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Abstract

The longest path problem is the problem of finding a path of maximum length in a graph.

Polynomial solutions for this problem are known only for small classes of graphs, while it

is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem.

Motivated by the work of Uehara and Uno in [23], where they left the longest path problem

open for the class of interval graphs, in this paper we show that the problem can be solved

in polynomial time on interval graphs. The proposed algorithm uses a dynamic programming

approach and runs in O(n4) time, where n is the number of vertices of the input graph.

Keywords: Longest path problem, interval graphs, polynomial algorithm, complexity, dy-

namic programming.

1 Introduction

A well-known and studied problem in graph theory with numerous applications is the Hamiltonian

path problem, i.e., the problem of determining whether a graph contains a simple path in which

every vertex of the graph appears exactly once; such a graph is called Hamiltonian. In the case

where a graph does not contain a Hamiltonian path, it makes sense in several applications to

search for a path of maximum length in the graph; finding such a path is knows as the longest path

problem. Although the two problems are similar, finding a longest path in a graph seems to be

more difficult than deciding whether or not the graph admits a Hamiltonian path. Indeed, it has

been proved that even if a graph has a Hamiltonian path, the problem of finding a path of length

n − nε for any ε < 1 is NP-hard, where n is the number of vertices of the graph [17]. Moreover,

there is no polynomial-time constant-factor approximation algorithm for the longest path problem

unless P=NP [17]. For related results see also [9–11,25, 26].

It is clear that the longest path problem is NP-hard on every class of graphs on which the

Hamiltonian path problem is NP-complete; note that, the Hamiltonian path problem is known to

be NP-complete on general graphs [12,13], and remains NP-complete even when restricted to some

small classes of graphs such as split graphs [15], chordal bipartite graphs, split strongly chordal

∗This research is co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT

(25%).
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graphs [19], directed path graphs [20], circle graphs [7], planar graphs [13], and grid graphs [16]. On

the other hand, there are several classes of graphs on which the Hamiltonian path problem admits

polynomial time solutions; these classes include proper interval graphs [3], interval graphs [1,5,8],

circular-arc graphs [8], biconvex graphs [2], and cocomparability graphs [6]. Thus, if someone is

interested in investigating the tractability of the longest path problem, it makes sense to focus on

the classes of graphs for which the Hamiltonian path problem is polynomial.

In contrast to the Hamiltonian path problem, there are few known polynomial time solutions

for the longest path problem, and these restrict to trees and some small graph classes. Specifically,

a linear time algorithm for finding a longest path in a tree was proposed by Dijkstra early in 1960,

a formal proof of which can be found in [4]. Later, through a generalization of Dijkstra’s algorithm

for trees, Uehara and Uno [23] solved the longest path problem for weighted trees and block graphs

in linear time and space, and for cacti in O(n2) time and space, where n and m denote the number

of vertices and edges of the input graph, respectively. More recently, polynomial algorithms have

been proposed that solve the longest path problem on bipartite permutation graphs in O(n) time

and space [24], and on ptolemaic graphs in O(n5) time and O(n2) space [22].

In 2004, Uehara and Uno [23] introduced a subclass of interval graphs, namely interval biconvex

graphs, which is a superclass of proper interval and threshold graphs, and solved the longest path

problem on this class in O(n3(m + n logn)) time. As a corollary, they showed that a longest path

of a threshold graph can be found in O(n + m) time and space. They left open the complexity of

the longest path problem on the well-known class of interval graphs.

In this paper, we resolve the open problem posed in [23] by showing that the longest path

problem admits a polynomial time solution on the class of interval graphs. In particular, we

propose an algorithm for solving the longest path problem on interval graphs which runs in O(n4)

time using a dynamic programming approach. Thus, not only we answer the question left open by

Uehara and Uno in [23], but also improve the known time complexity of the problem on interval

biconvex graphs, a subclass of interval graphs [23].

The rest of this paper is organized as follows. In Section 2, we review some properties of

interval graphs and give the notion of a type of paths, which we call normal paths and is central

for our algorithm. In Section 3, we present the three phases of our algorithm for solving the longest

path problem on interval graphs, while in Section 4 we prove the correctness and analyze the time

complexity of our algorithm. Finally, some concluding remarks are given in Section 5.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote

its vertex and edge set by V (G) and E(G), respectively. An undirected edge is a pair of distinct

vertices u, v ∈ V (G), and is denoted by uv. We say that the vertex u is adjacent to the vertex v or,

equivalently, the vertex u sees the vertex v, if there is an edge uv in G. Let S be a set of vertices

of a graph G. Then, the cardinality of the set S is denoted by |S| and the subgraph of G induced

by S is denoted by G[S]. Furthermore, the induced subgraph G[S] is a clique if each two of its

vertices are adjacent. The set N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the neighborhood of the

vertex v ∈ V (G) in G, sometimes denoted by NG(v) for clarity reasons. The set N [v] = N(v)∪{v}

is called the closed neighborhood of the vertex v ∈ V (G). A vertex v ∈ V (G) is called simplicial

if its neighborhood N(v) induces a clique in G; in this case its closed neighborhood N [v] induces

also a clique in G.

A simple path of a graph G is a sequence of distinct vertices v1, v2, . . . , vk such that

vivi+1 ∈ E(G), for each i, 1 ≤ i ≤ k − 1, and is denoted by (v1, v2, . . . , vk); throughout the

paper all paths considered are simple. We denote by V (P ) the set of vertices in the

path P , and define the length of the path P to be the number of vertices in P , i.e.,
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Figure 1: (a) An interval graph G, (b) an intersection model F of G, and (c) the corresponding

right-end ordering π = (u1, u2, u3, u4, u5) of G.

|P | = |V (P )|. We call right endpoint of a path P = (v1, v2, . . . , vk) the last vertex vk

of P . Additionally, if P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) is a path of a

graph and P0 = (vi, vi+1, . . . , vj) is a subpath of P , we sometimes equivalently use the nota-

tion P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk).

2.1 Structural Properties of Interval Graphs

Interval graphs form a well-known and extensively studied class of perfect graphs [15]. They

have important properties, and admit polynomial time solutions for several problems that are

NP-complete on general graphs (see e.g. [1, 5, 15, 18]). Moreover, interval graphs have received a

lot of attention due to their applicability to DNA physical mapping problems [14], and find many

applications in several fields and disciplines such as genetics, molecular biology, scheduling, VLSI

circuit design, archaeology and psychology [15].

A graph G is called interval graph if its vertices can be put in a one-to-one correspondence with

a family F of intervals on the real line such that two vertices are adjacent in G if and only if the

corresponding intervals intersect; F is called an intersection model for G [1]. The class of interval

graphs is hereditary, that is, every induced subgraph of an interval graph G is also an interval

graph. Ramalingam and Rangan [21] proposed a numbering of the vertices of an interval graph;

they stated the following lemma.

Lemma 2.1 (Ramalingam and Rangan [21]): The vertices of any interval graph G can be num-

bered with integers 1, 2, . . . , |V (G)| such that if i < j < k and ik ∈ E(G), then jk ∈ E(G).

This numbering, which also results after sorting the intervals of the intersection model of an interval

graph G on their right ends [1], can be obtained in O(|V (G)| + |E(G)|) time [21]. An ordering of

the vertices according to this numbering is found to be quite useful in solving some graph-theoretic

problems on interval graphs [1, 21]. Throughout the paper, such an ordering is called a right-end

ordering of G. Let u and v be two vertices of G, and let π be a right-end ordering of G; by u <π v

we denote that u appears before v in π. In particular, if π = (u1, u2, . . . , u|V (G)|) is a right-end

ordering of G, then ui <π uj if and only if i < j. In Figure 1 we illustrate the right-end ordering π

of an interval graph G. In Figure 1(b) the right endpoints of the intervals in the intersection

model F are drawn bold for better visibility.

2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a specific type of paths,

namely normal paths. We next define the notion of a normal path of an interval graph G.
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Definition 2.1 Let G be an interval graph, and let π be a right-end ordering of G. The path

P = (v1, v2, . . . , vk) of G is called normal, if v1 is the leftmost vertex of V (P ) in π, and for every

i, 2 ≤ i ≤ k, the vertex vi is the leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in π.

For example, in the interval graph G of Figure 1, the path P = (u1, u4, u2, u5, u3) is normal.

