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Abstract. A pair of lower and upper cumulative distribution functions, also called probability

box or p-box, is among the most popular models used in imprecise probability theory. They

arise naturally in expert elicitation, for instance in cases where bounds are specified on the
quantiles of a random variable, or when quantiles are specified only at a finite number of points.

Many practical and formal results concerning p-boxes already exist in the literature. In this

paper, we provide new efficient tools to construct multivariate p-boxes and develop algorithms
to draw inferences from them. For this purpose, we formalise and extend the theory of p-boxes

using Walley’s behavioural theory of imprecise probabilities, and heavily rely on its notion of
natural extension and existing results about independence modeling. In particular, we allow

p-boxes to be defined on arbitrary totally preordered spaces, hence thereby also admitting

multivariate p-boxes via probability bounds over any collection of nested sets. We focus on the
cases of independence (using the factorization property), and of unknown dependence (using

the Fréchet bounds), and we show that our approach extends the probabilistic arithmetic

of Williamson and Downs. Two design problems—a damped oscillator, and a river dike—
demonstrate the practical feasibility of our results.

1. Introduction

Imprecise probability [41] refers to uncertainty models applicable in situations where the
available information does not allow us to single out a unique probability measure for all random
variables involved. Examples of such models include 2- and n-monotone capacities [5], lower
and upper previsions [43, 44, 41], belief functions [38], credal sets [31], possibility and necessity
measures [23, 6], interval probabilities [42], and coherent risk measures [1, 15].

Unlike classical probability models, which are described by probability measures, imprecise
probability models require more complex mathematical tools, such as non-linear functionals and
non-additive measures [41]. It is therefore of interest to consider particular imprecise probability
models that yield simple mathematical descriptions, possibly at the expense of generality, but
gaining ease of use, elicitation, and graphical representation.

One such model is considered in this paper: pairs of lower and upper distribution functions,
also called probability boxes, or briefly, p-boxes [24, 25]. P-boxes are often used in risk or safety
studies, in which cumulative distributions play an essential role. Many theoretical properties
and practical aspects of p-boxes have already been studied in the literature. Previous work
includes probabilistic arithmetic [45], which provides a very efficient numerical framework for
particular statistical inferences with p-boxes (and which we generalise in this paper). In [26],
p-boxes are connected to info-gap theory [2]. The relation between p-boxes and random sets was
investigated in [30] and applied in [35]: many results and techniques applicable to random sets
are also applicable to p-boxes. Finally, a recent extension of p-boxes to arbitrary finite spaces [19]
yields potential application of p-boxes to a much more general set of problems, such as robust
design analysis [20, 28], and signal processing [21].

Key words and phrases. Lower prevision, p-box, multivariate, Choquet integral, Fréchet bounds, full
component.
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In this paper, we study p-boxes within the framework of the theory of coherent lower pre-
visions. Coherent lower previsions were introduced by Williams [43] as a generalisation of de
Finetti’s work [11], and were developed further by Walley [41]. Coherent lower previsions gen-
eralize many of the other imprecise probability models in the literature, and are equivalent to
closed convex sets of finitely additive probability measures.

Studying p-boxes by means of lower previsions has at least two advantages:

‚ Lower previsions can be defined on arbitrary spaces, and thus enable p-boxes to be used
for more general problems, and not just problems concerning the real line.

‚ Lower previsions come with a powerful inference tool, called natural extension, which
reflects the least-committal consequences of any given assessments. Natural extension
generalises many known extensions, including for instance Choquet integration for 2-
monotone measures. In this paper, we study the natural extension of a p-box, and we
derive a number of useful expressions for it. This leads to new numerical tools that
provide exact inferences on arbitrary events, and even on arbitrary (bounded) random
quantities.

From the point of view of coherent lower previsions, p-boxes have already been studied briefly
in [41, Section 4.6.6] and [39]. Lower and upper distribution functions associated with a sequence
of moments have also been considered [33].

As already mentioned, [19] extended p-boxes to finite totally preordered spaces. In this paper,
we extend p-boxes further to arbitrary totally preordered spaces. Our generalisation has many
useful features that classical p-boxes do not have:

‚ We encompass, in one sweep, p-boxes defined on finite spaces, as well as (continuous)
p-boxes on closed real intervals.

‚ Perhaps even more importantly, as we do not impose anti-symmetry on the ordering,
we can also handle product spaces by considering an appropriate total preorder—for
instance, one induced by a metric—and thus also admit multivariate non-finite p-boxes,
which have not been considered before. Whence, we can specify p-boxes directly on the
product space. Contrast this with the usual multivariate approach to p-boxes, such as
probabilistic arithmetic [45], that consider one marginal p-box per dimension and draw
inferences from a joint model built around some information about variable dependencies
(of course, we can still do the same, and will do so in Section 7).

‚ Our approach is also useful in elicitation, as it allows uncertainty to be expressed as
probability bounds over any collection of (possibly multivariate) nested sets—also see
[28, 18] for a discussion of similarly constructed models. Thus, unlike classical p-boxes,
we are not restricted to events of the type r´8, xs, even on the real line.

Our approach is thus rather different, and far more general, than the one usually considered
for inferences with p-boxes. Indeed, we first define a joint p-box over some multivariate space of
interest, either directly or by using marginal models and a dependence model, after which we draw
exact inferences from this joint p-box using natural extension. In contrast, usual methods [36]
such as for instance probabilistic arithmetic [45] start out with marginal p-boxes each defined on
the real line, and provide tools to make inferences for specific multivariate events.

The paper is organised as follows: Section 2 provides a brief introduction to the theory of
coherent lower previsions, used in the rest of the paper. Section 3 then introduces and studies
the p-box model from the point of view of lower previsions. Section 4 provides an expression
for the natural extension of a p-box to all events, via the partition topology induced by the
equivalence classes of the preorder and additivity on full components. Section 5 studies the
natural extension to all gambles, via the Choquet integral. Section 6 studies an important special
case of p-boxes whose preorder is induced by a real-valued mapping, as this will usually be the
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most convenient way to specify a multivariate p-box. Section 7 discusses the construction of
such multivariate p-boxes from marginal coherent lower previsions under arbitrary dependency
models. For two important special cases—epistemic independence, and completely unknown
dependence (the Fréchet case)—closed expressions are derived. We also derive probabilistic
arithmetic as a special case of our approach. Section 8 demonstrates the theory with some
examples. As a first example, we infer bounds on the expectation of the damping ratio of a
damped harmonic oscillator whose parameters are described by a multivariate p-box. As a second
example, we derive the expected overflow height for a river dike, again using a multivariate p-box.
Finally, Section 9 ends with our main conclusions and open problems.

2. Preliminaries

We start with a brief introduction to the imprecise probability models that we shall use in
this paper. We refer to [4], [43] and [41] for more details. See also [32] for a brief summary of
the theory.

Let Ω be the possibility space. A subset of Ω is called an event. A gamble on Ω is a bounded
real-valued function on Ω. The set of all gambles on Ω is denoted by LpΩq, or simply by L if
the possibility space is clear from the context. A particular type of gamble is the indicator of an
event A, which is the gamble that takes the value 1 on elements of A and the value 0 elsewhere,
and is denoted by IA, or simply by A if no confusion with A as event is possible.

A lower prevision P is a real-valued functional defined on an arbitrary subset K of L, and
is interpreted as follows: for any gamble f in K and any ε ą 0, the transaction f ´ P pfq ` ε
is acceptable to the subject who has assessed this lower prevision. Hence, lower previsions
summarize a subject’s supremum buying prices for a collection of gambles, and it can be argued
that in this way they model a subject’s belief about the true state x in Ω (see [41] for a more
in-depth explanation). A lower prevision defined on a set of indicators of events is usually called
a lower probability.

By P , we denote the conjugate upper prevision of P : for every f such that ´f P K, P pfq “
´P p´fq. The upper prevision P pfq can be interpreted as a subject’s infimum selling price for
f .

A lower prevision on K is called coherent (see [43, p. 5] and [41, pp. 73–75, Sec. 2.5]) when
for all p in N, all f0, f1, . . . , fp in K and all non-negative real numbers λ0, λ1, . . . , λp,

sup
xPΩ

«

p
ÿ

i“1

λipfipxq ´ P pfiqq ´ λ0pf0pxq ´ P pf0qq

ff

ě 0.

A lower prevision on the set L of all gambles is coherent if and only if (see [43, p. 11, Sec. 1.2.2]
and [41, p. 75, Sec. 2.5.5])

(C1) P pfq ě inf f ,
(C2) P pλfq “ λP pfq, and
(C3) P pf ` gq ě P pfq ` P pgq

for all gambles f , g and all non-negative real numbers λ.
A functional P on L satisfying P pfq ě inf f and P pf ` gq “ P pfq ` P pgq for any pair of

gambles f and g is called a linear prevision on L [41, p. 88, Sec. 2.4.8], and the set of all linear
previsions on L is denoted by P. A linear prevision is the expectation operator with respect to
its restriction to events, which is a finitely additive probability.

An alternative characterisation of coherence via linear previsions goes as follows. Let P be a
lower prevision on K and let MpP q denote the set of all linear previsions on L that dominate P
on K:

MpP q “ tQ P P : p@f P KqpQpfq ě P pfqqu
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Then P is coherent if and only if P agrees with the lower envelope of MpP q on K, that is, if
and only if P pfq “ minQPMpP qQpfq for all f P K (see [43, p. 18] and [41, p. 138, Sec. 3.3.3]).
A consequence of this is that a lower envelope of coherent lower previsions is again a coherent
lower prevision.

Given a coherent lower prevision P on K, its natural extension [41, Chapter 3] to a larger set
K1 of gambles (K1 Ě K) is the pointwise smallest coherent lower prevision on K1 that agrees with
P on K. Because it is the pointwise smallest, the natural extension is the most conservative (or
least-committal) coherent extension, and thereby reflects the minimal behavioural consequences
of P on K1.

