Quenched gas-phase reactions of tetraborane(10), B₄H₁₀, with substituted alkynes: new *nido*-dicarbapentaboranes and *arachno*monocarbapentaboranes‡

⁵ Mark A. Fox,^{*^a} Robert Greatrex^{*^b} and Alireza Nikrahi^b

Received (in XXX, XXX) 1st January 2007, Accepted 1st January 2007 First published on the web 1st January 2007 DOI: 10.1039/b000000x

New alkyl derivatives of the *nido*-dicarbapentaborane, $1,2-C_2B_3H_7$, and *arachno*-carbapentaborane, 10 1-CB₄H₁₀, have been identified as the main volatile carbaborane products in quenched gas-phase reactions of tetraborane(10), B₄H₁₀, with alkyl-substituted ethynes RC=CR' (R = Me, Et, ⁿPr or ^tBu, R' = H; R = Me or Et, R' = Me). The gaseous mixtures were heated at 70°C, and monitored by gas-phase mass spectrometry. Each reaction was quenched when the ethyne was used up. The quenched gas-phase reaction of B₄H₁₀ and Me₃SiC=CH gave a single volatile carbaborane product,

15 1-Me₃Si-1,2-C₂B₃H₆.

Introduction

Polyhedral carbaboranes (carboranes) have long been synthesised ²⁰ from reactions of binary boranes with alkynes.¹ A widely-used synthesis involves the treatment of decaborane(14), $B_{10}H_{14}$, with a substituted alkyne RC=CR' in the presence of Lewis base to form the *closo*-carbaborane 1-R-2-R'-1,2(*ortho*)-C₂B₁₀H₁₀.² A less common route, in which pentaborane(9), B_5H_9 , is used in

- ²⁵ place of B₁₀H₁₄ generally affords the carbaborane *nido* 2-R-3-R'-2,3-C₂B₄H₆.³ However, the B₅H₉/alkyne system can also yield different carbaborane products such as small *closo*-carbaboranes if gas-phase conditions are used.^{4,5}
- ³⁰ Not long after these carbaboranes were first discovered, some 40 years ago, Grimes and co-workers reported a series of complex reactions of tetraborane(10), B_4H_{10} , with alkynes.⁶⁻¹⁵ Many new carbaboranes were discovered from the gas-phase reactions of B_4H_{10} with ethyne HC=CH. These reactions have also been
- ³⁵ explored more recently in Leeds. ¹⁶⁻¹⁹ The reactions were of three types, and the major carbaborane product in each case is shown below:

1) High-energy ('Flash') reaction^{6,7,16,17}
100°C, 'Flash'

$$B_4H_{10} + HC \equiv CH \rightarrow closo-2,4-C_2B_5H_7$$
 (<1% yield)

2) Completed reaction^{6,8-19} 25-70°C, 3 days

 $B_4 H_{10} + HC \equiv CH \rightarrow nido-2, 4-Me_2-2, 3-C_2 B_4 H_6$ (7%)

3) Quenched reaction^{10,13,19} 25-70°C, 20-60 min $B_4H_{10} + HC \equiv CH \rightarrow nido-1,2-C_2B_3H_7$ (25%) 50

Grimes, Bramlett and Vance^{7,9} and the Leeds group^{16,17,18} have also investigated the flash and completed gas-phase reactions of B_4H_{10} with propyne and 2-butyne under similar reaction conditions (see reactions 4 and 5 below), and Grimes and ⁵⁵ Ledoux have explored the completed gas-phase reaction of B_4H_{10} with trimethylsilylethyne - no volatile carbaborane product was obtained from this latter reaction.¹⁴

4) High-energy ('Flash') reactions^{7,17}

$$B_4H_{10} + MeC \equiv CH \rightarrow closo-2-Me-1,5-C_2B_3H_4 (<1\%)$$

 $B_4H_{10} + MeC \equiv CMe \rightarrow closo-2,3-Me_2-1,5-C_2B_3H_3 (<1\%)$

5) Completed reactions^{9,18}

$$B_4H_{10} + MeC \equiv CH \rightarrow nido-2-Me-2,3-C_2B_4H_7 (8\%)$$

 $B_4H_{10} + MeC \equiv CMe \rightarrow nido-2,3-Me_2-2,3-C_2B_4H_6 (10\%)$

It is clear from these abridged equations that the gas-phase reactions of tetraborane(10) with ethynes are complex, with evidence of triple-bond cleavage having occurred in the ⁷⁰ formation of some of the products.[†] The methyl-substituted ethynes clearly yield carbaborane products that are quite different from those formed by the unsubstituted ethyne. Of the reactions listed, the highest yield of a volatile carbaborane product was obtained from the quenched gas-phase reactions of ⁷⁵ tetraborane(10) with ethyne, the *nido*-1,2-dicarbapentaborane, 1,2-C₂B₃H₇, being formed in *ca* 25% yield based on B₄H₁₀ consumed. By contrast, 1,2-C₂B₃H₇, is not observed when the gas-phase reaction of B₄H₁₀ and ethyne proceeds to completion.

[†] The abridged equations above do not include other carborane products formed and may appear misleading. For example, a series of alkyl derivatives of $C_2B_3H_5$, $C_2B_4H_6$ and $C_2B_5H_7$ is also formed from the flash reaction of tetraborane(10) with ethyne with a total carborane yield of just above 3%.

The dicarbaborane decomposes or reacts rapidly in the presence of B_4H_{10} to give 2-MeCB₅H₈ and solids and reacts slowly with ethyne to give $C_4B_2H_6$ and solids;¹⁵ it is stable in the gas-phase at 50°C but decomposes in the liquid phase to form a white solid. 5 From these observations it is concluded that 1,2-C₂B₃H₇ is not an

- intermediate in the formation of the major carbaborane products observed when the reaction of B_4H_{10} and ethyne is allowed to go to completion. This *nido*-carbaborane and the closely related phosphacarbaborane²⁰ 2-^tBu-1,2-PCB₃H₅ are the only known
- ¹⁰ heteroborane analogues of *nido*-pentaborane(9), B_5H_9 . Remarkably, no derivatives of the *nido*-5-vertex carbaborane 1,2- $C_2B_3H_7$ have been reported.

