Lithosphere erosion and crustal growth in subduction zones:

Insights from initiation of the nascent East Philippine Arc

Colin G. Macpherson

Department of Earth Sciences, University of Durham, Durham DH1 3LE, UK;
colin.macpherson@durham.ac.uk

ABSTRACT

The Philippine Trench marks a nascent plate margin where subduction initiation is propagating from north to south. Magma compositions in the East Philippine Arc record thinning of arc lithosphere as it is eroded from below. Lithosphere is thicker beneath the younger, southern part of the arc causing basaltic magma to stall and fractionate garnet at high pressure. In the mature, northern section basaltic magma differentiates at shallower levels, at pressures where garnet is not stable. Local variations in lithosphere thickness suggest that thinning is rapid and may be piecemeal. Fluctuations in arc lithosphere thickness throughout the history of this margin appear to control spatial and temporal variations in magma fluxes into the arc crust. Varying fractionation depths of hydrous basalt may help explain the andesitic composition of bulk continental crust.

Keywords: subduction initiation, arc lithosphere erosion, crust growth, adakitic magmatism, high-Mg# andesite.

INTRODUCTION

Subduction provides a key driving force of plate tectonics, produces the most extreme material differentiation in the solid Earth today and is believed to have played an important role in generating the continents. While there are numerous studies of mature systems, examination of subduction initiation is inhibited by the paucity of suitable examples. Studies that do exist focus mainly on fossilized nascent margins and have been used to classify two
initiation mechanisms (Stern 2004). Induced initiation occurs where convergent motion
forces one piece of (proto-arc) lithosphere to override another (the proto slab). Spontaneous
initiation results from foundering of the proto-slab prior to onset of convergent motion.

During the Cenozoic induced initiation appears to have been more common than spontaneous
events yet the later have a higher probability of leaving a geological record (Stern, 2004).

Therefore, direct observations of the rocks produced by young arcs are biased towards
spontaneous subduction initiation.

The scarce and valuable insights available from real margins have been
complemented by increasingly sophisticated numerical models of where and how initiation
occurs. One of the clearest predictions of most subduction initiation models is large scale, and
possibly rapid, thinning of the overriding plate during the earliest stages of subduction
(Andrews and Sleep, 1974; Hall et al., 2003; Gurnis et al., 2004; Arcay et al., 2006) to
produce mature margins in which arc lithosphere consists largely of largely of crust
(Rowland and Davies, 1999). Testing this prediction and determining timescales for the
processes involved is difficult because much of the geology in fossilized nascent margins has
been obscured by subsequent plate motions and volcanism.

The Philippine Trench marks a nascent plate margin produced by induced subduction
initiation (Cardwell et al., 1980; Hall, 1987). It has propagated southward since the middle-
late Miocene trailing in its wake the East Philippine Arc (EPA). This study examines the
geochemical record of lithosphere maturation carried by EPA magmatism and the consequent
implications for (i) the geochemistry of arc magmatism, and (ii) development of continental
crust.

MAGMATIC DIFFERENTIATION IN THE EAST PHILIPPINE ARC

The Philippine Sea plate subducts westward at the Philippine Trench between 18°N
and 2°N (Fig. 1A). The Trench is currently propagating southward with its tip located
northeast of Halmahera (Hall, 1987). This is consistent with southward decreases in the ages
of (i) initial EPA magmatism (Ozawa et al., 2004), and (ii) initial movement on the Philippine
Fault, which partitions oblique compression across the margin (Barrier et al. 1991; Quebral et
al., 1996).