Taking natural extension is transitive [39, p. 98, Cor. 4.9]: if E1 is the natural extension of P
to K1 and E2 is the natural extension of E1 to K2 Ě K1, then E2 is also the natural extension
of P to K2. Hence, if we know the natural extension of P to the set of all gambles then we also
know the natural extension of P to any set of gambles that includes K. The natural extension
to all gambles is usually denoted by E. It holds that Epfq “ minQPMpP qQpfq for any f P L [41,
p. 136, Sec. 3.4.1].

A particular class of coherent lower previsions of interest in this paper are completely monotone
lower previsions [10, 9]. A lower prevision P defined on a lattice of gambles K, i.e., a set of
gambles closed under point-wise maximum and point-wise minimum, is called n-monotone if for
all p P N, p ď n, and all f , f1, . . . , fp in K:

ÿ

IĎt1,...,pu

p´1q|I|P

˜

f ^
ľ

iPI

fi

¸

ě 0.

A lower prevision which is n-monotone for all n P N is called completely monotone.

3. P-Boxes

In this section, we introduce the formalism of p-boxes defined on totally preordered (not
necessarily finite) spaces, as well as the field of events H, which will be instrumental to study the
natural extension of p-boxes. Hence, in contrast to the work by [24], we do not restrict p-boxes
to intervals on the real line.

Let pΩ,ĺq be a total preorder: so ĺ is transitive and reflexive and any two elements are
comparable. We write x ă y for x ĺ y and x � y, x ą y for y ă x, and x » y for x ĺ y and
y ĺ x. For any two x, y P Ω exactly one of x ă y, x » y, or x ą y holds. We also use the
following common notation for intervals in Ω:

rx, ys “ tz P Ω: x ĺ z ĺ yu

px, yq “ tz P Ω: x ă z ă yu

and similarly for rx, yq and px, ys.
For simplicity, we assume that Ω has a smallest element 0Ω and a largest element 1Ω. This is

no essential assumption, since we can always add these two elements to the space Ω.
A cumulative distribution function is a mapping F : Ω Ñ r0, 1s which is non-decreasing and

satisfies moreover F p1Ωq “ 1. For each x P Ω, we interpret F pxq as the probability of the interval
r0Ω, xs. Note that we do not impose F p0Ωq “ 0, so we allow t0Ωu to carry non-zero mass, which
happens commonly if Ω is finite. Also note that distribution functions are not assumed to be
right-continuous—this would make no sense since we have no topology defined yet on Ω—but
even if there is a topology for Ω, we make no continuity assumptions.
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By Ω{ » we denote the quotient set of Ω with respect to the equivalence relation » induced
by ĺ, that is:

rxs» “ ty P Ω: y » xu for any x P Ω

Ω{ » “ trxs» : x P Ωu

Because F is non-decreasing, F is constant on elements rxs» of Ω{ ».

Definition 1. A probability box, or p-box, is a pair pF , F q of cumulative distribution functions
from Ω to r0, 1s satisfying F ď F .

Note that some definitions, such as in [19], differ in that they use the coarsest preorder for
which F and F are non-decreasing, effectively imposing that x » y if and only if F pxq “ F pyq
and F pxq “ F pyq. This paper follows [17], only imposing that F and F are non-decreasing, so
x » y implies F pxq “ F pyq and F pxq “ F pyq, but not the other way around, thereby admitting
more preorders, possibly leading to tighter bounds (see Example 6 further on).

A p-box is interpreted as a lower and an upper cumulative distribution function. In Walley’s
framework, this means that a p-box is interpreted as a lower probability PF,F on the set of
events

K “ tr0Ω, xs : x P Ωu Y tpy, 1Ωs : y P Ωu

by
PF,F pr0Ω, xsq “ F pxq and PF,F ppy, 1Ωsq “ 1´ F pyq.

P-boxes on a totally preordered space pΩ,ĺq are coherent (the proof is virtually identical to the
one given in [39, p. 93, Thm. 3.59], which considered p-boxes on ra, bs Ď R). We denote by
EF,F the natural extension of PF,F to all gambles. We study this natural extension extensively

further on.
When F “ F , we say that pF , F q is precise, and we denote the corresponding lower prevision

on K by PF and its natural extension to L by EF (with F :“ F “ F ).
A few examples of p-boxes on r0, 1s are illustrated in Fig 1.
Given a p-box, we can consider the set of distribution functions that lie between F and F ,

ΦpF , F q “
 

F : F ď F ď F
(

.

We can easily express the natural extension EF,F of PF,F in terms of ΦpF , F q: EF,F is the lower

envelope of the natural extensions of the cumulative distribution functions1 F that lie between
F and F :

EF,F pfq “ inf
FPΦpF,F q

EF pfq (1)

for all gambles f on Ω. A similar result for p-boxes on r0, 1s can be found in [41, Section 4.6.6]
and [33, Theorem 2]. To see why this holds, note that PF,F is the lower envelope of the set

MpPF,F q of linear previsions dominating PF,F , because PF,F is a coherent lower probability.

Each of the linear previsions Q in MpPF,F q has a cumulative distribution function FQ, and it is

easy to see that FQ P ΦpF , F q. Conversely, any linear prevision whose cumulative distribution

function F belongs to ΦpF , F q must belong to MpPF,F q. Therefore, the set MpPF,F q coincides

with the set of all linear previsions whose cumulative distribution function belongs to ΦpF , F q,
which establishes Eq. (1). We shall use this equation repeatedly in subsequent proofs. This
allows us moreover to give a sensitivity analysis interpretation to p-boxes: we can always regard
them as a model for the imprecise knowledge of a cumulative distribution function.

We end this section with a trivial, yet very useful, approximation theorem:

1The natural extension of a cumulative distribution function F is simply understood to be the natural extension
of the precise p-box pF, F q.
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Figure 1. Examples of p-boxes on r0, 1s.

Theorem 2. Let P be any coherent lower prevision defined on L. The least conservative p-box
pF , F q on pΩ,ĺq whose natural extension is dominated by P is given by

F pxq “ P pr0Ω, xsqq F pxq “ P pr0Ω, xsq

for all x P Ω.

Proof. Obviously, the natural extension EF,F of the p-box, with F and F as above, is dominated

by P , because P is an extension of PF,F (see for instance [39, p. 98, Prop. 4.7]).

Any other p-box pG,Gq whose natural extension is dominated by P must satisfy:

Gpxq “ PG,Gpr0Ω, xsq “ EG,Gpr0Ω, xsq ď P pr0Ω, xsq “ F pxq

Gpxq “ 1´ PG,Gppx, 1sq “ EG,Gpr0Ω, xsq ě P pr0Ω, xsq “ F pxq

so pF , F q is indeed the least conservative one. �

4. Natural Extension to All Events

The remainder of this paper is devoted to the natural extension EF,F of PF,F , and to various

convenient expressions for it. We start by giving the form of the natural extension on the field
of events generated by K.

4.1. Extension to the Field Generated by the Domain. Let H be the field of events
generated by the domain K of the p-box, i.e., events of the type

r0Ω, x1s Y px2, x3s Y ¨ ¨ ¨ Y px2n, x2n`1s

for x1 ă x2 ă x3 ă ¨ ¨ ¨ ă x2n`1 in Ω (if n is 0 we simply take this expression to be r0Ω, x1s) and

px2, x3s Y ¨ ¨ ¨ Y px2n, x2n`1s

for x2 ă x3 ă ¨ ¨ ¨ ă x2n`1 in Ω. Clearly, these events form a field: the union and intersection of
any two events in H is again in H, and the complement of any event in H also is again in H.
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To simplify the description of this field, and the expression of natural extension, we introduce
an element 0Ω´ such that:2

0Ω´ ă x for all x P Ω

F p0Ω´q “ F p0Ω´q “ F p0Ω´q “ 0

In particular, p0Ω´, xs “ r0Ω, xs. If we let Ω˚ “ ΩY t0Ω´u, then

H “ tpx0, x1s Y px2, x3s Y ¨ ¨ ¨ Y px2n, x2n`1s : x0 ă x1 ă ¨ ¨ ¨ ă x2n`1 in Ω˚u. (2)

Since the procedure of natural extension is transitive, in order to calculate the natural exten-
sion of PF,F to all gambles, we shall first consider the extension from K to H, then the natural

extension from H to the set of all events, and finally the natural extension from the set of all
events to the set of all gambles.

In the case of a precise p-box, PF has a unique extension to a finitely additive probability
measure on H.

Proposition 3. EF restricted to H is a finitely additive probability measure. Moreover, for any
A P H, that is A “ px0, x1s Y px2, x3s Y ¨ ¨ ¨ Y px2n, x2n`1s with x0 ă x1 ă ¨ ¨ ¨ ă x2n`1 in Ω˚, it
holds that

EF pAq “
n
ÿ

k“0

pF px2k`1q ´ F px2kqq (3)

Proof. Because

EF pr0Ω, xsq “ PF pr0Ω, xsq “ F pxq and

EF pr0Ω, xsq “ 1´ EF ppx, 1Ωsq “ 1´ PF ppx, 1Ωsq “ F pxq

for all x, EF is linear on the linear space spanned by tr0Ω, xs : x P Ωu [39, p. 102, Prop. 4.18].
This linear space includes H, which proves that EF is additive on H, and consequently it is a
finitely additive probability measure on H. The expressions for EF pAq follow immediately. �

We now extend Proposition 3 to p-boxes.