Prior to our work at Leeds, quenched gas-phase reactions of B_4H_{10} with alkynes other than ethyne had not been ¹⁵ reported. Here we discuss the most volatile carbaborane products identified in these quenched gas-phase reactions, which include the first derivatives of the *nido*-5-vertex carbaborane. Parts of this work have been reported in a communication and in conference proceedings elsewhere.^{21,22}

20

Results and Discussion

Our earlier study¹⁹ of the quenched reaction of B_4H_{10} and ethyne established that the optimum conditions for ²⁵ convenience and maximum carbaborane yield involved an ethyne : tetraborane(10) ratio of 2 : 1 and a reaction temperature of 70°C. An increase in the ratio led to an increase in the reaction time and to decomposition of the unstable carbaboranes, whereas a lower ratio resulted in a substantial amount of unreacted B_4H_{10} .

³⁰ Lowering the temperature also increased the reaction time, and raising it increased the likelihood of a flash reaction. The need to limit the pressure in the mass spectrometer imposed an upper limit of ca. 7.5 mmHg on the vapour pressure of the gaseous mixture in the 1-litre reaction vessel. In the work reported here, ³⁵ the quenched reactions and subsequent cold column fractionations of the collected volatiles were therefore each repeated many times to obtain adequate amounts of material for high field NMR spectroscopy.

Hydrogen and diborane were observed in all reactions ⁴⁰ but B_5H_{11} , the major decomposition product of B_4H_{10} , was absent. Peaks corresponding to the ethenes that might have been formed as a result of hydrogenation of the ethynes during the reaction were not observed. Carbaboranes of relatively low volatility, formed from tetraborane(10) and two ethyne ⁴⁵ molecules, were identified and will be discussed in detail elsewhere together with related carbaboranes formed from reactions of tetraborane(10) with ethyne and enynes.^{19,23} White polymeric solids were produced in all reactions, but were not investigated further.

Quenched gas-phase reaction of B₄H₁₀ with propyne

The most volatile carbaborane products in the quenched reaction of MeC=CH and B_4H_{10} were separated by cold-column fractionation, and in order of decreasing volatility were found to ⁵⁵ have mass cut-offs of m/z 78, 90, 92 and 93. The fraction exhibiting a cut-off at m/z 78 was found, by high resolution accurate mass data and detailed NMR spectroscopy (Scheme 1), to be a 1:3 mixture of the isomers, 1-Me- and 2-Me-1,2-C₂B₃H₆ **1a** and **2a**. The accurate mass cut-off for this mixture was ⁶⁰ 78.0986 which is in very good agreement with the calculated value of 78.0983 for the formula C₃B₃H₉.

The boron-11 NMR data for the new *nido*dicarbapentaboranes revealed four peaks, at -11.3, -13.4, -13.5 and -19.4 ppm (Figure 1). The 2D boron-11 COSY spectrum showed cross peaks between -11.3 and -13.4 and between -13.5 and -19.4 ppm. The intensities of these pairs of peaks are in a ratio of 2:1 corresponding to B(3,5) and the unique B(4) borons respectively. In the proton-coupled spectrum, the B(3,5) peaks

Figure 1. Boron-11 and proton NMR spectra of a 1:3 mixture of $MeC_2B_3H_6$ isomers **1a** and **2a**

quenched reaction of MeC≡CH and B₄H₁₀, with a mass cut-off of 90, was identified, by comparison of the NMR data with literature values, as the known²⁸ 2-Me-2,3-C₂B₄H₇ **3a**. The Me-C-C-H link ²⁰ in propyne is retained in the formation of these *nido*-carbaboranes.

The third fraction (nominal mass cut-off m/z 92) was investigated by accurate mass measurements and detailed NMR ²⁵ spectroscopy. It was found to have an accurate mass cut-off of 92.1309 which agrees very well with the calculated value of 92.1311 for the formula C₃B₄H₁₂. This compound was originally isolated from the hot/cold reaction of B₄H₁₀ with propyne and incorrectly identified at the time as a *hypho*-tricarbaheptaborane, ³⁰ C₃B₄H₁₂.²⁹ It is, in fact, an *arachno*-monocarbapentaborane of true CB IL with a method sector of CH bridge and is host

- type CB_4H_{10} with a methyl group and a CH_2 bridge, and is best represented by the formula 1-Me-2,5- μ -CH₂-1-CB₄H₇ **4a**. Figure 2 shows the correct boron and proton NMR assignments for **4a**. This re-interpretation of the C₃B₄H₁₂ carbaborane was supported
- ³⁵ by our subsequent findings in quenched reactions of B_4H_{10} with propyne, and with 1- and 2-butyne, and by ab initio/NMR computations carried out by Hofmann and Schleyer.²¹ Many *arachno*-monocarbapentaboranes of type 1-CB₄H₁₀ with a bridge between B2 and B5 have since been reported.^{30-,33} It is notable

⁴⁰ that the formation of **4a** involves cleavage of the triple bond present in the propyne, whereas this bond remains intact in the formation of **1a**, **2a** and **3a**.

A minor isomer often observed in the fraction of **4a** and ⁴⁵ was identified as 2,5-µ-*endo*-MeCH-1-CB₄H₈ **5a** on the basis of ab initio computations carried out elsewhere. The relative amounts of **4a** and **5a** varied between 5:1 and 40:1 for different samples collected from repeated reactions and fractionations. These carbaboranes were found to decompose or rearrange in ⁵⁰ minutes on warming to room temperature in chloroform or toluene, as monitored by boron and proton NMR spectroscopy. The fact that compound **4a** undergoes these transformations more rapidly than **5a** may explain why variations in the **4a**:**5a** ratio are observed from sample to sample. We have not yet succeeded in ⁵⁵ identifying the carbaborane products obtained by warming the unstable carbaboranes **4a** and **5a**, despite having a considerable NMR database on volatile boranes and carbaboranes. However, it