The most southerly EPA activity of any significant volume is Pliocene to Quaternary
magmatism in Surigao, NE Mindanao (Fig. 1A). Magmatism occurred in and around a graben
or half-graben structure which has a sharp west margin against the Philippine Fault
(Macpherson et al., 2006). Pliocene lavas with typical arc geochemistry are found in the
centre and east of the peninsula. These are succeeded by adakitic and high-Mg# andesitic
rocks in the west. All Surigao magmatism was produced by differentiation of hydrous
basaltic melt that originated in the mantle wedge. In Mindanao isotopic data demonstrate that
adakitic chemistry, which is often attributed to slab melting (Defant and Drummond, 1990),
is a consequence of differentiation – either crystallization of basaltic melt or remelting of
basaltic rock - at depth, in the presence of garnet (Dreher et al., 2005; Macpherson et al.,
2006). Following early adakitic magmatism (Ozawa et al., 2004), recent magmatism in the
north EPA is dominantly medium-K, calc-alkaline basaltic andesite to rhyolite (Castillo and
Newhall, 2004; Andal et al., 2005; McDermott et al., 2005; Du Frane et al., 2006).

LITHOSPHERIC THINNING IN A NASCENT ARC

In most island arcs low pressure crystal assemblages dominate the chemical evolution
of magma. This can be observed in ratios of middle to heavy rare earth elements (e.g.,
Dy/Yb) which remain stable or, more commonly, decrease as differentiation proceeds
because distribution coefficient (Kd) are greater for middle than for heavy rare earth elements
(Kd_{MREE}>Kd_{HREE}), suggesting little or no role for garnet (Davidson et al., 2007). This
scenario applies for the present north EPA and for central and east Surigao (Fig. 2A). In
contrast, Dy/Yb correlates positively with SiO2 in adakitic rocks from west Surigao (Fig. 2A)
due to garnet fractionation, which results in $K_{\text{dMREE}} < K_{\text{dHREE}}$ (Macpherson et al., 2006). Garnet crystallizes from hydrous basaltic magma at pressures greater than 1.2GPa or ~35km depth (Müntener et al., 2001). This is significantly greater than the 25km Moho depth determined for Surigao from gravity data (Dimalanta and Yumul, 2003). Contrasting MREE/HREE ratios between adakitic and typical arc suites in other locations have also been used to suggest that both types are produced by fractionation of wet basalt at different depths (Chiaradia et al., 2004; Rodriguez et al., 2007).

There is too much uncertainty in partition coefficients and the chemistry of potentially fractionating phases to use them directly to quantify absolute differentiation depths in the EPA, but relative differentiation depths can be determined from the gradient of Δ(Dy/Yb)/ΔSiO$_2$. This represents the contrast between bulk distribution coefficients for MREE and HREE during differentiation. Positive values represent a greater role for deep (garnet-present) differentiation while negative values reflect shallow (garnet-absent) differentiation. This approach requires that the fractionating assemblage remained constant within each suite but this is a reasonable assumption in view of the coherence of the data for each suite (Fig. 2A). The EPA data show a decrease in Δ(Dy/Yb)/ΔSiO$_2$ from (i) west Surigao to (ii) central and east Surigao, to (iii) north EPA (Fig. 2B). This is interpreted as reflecting a decreasing role for garnet and, therefore, decreasing mean depths of differentiation from arc initiation to maturity.

Major element systematics are consistent with a role for sub-Moho and/or garnet-present differentiation in young, southern EPA magmatism. Western Surigao rocks possess high Mg# relative to their SiO$_2$. Garnet pyroxenites from the Sierra Nevada, which represent possible deep arc cumulates, possess relatively low-Mg#, with respect to SiO$_2$, and so could drive residual melt to high Mg# at high SiO$_2$ (Fig. 3). Furthermore, differentiated, silicic magma produced beneath the Moho may acquire high Mg# as it interacts with peridotite during...
transport towards the surface (Rapp et al., 1999). Rocks from central and east Surigao also
display elevated Mg# but to a lesser extent than their western equivalents.