Proposition 4. For any A P H, that is A “ px0, x1s Y px2, x3s Y ¨ ¨ ¨ Y px2n, x2n`1s with x0 ă

x1 ă ¨ ¨ ¨ ă x2n`1 in Ω˚, it holds that EF,F pAq “ PH
F,F
pAq, where

PH
F,F
pAq “

n
ÿ

k“0

maxt0, F px2k`1q ´ F px2kqu. (4)

Proof. We first show that EF,F pAq ď PH
F,F
pAq. Consider a cumulative distribution function F

in ΦpF , F q which satisfies

F px2kq “ F px2kq

F px2k`1q “ maxtF px2k`1q, F px2kqu

for all k “ 0, . . . , n. Note that 0 ď F px0q ď ¨ ¨ ¨ ď F px2n`1q ď 1, so there is a cumulative
distribution function satisfying the above equalities. Secondly, note that for each k “ 0, . . . , 2n`

2The cunning reader notes that one could avoid introducing 0Ω´ by imposing F p0Ωq “ F p0Ωq “ 0. However,

this leads to an apparent loss of generality when linking p-boxes to other uncertainty models, and a slightly more
complicated equation for the natural extension—therefore, for our purpose, it is simpler to stick to the most
general formulation. (F p1Ωq “ F p1Ωq “ 1 follows from coherence, so nothing is lost there.)
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1, F satisfies F pxkq ď F pxkq ď F pxkq. Hence, there is indeed a cumulative distribution function
F in ΦpF , F q satisfying the above equalities. By Eq. (3),

EF pAq “
n
ÿ

k“0

maxtF px2k`1q, F px2kqu ´ F px2kq

“

n
ÿ

k“0

maxt0, F px2k`1q ´ F px2kqu “ PH
F,F
pAq

with respect to F . Using Eq. (1), we deduce that PH
F,F
pAq ě EF,F pAq.

Next, we show that EF,F pAq ě PH
F,F
pAq. Let F be any cumulative distribution function in

ΦpF , F q. Then,

EF ppx2k, x2k`1sq “ F px2k`1q ´ F px2kq ě maxt0, F px2k`1q ´ F px2kqu

since F px2k`1q ě F px2k`1q and ´F px2kq ě ´F px2kq. But, because EF is a finitely additive

probability measure on H (Proposition 3), PH
F,F
pAq ď EF pAq. This holds for any F in ΦpF , F q,

and hence Eq. (1) implies that PH
F,F
pAq ď EF,F pAq. �

Note that it is possible to derive a closed expression for the upper prevision EF,F as well,

similar to Eq. (4), however that expression is not as easy to work with. In practice, to calculate
EF,F pAq for an event A P H, it is by far easiest first to calculate EF,F pA

cq using Eq. (4) (observe

that also Ac P H), and then to apply the conjugacy relation:

EF,F pAq “ 1´ EF,F pA
cq.

The lower probability PF,F on K determined by the p-box usually does not have a unique

coherent extension to the field H (unless F “ F ), as shown in the following example.

Example 5. Consider the distribution functions F and F given by F pxq “ x for x P r0, 1s and
F pxq “ 0 if x ď 0.5, F pxq “ 2px´ 0.5q if x ě 0.5.

From Proposition 3, both PF and PF have a unique extension to the field H. Let us define

P 1 on H by P 1pAq :“ mintPF pAq, PF pAqu for all A. Then P 1 is a coherent lower prevision on

H, and it is not difficult to show that P 1 “ PF,F pAq for any A P K.

Now, given the interval p0.5, 0.6s, we deduce from Proposition 3 that

P 1pp0.5, 0.6sq “ mintPF pp0.5, 0.6sq, PF pp0.5, 0.6squ

“ mintF p0.6q ´ F p0.5q, F p0.6q ´ F p0.5qu “ mint0.2, 0.1u “ 0.1.

However, it follows from Proposition 4 that EF,F pp0.5, 0.6sq “ maxt0, F p0.6q ´ F p0.5qu “

maxt0, 0.2´ 0.5u “ 0.

4.2. Inner Measure. The inner measure PH
F,F ˚

of the coherent lower probability PH
F,F

defined

in Eq. (4) coincides with EF,F on all events [41, Cor. 3.1.9, p. 127]:

EF,F pAq “ PH
F,F ˚

pAq “ sup
CPH,CĎA

PH
F,F
pCq, (5)

The next example demonstrates that the choice of the preorder ĺ can have a significant
impact, even for the same F and F .

Example 6. Take Ω “ t0, 1, 2, 3, 4u and consider:

F pxq “ F pxq “

#

0 if x ă 2,

1 otherwise.



P-BOXES ON TOTALLY PREORDERED SPACES FOR MULTIVARIATE MODELLING 9

Consider the total preorder ĺ1 defined by 0 »1 1 ă1 2 »1 3 »1 4 and the usual total ordering
ĺ2 defined by 0 ă2 1 ă2 2 ă2 3 ă2 4. With ĺ1, we have for any event A Ď Ω that

EF,F pAq “

#

1 if t2, 3, 4u Ď A,

0 otherwise.

using Eqs. (4) and (5). However, with ĺ2,

EF,F pAq “

#

1 if 2 P A,

0 otherwise.

For ease of notation, from now onwards, we denote EF,F by E when no confusion about the

cumulative distribution functions determining the p-box can arise.
In principle, the problem of natural extension to all events is solved: simply calculate the

inner measure as in Eq. (5), using Eq. (4) to calculate PH
F,F
pCq for elements C in H. However,

the inner measure still involves calculating a supremum, which may be non-obvious. What we
show next is that Eq. (4) can be extended to arbitrary events, by first taking the topological
interior with respect to a very simple topology, followed by a (possibly infinite) sum over the
so-called full components of this interior.

4.3. The Partition Topology. Consider the partition topology on Ω generated by the equiva-
lence classes rxs», that is, the topology generated by

τ :“ trxs» : x P Ωu.

This topology is very similar to the discrete topology, except that it is not Hausdorff, unless ĺ

is anti-symmetric: if x » y but x ‰ y then x and y cannot be topologically separated, since
every neighborhood of x is also a neighborhood of y and vice versa. If ĺ is anti-symmetric (for
example, the usual ordering on the reals is), then the partition topology reduces to the discrete
topology, that is, every set is clopen (closed and open).

The open sets in this topology are all unions of equivalence classes (or, subsets of Ω{ », if
you like). Hence, in this topology, every open set is also closed. In particular, every interval in
pΩ,ĺq is clopen.

The topological interior of a set A is given by the union of all equivalence classes contained
in A:

intpAq “
ď

trxs» : rxs» Ď Au (6)

and the topological closure is given by the union of all equivalence classes which intersect with
A:

clpAq “
ď

trxs» : rxs» XA ‰ Hu. (7)

Lemma 7. For any subset A of Ω, EpAq “ EpintpAqq and EpAq “ EpclpAqq.

Proof. Clearly EpintpAqq ď EpAq because intpAq Ď A. If we can also show that EpintpAqq ě
EpAq the desired result is established.

Consider an element C of the field H which is included in A. Since C is in particular an
open set in the partition topology, it is a subset of intpAq. The monotonicity of E implies that
EpCq ď EpintpAqq. Consequently,

EpAq “ PH
F,F ˚

pAq “ sup
CPH,CĎA

PH
F,F
pCq “ sup

CPH,CĎA
EpCq ď EpintpAqq.

The equality EpAq “ EpclpAqq now follows from the fact that clpAq “ pintpAcqqc and EpAq “
1´ EpAcq �
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4.4. Additivity on Full Components. Next, we determine a constructive expression of the
natural extension E on the clopen subsets of Ω.

Definition 8. [37, §4.4] A set S Ď Ω is called full if ra, bs Ď S for any a ĺ b in S.

What do these full sets look like? Obviously, any full set is clopen, as it must be a union of
equivalence classes.

Lemma 9. Every full set is clopen.

Proof. Observe that ra, as “ ras», and apply Definition 8. �

Under an additional completeness assumption, the full sets are precisely the intervals.

Lemma 10. If Ω{ » is order complete, that is, if every subset of Ω{ » has a supremum (minimal
upper bound) and infimum (maximal lower bound), then every full set is an interval, that is, it
can be written as rx, ys, rx, yq, px, ys, or px, yq, for some x, y in Ω.

Proof. Consider a full set S in Ω. Since, by Lemma 9, S is clopen, we may consider S as a subset
of Ω{ ». So rxs» “ inf S and rys» “ supS exist, by the order completeness of Ω{ ». Consider
the case x P S and y R S. Apply the definitions of inf and sup to establish that z P S if and only
if x ĺ z ă y. The other three cases are proven similarly. �

Note that Ω{ » can be made order complete via the Dedekind completion [37, §4.34].

Definition 11. [37, §4.4] Given a clopen set A Ď Ω and an element x of A, the full component
Cpx,Aq of x in A is the largest full set S which satisfies x P S Ď A.

Lemma 12. The full components of any clopen set A form a partition of A.

Proof. This is easily shown using a similar result for total orders given in [37, 4.4(a)]. �

In the following theorem, we prove that the natural extension E is additive on full components.
Recall that the sum of a (possibly infinite) family pxλqλPΛ of non-negative real numbers is defined
as

ÿ

λPΛ

xλ “ sup
LĎΛ
L finite

ÿ

λPL

xλ

If the outcome of the above sum is a finite number, at most countably many of the xλ’s are
non-zero [37, 10.40].

Theorem 13. Let B be a clopen subset of Ω. Let pBλqλPΛ be the full components of B, and let
pCλqλPΛ1 be the full components of Bc. Then

EpBq “
ÿ

λPΛ

EpBλq

EpBq “ 1´
ÿ

λPΛ1

EpCλq

Proof. Since pBλqλPΛ is a partition of B, and because the functional E is monotone and super-
additive,

EpBq “ EpYλPΛBλq ě EpYλPLBλq ě
ÿ

λPL

EpBλq

for every finite subset L of Λ, and consequently EpBq ě
ř

λPΛEpBλq. We are left to show that
also EpBq ď

ř

λPΛEpBλq.
Let ε ą 0. By Eq. (5), the inner measure coincides with the natural extension, so there is a C

in H such that C Ď B and EpBq ď EpCq ` ε. From Eq. (2), we can write

C “ px0, x1s Y px2, x3s Y ¨ ¨ ¨ Y px2n, x2n`1s
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for some x0 ă x1 ă ¨ ¨ ¨ ă x2n`1 in Ω˚. Let us denote Ck :“ px2k, x2k`1s for k “ 0, . . . , n. It is
easily established that C0, . . . , Cn are the full components of C.

