the set of all rational numbers). Notice that α∗qM = m ∈ N is prime to p and this
implies that the p-adic valuation of ε(α)qM is zero.

Proposition 1. System (7) has a solution (Z0
1 , . . . , Z0

N ) such that for all 1 6 n <
N , Z0

n ∈ Lα and vK(Z0
n) > e(N − n)− 1.

Proof. If N = 1 there is nothing to prove.

If N > 1 use induction on n. If n = 1 then Z1−Zq
1 =

(
ũ

πqh
1

)
:= A and because

vK(A) = 1− eqh/(q − 1) + α∗ = e(N − 1)− ε(α) > e(N − 1)− 1 > 0, we can take
Z0

1 =
∑

i>0 Aqi

. Clearly, vK(Z0
1 ) = e(N − 1)− ε(α) > e(N − 1)− 1.

Suppose 1 < n < N and we have chosen the corresponding Z0
1 , . . . ,Z0

n−1. Then
by Proposition of n.4.3 for 1 6 i < n, we have the following estimates:

vK

(
π̃−iT 0qM+1

n−i,α

)
> −ie + α∗ + q

(
− he

q − 1
+

1
qr+1

)
= e(N − 1 + i)− 1− ε(α) + q−r > e(N − n)− 1,

vK(π−iZq
n−i) > −ie + q(e(N − n + i)− 1) > e(N − n)− 1,

vK

(
ũ

πqh
1 πi

1

)
= 1− eqh

q − 1
+ α∗ − ie = e(N − i− 1)− ε(α) > e(N − n)− 1.

Therefore, Zn−Zq
n ∈ Lα has the vK-valuation, which is larger than e(N−n)−1 > 0

and we can choose a solution Z0
n such that vK(Z0

n) > e(N − n)− 1.
The proposition is proved.

Corollary. With the above notation and assumptions it holds

LLα = Lα(Z0
N ).

Proposition 2. There is a w ∈ K1α such that vK(w) = −ε(α) and if
Ew = K1α(W ), where W −W q = w, then Lα(Z0

N ) = LαEw.

Proof. Z0
N satisfies the equation

ZN − Zq
N =

∑
16i<N

γiπ̃−iT 0qM+1

N−i,α +
∑

16i<N

γiπ
−iZq

N−i +
∑

06i<N

γi

(
ũ

πqh
1 πi

)
.
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Use the estimates from above proposition 1 and proposition of n.4.3 to prove that

for i > 1, vK

(
π̃−iT 0qM+1

N−i,α

)
= e(N − i− 1)− 1− i + q−r > 0 and vK

(
ũ

πqh
1 πi

)
> 0

if i 6 N − 2, and vK(π−iZq
N−i) > e(q − 1)i− q > 0 unless e = i = 1.

Prove that in the remaining case e = i = 1 we still have that vK

(
1
π

Z0q
N−1

)
> 0.

Denote by A the right-hand side of the equation for ZN−1. Then Z0
N−1 =

∑
i>0

Aqi

.

Using again the above mentioned estimates we obtain that vK(A) > 1 − ε(α).
Therefore, vK(π−1Z0q

N−1) = −1 + qvK(A) > −1 + q(1− ε(α)) > 0.
So, Lα(Z0

N ) = Lα(W1), where W1 is a solution of the equation

W1 −W q
1 = γN−1

(
1̃

πN−1

)
T 0qM+1

1α + γN−1

(
ũ

πqh
1 πN−1

)

Denote by mα the maximal ideal of the valution ring of Lα.

Lemma. With the above notation(
1̃

πN−1

)
T 0qM+1

1α +

(
ũ

πqh
1 πN−1

)
≡

(
ũ

πqh
1

)
1

πN−1
modmα .

Proof. Notice that vK

(
π̃1−NT 0qM

1α

)
= eh−1−ε(α)+q−r−1 > 0. Then the relation

T 0
1α − T 0q

1α = uαπ−qh
1α implies that

(
1̃

πN−1

)
T 0qM+1

1α ≡ −

(
1̃

πN−1

)(
uα

πqh
1απN−1

α

)qM

modmα .

It remains to notice that with a = uπ−qh
1 and b = π1−N , we have

(̃ab) = (aqM

α + ã)(bqM

α + b̃) = ãb + aqM

α b̃.

The lemma is proved.

Finally, notice that if w =

(
ũ

πqh
1

)
1

πN−1
then w ∈ K1α and vK(w) = −ε(α).

The proposition is proved.

4.6. Now we can finish the proof of theorem C.

By theorem B, v := v(L/K) 6 C(h, N) := e(N − 1) +
eqh

q − 1
− 1. Suppose this

inequality is strict. Choose α = m/(qM − 1) ∈ Q from n.4.4, which satisfies the
additional conditions from the beginning of n.4.5 and such that
v < α∗ = α(1− q−M ) < α < α∗ + ε(α) = C(h, N) and ε(α)qM > C(h, N).

The first above new requirement can be satisfied because ε(α) can be chosen
arbitrarily small and the second one will be satisfied if we choose a sufficiently large
M for a given α.
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Now proceed as in the proof of theorem B.
Clearly, v(L/K) = v(Lα/Kα). This implies that

v(Lα/K) = max{ϕKα/K(v), α} = max{v, α} = α

and v(LLα/K) = max{v(L/K), v(Lα/K)} = α.
On the other hand, let Ew be the field from proposition 2 of n.4.5. Then

v(LαEw/K) = max(α, v(E/K)) and v(Ew/K) = max(α, ϕKα/K(v(E/Kα)). But
Ew = Kα(W ) with W − W q = w ∈ Kα, where vKα(w) = qMvK(w) = −ε(α)qM

has the zero p-adic valuation. Therefore, v(Ew/Kα) = ε(α)qM > C(h, N) > α and

ϕKα/K(v(Ew/Kα)) =
ε(α)qM − α

qM
+ α = ε(α) + α∗ = C(h, N) > α.

Therefore, α < v(Ew/K) = v(LαE/K). This contradicts to the equality LLα =
LαE.

Therefore, v = C(h, N) = e(N − 1 + hq/(q − 1))− 1 and Theorem C is proved.
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