Together, the trace and major element variations suggest that basaltic melt was more
likely to stall at deeper levels when the arc lithosphere was immature but that basaltic melts
can more readily reach the crust as the arc lithosphere matures. In the south EPA, where the
arc is youngest, the evidence for deep differentiation is strongest. In the longer-lived north
EPA, however, widespread, present-day low-\(\Delta(Dy/Yb)/\Delta SiO_2\) and low-Mg# magmatism has
succeeded early adakitic magmatism (Ozawa et al., 2004). Within Surigao there is evidence
for more localized variations in arc lithosphere thickness. Beneath central and east Surigao
the lithosphere was sufficiently thin during the Pliocene for differentiation to produce magma
with moderate \(\Delta(Dy/Yb)/\Delta SiO_2\) but high Mg#. High-\(\Delta(Dy/Yb)/\Delta SiO_2\), adakitic
magmatism in the west records the earliest stages in development of this thin-spot toward the
backarc, as predicted by numerical models (Arcay et al., 2006).

Figure 1 outlines a model for progression from deep to shallow level differentiation in
the nascent EPA. In south Mindanao the proto-arc lithosphere is composed of accreted
ophiolytic and older arc terranes (Quebral et al., 1996). The Philippine Trench is well defined
and the slab can be traced into the mantle (Cardwell et al., 1980) but there is negligible EPA
magmatism here. During this Pre-Arc stage (Fig. 1B) hydration of the mantle wedge and/or
flow of hot mantle into the wedge is not sufficient to cause subduction-related magmatism. In
the Immature margin, as epitomized by Surigao (Fig. 1C), the slab induces flow in the mantle
into which it also releases fluids. These processes weaken and erode the mantle lithosphere
and produce hydrous basaltic magma in the mantle wedge. The remaining lithospheric mantle
retards vertical migration of the basalt causing it to stall within the garnet stability field. The
strength of geochemical signatures of deep differentiation e.g., elevated \(\Delta(Dy/Yb)/\Delta SiO_2\) and
Mg#, in evolved, silicic magma will depend on the exact depth of differentiation. As the arc becomes *Mature* mantle flow becomes more vigorous (Billen and Hirth, 2005). This combines with increasing fluxes of fluid and heat from the mantle wedge to further erode arc lithosphere (Arcay et al., 2006) so that basaltic magma is more likely to reach the crust and differentiate shallower than the garnet stability field (Fig. 1D). This will produce the more typical arc lava suites observed in the north EPA. Earlier formed, garnet-bearing cumulates will be delaminated as lithospheric mantle is eroded.

The greatest age measured for north EPA magmatism of 6.6Ma (Ozawa et al., 2004) provides a maximum estimate for the time required to remove most of the mantle lithosphere in the mature segment. This sample displays adakitic traits (*e.g.* high Sr/Y, low Y and high Ni) that, by analogy with Surigao, we attribute to deep differentiation with the lithospheric mantle. However, the shorter distances that separate adakitic from more typical arc lavas in many parts of the EPA suggests that lithosphere erosion may occur substantially faster.

In an attempt to place further constraints on the thickness of EPA crust, which in mature arcs is believed to equate with the thickness of the lithosphere (Rowland and Davies, 1999), \(\Delta (\text{Dy/Yb})/\Delta \text{SiO}_2 \) is compared to Na\(_{6.0}\), which has been noted to correlate positively with crustal thickness (Plank and Langmuir, 1988). Na\(_{6.0}\) is the Na\(_2\)O content that would have been present in a melt containing 6 wt.% MgO. Plank and Langmuir (1988) attributed Na\(_{6.0}\) variations to different degrees of mantle melting but the concentration of sodium, and other incompatible elements, may be highly sensitive to deep fractionation (Lee et al., 2006). The low MgO contents of EPA rocks places large uncertainties on their Na\(_{6.0}\) values yet the correlation with \(\Delta (\text{Dy/Yb})/\Delta \text{SiO}_2 \) is striking (Fig. 2B).