Applying Proposition 4 twice, and using the fact that each full component Ck of C must be
a subset of exactly one full component Bλ of B (this is a consequence of C Ď B), we find that

EpCq “
n
ÿ

k“0

EpCkq “
ÿ

λPΛ

EpYk : CkĎBλCkq

(note that the union is H for those λ where no Ck Ď Bλ—so only a finite number of terms can
be non-zero in the latter sum) and consequently

EpBq ď EpCq ` ε “
ÿ

λPΛ

EpYk : CkĎBλCkq ` ε ď
ÿ

λPΛ

EpBλq ` ε,

taking into account the monotonicity of E. As this holds for any ε ą 0, we arrive at the desired
inequality.

The expression for E simply follows from the conjugacy relation EpBq “ 1 ´ EpBcq, once
noted that Bc is clopen as well. �

In other words, the natural extension E of a p-box is arbitrarily additive on full components.
In particular, interestingly, it is σ-additive on full components (but obviously not additive, let
alone σ-additive, on arbitrary events).

Example 14. Additivity on full components is not sufficient for a lower probability to be equiv-
alent to a p-box, even in the finite case. For example, consider Ω “ t1, 2, 3u with the usual
ordering, so H “ ℘pΩq. Let P be the lower probability defined by

P pt1uq “ P pt2uq “ P pt3uq “ 0.1

It can be checked that P is coherent, and that the natural extension E of P is the lower envelope
of the probability mass functions p0.8, 0.1, 0.1q, p0.1, 0.8, 0.1q, and p0.1, 0.1, 0.8q. Moreover, E is
additive on full components, because

Ept1, 3uq “ Ept1uq ` Ept3uq

(every other subset of Ω is already full). However,

Ept2uq ‰ maxt0, Ept1, 2uq ´ Ept1uqu

because Ept1, 2uq “ 0.2 and Ept1uq “ 0.8. This shows that E violates Proposition 4 and as a
consequence it is not the natural extension to events of a p-box.

4.5. Summary. Let us summarize all results so far, and explain how, in practice, EpAq and
EpAq of an arbitrary event A can be calculated.

Proposition 4 gave the natural extension to the field H; we are now in a position to generalize
it to all events, at least when Ω{ » is order complete.

Indeed, consider an arbitrary event A. By Lemma 7, it suffices to calculate the natural
extension of intpAq or clpAq. Calculating the interior or closure with respect to the partition
topology will usually be trivial (see examples further on), and moreover, the topological interior
or closure of a set is always clopen, so now we only need to know the natural extension of clopen
sets.

Now, by Theorem 13, it follows that we only need to calculate the natural extension of the full
components pBλqλPΛ of intpAq or the full components pCλqλPΛ of clpAqc “ intpAcq—note that
each of these full components is also clopen. Also, finding the full components will often be a
trivial operation—commonly, there will only be a few.
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But, by Lemma 10, if, in addition, Ω{ » is order complete, then each full component is an
interval. And for intervals, we immediately infer from Proposition 4 and Eq. (5) that:

Eppx, ysq “ maxt0, F pyq ´ F pxqu (8a)

Eppx, yqq “ maxt0, F py´q ´ F pxqu (8b)

Eprx, ysq “

#

maxt0, F pyq ´ F pxqu if x has no immediate predecessor

maxt0, F pyq ´ F px´qu if x has an immediate predecessor
(8c)

Eprx, yqq “

#

maxt0, F py´q ´ F pxqu if x has no immediate predecessor

maxt0, F py´q ´ F px´qu if x has an immediate predecessor
(8d)

for any x ă y in Ω,3 where F py´q denotes supzăy F pzq and similarly for F px´q. The equalities
hold because, if x ă y in Ω, and x´ is an immediate predecessor of x, then rx, ys “ px´, ys and
rx, yq “ px´, yq. Recall also that F p0Ω´q “ F p0Ω´q “ 0 by convention. If Ω{ » is finite, then
one can think of z´ as the immediate predecessor of z in the quotient space Ω{ » for any z P Ω;

In other words, we have a simple constructive means of calculating the natural extension of
any event.

4.6. Special Cases. The above equations hold for any pΩ,ĺq with order complete quotient
space. In most cases in practice, either

‚ Ω{ » is finite, or
‚ Ω{ » is connected meaning that for any two elements x ă y in Ω there is a z in Ω such

that x ă z ă y,4 (this is the case for instance when Ω is a closed interval in R and ĺ is
the usual ordering of reals)

Moreover, if Ω{ » is connected, then, in practice, F will satisfy F py´q “ F pyq for all y in Ω.
For example, in case Ω is a closed interval in R, this happens precisely when F p0q “ 0 and F is
left-continuous in the usual sense.

Obviously, if Ω{ » is finite, then every element of Ω has an immediate predecessor (remember,
we take the immediate predecessor of 0Ω to be 0Ω´), and if Ω{ » is connected, then no element
except 0Ω has an immediate predecessor.

By Lemma 7, Theorem 13, and Eqs. (8), we conclude:

Corollary 15. If Ω{ » is finite, then every full set B Ď Ω is of the form ra, bs and for every
event A Ď Ω,

EpAq “
ÿ

λPΛ

maxt0, F pbλq ´ F paλ´qu

EpAq “ 1´
ÿ

λPΛ1

maxt0, F pb1λq ´ F pa
1
λ´qu

where praλ, bλsqλPΛ are the full components of intpAq, and pra1λ, b
1
λsqλPΛ1 are the full components

of intpAcq “ clpAqc.

Corollary 16. If Ω{ » is order complete and connected, and F py´q “ F pyq for all y in Ω, then

EpAq “
ÿ

λPΛ

maxt0, F psupBλq ´ F pinf Bλqu

EpAq “ 1´
ÿ

λPΛ1

maxt0, F psupCλq ´ F pinf Cλqu

3In case x “ 0Ω, evidently, 0Ω´ is the immediate predecessor.
4This terminology stems from the fact that, in this case, Ω{ » is connected with respect to the order topology

[37, §15.46(6)].
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where pBλqλPΛ are the full components of intpAq and pCλqλPΛ1 are the full components of intpAcq “
clpAqc.

Beware of F p0Ωq “ F p0Ω´q “ 0 in the last corollary.

4.7. Example. Let’s investigate a particular type of p-boxes on the unit square r0, 1s2. First,
we must specify a preorder on Ω. A natural yet naive way of doing so is, for instance, saying
that px1, y1q ĺ px2, y2q whenever

x1 ` y1 ď x2 ` y2

Consider a p-box pF , F q on pr0, 1s2,ĺq. Since F is required to be non-decreasing with respect
to ĺ, it follows that F px, yq is constant on elements of r0, 1s2{ », which means that F px1, y1q “

F px2, y2q whenever x1 ` y1 “ x2 ` y2. Thus, we may think of F px, yq as a function of a single
variable z “ x` y, and we write F pzq. Similarly, we write F pzq.

Our definition of ĺ means that our p-box specifies bounds on the probability of right-angled
triangles (restricted to r0, 1s2) whose hypothenuses are orthogonal to the diagonal:

F pzq ď pptpx, yq P r0, 1s2 : x` y ď zuq ď F pzq (9)

Observe that the p-box is given directly on the two-dimensional product space, without the need
to define marginal p-boxes for each dimension. The base τ for our partition topology is given by

τ “ ttpx, yq P r0, 1s2 : x` y “ zu : z P r0, 2su

For example, the topological interior of a rectangle A “ ra, bs ˆ rc, ds is empty, unless a “ c “ 0
or b “ d “ 1, because in all other cases, no element of τ is a subset of A. In the cases where
a “ c “ 0 and mintb, du ă 1, or maxta, cu ą 0 and b “ d “ 1 (if a “ c “ 0 and b “ d “ 1 then
the interior is Ω), respectively, we have:

intpr0, bs ˆ r0, dsq “ tpx, yq P r0, 1s2 : x` y ď mintb, duu

intpra, 1s ˆ rc, 1sq “ tpx, yq P r0, 1s2 : x` y ě 1`maxta, cuu

Consequently, EpAq “ 0 for all rectangles A, except for

Epr0, bs ˆ r0, dsq “ F pmintb, duq

Epra, 1s ˆ rc, 1sq “ 1´ F p1`maxta, cuq

Fig. 2 illustrates the situation. So, for the purpose of making inferences about the lower proba-
bility of events that are rectangles, the ordering ĺ was obviously poorly chosen. In general, one
should choose ĺ in a way that Ω{ » contains good approximations for all events of interest.

For example, in the case of rectangles, we could for instance discretize r0, 1s2 into smaller
squares, and impose some ordering on these squares. Of course, it may not be entirely obvious
how to interpret the lower and upper cumulative distribution functions on such discretized space,
since there is no natural ordering on such discretization. Another strategy would be to start
from a reference point (e.g., an elicited modal value) and then to choose the ordering ĺ such
that intervals correspond to concentric regions of interests around the reference point. Again, all
of this is possible because our theory concerns p-boxes on arbitrary totally preordered spaces,
and is not limited to the real line with its natural ordering. More realistic examples in which
such concentric regions are used are given in Section 8.

5. Natural Extension to All Gambles

Next, we establish that p-boxes are completely monotone, and that therefore their natural
extension to all gambles can be expressed as a Choquet integral. We further simplify the calcu-
lation of this Choquet integral via the lower and upper oscillation of gambles with respect to the
partition topology introduced earlier.
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x` y ď 0.5

0.5 ď x` y ď 1.2

x` y ě 1.2

b

d

x` y ď mintb, du

a

c

x` y ě 1`maxta, cu

Figure 2. Shape of intervals induced by ĺ, and calculation of the topological interior.

5.1. Complete Monotonicity. As shown in [33, Section 3.1], the natural extension EF of a
distribution function F on r0, 1s is completely monotone. It is fairly easy to generalise this result
to distribution functions on an arbitrary totally preordered space Ω.5 However, given this, and
Eq. (1), we cannot immediately deduce the complete monotonicity of EF,F , because the lower

envelope of a set of completely monotone lower previsions is not necessarily completely monotone.
We prove next that such an envelope is indeed completely monotone in the case of p-boxes. This
is an improvement with respect to previous results [19], where the relation between p-boxes and
complete monotonicity was established for finite spaces.