Figure 2. Boron and proton NMR spectra of 1-Me-2,5- μ -CH₂-1-CB₄H₇ 4a

has been shown elsewhere³³ that thermolysis of a similar

⁷⁵ equivalent (Scheme 2). The proton-decoupled boron-11 NMR data for this compound at room temperature reveal three peaks in the ratio 1:1:2, which on proton coupling give a sextet and two sets of doublets of sextets (Figure 3). The sextets arise from

coupling with five fluxional hydrogens and the doublets are from coupling with the non-fluxional terminal hydrogens. Lowering the temperature from 297 K to 223 K leads to peak broadening in the ¹¹B NMR spectrum (recorded in toluene), with retention of ⁵ the 1:1:2 pattern. Further lowering to 197 K gives a different peak pattern suggesting that a mixture of 2-Me- and 3-Me-1-Me-1-CB₄H₈ is present, which in theory would give 8 unique boron

All five *endo* and bridging hydrogens are scrambled rendering two equivalent BH groups observed by NMR spectroscopy in solution at RT

Scheme 2

peaks – of equal intensities assuming a 1:1 mixture (Figure 3). Proton NMR data on **6a** show two singlets of equal intensity at 1.29 and 0.49 ppm. The latter peak sharpens on boron decoupling and is assigned to a methyl group attached to boron. Compound **6a** is also formed from the quenched gas-phase reaction of B_4H_{10} and allene, $CH_2=C=CH_2$, and supported by ab initio computations.³⁴ As in the cases of **4a** and **5a**, the formation of **6a** 15 indicates that the triple bond from the propyne is cleaved.

Mass and proton NMR spectra of the products from the quenched reaction of B₄H₁₀ with the partially deuterated propyne MeC=CD showed that all these volatile carbaboranes retain a C-²⁰ D bond. The proton spectrum of deuterated **3a** was consistent

with a 1 : 1 mixture of 2,5- μ -*exo*-DCH- and 2,5- μ -*endo*-DCH-1-Me-1-CB₄H₇.

Quenched gas-phase reactions of B₄H₁₀ with other alkynes

The most volatile products from the quenched reactions of B_4H_{10} with 1-butyne and 1-pentyne are analogous to those from the quenched reaction of B_4H_{10} with propyne (Scheme 1). The yields of the carbaborane products are listed in Table 1 together with the ratios of isomers for the $C_2B_3H_7$ derivatives

Figure 3. Boron NMR spectra of the fluxional 1-Me-B-CH₃-1-CB₄H₈ 6a

³⁰ obtained. These latter derivatives decompose rapidly in neat liquid states and slowly in solutions on warming to ambient temperature.

The quenched reaction of B₄H₁₀ with 2,2-dimethyl-3butyne, ^tBuC=CH, gave the best yields of the dicarbapentaborane 35 isomers, 1-^tBu- and 2-^tBu-1,2-C₂B₃H₆, and the bridging *arachno*carbapentaborane, 1-^tBu-2,5-µ-CH₂-1-CB₄H₇, but the other expected carbaboranes 2-^tBu-2,3-C₂B₄H₇, 2,5-µ- ^tBuCH-1-CB₄H₈ and B-Me-1-^tBu-1-CB₄H₈ were either obtained in very small amounts or were completely absent. The differences in the yields ⁴⁰ of the products obtained from ^tBuC=CH compared to other alkyl ethynes, RC=CH, (Table 1) may be attributed to the effect of the bulky tertiary butyl group. Whereas nido-C₂B₄ derivatives have been synthesised from reactions of B₅H₉ with various alkynes, the unknown derivative nido-2,3-tBu₂-2,3-C₂B₄H₆ was not obtained ⁴⁵ from B₅H₉ and ^tBuC=C^tBu.³⁵ A minor volatile product, identified as the known³⁶ basket compound $2,4-(\mu-^{t}BuCHCH_{2})B_{4}H_{8}$, is probably formed from 2,2-dimethyl-3-butene and B₄H₁₀ present during the reaction. The bridged carbaborane 1-^tBu-2,5-µ-CH₂-1-CB₄H₇ remained unchanged at room temperature in solution, as 50 indicated by NMR spectroscopy, suggesting that this species is more stable than the other 1-R-2,5-µ-CH₂-1-CB₄H₇ compounds discussed here - an observation that is consistent with the higher

Table 1. Yields of volatile carbaboranes in percentage of total volatile carbaborane fraction and actual yields in b

	1-R-1,2-C ₂ B ₃ H ₆ : 2-R-1,2-C ₂ B ₃ H ₆ Isomer Ratio (1 : 2)	1,2-C ₂ B ₃ H ₇ type (1,2,7,8)	2,3-C ₂ B ₄ H ₈ type (3,9)	2,5-μ-CH ₂ -1-CB ₄ H ₈ type (4,5,10,11,12)	$1-CB_4H_{10}$ type (6,13)
MeC≡CH	25:75	52 [7%]	11 [1.5%]	15 [2%]	7 [1%]
EtC≡CH	35:65	56 [8%]	11 [1.5%]	10 [1.5%]	12 [1.5%]
ⁿ PrC≡CH	40:60	56 [8%]	14 [2%]	3 [0.5%]	14 [2%]
^t BuC≡CH	45 : 55	59 [12%]	0.5 [0.1%]	35 [7%]	0.5 [0.1%]
MeC≡CMe	-	39 [6%]	20 [3%]	26 [4%]	7 [1%]
EtC≡CMe	$65:35^{a}$	45 [7%]	19 [3%]	26 [4%]	6 [1%]
Me₃SiC≡CH	100:0	100 [12%]	-	-	-
HC≡CH ^b	-	90° [25%]	0.5^{d} [0.1%]	-	-
H ₂ C=C=CH ₂ ^e	-	-	-	89 ^f [11%]	7 ^g [1%]

^aFor 1-Et-2-Me-1,2-C₂B₃H₅ (**7b**): 1-Me-2-Et-1,2-C₂B₃H₅ (**8b**), ^bReference 19 ^c1,2-C₂B₃H₇ ^d2,3-C₂B₄H₈ ^eReference 34 ^f4a,5a ^g6a

yield obtained for the butyl derivative.

Products from the quenched reactions of B_4H_{10} with 2butyne and 2-pentyne are depicted in Scheme 3, where two isomers of the bridged *arachno*-carbapentaboranes are identified.