If the relationship in Figure 2B is used to calibrate \(\Delta (\text{Dy/Yb})/\Delta \text{SiO}_2 \) the results suggest that differentiation depths for the onset of arc magmatism, as typified by west Surigao
adakitic rocks, are similar to those in other arcs where the crust is thicker than 60km. This is up to 30km thicker than crust associated with more arc-like magmatism in east and central Surigao. A conservative (i.e. old) estimate for initiation of the Philippine Trench is 10Ma. Assuming that the Trench propagated its 1600km length at a constant rate then subduction initiated outboard of Surigao approximately 4.5Ma, just one million years before the oldest examples of low-Δ(Dy/Yb)/ΔSiO$_2$ magmatism in east and central Surigao (Sajona et al., 1994). This suggests that one million years was sufficient to remove ~30km of mantle lithosphere. A similar rate of erosion has been determined for lithosphere removal above a thermal anomaly in the North Atlantic (Hamilton et al. 1998).

DISCUSSION AND CONCLUSIONS

Rocks with adakitic chemistry were originally, and remain widely, attributed to melting of subducted basaltic crust (Defant and Drummond, 1990). At Mindanao, however, slab melting is ruled out on isotopic grounds (Macpherson et al., 2006). The slab melting model for adakite genesis has been questioned by an increasing number of studies e.g., Garrison and Davidson (2003), Prouteau and Scaillet (2003) Chiaradia et al. (2004), Eiler et al. (2007), Rodriguez et al. (2007), with most of these attributing adakitic magmatism to garnet fractionation from hydrous arc basalt magma. The corollary to this conclusion is that adakitic rocks can probe differentiation deep beneath arcs. Adakitic rocks and typical arc andesites were generated contemporaneously in both Surigao (Macpherson et al., 2006) and the north EPA (Andal et al., 2005) indicating that the thickness of arc lithosphere varies considerably with wavelengths of tens of kilometers. These observations may reflect localized variations in EPA lithospheric thickness superimposed on a progression from thick, immature arc lithosphere in the south to thin, mature arc lithosphere in the north. Such variations suggest that lithosphere erosion is piecemeal.
Changes in lithosphere thickness will play a role throughout the history of any arc. Localized variations may be preserved from initiation or may develop further as the arc lithosphere responds to changes in slab dip, convergence rate, convergence velocity, extension and the flux of fresh basalt from the mantle wedge. These factors all have the potential to affect convective flow and fluid supply within the mantle wedge, hence influencing the stability of arc mantle lithosphere (Arcay et al., 2006). Therefore, any piece of arc lithosphere could thin or thicken during the lifetime of a subduction zone depending on the flux of new basalt from the mantle wedge versus the removal of lithospheric mantle - and the cumulates it contains – by erosion from beneath. Thickening and thinning would be manifest as magmatic products fluctuating between those resembling the immature and mature stages of the EPA, respectively.

Much has been learned about spontaneous initiation of subduction from supra-subduction zones ophiolites and the early products of the Izu-Bonin-Mariana arc (Stern, 2004 and references therein). The East Philippines provide a valuable complement to existing subduction initiation models because subduction was induced when convergence was transferred from a nearby margin (Cardwell et al., 1980; Hall, 1987). Magmatic products of the EPA suggest that piecemeal thinning of the proto-arc lithosphere occurs relatively quickly, but without the high extension rates responsible for producing the ophiolitic and/or boninite-dominated suites that characterize spontaneous initiation. Transitions from adakitic to typical arc magmatism would be an important marker for lithospheric thinning of this type.

Compositional similarities are widely used to infer that subduction-related magmatism was involved in generating bulk continental crust (BCC; Rudnick and Gao, 2005 and references therein). The closest magmatic analogue for BCC is high-Mg# andesite such as occurs in west Surigao (Kelemen, 1995). These magmas are rare in modern arcs but the EPA suggests that high-Mg# andesite might have been more common in the past if mean
differentiation depths of hydrous basaltic magma were greater than at present. High-Mg# andesites from the EPA are not an exact match for BCC but the bulk compositions of magma from the immature and mature EPA are complementary with respect to BCC (Fig. 3). Therefore, components of BCC may be generated at distinct times during a subduction event (or events) and combined later. Repeated thinning and thickening of arc lithosphere would drive subsequent blending of the components while also causing delamination of mafic and ultramafic cumulates, thus contributing to an andesitic composition for BCC despite a basaltic mass flux from the mantle (Kelemen, 1995; Davidson and Arculus, 2007). Thus, thickness fluctuations in arc lithosphere may provide the environment in which to build BCC (Fig. 1B-D) as well as the components required to produce it (Fig. 3).