Let PH
F,F

denote the restriction of EF,F to H, given by Proposition 4.

Theorem 17. PH
F,F

is a completely monotone coherent lower probability.

Proof. Clearly, PH
F,F

is coherent as it is the natural extension to H of a coherent lower probability

PF,F [41, p. 123, 3.1.2(a)]. To prove that it is completely monotone, we must establish that for

all p P N, 2 ď p ď n, and all A1, . . . , Ap in H:

PH
F,F

˜

p
ď

i“1

Ai

¸

ě
ÿ

H‰IĎt1,...,pu

p´1q|I|`1PH
F,F

˜

č

iPI

Ai

¸

. (10)

For any p P N, 2 ď p ď n, and any A1, . . . , Ap in H, consider the finite field generated by A1,

. . . , Ap. Let Q denote the restriction of PH
F,F

to this finite field. By [19, Sec. 3], Q is completely

monotone on this finite field. In particular, Eq. (10) is satisfied. But this means that Eq. (10) is
satisfied for all p P N, 2 ď p ď n, and all A1, . . . , Ap in H, which establishes the theorem. �

5.2. Choquet Integral Representation. Complete monotonicity allows us to characterise the
natural extension on all gambles, as we show in the following theorem:

Theorem 18. The natural extension E of PF,F is given by the Choquet integral

Epfq “ inf f `

ż sup f

inf f

Eptf ě tuq dt

5Indeed, by [9, Thm. 5 & Thm. 9], the natural extension of any finitely additive probability on a field is
completely monotone.
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for every gamble f . Moreover, E is completely monotone on all gambles. Similarly,

Epfq “ inf f `

ż sup f

inf f

Eptf ě tuqdt.

Proof. Immediate from Theorem 17 once observed that E “ PH
F,F ˚

on all events, and [9, Theo-

rems 8 and 9]. The latter two theorems state that:

‚ Given a coherent n-monotone (n ě 2) lower probability P defined on a field (here, H),
its natural extension to all gambles is given by its Choquet integral pCq

ş

¨dP˚
‚ If a coherent lower probability P defined on a field is n-monotone (n ě 2), then its

natural extension to all gambles is n-monotone.

�

5.3. Lower and Upper Oscillation. By Lemma 7, to turn Theorem 18 in an effective algo-
rithm, we must calculate intptf ě tuq for every t. Fortunately, there is a very simple way to do
this.

For any gamble f on Ω and any topological base τ , define its lower oscillation as the gamble

oscpfqpxq “ sup
CPτ : xPC

inf
yPC

fpyq

For the partition topology which we introduced earlier, this simplifies to

oscpfqpxq “ inf
yPrxs»

fpyq (11)

The upper oscillation is:

oscpfqpxq “ ´oscp´fqpxq “ sup
yPrxs»

fpyq (12)

For a subset A of Ω, we deduce from the above definition and from Eq. (6) that the lower
oscillation of IA is IintpAq, so the lower oscillation is the natural generalisation of the topological
interior to gambles. Similarly, we see from Eq. (7) that the upper oscillation of IA is IclpAq.

Proposition 19. For any gamble f on Ω,

intptf ě tuq “ toscpfq ě tu (13a)

clptf ě tuq “ toscpfq ě tu (13b)

so, in particular,

Epfq “ inf oscpfq `

ż sup oscpfq

inf oscpfq

Eptoscpfq ě tuqdt “ Eposcpfqq (14a)

Epfq “ inf oscpfq `

ż sup oscpfq

inf oscpfq

Eptoscpfq ě tuqdt “ Eposcpfqq (14b)

Proof. Eqs. (13) are easily established using the definitions of interior and closure, and lower and
upper oscillation. For example,

x P intptf ě tuq

if and only if there is a C in τ such that x P C and

C Ď tf ě tu

But, for our choice of τ , necessarily C “ rxs» if x P C P τ , so the above holds if and only if

@y P rxs» : fpyq ě t
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And this holds if and only if

oscpfqpxq ě t

where we used the defintion of oscpfq.
Let us prove Eqs. (14). It follows from Eq. (11) that f ě oscpfq, and as a consequence

Epfq ě Eposcpfqq. We are left to prove that Epfq ď Eposcpfqq.
Indeed, using Lemma 7, and Eqs. (13),

Epfq “ inf f `

ż sup f

inf f

Eptf ě tuq dt “ inf f `

ż sup f

inf f

Eptoscpfq ě tuqdt

and since obviously, by Eq. (11), inf f “ inf oscpfq,

“ inf oscpfq `

ż sup f

inf oscpfq

Eptoscpfq ě tuq dt

and since sup f ě sup oscpfq, using the usual properties of the Riemann integral,

“ inf oscpfq `

ż sup oscpfq

inf oscpfq

Eptoscpfq ě tuq dt

`

ż sup f

sup oscpfq

Eptoscpfq ě tuq dt

Now use the fact that toscpfq ě tu “ H for t P psup oscpfq, sup f s, so the last term is zero. �

Concluding, to calculate the natural extension of any gamble, in practice, we must simply
determine the full components of the cut sets of its lower or upper oscillation, and calculate a
simple Riemann integral of a monotonic function.

Examples will be given in Section 8.

6. P-Boxes Whose Preorders are Induced by a Real-Valued Function

In practice, the most convenient way to specify a preorder ĺ on Ω such that Ω{ » is order
complete and connected is by means of a bounded real-valued function Z : Ω Ñ R. For instance,
in the example in Section 4.7, we used Zpx, yq “ x` y. Also see [2] and [28].

Let us assume from now onwards that Z is a surjective mapping from Ω to r0, 1s.
For any x and y in Ω, define x ĺ y whenever Zpxq ď Zpyq. Because Z is surjective, Ω{ »

is order complete and connected. In particular, Ω has a smallest and largest element, for which
Zp0Ωq “ 0 and Zp1Ωq “ 1. Moreover, we can think of any cumulative distribution function on
pΩ,ĺq as a function over a single variable z P r0, 1s. Consequently, we can think of any p-box
on pΩ,ĺq as a p-box on pr0, 1s,ďq. In particular, for any subset I of r0, 1s we write EpIq for
EpZ´1pIqq. For example, for a, b in r0, 1s, and A “ Z´1ppa, bsq Ď Ω, we have that

EpAq “ Eppa, bsq “ maxt0, F paq ´ F pbqu

by Proposition 4. Similar expressions for other types of intervals follow from Eqs. (8).
The topological interior and closure can be related to the so-called lower and upper inverse

of Z´1. Indeed, consider the multi-valued mapping Γ :“ Z´1 : r0, 1s Ñ ℘pΩq. Because for every
x in Ω, it holds that rxs» “ ΓpZpxqq, it follows that, for any subset A of Ω, intpAq “ ΓpΓ˚pAqq,
and clpAq “ ΓpΓ˚pAqq, where Γ˚ and Γ˚ denote the lower and upper inverse of Γ respectively,
that is

Γ˚pAq “ tz P r0, 1s : Γpzq Ď Au, and

Γ˚pAq “ tz P r0, 1s : Γpzq XA ‰ Hu
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(see for instance [16]).6

Theorem 20. Let A be an arbitrary subset of Ω. Then

EpAq “
ÿ

λPΛ

EpIλq

EpAq “ 1´
ÿ

λPΛ1

EpJλq

where pIλqλPΛ are the full components of ZpintpAqq “ Γ˚pAq and pJλqλPΛ1 are the full components
of ZpintpAcqq “ ZpclpAqcq “ Γ˚pA

cq “ pΓ˚pAqqc.
If, in addition, F is left-continuous as a function of z P r0, 1s and F p0q “ 0, then

EpAq “
ÿ

λPΛ

maxt0, F psup Iλq ´ F pinf Iλqu

EpAq “ 1´
ÿ

λPΛ1

maxt0, F psup Jλq ´ F pinf Jλqu

Proof. Indeed, by Corollary 16,

EpAq “ EpintpAqq “
ÿ

λPΛ

EpBλq

where pBλqλPΛ are the full components of intpAq. So, the result is established if we can show
that pZ´1pIλqqλPΛ are the full components of intpAq.

Obviously, since pIλqλPΛ partitions ZpintpAqq, it follows that pZ´1pIλqqλPΛ partitions
ď

λPΛ

Z´1pIλq “ Z´1pZpintpAqqq “ intpAq

where the latter equality follows from the fact that intpAq is clopen, i.e., is a union of equivalence
classes.

We are left to prove that each set Z´1pIλq is a full component. Clearly, Z´1pIλq is full: for
any two x and y in Z´1pIλq, it holds that

rx, ys “ tv P Ω: Zpxq ď Zpvq ď Zpyqu “ Z´1prZpxq, Zpyqsq Ď Z´1pIλq

where we used the fact that rZpxq, Zpyqs Ď Iλ in the last step.
Consider any x P Z´1pIλq. The desired result is established if we can show that Z´1pIλq is

the largest full set S which satisfies x P S Ď intpAq.
Suppose S is larger, that is, S is full, x P S Ď intpAq, and Z´1pIλq ( S. Since both sets are

clopen, it must be that there is some y P S such that rys»XZ
´1pIλq “ H. But this implies that

Iλ “ ZpZ´1pIλqq ( ZpSq

because Zpyq belongs to ZpSq but not to ZpZ´1pIλqq. But, this would mean that Iλ is not a
full component of ZpintpAqq—a contradiction. So, Z´1pIλq must be the largest full set S which
satisfies x P S Ď intpAq. �

Regarding gambles, note that the lower oscillation is constant on equivalence classes (this
follows immediately from its definition). Hence, we may consider oscpfq for a gamble f on Ω as
a function of z P r0, 1s, and we can use Proposition 19 to write:

6We follow the terminology in [34] and [22], among others. Beware that Γ˚ and Γ˚ are sometimes called upper
and lower inverse instead [40, 3], or strong and weak inverse [14].
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Proposition 21. For any gamble f on Ω,

Epfq “ inf oscpfq `

ż sup oscpfq

inf oscpfq

Eptz : oscpfqpzq ě tuq dt

Epfq “ inf oscpfq `

ż sup oscpfq

inf oscpfq

Eptz : oscpfqpzq ě tuq dt

7. Constructing Multivariate P-Boxes from Marginals

In this section, we construct a multivariate p-box from marginal coherent lower previsions
under arbitrary rules of combination. As special cases, we derive expressions for the joint,

(i) either without any assumptions about dependence or independence between variables, that
is, using the Fréchet-Hoeffding bounds [29],

(ii) or assuming epistemic independence between all variables, that is, using the factorization
property [7].