Note that the notion of normal paths in interval graphs is exactly what is called straight paths

in [8]. Damaschke [8] presents an algorithm for finding a straight Hamiltonian path in an interval

graph (Algorithm 3), proving thus that if an interval graph has a Hamiltonian path, then it also

has a straight Hamiltonian path. Also, in [8] a path is called straight if it is a straight Hamiltonian

path in the subgraph induced by its vertex set.

Now, since straight (resp. normal) paths are defined with respect to a given intersection model

(resp. right-end ordering) of the graph, the following observation suffices to obtain the correctness

of Lemma 2.2: let G be an interval graph, let F be an intersection model of G, let P be a path of

G, and let G′ be the subgraph of G induced by V (P ). Then we can obtain an intersection model

F ′ of G′ by simply deleting from F the intervals which correspond to the vertices of V (G)\V (G′).

Since P is a Hamiltonian path of G′, then from [8] there exists a straight Hamiltonian path P ′ of

G′ (with respect to F ′). By the construction of F ′, it follows that P ′ is a straight path in G (with

respect to F ) as well. Therefore, the following result holds. Note that, hereafter we use the term

normal path instead of straight path.

Lemma 2.2 Let P be a path of an interval graph G. Then, there exists a normal path P ′ of G,

such that V (P ′) = V (P ).

3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP Interval, for solving the

longest path problem on interval graphs; it consists of three phases and works as follows:

• Phase 1: it takes an interval graph G and constructs the auxiliary interval graph H ;

• Phase 2: it computes a longest binormal path P̂ on H using Algorithm LP on H;

• Phase 3: it computes a longest path P on G from the path P̂ ;

The proposed algorithm computes a longest binormal path P̂ of the graph H using dynamic

programming techniques and then computes a longest path P of G from the path P̂ ; note that

binormal paths are a special type of paths which we define in Section 3.2. We next describe in

detail the three phases of our algorithm and prove properties of the constructed graph H which

will be used for proving the correctness of the algorithm.

3.1 The interval graph H

In this section we present Phase 1 of the algorithm: given an interval graph G and a right-end

ordering π of G, we construct the interval graph H and a right-end ordering σ of H . To this end,

we use the following notations.

Notation 3.1 Let F be the intersection model of an interval graph G, and let

π = (v1, v2, . . . , v|V (G)|) be the right-end ordering of G which we obtain from F . By Ii we

denote the interval which corresponds to the vertex vi in F , and by l(Ii) and r(Ii) we denote the

left and the right endpoint of the interval Ii, respectively.
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Figure 2: The intersection model F ′ of the stable-connection graph H , which is obtained from the

interval graph G of Figure 1.

◮ Construction of H and σ: Let G be an interval graph and let F be the intersection model

of G, from which we obtain the right-end ordering π = (v1, v2, . . . , v|V (G)|) of G. To construct

the graph H , for every interval Ii of F we add two disjoint “short” intervals immediately

before the right endpoint of Ii.

Formal description: without loss of generality, we may assume that all values l(Ii) and

r(Ii) are distinct. Let ε be the smallest distance between two interval endpoints in F . For

every interval Ii of F which corresponds to a vertex vi ∈ V (G), we add two non-intersecting

intervals Ii,1 = [r(Ii)−
4ε
5 , r(Ii)−

3ε
5 ] and Ii,2 = [r(Ii)−

2ε
5 , r(Ii)−

ε
5 ]. Let ai,1 and ai,2 be

the vertices which correspond to the two new intervals Ii,1 and Ii,2, respectively. After

processing all intervals Ii, 1 ≤ i ≤ |V (G)|, of the intersection model F of G, we obtain an

intersection model F ′ of graph H . Now, set C = V (G) and A = V (H) \ V (G).

Thus, H is an interval graph, and the ordering which results from numbering the intervals

of F ′ after sorting them on their right ends is a right-end ordering σ of H . We call the

constructed interval graph H the stable-connection graph of interval graph G.

In Figure 2, we illustrate the intersection model of the stable-connection graph H of the interval

graph G of Figure 1.

Observation 3.1 For every interval Ii of F , the two new intervals Ii,1 and Ii,2 do not intersect

with any interval Ik such that r(Ik) < r(Ii). Additionally, the two new intervals intersect with the

interval Ii, and with every interval Iℓ such that r(Iℓ) > r(Ii) and Iℓ intersects with Ii.

Hereafter, we will denote by n the number |V (H)| of vertices of the stable-connection graph H

and by σ = (u1, u2, . . . , un) the constructed right-end ordering ordering of H . By construction,

the vertex set of H consists of the vertices of C = V (G) and the vertices of A. We will refer to C

as the set of connector vertices of graph H and to A as the set of stable vertices of H ; we denote

these sets by C(H) and A(H), respectively. Note that |A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H , all neighbors of a stable vertex a ∈ A(H)

are connector vertices c ∈ C(H), such that a <σ c. Moreover, observe that all neighbors of a stable

vertex form a clique in G and, thus, also in H . Note here that, by the construction of the stable-

connection graph H , each stable vertex a ∈ A(H) is the unique simplicial vertex in the maximal

clique induced by the closed neighborhood N [a] in H .

Definition 3.1 For every connector vertex ui ∈ C(H) in σ = {u1, u2, . . . , un}, we define by f(ui)

(resp. h(ui)) the smallest (resp. largest) index, such that f(ui) < i and uf(ui)ui ∈ E(G)

(resp. h(ui) < i and uh(ui)ui ∈ E(G)).

Note that uf(ui) and uh(ui) are distinct stable vertices, for every connector vertex ui.
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Figure 3: The subgraph H(4, 15) of the stable-connection graph H of Figure 2.

Definition 3.2 Let H be the stable-connection graph of an interval graph G, and let

σ = (u1, u2, . . . , un) be the right-end ordering of H. For every pair of indices i, j, 1 ≤ i ≤ j ≤ n,

we define the graph H(i, j) to be the subgraph H [S] induced by the set S = {ui, ui+1, . . . , uj} \

{uk ∈ C(H) : uf(uk) <σ ui}.

The stable-connection graph H of Figure 2 is illustrated in Figure 3, where its vertices (both sta-

ble and connector vertices) are numbered according to the right-end ordering σ = (u1, u2, . . . , u15)

of H . The subgraph H(4, 15) is illustrated in Figure 3, where the vertices V (H(4, 15)) =

{u4, u5, u6, u7, u8, u9, u10, u11, u13, u14, u15} are drawn darker than the others for better visibility.

The following properties hold for every induced subgraph H(i, j), 1 ≤ i ≤ j ≤ n, and they are

used for proving the correctness of Algorithm LP on H.

Observation 3.2 Let uk be a connector vertex of H(i, j), i.e., uk ∈ C(H(i, j)). Then, for every

vertex uℓ ∈ V (H(i, j)) such that uk <σ uℓ and ukuℓ ∈ E(H(i, j)), uℓ is also a connector vertex

of H(i, j).

Observation 3.3 No two stable vertices of H(i, j) are adjacent.

Lemma 3.1 Let P = (v1, v2, . . . , vk) be a normal path of H(i, j). Then:

(a) For any two stable vertices vr and vℓ in P , vr appears before vℓ in P if and only if vr <σ vℓ.

(b) For any two connector vertices vr and vℓ in P , if vℓ appears before vr in P and vr <σ vℓ,

then vr does not see the predecessor vℓ−1 of vℓ in P .

Proof.

(a) Damaschke in [8] proved that for a normal path P = (v1, v2, . . . , vk) of an interval graph the

following three statements cannot be true simultaneously: vertex vx appears before vy in P ,

l(Ix) ≥ l(Iy), and r(Ix) > r(Iy). Since for any two stable vertices vr and vℓ in H(i, j) we

have vr <σ vℓ if and only if l(Ir) < r(Ir) < l(Iℓ) < r(Iℓ), it follows that vr <σ vℓ if and only

if vr appears before vℓ in P .

(b) Since vr <σ vℓ, it follows that vℓ 6= v1 and, thus, there exists a vertex vℓ−1 which appears

before vℓ in P . Assume that vrvℓ−1 ∈ E(H(i, j)). Since vr <σ vℓ, and since P is a normal

path, vr should be the next vertex of vℓ−1 in P instead of vℓ, which is a contradiction.

Therefore, vrvℓ−1 /∈ E(H(i, j)).
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Algorithm LP on H

Input: a stable-connection graph H , a right-end ordering σ = (u1, u2, . . . , un) of H .

Output: a longest binormal path of H .