- ⁵ In the products from 2-butyne, the methyl group at the bridge exists in both *exo-* and *endo-* forms. The *exo-* isomer 1-Me-2,5- μ -*exo-*MeCH-1-CB₄H₇ **11a** is the minor isomer and is the only *exo-* isomer of the 1-R-2,5- μ -R'CH-1-CB₄H₇ type that is positively identified here and supported by computations reported
- ¹⁰ elsewhere.²¹ In the products from 2-pentyne, the methyl (**10b**) or ethyl (**12b**) group at the bridge exists in the *endo* position, with the former as the major isomer.
- The quenched gas-phase reaction of tetraborane(10) ¹⁵ with Me₃SiC=CH gave only one volatile carbaborane product, characterised by a mass cut-off at m/z 136 and a dominant peak at m/z 73 (Me₃Si⁺). This product was identified by NMR spectroscopy as 1-Me₃Si-1,2-C₂B₃H₆ for which the B(4) peak value differs little from that of the parent carbaborane, 1,2-
- $_{20}$ C₂B₃H₇; thus no 'trans' effect 27 is observed. The other possible isomer, 2-Me₃Si-1,2-C₂B₃H₆, was not present in the fractions collected.

25 Discussion of Results

Table 1 lists products obtained from the quenched gasphase reactions carried out in this study, together with their yields. The quenched gas-phase reactions of B_4H_{10} with ethyne¹⁹ and with allene³⁴ are included for comparison. Whereas ethyne ³⁰ gives the *nido*-carbapentaborane $C_2B_3H_7$ as the major product and *nido*-dicarbahexaborane $C_2B_4H_8$ as a minor product on reaction with B_4H_{10} , allene affords only bridged and fluxional *arachno*carbapentaboranes as volatile carbaboranes. The reactions of B_4H_{10} with alkyl ethynes on the other hand result in all four

³⁵ carbaboranes as major volatile carbaborane products. From gas-phase kinetic studies at 70°C, it is known that

tetraborane(10) dissociates initially to the

⁴⁰ subsequent reaction of $\{B_4H_8\}$ with RCH=CHR'.^{39,40,41} The mechanisms were corroborated by theoretical computations on the proposed reaction pathways.⁴² Minor basket products were also present in which a second ethene molecule appears to have been hydroborated by B_4H_{10} to form an alkyl group –RCHCH₂R, ⁴⁵ since the basket compound formed initially does not give such products with ethenes.

The low yields of the volatile carbaborane products from reactions of B_4H_{10} and ethynes reported here, in contrast to high yields of the basket products from B_4H_{10} with ethenes,

intermediate $\{B_4H_8\}$ and H_2 .^{37,38} With ethenes, B_4H_{10} gives high

yields of 'basket' compounds 2,4-µ-(RCHCHR')B₄H₈, via the

- ⁵⁰ suggest that many pathways to different carbaborane products exist. From the results of Grimes's gas-phase kinetic study¹⁰ on the thermolysis of B_4H_{10} with ethyne it seems likely that $\{B_4H_8\}$ formed initially from B_4H_{10} then reacts with an ethyne molecule to yield an intermediate $\{C_2B_4H_{10}\}$.
 - Depending on the path taken, $\{C_2B_4H_{10}\}$ may
 - a) lose a $\{BH_3\}$ intermediate to give $C_2B_3H_7$,
 - b) lose H_2 to form $C_2B_4H_8$ or

55

non-isolable

- c) react with a second ethyne molecule to give an intermediate $\{C_4B_4H_{12}\}$
- $_{60}$ An alternative route to $C_2B_3H_7$ from the reaction of $\{B_3H_7\}$ and ethyne was proposed by McKee in the first of his theoretical investigations into the complex reaction pathways of tetraborane(10) with unsaturated hydrocarbons. 43 However, on the basis of experimental work, $\{B_3H_7\}$ is not considered to be

⁶⁵ present in the initial stages of the thermolysis of B_4H_{10} .³⁸ The triborane carbonyl B_3H_7CO , a precursor to $\{B_3H_7\}$, gives a high energy 'flash' reaction at -20°C with ethyne, resulting in several *closo*-carbaborane products from which $C_2B_3H_7$ may well be formed as an intermediate. McKee's second theoretical paper⁴⁴

 $_{70}$ supports the formation of $\{C_2B_4H_{10}\}$ from the reaction of $\{B_4H_8\}$ and ethyne and also the removal of $\{BH_3\}$ from $\{C_2B_4H_{10}\}$ to give $C_2B_3H_7$.

The quenched reaction of B_4H_{10} with allene to give two distinct *arachno*-monocarbapentaboranes (bridged and fluxional) resembles the reaction of B_4H_{10} with ethene, in that reactions of $\{B_4H_8\}$ and of B_4H_{10} with the unsaturated hydrocarbon both 5 occur. The major difference between the two routes is the necessary cleavage of the double bond in the allene to yield the carbaboranes. A very recent theoretical investigation into the pathways for the reaction of B_4H_{10} with allene to form the carbaboranes supports these comments, but the complexity of the 10 mechanism is reflected in the fact that 44 transition states were located!⁴⁵

Both distinct mechanisms in the reactions of B_4H_{10} with ethyne and of B_4H_{10} with allene probably occur in the quenched reactions reported here of B_4H_{10} with alkyl ethynes. The initial 15 intermediate { $RR'C_2B_4H_8$ } formed from { B_4H_8 } and $RC \equiv CR'$ may follow four distinct pathways.

- a) lose a $\{BH_3\}$ intermediate to give $RR'C_2B_3H_5$,
- b) lose H_2 to form $RR'C_2B_4H_6$

20

- c) cleave the triple bond during rearrangement into the bridging *arachno* carbaborane 1-R-2,5-CHR'-1-CB₄H₇ or
- d) react with a second ethyne molecule to give an intermediate {R₂R'₂C₄B₄H₈}

Two observations suggest that pathway (d) may well be

- ²⁵ dominant. Firstly, for all gas-phase reactions reported here at 70°C (for which the alkyne: B_4H_{10} ratio was 2:1) the alkyl ethyne is used up before the B_4H_{10} . Secondly, on the basis of the low yields of the volatiles, it would seem that most of the boron consumed is incorporated into the non-volatile solids. The stable
- ³⁰ fluxional *arachno*-carbaborane B-CH₂R'-1-R-1-CB₄H₈ is presumably formed by hydroboration of B_4H_{10} with RC=CR' to give an intermediate {RR'C₂B₄H₁₀} which then rearranges with cleavage of the triple bond.