We also derive Williamson and Downs’s [45] probabilistic arithmetic as a special case of our
framework.

Specifically, consider n variables X1, . . . , Xn assuming values in X1, . . . , Xn, and assume that
marginal lower previsions P 1, . . . , Pn, are given for each variable—each of these could be the
natural extension of a p-box, although we do not require this. So, each P i is a coherent lower
prevision on LpXiq.

7.1. Multivariate P-Boxes. The first step in constructing our multivariate p-box is to define
a mapping Z to induce a preorder ĺ on Ω “ X1ˆ ¨ ¨ ¨ˆXn. The following choice works perfectly
for our purpose:

Zpx1, . . . , xnq “
n

max
i“1

Zipxiq

where each Zi is a surjective mapping from Xi to r0, 1s and hence, also induces a marginal
preorder ĺi on Xi. Each P i can be approximated by a p-box pF i, F iq on pXi,ĺiq, defined by

F ipzq “ P ipZ
´1
i pr0, zsqq F ipzq “ P ipZ

´1
i pr0, zsqq

This approximation is the best possible one, by Theorem 2.
Beware that even though different choices of Zi may induce the same total preorder ĺi, they

might lead to a different total preorder ĺ induced by Z. Whence, our joint total preorder ĺ is
not uniquely determined by ĺi. Roughly speaking, the Zi specify how the marginal preorders
ĺi scale relative to one another. As we shall see, this effectively means that our choice of Zi
affects the precision of our inferences: a good choice will ensure that any event of interest can
be well approximated by elements of Ω{ ». Of course, nothing prevents us, at least in theory,
to consider the set of all Zi which induce some given marginal total preorders ĺi, and whence
to work with a set of p-boxes. In some cases, this may result in quite complicated calculations.
However, in Section 7.4, we will see an example where this approach is feasible.

Anyway, with this choice of Z, we can easily find the p-box which represents the joint as
accurately as possible, under any rule of combination of coherent lower previsions:

Lemma 22. Consider any rule of combination d of coherent lower and upper previsions, map-
ping the marginals P 1, . . . , Pn to a joint coherent lower prevision

Än
i“1 P i on all gambles.
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Suppose there are functions ` and u for which:

n
ä

i“1

P i

˜

n
ź

i“1

Ai

¸

“ `pP 1pA1q, . . . , PnpAnqq and

n
ä

i“1

P i

˜

n
ź

i“1

Ai

¸

“ upP 1pA1q, . . . , PnpAnqq,

for all A1 Ď X1, . . . , An Ď Xn. Then, the couple pF , F q defined by

F pzq “ `pF 1pzq, . . . , Fnpzqq F pzq “ upF 1pzq, . . . , Fnpzqq

is the least conservative p-box on pΩ,ĺq whose natural extension EF,F is dominated by the

combination
Än

i“1 P i of P 1, . . . , Pn.

Proof. By Theorem 2, the least conservative p-box on pΩ,ĺq whose natural extension is domi-
nated by the joint P “

Än
i“1 P i is given by

F pzq “ P pZ´1pr0, zsqq F pzq “ P pZ´1pr0, zsqq

Now, observe that the set Z´1pr0, zsq is a product of marginal intervals:

Z´1pr0, zsq “ tpx1, . . . , xnq P Ω:
n

max
i“1

Zipxiq ď zu

“ tpx1, . . . , xnq P Ω: p@i “ 1, . . . , nqpZipxiq ď zqu

“

n
ź

i“1

txi P Xi : Zipxiq ď zu “
n
ź

i“1

Z´1
i pr0, zsq.

The desired equalities follow immediately. �

7.2. Natural Extension: The Fréchet Case. The natural extension �ni“1P i of P 1, . . . , Pn
is the lower envelope of all joint distributions (or, linear previsions) whose marginal distributions
(or, marginal linear previsions) are compatible with the given marginal lower previsions. So,
the model is completely vacuous about the dependence structure, as it includes all possible
forms of dependence. We refer to for instance [8, p. 120, §3.1] for a rigorous definition. In this
paper, we only need the following equalities, which are known as the Fréchet bounds [27] (see
for instance [46, p. 131] for a more recent discussion):

n
ò

i“1

P i

˜

n
ź

i“1

Ai

¸

“ max

#

0, 1´ n`
n
ÿ

i“1

P ipAiq

+

and (15a)

n
ò

i“1

P i

˜

n
ź

i“1

Ai

¸

“
n

min
i“1

P ipAiq (15b)

for all A1 Ď X1, . . . , An Ď Xn.

Theorem 23. The p-box pF , F q defined by

F pzq “ max

#

0, 1´ n`
n
ÿ

i“1

F ipzq

+

F pzq “
n

min
i“1

F ipzq

is the least conservative p-box on pΩ,ĺq whose natural extension EF,F is dominated by the natural

extension �ni“1P i of P 1, . . . , Pn.

Proof. Immediate, by Lemma 22 and Eqs. (15). �



20 M. TROFFAES AND S. DESTERCKE

The next example shows that, even when P i are p-boxes, the joint p-box will in general only
be an outer approximation (although the closest one that is a p-box) of the joint lower prevision.

Example 24. Consider two variables X and Y with domain X “ tx1, x2u, with x1 ă x2, and
Y “ ty1, y2u, with y1 ă y2. Consider

F 1px1q “ 0.4, F 1px1q “ 0.6, F 1px2q “ F 1px2q “ 1,

F 2py1q “ 0.2, F 2py1q “ 0.3, F 2py2q “ F 2py2q “ 1.

Let P 1 be the natural extension of pF 1, F 1q, and let P 2 be the natural extension of pF 2, F 2q.
Consider the events A “ tx1u ˆ Y and B “ X ˆ ty2u. Writing P for �ni“1P i, we have that

P pAq “ P 1ptx1uq “ maxt0, F 1px1q ´ F 1px1´qu “ 0.4

P pBq “ P 2pty2uq “ maxt0, F 2py2q ´ F 2py1qu “ 0.7

whence,

P pAYBq “ maxtP pAq, P pBqu “ 0.7,

P pAXBq “ maxt0, 1´ 2` P pAq ` P pBqu “ 0.1.

But this means that P is not even 2-monotone, because P pA Y Bq ` P pA X Bq ă P pAq `
P pBq. Therefore, P cannot be represented by a p-box, as p-boxes are completely monotone by
Theorem 17.

7.3. Independent Natural Extension. In contrast, the independent natural extension bni“1P i
of P 1, . . . , Pn models epistemic independence between X1, . . . , Xn. We refer to [7] for a rigorous
definition and properties. In this paper, we only need the following equalities:

n
â

i“1

P i

˜

n
ź

i“1

Ai

¸

“

n
ź

i“1

P ipAiq and (16a)

n
â

i“1

P i

˜

n
ź

i“1

Ai

¸

“

n
ź

i“1

P ipAiq (16b)

for all A1 Ď X1, . . . , An Ď Xn.

Theorem 25. The p-box pF , F q defined by

F pzq “
n
ź

i“1

F ipzq F pzq “
n
ź

i“1

F ipzq

is the least conservative p-box on pΩ,ĺq whose natural extension EF,F is dominated by the

indepedent natural extension bni“1P i of P 1, . . . , Pn.

Proof. Immediate, by Lemma 22 and Eqs. (16). �

Again, in general, the joint p-box will only be an outer approximation of the actual joint lower
prevision.

Example 26. Again, consider two variables X and Y with domain X “ tx1, x2u, with x1 ă x2,
and Y “ ty1, y2u, with y1 ă y2. Consider

F 1px1q “ 0.4, F 1px1q “ 0.6, F 1px2q “ F 1px2q “ 1,

F 2py1q “ 0.3, F 2py1q “ 0.5, F 2py2q “ F 2py2q “ 1.
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As before, let P 1 be the natural extension of pF 1, F 1q, and let P 2 be the natural extension of
pF 2, F 2q. Consider the events A “ tpx1, y1q, px1, y2qu and B “ tpx1, y2q, px2, y1qu. Writing P for
bni“1P i, we have that

P pAq “ P 1ptx1uq “ 0.4

P pBq ě 0.4

where the last inequality follows from the fact that all probability mass functions p which dom-
inate P must satisfy ppx1|y2q ě P ptx1uq “ 0.4 and ppx2|y1q ě P ptx2uq “ 0.4, whence

ppBq “ ppx1|y2qppy2q ` ppx2|y1qppy1q ě 0.4pppy1q ` ppy2qq “ 0.4

for all p which dominate P . Because P is the lower envelope of all such p, the desired inequality
follows.7 Also, because of the factorization property of the independent natural extension,

P pAYBq “ 1´ P ptpx2, y2quq “ 1´ P 1ptx2uqP 2pty2uq “ 1´ 0.6ˆ 0.7 “ 0.58

P pAXBq “ P ptpx1, y2quq “ P 1ptx1uqP 2pty2uq “ 0.4ˆ 0.5 “ 0.2.

Again, this means that P cannot be represented by a p-box, as it violates 2-monotonicity.

7.4. Special Case: Probabilistic Arithmetic. Let Y “ X1 ` X2 with X1 and X2 real-
valued random variables. One can also consider substraction, multiplication, and division, but
for simplicity, we stick to addition—the other three cases follow along almost identical lines.

Probabilistic arithmetic [46] deals with the problem of estimating PY pr´8, ysq “ FY pyq and
PY pr´8, ysq “ FY pyq for any y P R under the assumptions that

‚ the uncertainty on X1 and X2 is given by p-boxes pF 1, F 1q and pF 2, F 2q, with ĺ1 and
ĺ2 the natural ordering of real numbers,8 and

‚ the dependence structure is completely unknown (Fréchet case).