1. for j = 1 to n

2. for i = j downto 1

3. if i = j and ui ∈ A(H) then

4. ℓ(ui; i, i)← 1; P (ui; i, i)← (ui);

5. if i 6= j then

6. for every stable vertex ur ∈ A(H), i ≤ r ≤ j − 1

7. ℓ(ur; i, j)← ℓ(ur; i, j − 1); P (ur; i, j)← P (ur; i, j − 1); {initialization}

8. if uj is a stable vertex of H(i, j), i.e., uj ∈ A(H), then

9. ℓ(uj ; i, j)← 1; P (uj; i, j)← (uj);

10. if uj is a connector vertex of H(i, j), i.e., uj ∈ C(H) and i ≤ f(uj), then

11. execute process(H(i, j));

12. compute max{ℓ(uk; 1, n) : uk ∈ A(H)} and the corresponding path P (uk; 1, n);

where the procedure process() is as follows:

process(H(i, j))

13. for y = f(uj) + 1 to j − 1

14. for x = f(uj) to y − 1 {ux and uy are adjacent to uj}

15. if ux, uy ∈ A(H) then

16. w1 ← ℓ(ux; i, j − 1); P1 ← P (ux; i, j − 1);

17. w2 ← ℓ(uy; x + 1, j − 1); P2 ← P (uy; x + 1, j − 1);

18. if w1 + w2 + 1 > ℓ(uy; i, j) then

19. ℓ(uy; i, j)← w1 + w2 + 1; P (uy; i, j)← (P1, uj , P2);

20. return the value ℓ(uk; i, j) and the path P (uk; i, j), ∀ uk ∈ A(H(f(uj) + 1, j − 1));

Figure 4: The algorithm for finding a longest binormal path of H .

3.2 Finding a longest binormal path on H

In this section we present Phase 2 of Algorithm LP Interval. Let G be an interval graph and let H

be the stable-connection graph of G constructed in Phase 1. We next present Algorithm LP on H,

which computes a longest binormal path of the graph H ; let us first define binormal paths and

give some notations necessary for the description of the algorithm.

Definition 3.3 Let H be a stable-connection graph, and let P be a path of H(i, j), 1 ≤ i ≤ j ≤ n.

The path P is called binormal if P is a normal path of H(i, j), both endpoints of P are stable

vertices, and no two connector vertices are consecutive in P .

Notation 3.2 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the right-end

ordering of H. For every stable vertex uk ∈ A(H(i, j)), we denote by P (uk; i, j) a longest binormal

path of H(i, j) with uk as its right endpoint, and by ℓ(uk; i, j) the length of P (uk; i, j).

Since any binormal path is a normal path, Lemma 3.1 also holds for binormal paths. Moreover,

since P (uk; i, j) is a binormal path, from Lemma 3.1(a) we obtain that its right endpoint uk is also

the rightmost stable vertex of P in σ.

Algorithm LP on H, which is presented in Figure 4, computes for every induced subgraph

H(i, j) and for every stable vertex uk ∈ A(H(i, j)), the length ℓ(uk; i, j) and the corresponding

7



Algorithm LP Interval

Input: an interval graph G and a right-end ordering π of G.

Output: a longest path P of G.

1. Construct the stable-connection graph H of G and the right-end ordering σ of H ;

let V (H) = C ∪A, where C = V (G) and A are the sets of connector and stable vertices of H ,

respectively;

2. Compute a longest binormal path P̂ of H , using Algorithm LP on H;

let P̂ = (v1, v2, . . . , v2k, v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤ i ≤ k;

3. Compute a longest path P = (v2, v4, . . . , v2k) of G, by deleting all stable vertices

{v1, v3, . . . , v2k+1} from the longest binormal path P̂ of H ;

Figure 5: The algorithm for solving the longest path problem on an interval graph G.

path P (uk; i, j). Since H(1, n) = H , it follows that the maximum among the values ℓ(uk; 1, n),

where uk ∈ A(H), is the length of a longest binormal path P (uk; 1, n) of H .

3.3 Finding a longest path on G

During Phase 3 of our Algorithm LP Interval, we compute a path P from the longest binormal

path P̂ of H , computed by Algorithm LP on H, by simply deleting all stable vertices of P̂ . In

Section 4.2 we prove that the resulting path P is a longest path of the interval graph G.

In Figure 5, we present our Algorithm LP Interval for solving the longest path problem on

an interval graph G; note that Steps 1, 2, and 3 of the algorithm correspond to the presented

Phases 1, 2, and 3, respectively.

4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and analyze its time complexity. More

specifically, in Section 4.1 we show that Algorithm LP on H computes a longest binormal path P̂

of the graph H , while in Section 4.2 we show that the length of a longest binormal path P̂ of H

is equal to 2k + 1, where k is the length of a longest path of G. Finally, we show that the path P

constructed at Step 3 of Algorithm LP Interval is a longest path of G.

4.1 Correctness of Algorithm LP on H

We next prove that Algorithm LP on H correctly computes a longest binormal path of the graph

H . The following lemmas appear useful in the proof of the algorithm’s correctness.

Lemma 4.1 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the right-end

ordering of H. Let P be a longest binormal path of H(i, j) with uy as its right endpoint, let uk be

the rightmost connector vertex of H(i, j) in σ, and let uf(uk)+1 ≤σ uy ≤σ uh(uk). Then, there exists

a longest binormal path P ′ of H(i, j) with uy as its right endpoint, which contains the connector

vertex uk.

Proof. Let P be a longest binormal path of H(i, j) with uy as its right endpoint, which does not

contain the connector vertex uk. Assume that P = (uy). Since uk is a connector vertex of H(i, j)

8



and uf(uk) is a stable vertex of H(i, j), we have that ui ≤σ uf(uk) <σ uy <σ uk. Thus, there exists

a binormal path P1 = (uf(uk), uk, uy) such that |P1| > |P |. However, this is a contradiction to the

assumption that P is a longest binormal path of H(i, j).

Therefore, assume now that P = (up, . . . , uq, uℓ, uy). By assumption, P is a longest binormal

path of H(i, j) with uy as its right endpoint that does not contain the connector vertex uk. Since

the connector vertex uℓ sees the stable vertex uy and, also, since uk is the rightmost connector

vertex of H(i, j) in σ, it follows by Observation 3.2 that uf(uk) <σ uy <σ uℓ <σ uk. Thus, uk

sees the connector vertex uℓ. Consider first the case where uk does not see the stable vertex

uq, i.e., uq <σ uf(uk) <σ uy <σ uℓ <σ uk. Then, it is easy to see that the connector vertex uℓ

sees uf(uk), where uf(uk) is always a stable vertex, and also, from Lemma 3.1(a) it follows that

the vertex uf(uk) does not belong to the path P . Therefore, there exists a binormal path P2 =

(up, . . . , uq, uℓ, uf(uk), uk, uy) in H(i, j), such that |P2| > |P |. This is a contradiction to our

assumption that P is a longest binormal path.

Consider now the case where uk sees the stable vertex uq. Then, there exists a path

P ′ = (up, . . . , uq, uk, uy) of H(i, j) with uy as its right endpoint that contains the connector vertex

uk, such that |P | = |P ′|; since P is a binormal path, it is easy to see that P ′ is also a binormal

path. Thus, the path P ′ is a longest binormal path of H(i, j) with uy as its right endpoint, which

contains the connector vertex uk.

Lemma 4.2 Let H be a stable-connection graph, and let σ be the right-end ordering of H. Let

P = (P1, vℓ, P2) be a binormal path of H(i, j), and let vℓ be a connector vertex of H(i, j). Then,

P1 and P2 are binormal paths of H(i, j).

Proof. Let P = (v1, v2, . . . , vℓ−1, vℓ, vℓ+1, . . . , vk) be a binormal path of H(i, j). Then, from Defi-

nition 2.1, v1 is the leftmost vertex of V (P ) in σ, and for every index r, 2 ≤ r ≤ k, the vertex vr is

the leftmost vertex of N(vr−1)∩{vr , vr+1, . . . , vk} in σ. It is easy to see that P1 = (v1, v2, . . . , vℓ−1)

is a normal path of H(i, j). Indeed, since V (P1) ⊂ V (P ), then v1 is also the leftmost vertex of

V (P1) in σ, and additionally, vr is the leftmost vertex of N(vr−1) ∩ {vr, vr+1, . . . , vℓ−1} in σ, for

every index r, 2 ≤ r ≤ ℓ − 1. Furthermore, since P is binormal and vℓ is a connector vertex, it

follows that vℓ−1 is a stable vertex and, thus, P1 is a binormal path of H(i, j) as well.