In contrast to the many volatile carbaborane products obtained from the tetraborane(10) - alkyl ethyne reactions described here, only a single volatile product, 1-Me₃Si-1,2- $C_2B_3H_6$, was obtained from the quenched gas-phase reaction of B_4H_{10} and Me₃SiC=CH. Interestingly, the time needed for the Me₃SiC=CH to be used up in the reaction was about 35 minutes – 40 somewhat longer than the reaction times for the quenched tetraborane(10) – alkyl ethyne reactions (22 – 30 minutes) under near identical reaction conditions. Ethyne took a little longer (*ca.* 40 minutes) to disappear. These observations suggest that Me₃SiC=CH behaves like an ethyne rather than an alkyl ethyne in 45 reactions with tetraborane(10), as other volatile carbaboranes that might have been expected (such as 1-Me₃Si-2,5- μ -CH₂-1-CB₄H₇ and B-CH₃-1-Me₃Si-1-CB₄H₈ and the known carbaborane 2-Me₃Si-2,3-C₂B₄H₇) are not observed.

The observation of only one isomer of Me₃SiC₂B₃H₆ ⁵⁰ from the reaction of Me₃SiC≡CH with B₄H₁₀ contrasts with the observation of a mixture of RC₂B₃H₆ isomers from the alkyl ethynes RC=CH listed in Table 1. More intriguing is the fact that the 1-isomer is identified for $Me_3SiC_2B_3H_6$, whereas the major components in all RC2B3H6 compounds are identified as the 2-55 isomers. The pentaboranes Me₃SiB₅H₈ and MeB₅H₈ (closely related to $Me_3SiC_2B_3H_6$ and $MeC_2B_3H_6$ respectively) have been reported to undergo thermal rearrangements. The 2-isomer of Me₃SiB₅H₈ rearranges at 145°C to a 4:1 mixture of 1- and 2isomers.⁴⁶ The 1-isomer of MeB₅H₈ rearranges at 200°C to a 9:1 60 mixture of the 2- and 1-isomers.47 It seems likely that the mechanism(s) involved in the thermal rearrangements of the substituted pentaboranes also apply to the substituted nidodicarbapentaboranes. However, the rearrangements in the carbaboranes are probably more facile since the maximum 65 temperature used here is 70°C. A theoretical investigation is desirable to examine this hypothesis.

Conclusions

In the present study, quenched gas-phase reactions of tetraborane(10), B_4H_{10} , with alkyl ethynes have been carried out $_5$ for the first time and shown to give the first C-alkyl derivatives of

the *nido*-dicarbapentaborane $1,2-C_2B_3H_7$ as the major volatile products. Both isomers of $1-R-2-R'-1,2-C_2B_3H_5$ were obtained as mixtures from unsymmetrical ethynes $RC \equiv CR'$. In addition, *arachno*-monocarbapentaboranes were formed from these

¹⁰ reactions, which were not present in the reported quenched reaction of B_4H_{10} with ethyne. Two types of *arachno*monocarbapentaboranes of formula $1-CB_4H_{10}$ were identified, one with a bridging -CHR- group and one without such a bridge and fluxional in solution. In both cases cleavage of the triple bond ¹⁵ is necessary for their formation.

The quenched gas-phase reaction of B_4H_{10} with trimethylsilylethyne, Me₃SiC=CH, afforded just one volatile product, 1-Me₃Si-1,2-C₂B₃H₆. It is believed that this reaction has a similar pathway to that of the reaction of tetraborane(10) with

²⁰ ethyne. Tetraborane(10) is currently the only known borane precursor to 5-vertex *nido*-dicarbapentaboranes and fluxional 5vertex *arachno*-monocarbapentaboranes.

25 Experimental Section

All reactions were carried out in standard high-vacuum systems fitted with greaseless O-ring taps and spherical joints (J.Young [Scientific Glassware] Ltd.). A 1-litre Pyrex bulb used ³⁰ for all gas-phase reactions in this study was contained in an isothermal vessel and attached via a capillary to a Kratos MS30 mass spectrometer and a MSS data system (Mass Spectrometry Services Ltd.). The high-vacuum low-temperature fractionating column was as described in the literature⁴⁸ but with a capillary ³⁵ connected at the exit of the column to the mass spectrometer. B_4H_{10} was produced from NMe₄B₃H₈ (Alfa Products) and BF₃ (Cambrian Gases) using a literature procedure.⁴⁹ Ethyne (B.O.C.), propyne (Cambrian Gases), 2-butyne (Lancaster) and other alkynes were obtained commercially. The partially deuteriated ⁴⁰ propyne MeC=CD was made from MeC=CH with D₂O and NaOH.⁵⁰

Samples for NMR spectroscopy were transferred in the gas phase to re-sealable 5mm Young's tubes. Low-field ⁴⁵ measurements were made at 2.35 Tesla (100 MHz ¹H) on a Jeol FX100 instrument with a broad-band ¹¹B decoupling facility and high-field spectra were obtained at 9.4 Tesla (400 MHz ¹H; 128 MHz ¹¹B; 100 MHz ¹³C) on a Bruker AM-400 instrument. Subtracted ¹H{¹¹B selective} and line-narrowed 2D ¹¹B-¹¹B so COSY experiments were carried out as described in literature

elsewhere,⁵¹ at 233 K for derivatives of types 1, 2, 4, 5, 7, 8, 10, 11 and 12 and at 298 K for derivatives of types 3, 6, 9 and 13. The $J_{\text{BH}\mu}$ and $J_{\text{BH}\mu}$ coupling constants were obtained by resolution enhancements.

```
55
```