Using the Fréchet bounds, Williamson and Downs [45] provide explicit formulae for the different
arithmetic operations, thus providing very efficient algorithms to make inferences from marginal
p-boxes.

Let us show, for the particular case of addition, that their results are captured by our joint
p-box proposed in Theorem 23. Other cases, not treated here to save space, follow from almost
identical reasoning.9 The lower cumulative distribution function resulting from probabilistic
arithmetic is, for any y P R

FX1`X2
pyq “ sup

x1,x2 : x1`x2“y
maxt0, F 1px1q ` F 2px2q ´ 1u. (17)

Without much loss of generality, and for our convenience, assume that both X1 and X2 lie in a
bounded interval ra, bs.

Let Z1 and Z2 be any surjective maps ra, bs Ñ r0, 1s which induce the usual ordering on r0, 1s.
Some properties of Z1 and Z2 immediately follow: both are continuous and strictly increasing,
and so are their inverses—we rely on this in a bit.

To apply Theorem 23, we consider the total preorder ĺ on Ω “ ra, bs2 induced by Zpx1, x2q “

maxtZ1px1q, Z2px2qu. Figure 3 illustrates the event10 tX1 `X2 ď yu, with y P r2a, 2bs, as well
as the largest interval Z´1pr0, zsq included in it. Recall that

Z´1pr0, zsq “ Z´1
1 pr0, zsq ˆ Z´1

2 pr0, zsq “ r0, Z´1
1 pzqs ˆ r0, Z´1

2 pzqs.

7By linear programming, it can actually be shown that P pBq “ 0.4.
8For substraction and division, ĺ2 is the reverse natural ordering.
9Note that X1 and X2 are assumed to be positive in case of multiplication and division.
10 By tX1 `X2 ď yu we mean tpx1, x2q P r0, 1s2 : x1 ` x2 ď yu.
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y

y

Z´1
2 pzq

Z´1
1 pzq

tX1 `X2 ď yu

Z´1pr0, zsq

Figure 3. The event tX1 ` X2 ď yu, and the largest interval Z´1pr0, zsq in-
cluded in it.

Whence, for z such that Z´1
1 pzq ` Z´1

2 pzq “ y, we achieve the largest interval Z´1pr0, zsq which
is still included in tX1 `X2 ď yu. There is always a unique such z because also Z´1

1 ` Z´1
2 is

continuous and strictly increasing.
Recall that, by Theorem 23 (now without shortcuts in notation),

F pZ´1pzqq “ max
 

0, F 1pZ
´1
1 pzqq ` F 2pZ

´1
2 pzqq ´ 1

(

F pZ´1pzqq “
n

min
i“1
tF 1pZ

´1
1 pzqq, F 2pZ

´1
2 pzqqu

is the least conservative p-box on pΩ,ĺq whose natural extension is dominated by the natural
extension P 1 � P 2 of P 1 and P 2.

Also, as we have just shown, Z´1pr0, zsq, for our choice of z, is the topological interior of
tX1 `X2 ď yu. Whence, by Theorem 20, we find that

EF,F ptX1 `X2 ď yuq “ EF,F pZ
´1pr0, zsqq “ F pZ´1pzqq

“ maxt0, F 1pZ
´1
1 pzqq ` F 2pZ

´1
2 pzqq ´ 1u

where we remember that z is chosen such that Z´1
1 pzq ` Z´1

2 pzq “ y.
But, this holds for every valid choice of functions Z1 and Z2, whence

P 1 � P 2ptX1 `X2 ď yuq ě sup
x1,x2 : x1`x2“y

maxt0, F 1px1q ` F 2px2q ´ 1u

which indeed coincides with Eq. (17). Similar arguments hold for the upper cumulative distri-
bution functions, and other arithmetic operations.

In conclusion, probabilistic arithmetic constitutes a very specific case of our approach.

8. Examples

In this section, we investigate two different examples in which p-boxes are used to model
uncertainty around some parameters. The first example concerns a damped harmonic oscillator,
i.e., a classical engineering toy example. The second example concerns the evaluation of a river
dike height, an important issue in regions subject to potential floods.

8.1. Damped Harmonic Oscillator. Consider a simple damped harmonic oscillator, with
damping coefficient c ą 0, spring constant k ą 0, and mass m ą 0. The damping ratio

ζpc, kq “
c

2
?
km
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c

k

2

1 rpc, kqs»

oscpζqpzq

oscpζqpzq

Rectangular equivalence class.

c

k

2

1 rpc, kqs»

Elliptical equivalence class.

Figure 4. Different possible equivalence classes.

determines how quickly the oscillator returns to its equilibrium state—ζpc, kq “ 1 means fastest
convergence. Suppose the engineering design has already been completed, so the optimal values
for c˚ and k˚ have been determined, such that ζpc˚, k˚q “ 1.

Without loss of generality, we choose the units for mass, time, and length, such that m “

k˚ “ ζpc˚, k˚q “ 1 (so c˚ “ 2).
Of course, the actual values for c and k will differ from their design values, and uncertainty

must be taken into account. Let us calculate the lower and upper expectation of ζpc, kq, given
that our uncertainty about c and k is described by a p-box.

First, we must specify a preorder. For this problem, it seems fairly natural to have bounds on
the quantiles of the distance between the actual values pc, kq and the design values p2, 1q. This
comes down to for instance the following choice for Z:

Zpc, kq “ maxt|c´ 2|, 2|k ´ 1|u

For simplicity, we only consider the region Zpc, kq ď 1. This means that we are certain that
c P r1, 3s and k P r0.5, 1.5s—if necessary, Z can be rescaled to accomodate larger or smaller
regions. Note that we have taken a supremum norm as distance. This simplifies the calculations
below, but of course, one might as well take the Euclidian norm, or any other reasonable distance
function, at the expense of slightly more complicated calculations and dependency modelling (see
Fig. 4).

Equivalence classes rpc, kqs» are edges of rectangles with vertices

p2˘ Zpc, kq, 1˘ Zpc, kq{2q.

What is a p-box for the preorder ĺ induced by Z? A p-box pF , F q specifies lower and upper
bounds for the probability of concentric rectangles around the design point p2, 1q:

F pzq ď pptpc, kq : Zpc, kq ď zuq ď F pzq

So, effectively, our p-box specifies concentric prediction regions for the uncertain parameters c
and k.
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t0

1?
6

1

3?
2

oscpζqpzq

oscpζqpzq

1

Figure 5. The lower oscillation oscpζqpzq and upper oscillation oscpζqpzq.

t

´1

0

1
zptq

11?
6

3?
2

Figure 6. The function zptq which determines the cut sets.

We can now calculate the lower and upper expectation of ζpc, kq. First, we calculate the lower
oscillation oscpζq and upper oscillation oscpζq (see Fig. 5):

oscpζqpzq “ inf
pc,kq : Zpc,kq“z

ζpc, kq “
2´ z

2
a

p1` z{2q

oscpζqpzq “ sup
pc,kq : Zpc,kq“z

ζpc, kq “
2` z

2
a

p1´ z{2q

Next, we find the full components of the events

Lt “ tz P r0, 1s : oscpζqpzq ě tu “

#

z P r0, 1s :
2´ z

2
a

p1` z{2q
ě t

+

Ut “ tz P r0, 1s : oscpζqpzq ě tu “

#

z P r0, 1s :
2` z

2
a

p1´ z{2q
ě t

+

for all t P r0, 0.5s. Fortunately, oscpζq is decreasing as function of z, and oscpζq is increasing, and
hence Lt “ r0, `ts and Ut “ rut, 1s, with (see Fig. 6)

`t “ 2´ tp´t`
a

t2 ` 8q :“ zptq with t P r 1?
6
, 1s

ut “ ´2` tp´t`
a

t2 ` 8q :“ ´zptq with t P r1, 3?
2
s

Note that the given bounds for t arise from the minimum and maximum of oscpfq and oscpfq.
Concluding, by Proposition 21, when F pzq “ F pz´q for all z P r0, 1s and F p0q “ 0,

Epζq “
1
?

6
`

ż 1

1?
6

F pzptqqdt

Epζq “ 1`

ż 3{
?

2

1

`

1´ F p´zptqq
˘

dt
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symbol name unit
h overflow height of the river m
q river flow rate m3s´1

b river width m

k Strickler coefficient m1{3s´1

u upriver water level m
d downriver water level m
` length of river stretch m

Table 1. Meaning of the variables used in Eq. (18)

Interestingly, both the lower and upper expectation of ζ are determined by the lower cumu-
lative distribution function only. Hence, in this problem, we actually do not need to elicit the
upper cumulative distribution function.11

For example, if the expert says that c and k are independent, and the marginal lower cumu-
lative distribution functions are uniform on c P r1, 2s and k P r0.5, 1.5s, so F 1pzq “ F 2pzq “ z,
with preorders induced by Z1pcq “ |c ´ 2| and Z2pkq “ 2|k ´ 1|, then, by Theorem 25, because
Z “ maxtZ1, Z2u, it follows that F pzq “ z2, and

Epζq “
1
?

6
`

ż 1

1?
6

zptq2 dt “ 0.584

Epζq “ 1`

ż 3{
?

2

1

`

1´ zptq2
˘

dt “ 1.664

8.2. River Dike Height Estimation. We aim to estimate the minimal required dike height
along a given stretch of river, using a simplified model that is used by the EDF (the French
integrated energy operator) to make initial evaluations [13]. Although this model is quite simple,
it provides a realistic industrial application. Skipping technical details, the model results in the
following relationship:

hpq, k, u, dq “

$

’

&

’

%

ˆ

q

k
?

u´d
` b

˙
3
5

if q ě 0

0 otherwise.