Consider now the path P2 = (vℓ+1, vℓ+2, . . . , vk) of H(i, j). Since P is a binormal path and

vℓ is a connector vertex, it follows that vℓ+1 is a stable vertex and, thus, vℓ+1 <σ vℓ due to

Observation 3.2. We first prove that vℓ+1 is the leftmost vertex of V (P2) in σ. Since P is a

binormal path, we obtain from Lemma 3.1(a) that vℓ+1 is the leftmost stable vertex of V (P2) in σ.

Moreover, consider a connector vertex vt of P2. Then, its predecessor vt−1 in P2 is a stable vertex

and, thus, vt−1 <σ vt due to Observation 3.2. Since vℓ+1 is the leftmost stable vertex of V (P2)

in σ, we have that vℓ+1 ≤σ vt−1 and, thus, vℓ+1 <σ vt. Therefore, vℓ+1 is the leftmost vertex of

V (P2) in σ. Additionally, since P is a binormal path, it is straightforward that for every index r,

ℓ +2 ≤ r ≤ k, the vertex vr is the leftmost vertex of N(vr−1)∩{vr, vr+1, . . . , vk} in σ. Thus, P2 is

a normal path. Finally, since P is binormal and vℓ+1 is a stable vertex, P2 is a binormal path as

well.

Lemma 4.3 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the right-end

ordering of H. Let P1 be a binormal path of H(i, j − 1) with ux as its right endpoint, and let P2

be a binormal path of H(x + 1, j − 1) with uy as its right endpoint, such that V (P1) ∩ V (P2) = ∅.

Suppose that uj is a connector vertex of H and that ui ≤σ uf(uj) ≤σ ux. Then, P = (P1, uj , P2)

is a binormal path of H(i, j) with uy as its right endpoint.

Proof. Let uz be the first vertex of P2. Note that uj is the rightmost vertex of H(i, j) in

σ. Since uj is a connector vertex of H such that ui ≤σ uf(uj) ≤σ ux <σ uj , and since
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uf(uj)uj ∈ E(G), from Lemma 2.1 it follows that uj sees the right endpoint ux of P1. Additionally,

since uz ∈ V (H(x + 1, j − 1)), we have uf(uj) ≤σ ux <σ ux+1 ≤σ uz <σ uj and, thus, uj sees uz.

Therefore, since V (P1) ∩ V (P2) = ∅, it follows that P = (P1, uj , P2) is a path of H . Additionally,

since H(i, j − 1) and H(x + 1, j − 1) are induced subgraphs of H(i, j), it follows that P is a path

of H(i, j). Hereafter, in the rest of this proof P1 = (v1, v2, . . . , vp−1), P2 = (vp+1, vp+2, . . . , vℓ),

ux = vp−1, uy = vℓ, and uj = vp.

We first show that P = (v1, v2, . . . , vp, . . . , vℓ) is a normal path. Since v1 is the leftmost vertex

of V (P1) in σ, it follows that v1 ≤σ ux. Furthermore, since uj = vp is the rightmost vertex of

H(i, j) in σ, and since for every vertex vk ∈ V (P2) it holds ux <σ ux+1 ≤σ vk <σ vp, it follows

that v1 is the leftmost vertex of V (P ) in σ. We next show that for every k, 2 ≤ k ≤ ℓ, the vertex

vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vℓ} in σ.

Consider first the case where 2 ≤ k ≤ p− 1, i.e., vk ∈ V (P1). Since P1 is a normal path, vk

is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ. Assume that vk−1 is a stable ver-

tex. Then, Lemma 3.1(a) implies that vk−1 <σ ux and, due to Observation 3.3, it follows that

N(vk−1) ∩ {vk, vk+1, . . . , vℓ} is a set of connector vertices. Since every connector vertex vr ∈ V (P2)

is a vertex of H(x+1, j− 1), it follows that vk−1 <σ ux+1 ≤σ uf(vr) and, thus, vr /∈ N(vk−1). Ad-

ditionally, since vp is the rightmost vertex of H(i, j) in σ, it follows that vk <σ vp. Therefore,

since vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ, it follows that vk is the

leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vℓ} in σ. Assume now that vk−1 is a connector vertex.

Since P1 is a binormal path, vk is a stable vertex such that vk ≤σ ux and vk is the leftmost

vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ. Since for every r, p + 1 ≤ r ≤ ℓ, the vertex vr is in

V (H(x + 1, j− 1)), it follows that vk ≤σ ux <σ vr. Additionally, vk <σ ux+1 <σ vp. Therefore, vk

is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vℓ} in σ.

Consider now the case where k = p. Since P1 is a normal path and vp−1 is a stable ver-

tex, N(vp−1) ∩ {vp, vp+1, . . . , vℓ} is a set of connector vertices, due to Observation 3.3. Addi-

tionally, since every connector vertex vr ∈ V (P2) is a vertex of H(x + 1, j − 1), it follows that

vp−1 <σ ux+1 ≤σ uf(vr) and, thus, vr /∈ N(vp−1). Therefore, N(vp−1) ∩ {vp, vp+1, . . . , vℓ} = {vp}

and, thus, vp is the leftmost vertex of N(vp−1) ∩ {vp, vp+1, . . . , vℓ} in σ. Now, in the

case where p + 1 ≤ k ≤ ℓ, since P2 is a normal path we have that vp+1 is the left-

most vertex of V (P2) = {vp+1, vp+2, . . . , vℓ} in σ and, thus, vp+1 is the leftmost vertex of

N(vp) ∩ {vp+1, vp+2, . . . , vℓ} in σ; also, it directly follows that for every k, p + 2 ≤ k ≤ ℓ, vk is

the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vℓ} in σ.

Concluding, we have shown that P is a normal path of H(i, j). Additionally, since P1 and P2

are binormal paths of H(i, j), the path P has stable vertices as endpoints and no two connector

vertices are consecutive in P . Therefore, P is a binormal path of H(i, j) with uy as its right

endpoint.

Next, we prove the correctness of Algorithm LP on H. For the purposes of the proof we distinguish

the notation we use for the values computed by Algorithm LP on H, from the notation we use

for the optimum values. In particular, by ℓ(uy; i, j) we denote the value computed by Algorithm

LP on H for the length of a longest binormal path of H(i, j) which has uy as its right endpoint

and by P (uy; i, j) the corresponding computed path. On the other hand, by L(uy; i, j) we denote

the optimum value of the length of a longest binormal path of H(i, j) which has uy as its right

endpoint and by P(uy; i, j) the corresponding path.

Lemma 4.4 Let H be a stable-connection graph, and let σ be the right-end ordering of H. For

every induced subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ n, and for every stable vertex uy ∈ A(H(i, j)),

the value ℓ(uy; i, j) computed by Algorithm LP on H is equal to the length L(uy; i, j) of a longest

binormal path of H(i, j) which has uy as its right endpoint and, also, the corresponding computed

path P (uy; i, j) is a longest binormal path of H(i, j) which has uy as its right endpoint.
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Proof. Let P be a longest binormal path of the stable-connection graph H(i, j), which has vertex

uy ∈ A(H(i, j)) as its right endpoint. We distinguish two cases (I and II) concerning the set of

connector vertices of H(i, j).

Case I. Consider first the case where C(H(i, j)) = ∅; the graph H(i, j) consists of a set of stable

vertices A(H(i, j)), which is an independent set, due to Observation 3.3. Therefore, in this case

Algorithm LP on H sets ℓ(uy; i, j) = 1 for every vertex uy ∈ A(H(i, j)), which is equal indeed to the

length of the longest binormal path P(uy; i, j) = (uy) of H(i, j) which has uy as its right endpoint.

Therefore, the lemma holds for every induced subgraph H(i, j), for which C(H(i, j)) = ∅.

Case II. Consider now the case where C(H(i, j)) 6= ∅. Let C(H) = {c1, c2, . . . , ck, . . . , ct} be the

set of connector vertices of H , where c1 <σ c2 <σ . . . <σ ck <σ . . . <σ ct. Let σ = (u1, u2, . . . , un)

be the vertex ordering of H constructed in Phase 1. Recall that, by the construction of H , n = 3t,

and A(H) = V (H) \ C(H) is the set of stable vertices of H .