General Procedure

The alkyne (1.0 mmol) was first measured manometrically and

60 condensed into a phial and the procedure was repeated for tetraborane(10) (0.5 mmol). The mixture was warmed to room temperature and then bled into the reaction vessel at 70°C. After a few seconds the gas pressure was measured (7.5 mmHg, 0.35 mmol of the mixture) and the vessel was sealed. The reaction was 65 followed by the mass spectrometric method with 10 scans per minute until the alkyne peak disappeared. The reacted mixture was then condensed into a U-trap. For MeC=CH, the m/z 40 peak vanished at about 30 minutes, MeC=CMe (m/z, 54) at 25, EtC=CMe (m/z 68) at 25, EtC=CH (m/z 54) at 25, ⁿPrC=CH (m/z 54)70 68) at 22, ^tBuC=CH (*m*/*z* 82) at 30 and Me₃SiC=CH at 35. For comparison, a period of 40 minutes was needed for HC=CH (m/z26) to disappear under identical conditions. After a series of reactions, the combined volatile fraction was then subjected to a cold-column fractionation. The various fractions, with different ⁷⁵ mass cut-offs, were then characterized by high field ¹¹B and ¹H NMR spectroscopy, at 233 K for derivatives of types 1, 2, 4, 5, 7, 8, 10, 11 and 12 and at 298 K for derivatives of types 3, 6, 9 and 13. The $J_{\rm BHt}$ and $J_{\rm BH\mu}$ coupling constants were obtained by resolution enhancements.

Products from B₄H₁₀ and MeC≡CH:

1-Me-1,2-C₂B₃H₆ **1a**; $\delta(^{11}B)$ -11.3 (2B; dd, 2, J_{BHt} = 169, $J_{BH\mu}$ = 42; B3, B5), -13.1 (1B; dt; B4); $\delta(^{1}H\{^{11}B\})$ 2.50 (1H; s; B4H), 2.26 (1H; s; C2H), 2.20 (2H; s; B3H, B5H), 1.70 (3H; s; C1CH₃), ss -1.60 (2H; s; H_µ); $\delta(^{13}C)$ 65.1, C2; 10.0, CH₃; -12.0, C2.

2-Me-1,2-C₂B₃H₆ **2a**; δ (¹¹B) -13.5 (2B; dd, $J_{BHt} = 169$, $J_{BH\mu} = 47$; B3, B5), -19.4 (1B; dt, $J_{BHt} = 169$, $J_{BH\mu} = 43$; B4); δ (¹H{¹¹B}) 2.26 (1H; s; B4H), 2.18 (2H; s; B3H, B5H), 1.41 (3H; s; C2CH₃), 1.08 (1H; sextet, $J_{HCBH} \sim 3.7$; C1H), -1.99 (2H; s; H_µ); δ (¹³C) ⁹⁰ 73.4, C2; 14.6, CH₃; -15.4, C1.

2-Me-2,3-C₂B₄H₇ **3a**; δ (¹¹B) 0.1 (1B, d, $J_{BHt} \sim 160$; B5), -2.6 (1B, dd, $J_{BHt} = 160$, $J_{BH\mu} = 55$; B4), -3.1 (1B, dd, $J_{BHt} = 156$, $J_{BH\mu} = 53$; B6), -49.8 (d, $J_{BHt} = 182$; B1); 6.08 (1H; s; C3H), 3.51 (1H; s; B5H), 3.33 (1H; s; B4H), 3.25 (1H; s; B6H), 2.19 (3H; s; CH₃), -

- ⁹⁵ 0.98 (1H; s; B1H), -2.12 (1H; s; H_{μ 5,6}), -2.13 (1H; s; H_{μ 4,5}). 1-Me-2,5-CH₂-1-CB₄H₇ **4a**; δ (¹¹B) 1.6 (2B, d, $J_{BHt} \sim$ 145; B2,5), -20.1 (2B, ddd, $J_{BHt} = 165$, $J_{BH\mu2,3/4,5} = 63$, $J_{BH\mu3,4} = 37$; B3,4); 3.25 (2H; s; B2,5H), 2.23 (2H; s; B3,4H), 1.61 (3H; s; CH₃), 0.68 (2H; s; H_{μ 2,3/4,5}), -0.95 (1H; m, ² $J_{HH} = 16$, $J_{HH} = 4$; CH_{exo}), -1.40 ¹⁰⁰ (1H; m, ² $J_{HH} = 16$, $J_{HH} = 6$; CH_{endo}), -2.26 (1H; s; H_{μ 3,4});</sub>
- 2,5-*endo*-MeCH-1-CB₄H₈ **5a**; 1.6 (2B; B2,5), -21.8 (2B, ddd, $J_{BHt} = 169, J_{BH\mu2,3/4,5} = 64, J_{BH\mu3,4} = 37; B3,4); 0.68 (3H; d ³J_{HH} = 8; CH₃), -0.27 (2H; s; H_{µ2,3/4,5}), -0.80 (1H; m; CH_{$ *exo*});
- 1,B-Me₂-1-CB₄H₈ **6a**, $\delta(^{11}\text{B})$ 6.6 (1B; sextet, $J_{\text{BH}\mu,endo} \sim 31$; B2), ¹⁰⁵ 1.6 (1B; d of sextets, $J_{\text{BHt}} = 132$, $J_{\text{BH}\mu,endo} \sim 33$; B4), -1.3 (2B; d of sextets, $J_{\text{BHt}} = 142$, $J_{\text{BH}\mu,endo} \sim 30$; B3,5); 2.90 (1H; s; B4H), 2.55 (2H; s; B3,5H), 1.35 (5H; s; H_{$\mu,endo}$), 1.29 (3H; s; C1CH₃), 0.49 (3H; BCH₃).</sub>

Products from B4H10 and EtC=CH:

1-Et-1,2-C₂B₃H₆ **1b**, $\delta(^{11}\text{B})$ -12.1 (2B; dd, 2, $J_{\text{BHt}} = 171$, $J_{\text{BH}\mu} = 44$; B3, B5), -13.8 (1B; dt; B4); $\delta(^{1}\text{H}\{^{11}\text{B}\})$ 2.47 (1H; s; B4H), 2.29 (1H; s; C2H), 2.19 (2H; s; B3H, B5H), 2.04 (2H; q, $J_{\text{HH}} = 7$; C1CH₂), 0.95 (3H; t, $J_{\text{HH}} = 7$; CH₃), -1.67 (2H; s; H_µ).