ACKNOWLEDGMENTS

This work was supported by the Southeast Asia Research Group of the University of London. J. Davidson, R. Hall, S. Parman, G. Pearson and J. van Hunen provided valuable discussion. J. Richards and two anonymous reviewers are thanked for highly constructive comments.

REFERENCES CITED

Kelemen, P.B., 1995, Genesis of high Mg-# andesites and the continental crust: Contributions to Mineralogy and Petrology, v. 120, p. 1–19.

element chemistry of arc basalts: Earth and Planetary Science Letters, v. 90, p. 349–370,

Pinatubo dacite: Journal of Petrology, v. 44, p. 2203–2241, doi:
10.1093/petrology/egg075.

Quebral, R.D., Pubellier, M., and Rangin, C., 1996, The onset of movement on the Philippine
Fault in eastern Mindanao: a transition from a collision to a strike-slip environment:

Rapp, R.P., Shimizu, N., and Norman, M.D., 1999, Reaction between slab-derived melts and
peridotite in the mantle wedge: experimental constraints at 3.8 GPa: Chemical Geology,

Rowland, A., and Davies, J.H., 1999, Buoyancy rather than rheology controls the thickness of
the overriding mechanical lithosphere at subduction zones: Geophysical Research

formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de
Longavi Volcano (36.2°S; Andean Southern Volcanic Zone, Central Chile): Journal of

The Crust, v. 3, Treatise on Geochemistry (Holland, H.D., and Turekian, K.K., eds.)

Sajona, F.G., Bellon, H., Maury, R.C., Pubellier, M., Cotton, J., and Rangin, C., 1994,
Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-

Figure Captions

Figure 1. (A) East Philippine Arc (EPA) showing location of volcanic centers discussed. Circled letters refer to schematic cross-arc sections in panels B-D, which illustrate thinning of the EPA lithosphere and its role in determining differentiation depth in a nascent, induced subduction zone. (B) Pre-Arc: Subduction of the Philippine Sea Plate has begun beneath amalgamated proto-arc lithosphere but magmatism has not. (C) Immature Arc: Upwelling of basaltic magma is impeded by lithospheric mantle and so differentiation occurs beneath the Moho generating garnet-rich cumulates (gray). (D) Mature Arc. Erosion of lithospheric mantle leads to basalt differentiation at shallower levels (black) with garnet-free assemblage. Earlier-formed, garnet-bearing cumulates may return to the mantle via lithosphere erosion as mantle flow develops and the mantle lithosphere is eroded.

Figure 2. (A) Dy/Yb versus SiO$_2$ for EPA lavas (data sources in text). Correlations with SiO$_2$ indicate differentiation is the primary control on Dy/Yb, which increases when garnet crystallizes and decreases when garnet is absent. Differentiation models (showing % crystallization) from Davidson et al. (2007). gt-garnet; ol-olivine; pl-plagioclase; cpx-clinopyroxene; am-amphibole. (B) Δ(Dy/Yb)/ΔSiO$_2$ (plotted with 2SE uncertainty) is a proxy for mean differentiation depth of each suite and is determined from linear regression of the slopes in panel A. This is compared with Na$_{6.0}$ which Plank and Langmuir (1988) showed to be a proxy for crustal thickness, as illustrated on the top axis, using 21 arcs worldwide. Uncertainty for Na$_{6.0}$ is the 95% confidence limit on regression of Na$_2$O versus MgO to 6wt.% MgO.
Figure 3. Mg# (Mg/[Mg+Fe]II) versus SiO$_2$ for EPA lavas. Fields are shown for various estimates of bulk continental crust (BCC; Kelemen, 1995) and for low MgO garnet pyroxenites from Sierra Nevada (Lee et al., 2006) that represent possible deep arc cumulates.
Figure 1
Figure 2
Figure 3