Let H(i, j) be an induced subgraph of H , and let ck be the rightmost connector vertex of H(i, j)

in σ. The proof of the lemma is done by induction on the index k of the rightmost connector

vertex ck of H(i, j). To this end, in both the induction basis and the induction step, we distinguish

three cases concerning the position of the stable vertex uy in the ordering σ: ui ≤σ uy ≤σ uf(ck),

uh(ck) <σ uy ≤σ uj, and uf(ck)+1 ≤σ uy ≤σ uh(ck). In each of these three cases, we examine first

the length L(uy; i, j) of a longest binormal path of H(i, j) with uy as its right endpoint and then we

compare this value to the length ℓ(uy; i, j) of the path computed by Algorithm LP on H. Moreover,

we prove that the path P (uy; i, j) with length ℓ(uy; i, j) computed by Algorithm LP on H is indeed

a binormal path with uy as its right endpoint.

Induction basis. We first show that the lemma holds for k = 1; i.e., c1 is the only connector

vertex of H(i, j). We distinguish two cases (A1 and A2) concerning the position of the stable

vertex uy in σ.

Case A1: ui ≤σ uy ≤σ uf(c1) or uh(c1) <σ uy ≤σ uj. In this case, it is easy to see that the length

L(uy; i, j) of a longest binormal path P of H(i, j) with uy as its right endpoint is equal to 1.

Indeed, if uy 6= uf(c1), then uy does not see the unique connector vertex c1 of H(i, j) and, thus,

the longest binormal path with uy as its right endpoint consists of vertex uy. Now, in the case

where uy = uf(c1), the unique connector vertex c1 sees uy, however, uy is the leftmost neighbor of

c1 in σ; thus, from Lemma 3.1(a) and the definition of binormal paths, it follows that c1 does not

belong to any binormal path with uy as its right endpoint. Therefore, in Case A1, we have proved

that L(uy; i, j) = 1 and P(uy; i, j) = (uy). It is easy to see that, in this case, Algorithm LP on H

(see lines lines 6-7 for i ≤ y ≤ j − 1, and 8-9 for y = j) correctly computes ℓ(uy; i, j) = 1 and

P (uy; i, j) = (uy).

Case A2: uf(c1)+1 ≤σ uy ≤σ uh(c1). In this case, we have L(uy; i, j) = 3; recall that, in the induc-

tion basis, c1 is the only connector vertex of H(i, j). Algorithm LP on H computes (in the subrou-

tine process(), with uj = c1) for every stable vertex ux of H(i, j) such that uf(c1) ≤σ ux ≤σ uy−1,

the value ℓ(ux; i, j−1)+ ℓ(uy; x+1, j−1)+1 = 1+1+1 = 3 and sets ℓ(uy; i, j) = 3. Additionally,

it is easy to see that the path P (uy; i, j) = (ux, c1, uy), computed by Algorithm LP on H in this

case, is indeed a longest binormal path of H(i, j) with uy as its right endpoint.

Induction hypothesis. Let now ck be a connector vertex of H , such that k ≤ t. Assume that

the lemma holds for every induced subgraph H(i, j) of H , which has cℓ as its rightmost connector

vertex in σ, where 1 ≤ ℓ ≤ k − 1. That is, we assume that for every such graph H(i, j), the value

ℓ(uy; i, j) computed by Algorithm LP on H is equal to the length L(uy; i, j) of a longest binormal

path of H(i, j) with uy as its right endpoint and, also, that the corresponding computed path

P (uy; i, j) is a longest binormal path of H(i, j) which has uy as its right endpoint.
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Induction step. We will show that for every induced subgraph H(i, j) of H , which has ck as its

rightmost connector vertex in σ, the value ℓ(uy; i, j) computed by Algorithm LP on H is equal to

the length L(uy; i, j) of a longest binormal path P(uy; i, j) of H(i, j) with uy as its right endpoint.

We distinguish three cases (B1, B2, and B3) concerning the position of the stable vertex uy in σ.

Case B1: ui ≤σ uy ≤σ uf(ck). We first show that L(uy; i, j) = L(uy; i, h(ck)) (note that uh(ck)

is the predecessor of ck in σ). In particular, we show that no vertex to the right of uh(ck) in

σ belongs to a longest binormal path of H(i, j) with uy as its right endpoint and, thus, such a

longest binormal path P(uy; i, j) of H(i, j) is actually a path of H(i, h(ck)). On the one hand, we

prove that the connector vertex ck does not belong to any binormal path of H(i, j) with uy as its

right endpoint. In fact, vertex ck does not see any stable vertex to the left of uy in σ; therefore,

from Lemma 3.1(a) and the definition of binormal paths, it follows that ck does not belong to

any binormal path of H(i, j) with uy as its right endpoint. On the other hand, we prove that

every vertex uℓ of H(i, j), where ck <σ uℓ ≤σ uj , does not belong to any binormal path of H(i, j)

with uy as its right endpoint. Indeed, since ck is the rightmost connector vertex of H(i, j), it

follows that every vertex uℓ of H(i, j), where ck <σ uℓ ≤σ uj , is a stable vertex and, thus, again

from Lemma 3.1(a) and the definition of binormal paths, it follows that uℓ does not belong to any

binormal path of H(i, j) with uy as its right endpoint. Therefore, we have proved that a longest

binormal path P(uy; i, j) of H(i, j) with uy as its right endpoint is actually a path of H(i, h(ck)).

Furthermore, since H(i, h(ck)) is an induced subgraph of H(i, j), it follows that the path P(uy; i, j)

is also a longest binormal path of H(i, h(ck)) with uy as its right endpoint. Thus, it follows that

L(uy; i, j) = L(uy; i, h(ck)).

We next show that, in this case, Algorithm LP on H computes ℓ(uy; i, j) = L(uy; i, h(ck)).

In fact, we show that ℓ(uy; i, h(ck)) = L(uy; i, h(ck)) holds and, also, that Algorithm LP on H

computes ℓ(uy; i, j) = ℓ(uy; i, h(ck)). Note first that, since h(ck) < j, Algorithm LP on H has

already computed the value ℓ(uy; i, h(ck)) at a previous iteration, where j was equal to h(ck).

We first show that ℓ(uy; i, h(ck)) = L(uy; i, h(ck)), i.e., the computed value ℓ(uy; i, h(ck)) is

equal to the length L(uy; i, h(ck)) of a longest binormal path of H(i, h(ck)) with uy as its right

endpoint. Indeed, consider first the case where H(i, h(ck)) is a graph for which C(H(i, h(ck))) = ∅,

i.e., H(i, h(ck)) has only stable vertices. Then, as we have shown in the beginning of this proof

(cf. Case I), the computed value ℓ(uy; i, h(ck)) = 1 is equal to the length L(uy; i, h(ck)) of a

longest binormal path of H(i, h(ck)) with uy as its right endpoint. Consider now the case where

H(i, h(ck)) is a graph for which C(H(i, h(ck))) 6= ∅, i.e., H(i, h(ck)) has at least one connector

vertex (cf. Case II); let cℓ be its rightmost connector vertex in σ. Then, cℓ <σ ck, since uh(ck) <σ ck.

Therefore, by the induction hypothesis, the value ℓ(uy; i, h(ck)) computed by Algorithm LP on H

is equal indeed to the length L(uy; i, h(ck)) of a longest binormal path of H(i, h(ck)) with uy as its

right endpoint.

We now show that, in Case B1, Algorithm LP on H computes ℓ(uy; i, j) = ℓ(uy; i, h(ck)). Con-

sider first the case where uj is a connector vertex of H(i, j), i.e., uj = ck. Then, Algorithm

LP on H computes (in lines 6-7) ℓ(uy; i, j) = ℓ(uy; i, j − 1), which is equal to ℓ(uy; i, h(ck)), since

in this case j − 1 = h(ck); also, note that in Case B1, y ≤ f(ck) (i.e., y ≤ f(uj)) and, thus, the

value ℓ(uy; i, j) does not change during the execution of the subroutine process().