¹¹⁵ 2-Et-1,2-C₂B₃H₆ **2b**, $\delta(^{11}B)$ -13.8 (2B; dd, $J_{BHt} = 168$, $J_{BH\mu} = 41$; B3, B5), -19.4 (1B; dt, $J_{BHt} = 168$, $J_{BH\mu} = 49$; B4); $\delta(^{1}H\{^{11}B\})$ 2.29 (1H; s; B4H), 2.16 (2H; s; B3H, B5H), 1.77 (3H; q, $J_{HH} = 7$; C2CH₂), 0.86 (4H; t, $J_{HH} = 7$ and m; CH₃ and C1H), -2.03 (2H; s; H_µ).

2-Et-2,3-C₂B₄H₇ **3b** δ (¹¹B) -0.5 (1B, d, J_{BHt} ~160; B5), -2.7 (1B,

- ⁵ dd, $J_{BHt} = 157$, $J_{BH\mu} = 46$; B4), -3.5 (1B, dd, $J_{BHt} = 155$, $J_{BH\mu} = 49$; B6), -50.4 (d, $J_{BHt} = 182$; B1); $\delta({}^{1}H\{{}^{11}B\})$ 6.12 (1H; s; C3H), 3.51 (1H; s; B5H), 3.33 (1H; s; B4H), 3.27 (1H; s; B6H), 2.47 (2H; q, $J_{HH} = 7$; C2CH₂), 1.16 (3H; t, $J_{HH} = 7$; CH₃), -0.99 (1H; s; B1H), -2.15 (1H; s; H_{µ5,6}), -2.18 (1H; s; H_{µ4,5}).
- ¹⁰ 1-Et-2,5-CH₂-1-CB₄H₇ **4b** $\delta(^{11}\text{B})$ 0.3 (2B, d, $J_{\text{BHt}} \sim 149$; B2,5), -20.6 (2B, ddd, $J_{\text{BHt}} = 165$, $J_{\text{BH}\mu2,3/4,5} = 64$, $J_{\text{BH}\mu3,4} = 37$; B3,4); $\delta(^{1}\text{H}\{^{11}\text{B}\})$ 3.27 (2H; s; B2,5H), 2.24 (2H; s; B3,4H), 1.95 (2H; q, $J_{\text{HH}} = 7$; CH₂CH₃), 0.97 (3H; t, $J_{\text{HH}} = 7$; CH₃), 0.54 (2H; s; H_{µ2,3/4,5}), -0.95 (1H; m, ² $J_{\text{HH}} = 16$, $J_{\text{HH}} = 4$; CH_{exo}), -1.41 (1H; m, ¹⁵ ² $J_{\text{HH}} = 16$, $J_{\text{HH}} = 6$; CH_{endo}), -2.27 (1H; s; H_{u3,4}).
- 2,5-*endo*-EtCH-1-CB₄H₈ **5b** δ (¹¹B) 0.3 (2B; B2,5), -22.7 (2B, ddd, $J_{BHt} = 169$, $J_{BH\mu2,3/4,5} = 64$, $J_{BH}_{\mu3,4} = 37$; B3,4). 1-Et,B-Me-1-CB₄H₈ **6b** δ (¹¹B) 6.7 (1B; sextet, $J_{BH\mu,endo} \sim 30$; B2),

-0.3 (1B; d of sextets, $J_{BHt} = 132$, $J_{BH\mu,endo} \sim 35$; B4), -2.8 (2B; d ²⁰ of sextets, JBHt = 140, $J_{BH\mu,endo} \sim 32$; B3,5); $\delta({}^{1}H\{{}^{11}B\})$ 2.81 (1H; s; B4H), 2.50 (2H; s; B3,5H), 1.52 (2H; q; C1CH₂), 0.91

(3H; t; CH_2CH_3), 1.18 (5H; s; $H_{\mu,endo}$), 0.46 (3H; BCH₃).

Products from B₄H₁₀ and ⁿPrC=CH:

- ²⁵ 1-ⁿPr-1,2-C₂B₃H₆ **1c**, δ (¹¹B) -11.8 (2B; dd, $J_{BHt} = 170$, $J_{BH\mu} = 44$; B3, B5), -13.5 (1B; dt; B4); δ (¹H{¹¹B}) 2.51 (1H; s; B4H), 2.31 (1H; s; C2H), 2.22 (2H; s; B3H, B5H), 2.02 (2H; t, $J_{HH} = 7$; C1CH₂), 1.38 (3H; m; C<u>H₂</u>CH₃), 0.95 (3H; t, $J_{HH} = 7$; CH₃), -1.61 (2H; s; H_µ).
- ³⁰ 2-ⁿPr-1,2-C₂B₃H₆ **2c**, $\delta(^{11}B)$ -13.5 (2B; dd; B3, B5), -19.0 (1B; dt, $J_{BHt} = 166$, $J_{BH\mu} = 46$; B4); $\delta(^{1}H\{^{11}B\})$ 2.22 (1H; s; B4H), 2.19 (2H; s; B3H, B5H), 1.71 (2H; t, $J_{HH} = 7$; C1CH₂), 1.34 (3H; m; CH₂CH₃), 0.92 (4H; t, $J_{HH} = 7$ and m; CH₃ and C1H), 1.97(2H; s; H_µ).
- ³⁵ 2-Pr-2,3-C₂B₄H₇ **3c**; $\delta(^{11}\text{B})$ 0.1 (1B, d, $J_{BHt} \sim 161$; B5), -2.7 (1B, dd, $J_{BHt} = 154$, $J_{BH\mu} = 45$; B4), -3.0 (1B, dd, $J_{BHt} = 157$, $J_{BH\mu} = 49$; B6), -50.0 (d, $J_{BHt} = 181$; B1); $\delta(^{1}\text{H}\{^{11}\text{B}\})$ 6.09 (1H; s; C3H), 3.53 (1H; s; B5H), 3.35 (1H; s; B4H), 3.27 (1H; s; B6H), 2.49 (2H; m; C2CH₂), 1.34 (2H; m; C4₂CH₃), 0.97 (3H; t, $J_{HH} = 7$; CH) 0.07 (1H; SH)
- ⁴⁰ CH₃), -0.97 (1H; s; B1H), -2.12 (1H; s; H_{μ 5,6}), -2.14 (1H; s; H_{μ 4,5}). 1-Pr-2,5-CH₂-1-CB₄H₇ **4c**; δ (¹¹B) 0.0 (2B, d, *J*BHt ~145; B2,5), -