(18)

The meaning of the variables is summarised in Table 1.
For the particular case under study, the river width is b “ 300m and the river length is

` “ 6400m. The remaining parameters are uncertain. Expert assessment leads to the following
distributions:

‚ The maximal flow rate q has a Gumbel distribution12 with location parameter µ “
1335m3s´1 and scale parameter β “ 716m3s´1. For calculations, it is easier to work
with symmetric distributions. Therefore, we introduce a variable r satisfying

q “ µ´ β lnp´ lnprqq.

11Of course this will not always be the case—it just happens to be so for this example.
12The Gumbel distribution models the maximum of an exponentially distributed sample, and is used in extreme

value theory [12] to model rare events such as floods.
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ppk P r30´ 15z, 30` 15zsq

k30

ppkq

15 45

Figure 7. Derivation of the p-box for a triangular distribution.

If r is uniformly distributed over r0, 1s, then q has the Gumbel distribution with location
parameter µ and scale parameter β. So, after transformation,

hpr, k, u, dq “

$

’

&

’

%

ˆ

µ´β lnp´ lnprqq

k
?

u´d
` b

˙
3
5

if µ´ β lnp´ lnprqq ě 0

0 otherwise.

‚ The Strickler coefficient k has a symmetric triangular distribution over the interval
r15m1{3s´1, 45m1{3s´1s (with mode at k˚ “ 30m1{3s´1).

‚ There is also uncertainty about the water levels u and d, because sedimentary conditions
are hard to characterise. Measured values are u˚ “ 55m and d˚ “ 50m, with measure-
ment error definitely less than 1m. These are also modelled by symmetric triangular
distributions, on r54m, 56ms and r49m, 51ms respectively.

Again, a natural choice for Z is the distance between the expected values pr˚ “ 1{2, k˚ “
30, u˚ “ 55, d˚ “ 50q and the actual values pr, k, u, dq:

Zpr, k, u, dq “ maxt2|r ´ 1{2|, |k ´ 30|{15, |u´ 55|, |d´ 50|u,

The scale of the distances has been chosen such that Zpr, k, u, dq ď 1 for all points of interest.
Equivalence classes rpr, k, u, dqs» are borders of 4-dimentional boxes with vertices

pp1˘ zq{2, 30˘ 15z, 55˘ z, 50˘ zq

where z “ Zpr, k, u, dq.
The marginal p-boxes are, for r:

F 1pzq “ F 1pzq “ pp2|r ´ 1{2| ď zq “ ppr P rp1´ zq{2, p1` zq{2sq “ z

because r is uniformly distributed over r0, 1s. For k, we have:

F 2pzq “ F 2pzq “ pp|k ´ 30|{15 ď zq “ ppk P r30´ 15z, 30` 15zsq “ 1´ p1´ zq2

(see Fig. 7). Similarly, for u and d, it is easily verified that:

F 3pzq “ F 3pzq “ F 4pzq “ F 4pzq “ 1´ p1´ zq2

The lower oscillation oscphq and upper oscillation oscphq can be calculated along the same
lines as in the previous example:

oscphqpzq “ inf
pr,k,u,dq : Zpr,k,u,dq“z

hpr, k, u, dq “ op´zq

oscphqpzq “ sup
pr,k,u,dq : Zpr,k,u,dq“z

hpr, k, u, dq “ opzq
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z0

opzq

´1 1

5

10

Figure 8. The function opzq which determines the lower and upper oscillation,
and the cut sets.

with

opzq “

$

’

&

’

%

ˆ

µ´β lnp´ lnpp1`zq{2qq

p30´15zq
?

5´2z
` b

˙
3
5

if µ´ β lnp´ lnpp1` zq{2qq ě 0

0 otherwise.

The function opzq is depicted in Fig. 8: it is increasing, with op´1q “ 0 (this is not immediately
clear from the picture, but at higher scale, it becomes apparent), op0q “ 3.032, and op1q “ `8.

Again, oscphqpzq and oscphqpzq are decreasing and increasing in z, respectively. Hence the full
components of the events

Lt “ tz P r0, 1s : oscphqpzq ě tu “ tz P r0, 1s : op´zq ě tu

Ut “ tz P r0, 1s : oscphqpzq ě tu “ tz P r0, 1s : opzq ě tu

are of the form Lt “ r0, `ts and Ut “ rut, 1s again, with

`t “ ´o
´1ptq for t ď op0q ut “ o´1ptq for t ě op0q

As in the previous example, we do not need to elicit the upper cumulative distributions, and
only the lower ones need to be given. With unknown dependence, using Theorem 23, we have

F pzq “ maxt0,´3` z ` 3p1´ p1´ zq2qu

and whence

Ephq “

ż op0q

0

F p´o´1ptqqdt “ 1.515

Ephq “ op0q `

ż `8

op0q

`

1´ F po´1ptqq
˘

dt “ 6.423

Therefore, to be on the safe side, we should consider average overflowing heights of at least 6.5m.
For comparison, using traditional methods instead of p-boxes, h has expectation 3.2m, assuming
independence between all variables—this lies between the lower and upper expectation that we
just calculated, as expected. The interval is obviously much wider:

‚ because we have reduced a multivariate problem to a univariate one, whence, leading to
imprecision due to the difference between lower and upper oscillation,

‚ and because we have not made any assumption of independence, whence, leading to
imprecision due to weaker assumptions.

Realistically, the decision maker may desire a dike height t such that the upper probability of
disaster Epth ě tuq is less than a given threshold. It is easily verified that:

Epth ě tuq “ Eptoscphq ě tuq “ 1´ F po´1ptqq
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For instance, for Epth ě tuq “ 0.01, we need t to be 10.725m. For comparison, using traditional
methods instead of p-boxes, t needs to be about 9m, assuming independence between all variables.

In both examples, analytical calculations are relatively simple due to the monotonicity of the
target function with respect to the uncertain variables. Of course, this may not be the case in
general.

9. Conclusions

P-boxes are one of the most interesting imprecise probability models from an operational point
of view, because they are simply characterised by a lower and an upper cumulative distribution
function. In this paper, for the purpose of multivariate modelling, we studied inferences (lower
and upper expectations in particular) from p-boxes on arbitrary totally preordered spaces. For
this purpose, we represented p-boxes as coherent lower previsions, and studied their natural
extension.

We used an as general as possible model by considering p-boxes whose lower and upper
cumulative distribution functions are defined on a totally preordered space. Thereby, we extended
the theory of p-boxes from finite to infinite sets, and from total orders to total preorders. This
allowed us unify p-boxes on finite spaces and on intervals of reals numbers, and to extend the
theory to the multivariate case.

One very interesting result of this paper is a practical means of calculating the natural ex-
tension of a p-box in this general setting. We proved that the natural extension of a p-box
is arbitrarily additive on full components of clopen sets with respect to the partition topology
induced by equivalence classes of the underlying preorder (Theorem 13, Corollaries 15 and 16).
We also proved that the natural extension is completely monotone, and therefore has a Cho-
quet integral representation (Theorem 18). Consequently, to calculate the natural extension, we
proved that it suffices to calculate the full components of the cut sets of the lower oscillation,
followed by a simple Riemann integral (Proposition 19).

As a special case, we studied p-boxes whose preorders are induced by a real-valued mapping.
Such p-boxes are particularly attractive, as they allow to build or elicit a multivariate uncertainty
model at once. They correspond to lower and upper probabilistic bounds given over nested
regions that can take arbitrary shapes.

Consequently, we provided a new tool to combine marginal p-boxes into a joint p-box, under ar-
bitrary rules of combination, thereby allowing any type of dependency modelling (Lemma 22). As
examples, we considered two extreme cases: assuming nothing about dependence (Theorem 23),
and assuming epistemic independence (Theorem 25). Similar formulas are easily derived for
any other rule of combination. Moreover, Williamson and Downs’s [45] probabilistic arithmetic
obtains as a special case of our approach.

We demonstrated our methodology on inference about a damped harmonic oscillator, and on
a river dike assessment, showing that calculations are generally straightforward.

Of course, many open problems regarding p-boxes remain to be investigated. For instance,
even though there need not be any relation between the preorder and the dependency model—
because one can, in theory at least, always construct a multivariate p-box from marginals for
any dependency model and any preorder—some combinations obviously lead to more imprecision
than others. Our choice led to simple mathematical expressions, but is perhaps not the best one
possible in terms of precision. Can the dependency model inform the choice of preorder, to
arrive at tighter bounds? Also, the connection of p-boxes with other uncertainty models, such
as possibility measures and clouds, deserves further investigation.
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E. Miranda, A. Bugaŕın, S. Li, M.A. Gil, P. Gregorzewski, and O. Hryniewiczet, editors, Soft Methods for
Integrated Uncertainty Modelling, Advances in Soft Computing, pages 249–257, Bristol, 2006. Springer.

[18] S. Destercke and D. Dubois. The role of generalised p-boxes in imprecise probability models. In Thomas
Augustin, Frank P. A. Coolen, Seraf́ın Moral, and Matthias C. M. Troffaes, editors, ISIPTA’09: Proceedings

of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 179–188,

Durham, UK, July 2009. SIPTA.
[19] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: I. Generalized

p-boxes. International Journal of Approximate Reasoning, 49(3):649–663, 2008.
[20] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: II. Clouds. In-

ternational Journal of Approximate Reasoning, 49(3):664–677, 2008.

[21] S. Destercke and O. Strauss. Using cloudy kernels for imprecise linear filtering. In IPMU, pages 198–207,

2010.
[22] D. Dubois and H. Prade. The mean value of a fuzzy number. Fuzzy Sets and Systems, 24(3):279–300, 1987.

[23] D. Dubois and H. Prade. Possibility Theory. Plenum Press, New York, 1988.
[24] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing probability boxes and

Dempster-Shafer structures. Technical Report SAND2002–4015, Sandia National Laboratories, January 2003.

[25] S. Ferson and W. Tucker. Sensitivity analysis using probability bounding. Reliability engineering and system

safety, 91(10-11):1435–1442, 2006.



30 M. TROFFAES AND S. DESTERCKE

[26] S. Ferson and W. Tucker. Probability boxes as info-gap models. In Proceedings of the Annual Meeting of the
North American Fuzzy Information Processing Society, New York (USA), 2008.
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