Consider finally the case where uj is a stable vertex; then j − 1 > h(ck). If j − 1 = h(ck) + 1,

then Algorithm LP on H computes (in lines 6-7) ℓ(uy; i, j) = ℓ(uy; i, j − 1), which is equal to

ℓ(uy; i, h(ck) + 1). Moreover, the connector vertex uh(ck)+1 = ck does not see in Case B1 any

stable vertex to the left of uy in σ; therefore, from Lemma 3.1(a) and the definition of binor-

mal paths, it follows that uh(ck)+1 does not belong to any binormal path of H(i, j) with uy

as its right endpoint. Therefore, the computed value ℓ(uy; i, j) = ℓ(uy; i, h(ck) + 1) is equal

to the value ℓ(uy; i, h(ck)), which has been computed at a previous iteration, where j = h(ck).
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Figure 6: The path P = (P1, u15,P2), where P1 = (u4, u6, u5) and P2 = (u7, u9, u8), is a longest

binormal path of the graph H(i, j) = H(4, 15) of Figure 3 with u8 as its right endpoint.

That is, Algorithm LP on H computes ℓ(uy; i, j) = ℓ(uy; i, h(ck)). Similarly (to the case

where j − 1 = h(ck) + 1), if j − 1 > h(ck) + 1, then Algorithm LP on H computes (in lines 6-7)

ℓ(uy; i, j) = ℓ(uy; i, j− 1), which is again equal to ℓ(uy; i, h(ck)). Therefore, in Case B1, Algorithm

LP on H computes ℓ(uy; i, j) = ℓ(uy; i, h(ck)) and, also, computes P (uy; i, j) = P (uy; i, h(ck)).

Then, by the induction hypothesis, this path is also a longest binormal path of H(i, h(ck)) with uy

as its right endpoint. Thus, in Case B1 the lemma holds.

Case B2: uh(ck) <σ uy ≤σ uj . Since ck is the rightmost connector vertex of H(i, j), and since uy

is a stable vertex, it follows that uy does not see any vertex of H(i, j); furthermore, uj is a

stable vertex. Thus, the longest binormal path of H(i, j) with uy as its right endpoint consists

of vertex uy, i.e., L(uy; i, j) = 1. In the case where uy = uj, one can easily see that Algorithm

LP on H computes (in lines 8-9) the length ℓ(uy; i, j) = 1, and the path P (uy; i, j) = (uy), which

is clearly a binormal path. Additionally, in the case where uh(ck) <σ uy <σ uj , on the one hand

Algorithm LP on H computes (in lines 6-7) ℓ(uy; i, j) = ℓ(uy; i, j − 1) and, on the other hand, the

subroutine process() is not executed, since uj is a stable vertex. Thus, in Case B2 the lemma

holds.

Case B3: uf(ck)+1 ≤σ uy ≤σ uh(ck). In this case, the connector vertex ck sees uy. Let

P = (ux′ , . . . , ux, ck, uy′ , . . . , uy) be a longest binormal path of H(i, j) with uy as its right end-

point, which contains the connector vertex ck; due to Lemma 4.1, such a path always exists. Let

ux be the predecessor of ck in the path P ; then, uf(ck) ≤σ ux <σ uy. Since P is a binormal path,

the vertices ux′, ux, uy′ , and uy are all stable vertices. Also, since ck sees uy, which is the rightmost

stable vertex of P in σ, all stable vertices of P belong to the graph H(i, h(ck)). Additionally, since

ck is the rightmost connector vertex of H(i, j) in σ, all connector vertices of P belong to the graph

H(i, h(ck) + 1). Therefore, all vertices of P belong to the graph H(i, h(ck) + 1). Thus, the path

P is a longest binormal path of H(i, h(ck) + 1) with uy as its right endpoint, which contains the

connector vertex ck. Therefore, for every graph H(i, j), for which ck is its rightmost connector

vertex in σ and h(ck)+ 1 ≤ j, we have that L(uy; i, j) = L(uy; i, h(ck)+ 1). Thus, we will examine

only the case where h(ck)+1 = j, that is, ck is the rightmost vertex uj of H(i, j) in σ. An example

of this case is illustrated in Figure 6, where H(i, j) = H(4, 15) is the stable-connection graph of

Figure 3; in this example uy = u8, ck = uh(ck)+1 = u15, and uf(ck) = u4.

Next, we examine the length L(uy; i, j) of a longest binormal path of H(i, j) with uy as its

right endpoint, in the case where h(ck) + 1 = j. Consider removing the connector vertex ck from

the path P . Then, we obtain the paths P1 = (ux′ , . . . , ux) and P2 = (uy′ , . . . , uy).

Claim 4.1 Let P, P1, and P2 be the paths of Case B3. Then, P1 is a binormal path of H(i, j−1)

which has ux as its right endpoint, and P2 is a binormal path of H(x + 1, j − 1) which has uy as

its right endpoint.
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Proof of Claim 4.1. Since P is a binormal path of H(i, j), from Lemma 4.2 we obtain that P1 and

P2 are binormal paths of H(i, j). Since, as we have shown, all vertices of P belong to H(i, h(ck)+1),

and since ck = uj is the rightmost vertex of H(i, j) in σ, it follows that all vertices of P1 and P2

belong to the graph H(i, h(ck)) = H(i, j − 1). Therefore, it is straightforward that P1 is a binormal

path of H(i, j − 1) which has ux as its right endpoint.

Next, we show that P2 is a binormal path of H(x+1, j− 1) which has uy as its right endpoint.

Since P is a binormal path, from Lemma 3.1(a) it follows that for every stable vertex uℓ2 ∈ V (P2),

we have ux <σ uℓ2 ≤σ uy ≤σ uj−1, where uj−1 = uh(ck) is the rightmost vertex of H(i, j− 1) in σ,

since uj = ck. Therefore, for every stable vertex uℓ2 ∈ V (P2) it holds uℓ2 ∈ A(H(x+1, j−1)). Ad-

ditionally, from Lemma 3.1(b) we have that every connector vertex cℓ2 ∈ V (P2) does not see vertex

ux, i.e., ux <σ uf(cℓ2
) <σ cℓ2 ≤σ uj−1; thus, cℓ2 ∈ C(H(x + 1, j − 1)). Summarizing, let H2 be the

induced subgraph of H(i, j − 1), with vertex set V (H2) = A(H(x + 1, j − 1)) ∪ C(H(x + 1, j − 1));

note that the graph H2 is defined with respect to a stable vertex ux, where uf(ck) ≤σ ux <σ uj−1,

and also that H2 = H(x + 1, j − 1) (for example, in Figure 6, ux = u5 and uj = u15; thus

H2 = H(6, 14), where V (H(6, 14)) = {u7, u8, u9, u10, u11, u13, u14}). Therefore, P2 is a binormal

path of H(x + 1, j − 1) which has uy as its right endpoint.

Claim 4.2 If P1 is a binormal path of H(i, j − 1) which has ux as its right endpoint, and P2 is a

binormal path of H(x + 1, j − 1) which has uy as its right endpoint, then V (P1) ∩ V (P2) = ∅.

Proof of Claim 4.2. From the proof of Claim 4.1, recall that H2 is the induced subgraph of

H(i, j − 1), with vertex set V (H2) = A(H(x + 1, j − 1)) ∪ C(H(x + 1, j − 1)); note that the graph

H2 is defined with respect to a stable vertex ux, where uf(ck) ≤σ ux <σ uj−1, and also that

H2 = H(x + 1, j − 1). Therefore, P2 is a binormal path of H2 which has uy as its right endpoint.

Since P is a binormal path, from Lemma 3.1(a) it follows that for every stable

vertex uℓ1 ∈ V (P1), we have ui ≤σ ux′ ≤σ uℓ1 ≤σ ux. Therefore, for every stable ver-

tex uℓ1 ∈ V (P1) it holds uℓ1 ∈ A(H(i, x)). Similarly, since P1 is a binormal path, ux

is the rightmost stable vertex of V (P1) in σ, due to Lemma 3.1(a). Moreover, since

P1 is binormal, every connector vertex cℓ1 ∈ V (P1) sees at least two stable vertices of

P1 and, thus, uf(cℓ1
) <σ ux. Actually, since cℓ1 is a vertex of P1, and P1 is a

path of H(i, j), it follows that ui ≤σ uf(cℓ1
) <σ ux. Therefore, for every connector ver-

tex cℓ1 ∈ V (P1), we have that cℓ1 ∈ C(H(i, j − 1)) \ {cℓ ∈ C(H(i, j − 1)) :ux ≤σ uf(cℓ)} ⊆

C(H(i, j − 1)) \ C(H(x + 1, j − 1)). Summarizing, let H1 be the induced subgraph of H(i, j − 1),

with vertex set V (H1) = A(H(i, x)) ∪C(H(i, j − 1)) \C(H(x + 1, j − 1)); note that the graph

H1 is defined with respect to a stable vertex ux, where uf(ck) ≤σ ux <σ uj−1 (for example, in

Figure 6, H(i, x) = H(4, 5), H(i, j − 1) = H(4, 14), and H(x + 1, j − 1) = H(6, 14); then

A(H(4, 5)) = {u4, u5}, C(H(4, 14)) = {u6, u9}, and C(H(6, 14)) = {u9}, and thus V (H1) =

A(H(4, 5)) ∪C(H(4, 14)) \ C(H(6, 14)) = {u4, u5, u6}).

Now, it is easy to see that for any stable vertex ux, where uf(ck) ≤σ ux <σ uj−1, we have

V (H1) ∩ V (H2) = ∅. Moreover, P1 and P2 belong to the graphs H1 and H2, respectively; thus,

V (P1) ∩ V (P2) = ∅.

Since P = (P1, ck,P2) is a longest binormal path of H(i, j) with uy as its right endpoint,

and since the paths P1 and P2 belong by Claim 4.2 to two disjoint induced subgraphs (H1 and

H2, respectively) of H(i, j), it follows that P1 is a longest binormal path of H1 with ux as its

right endpoint, and that P2 is a longest binormal path of H2 with uy as its right endpoint (note

that ck = uj sees every vertex uz of H2 and, thus, also of P2; indeed, since ux <σ uz <σ ck and

uxck ∈ E(G) for every vertex uz of P2, from Lemma 2.1 we obtain that uzck ∈ E(G) for every

vertex uz of P2). Thus, since H2 = H(x + 1, j − 1), we obtain that |P2| = L(uy; x + 1, j − 1).

We will now show that |P1| = L(ux; i, j − 1). To this end, consider a longest binormal path P0 of
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H(i, j − 1) with ux as its right endpoint. Due to Lemma 3.1(a), ux is the rightmost stable vertex

of P0 in σ and, thus, all stable vertices of P0 belong to A(H1) = A(H(i, x)). Furthermore, since

P0 is binormal, every connector vertex cℓ of P0 sees at least two stable vertices of P0 and, thus,

uf(cℓ) <σ ux, i.e., cℓ ∈ C(H1) = C(H(i, j−1))\C(H(x+1, j−1)). It follows that V (P0) ⊆ V (H1)

and, thus, |P0| ≤ |P1|. On the other hand, |P1| ≤ |P0|, since H1 is an induced subgraph of

H(i, j − 1). Thus, |P1| = |P0| = L(ux; i, j − 1). Therefore, for the length |P| = L(uy; i, j) of

a longest binormal path P of H(i, j) with uy as its right endpoint, it follows that L(uy; i, j) =

L(ux; i, j − 1) + L(uy; x + 1, j − 1) + 1. Also, for the corresponding path P(uy; i, j) we have

P(uy; i, j) = (P(ux; i, j − 1), ck,P(uy; x + 1, j − 1)).

Hereafter, we examine the results computed by Algorithm LP on H in Case B3. Let P be the

path of the graph H(i, j) with uy as its right endpoint, which is computed by Algorithm LP on H

in Case B3.

Consider first the case where uj is a connector vertex of H(i, j), i.e., uj = ck. It is easy to see

that the path P constructed by Algorithm LP on H (in the subroutine process(), line 19) contains

the connector vertex ck. Algorithm LP on H computes the length of the path P = (P1, ck, P2),

for two paths P1 and P2 as follows. The path P1 = P (ux; i, j − 1) is a path of H(i, j − 1)

which has ux as its right endpoint, where ux is a neighbor of ck such that uf(ck) ≤σ ux <σ uy.

The path P2 = P (uy; x + 1, j − 1) is a path of H(x + 1, j − 1) which has uy as its right end-

point, where uf(ck)+1 ≤σ uy ≤σ uh(ck). Actually, in this case, Algorithm LP on H computes

(in the subroutine process()) the value w1 + w2 + 1 = |P1|+ |P2|+ 1, for every stable vertex

ux, where uf(ck) ≤σ ux <σ uy, and sets |P | to be equal to the maximum among these values.

Additionally, Algorithm LP on H computes the corresponding path P = (P1, ck, P2). Summa-

rizing, Algorithm LP on H computes ℓ(uy; i, j) = ℓ(ux; i, j − 1) + ℓ(uy; x + 1, j − 1) + 1 and

P (uy; i, j) = (P (ux; i, j − 1), ck, P (uy; x + 1, j − 1)).

Note that the path P1 = P (ux; i, j − 1) (resp. P2 = P (uy; x + 1, j − 1)) has already been

computed by Algorithm LP on H at a previous iteration. We now show that the computed

path P1 = P (ux; i, j − 1) (resp. P2 = P (uy; x + 1, j − 1)) is a longest binormal path P(ux; i, j − 1)

(resp. P(uy; x+1, j−1)) of H(i, j − 1) (resp. of H(x + 1, j − 1)) with ux (resp. with uy) as its right

endpoint. Indeed, consider first the case where H(i, j − 1) (resp. H(x + 1, j − 1)) is a graph for

which C(H(i, j − 1)) = ∅ (resp. C(H(x + 1, j − 1)) = ∅), i.e., H(i, j − 1) (resp. H(x + 1, j − 1))

has only stable vertices. Then, as we have shown in the beginning of this proof (cf. Case I),

the computed path P (ux; i, j − 1) (resp. P (uy; x + 1, j − 1)) is a longest binormal path of

H(i, j − 1) (resp. of H(x + 1, j − 1)) with ux (resp. with uy) as its right endpoint. Consider

now the case where H(i, j − 1) (resp. H(x + 1, j − 1)) is a graph for which C(H(i, j − 1)) 6= ∅

(resp. C(H(x + 1, j − 1)) 6= ∅), i.e., H(i, j − 1) (resp. H(x + 1, j − 1)) has at least one con-

nector vertex (cf. Case II); let cℓ be its rightmost connector vertex in σ. Then, cℓ <σ

ck, since uj−1 <σ uj = ck. Therefore, by the induction hypothesis, the path P (ux; i, j − 1)

(resp. P (uy; x + 1, j − 1)) computed by Algorithm LP on H is indeed a longest binormal path

of H(i, j − 1) (resp. of H(x + 1, j − 1)) with ux (resp. with uy) as its right endpoint. Summa-

rizing, we have proved that P1 = P (ux; i, j − 1) = P(ux; i, j − 1) and P2 = P (uy; x + 1, j − 1) =

P(uy; x + 1, j − 1) and, thus, |P1| = ℓ(ux; i, j − 1) = L(ux; i, j − 1) and |P2| = ℓ(uy; x + 1, j − 1) =

L(uy; x + 1, j − 1).

We now show that the computed path P = (P1, uj , P2) is a longest binormal path P(uy; i, j)

of H(i, j) with uy as its right endpoint. Since, as we have proved, P1 is a binormal path of

H(i, j − 1) with ux as its right endpoint, and P2 is a binormal path of H(x + 1, j − 1) with

uy as its right endpoint, it follows from Claim 4.2 that V (P1) ∩ V (P2) = ∅. Therefore, from

Lemma 4.3 we obtain that the computed path P = (P1, uj, P2) is a binormal path as well. Moreover,

Algorithm LP on H computes (in the subroutine process()) for every stable vertex ux, where

uf(ck) ≤σ ux <σ uy, the value ℓ(ux; i, j− 1)+ ℓ(uy; x+ 1, j− 1)+ 1, and sets |P | to be equal to the
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maximum among these values. Thus, the computed path P is a longest binormal path of H(i, j)

with uy as its right endpoint. Summarizing, we have proved that ℓ(uy; i, j) = L(uy; i, j) and that

P (uy; i, j) = P(uy; i, j), where uj = ck.

Consider now the case where uj is a stable vertex of H(i, j). Let ck be the rightmost connector

vertex of H(i, j) in σ; then h(ck) + 1 ≤ j − 1. Since uj is a stable vertex and also the rightmost

vertex of H(i, j), we obtain that uj does not see any vertex of H(i, h(ck) + 1). In this case, Al-

gorithm LP on H correctly computes in lines 6-7 the path P = P (uy; i, j) = P (uy; i, j − 1). This

path is in fact equal to P (uy; i, h(ck) + 1), since every vertex uz, h(ck) + 1 < z ≤ j, to the right

of ck in σ is a stable vertex and, thus, the subroutine process() is not executed for any of the

graphs H(i, z) (see lines 10-11). Therefore, we have proved that Algorithm LP on H computes the

path P = P (uy; i, j) = P (uy; i, h(ck) + 1), with length |P | = ℓ(uy; i, j) = ℓ(uy; i, h(ck) + 1). Algo-

rithm LP on H has already computed the value ℓ(uy; i, h(ck) + 1) at a previous iteration where

j was equal to h(ck) + 1 (i.e., uj = ck); moreover, as we have proved in the previous para-

graph, in the iteration where j = h(ck) + 1 (i.e., in the case where uj = ck), the computed path

P (uy; i, h(ck) + 1) is optimal, i.e., P (uy; i, h(ck) + 1) = P(uy; i, h(ck) + 1). Therefore, in this case

P = P (uy; i, j) = P(uy; i, h(ck) + 1) and |P | = ℓ(uy; i, j) = L(uy; i, h(ck) + 1).

Concluding, in both cases where uj is a connector or a stable vertex of H(i, j), the path

P = P (uy; i, j) of H(i, j) which has uy as its right endpoint computed by Algorithm LP on H

is a longest binormal path P(uy; i, j) of H(i, j) which has uy as its right endpoint, and

|P | = ℓ(uy; i, j) = L(uy; i, j). Thus, the lemma holds in Case B3 as well.

Due to Lemma 4.4, and since the output of Algorithm LP on H is the maximum among the lengths

ℓ(uy; 1, n), uy ∈ A(H(1, n)), along with the corresponding path, it follows that Algorithm LP on H

computes a longest binormal path of H(1, n) with right endpoint a vertex uy ∈ A(H(1, n)). Thus,

since H(1, n) = H , we obtain the following result.

Lemma 4.5 Let G be an interval graph. Algorithm LP on H computes a longest binormal path of

the stable-connection graph H of the graph G.

4.2 Correctness of Algorithm LP Interval

We next show that Algorithm LP Interval correctly computes a longest path of an interval graph G.

We first prove the following result.

Lemma 4.6 Let H be the stable-connection graph of an interval graph G. Then, for any longest

path P of G there exists a longest binormal path P ′ of H, such that |P ′| = 2|P |+1 and vice versa.

Proof. Let σ be the right-end ordering of H , constructed in Phase 1.

(=⇒) Let P = (v1, v2, . . . , vk) be a longest path of G, i.e., |P | = k. We will show that there

exists a binormal path P ′ of H such that |P ′| = 2k + 1. Since G is an induced subgraph of H ,

the path P of G is a path of H as well. We construct a path P̂ of H from P , by adding to P

the appropriate stable vertices, using the following procedure. Initially, set P̂ = P and for every

subpath (vi, vi+1) of the path P̂ , 1 ≤ i ≤ k − 1, do the following: consider first the case where

vi <σ vi+1; then, by the construction of H , vi+1 is adjacent to both stable vertices ai,1 and ai,2

associated with the connector vertex vi. If ai,1 has not already been added to P̂ , then replace

the subpath (vi, vi+1) by the path (vi, ai,1, vi+1); otherwise, replace the subpath (vi, vi+1) by the

path (vi, ai,2, vi+1). Similarly, in the case where vi+1 <σ vi, replace the subpath (vi, vi+1) by the

path (vi, ai+1,1, vi+1) or (vi, ai+1,2, vi+1), respectively. Finally, consider the endpoint v1 (resp. vk)

of P̂ . If a1,1 (resp. ak,1) has not already been added to P̂ , then add a1,1 (resp. ak,1) as the first

(resp. last) vertex of P̂ ; otherwise, add a1,2 (resp. ak,2) as the first (resp. last) vertex of P̂ .

16



By the construction of P̂ it is easy to see that for every connector vertex v of P we add two

stable vertices as neighbors of v in P̂ , and since in H there are exactly two stable vertices associated

with every connector vertex v, it follows that every stable vertex of H appears at most once in

P̂ . Furthermore, since we add in total k + 1 stable vertices to P , where |P | = k, it follows that

|P̂ | = 2k + 1. Denote now by P ′ a normal path of H such that V (P ′) = V (P̂ ). Such a path exists,

due to Lemma 2.2. Due to the above construction, the path P̂ consists of k + 1 stable vertices

and k connector vertices. Thus, since no two stable vertices are adjacent in H due to Observation

3.3, and since P ′ is a normal path of H , it follows that P ′ is a binormal path of H . Thus, for any

longest path P of G there exists a binormal path P ′ of H , such that |P ′| = 2|P |+ 1.

(⇐=) Consider now a longest binormal path P ′ = (v1, v2, . . . , vℓ) of H . Since P ′ is binormal,

it follows that ℓ = 2k + 1, and that P ′ has k connector vertices and k + 1 stable vertices, for some

k ≥ 1. We construct a path P by deleting all stable vertices from the path P ′ of H . By the

construction of H , all neighbors of a stable vertex a are connector vertices and form a clique in G;

thus, for every subpath (v, a, v′) of P ′, v is adjacent to v′ in G. It follows that P is a path of G.

Since we removed all the k + 1 stable vertices of P ′, it follows that |P | = k, i.e., |P ′| = 2|P |+ 1.

Let P̂ be the longest binormal path of H computed in Step 2 of Algorithm LP Interval, using

Algorithm LP on H. Then, in Step 3 Algorithm LP Interval computes the path P by deleting all

stable vertices from P̂ . By the construction of H , all neighbors of a stable vertex a are connector

vertices and form a clique in G; thus, for every subpath (v, a, v′) of P̂ , v is adjacent to v′ in G. It

follows that P is a path of G. Moreover, since P̂ is binormal, it has k connector vertices and k + 1

stable vertices, i.e., |P̂ | = 2k+1, where k ≥ 1. Thus, since we have removed all k+1 stable vertices

of P̂ , it follows that |P | = k and, thus, P is a longest path of G due to Lemma 4.6. Therefore, we

have proved the following result.

Theorem 4.1 Algorithm LP Interval computes a longest path of an interval graph G.

4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It has been shown

that we can obtain the right-end ordering π of G, which results from numbering the intervals after

sorting them on their right ends, in O(n + m) time [1, 21].

First, we show that Step 1 of Algorithm LP Interval, which constructs the stable-connection

graph H of the graph G, takes O(n2) time. Indeed, for every connector vertex ui, 1 ≤ i ≤ n, we

can add two stable vertices in V (H) in O(1) time and we can compute the specific neighborhood

of ui in O(n) time.

Step 2 of Algorithm LP Interval includes the execution of Algorithm LP on H. The subroutine

process() takes O(n2) time, due to the O(n2) pairs of the neighbors ux and uy of the connector

vertex uj in the graph H(i, j). Additionally, the subroutine process() is executed at most once

for each subgraph H(i, j) of H , 1 ≤ i ≤ j ≤ n, i.e., it is executed O(n2) times. Thus, Algorithm

LP on H takes O(n4) time.

Step 3 of Algorithm LP Interval can be executed in O(n) time since we simply traverse the

vertices of the path P̂ , constructed by Algorithm LP on H, and delete every stable vertex.

Therefore, we obtain the following result concerning the time complexity of the algorithm.

Theorem 4.2 A longest path of an interval graph can be computed in O(n4) time.

In order to compute the length of a longest path, we need to store one value ℓ(uy; i, j) for every

induced subgraph H(i, j) and for every stable vertex uy of H(i, j). Thus, since there are in total

O(n2) such subgraphs H(i, j), 1 ≤ i ≤ j ≤ n, and since each one has at most O(n) stable
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vertices, we can compute the length of a longest path in O(n3) space. Furthermore, in order to

compute and report a longest path, instead of its length only, for every one of the O(n3) computed

values ℓ(uy; i, j) we have to store a triple of values for the corresponding path P (uy; i, j), i.e.,

(P (ux; i, j− 1), uj , P (uy; x+1, j− 1)) (see line 19 of Algorithm LP on H); thus, we can compute a

longest path in O(n3) space. Therefore, the space complexity of Algorithm LP Interval is O(n3).

5 Concluding Remarks

In this paper we presented a polynomial-time algorithm for solving the longest path problem on

interval graphs, which runs in O(n4) time and, thus, provided a solution to the open problem

stated by Uehara and Uno in [23] asking for the complexity status of the longest path problem on

interval graphs. It would be interesting to see whether the ideas presented in this paper can be

applied to find a polynomial solution to the longest path problem on convex and biconvex graphs,

the complexities of which still remain open [23].
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