20.5 (2B, ddd, $J_{BHt} = 165$, $J_{BH\mu2,3/4,5} = 61$, $J_{BH\mu3,4} = 36$; B3,4); $\delta({}^{1}H\{{}^{11}B\})$ 3.26 (2H; s; B2,5H), 2.20 (2H; s; B3,4H), 1.92 (2H;

⁴⁵ q, J_{HH} = 7; C1C<u>H</u>₂), 1.32 (2H; q, J_{HH} = 7; C<u>H</u>₂CH₃), 0.91 (3H; t, J_{HH} = 7; CH₃), 0.50 (2H; s; H_{µ2,3/4,5}), -0.97 (1H; m, ² J_{HH} = 16, J_{HH} = 4; CH*exo*), -1.40 (1H; m, ² J_{HH} = 16, J_{HH} = 6; CH*endo*), -2.28 (1H; s; Hµ3,4).

2,5-*endo*-PrCH-1-CB₄H₈ **5c** δ (¹¹B) 0.0 (2B; B2,5), -23.5 (2B, 50 ddd, $J_{BHt} = 169, J_{BH\mu2,3/4,5} = 64, J_{BH\mu3,4} = 37; B3,4).$

- 1-Pr,B-Me-1-CB₄H₈ **6c** δ (¹¹B) 7.0 (1B; sextet, $J_{BH\mu,endo} \sim 32$; B2), 0.1 (1B; d of sextets, $J_{BHt} = 135$, $J_{BH\mu,endo} \sim 34$; B4), -3.0 (2B; d of sextets, $J_{BHt} = 140$, $J_{BH\mu,endo} \sim 33$; B3,5); δ (¹H{¹¹B}) 2.83 (1H; s; B4H), 2.51 (2H; s; B3,5H), 1.61 (2H; q; C1CH₂), 1.33 (2H; m;
- ⁵⁵ C<u>H</u>₂CH₃), 0.85 (3H; t; CH₂C<u>H</u>₃), 1.12 (5H; s; H_{μ,endo}), 0.50 (3H; BCH₃).

Products from B₄H₁₀ and ^tBuC=CH:

1-^tBu-1,2-C₂B₃H₆ **1d**, δ (¹¹B) -12.3 (2B; dd, $J_{BHt} = 170$, $J_{BH\mu} = 44$; 60 B3, B5), -14.2 (1B; dt; B4); δ (¹H{¹¹B}) 2.44 (1H; s; B4H), 2.40

(1H; s; C2H), 2.22 (2H; s; B3H, B5H), 1.03 (9H; s; CH₃), -1.66 (2H; s; H_{μ}).

2-^tBu-1,2-C₂B₃H₆ **2d**, $\delta(^{11}B)$ -14.5 (2B; dd, $J_{BHt} = 170$, $J_{BH\mu} = 46$; B3, B5), -20.0 (1B; dt, $J_{BHt} = 169$, $J_{BH\mu} = 46$; B4); $\delta(^{1}H\{^{11}B\})$ 65 2.24 (1H; s; B4H), 2.17 (2H; s; B3H, B5H), 0.93 (10H; s and m;

- 66 2.24 (11, s, B4H), 2.17 (2H, s, B3H, B3H), 0.93 (10H, s and m, CH₃ and C1H), -2.04 (2H; s; H_µ).
- 2-^tBu-2,3-C₂B₄H₇ **3d**; δ (¹¹B) -0.3 (1B, d, $J_{BHt} \sim$ 161; B5), -4.2 (1B, dd, $J_{BHt} = 154$, $J_{BH\mu} = 45$; B4), -5.2 (1B, dd, $J_{BHt} = 157$, $J_{BH\mu} = 49$; B6), -50.5 (d, $J_{BHt} = 181$; B1); δ (¹H{¹¹B}) 6.08 (s; C3H), ⁷⁰ 3.50 (s; B5H), 3.34 (s; B4H), 3.31 (s; B6H), 1.16 (9H; s; CH3), -

1.00 (s; B1H), -2.12 (s; $H_{\mu5,6}$), -2.14 (s; $H_{\mu4,5}$). 1-'Bu-2,5-CH₂-1-CB₄H₇ **4d**; δ (¹¹B) -2.6 (2B; d, $J_{BHt} \sim$ 146; B2,5), -20.4 (2B, ddd, $J_{BHt} = 166$, $J_{BH\mu2,3/4,5} = 61$, $J_{BH\mu3,4} = 37$; B3,4); δ (¹H{¹¹B}) 3.24 (2H; s; B2,5H), 2.40 (2H; s; B3,4H), 1.02 (9H, s,

⁷⁵ CH₃), 0.31 (2H; s; H_{µ2,3/4,5}), -1.10 (1H; m, ${}^{2}J_{HH}$ = 16, J_{HH} = 4; CH_{exo}), -1.42 (1H; m, ${}^{2}J_{HH}$ = 16, J_{HH} = 6; CHendo), -2.25 (1H; s; H_{µ3,4}).

1-^tBu,B-Me-1-CB₄H₈ **6d** δ (¹¹B) 6.3 (1B; m; B2), 0.1 (1B; m; B4), -3.0 (2B; m; B3,5); δ (¹H{¹¹B}) 0.84 (9H; s; C<u>H</u>₃), 0.50 (3H; ⁸⁰ BCH₃).

Products from B₄H₁₀ and MeC=CMe:

1,2-Me₂-1,2-C₂B₃H₅ **7a**, δ (¹¹B) -11.8 (2B; dd, $J_{BHt} = 169$, $J_{BH\mu} = 47$; B3, B5), -17.2 (1B; dt, $J_{BHt} = 168$, $J_{BH\mu} = 47$; B4); δ (¹H{¹¹B}) ss 2.42 (1H; s; B4H), 2.02 (2H; s; B3H, B5H), 1.60 (3H; s; C1CH₃),

 $1.39 (3H; s; C2CH_3), -1.59 (2H; s; H_{\mu}).$

2,3-Me₂-2,3-C₂B₄H₆ **9a**, δ (¹¹B) -1.8 (1B, d, $J_{BHt} \sim 160$; B5), -3.8 (2B, dd, $J_{BHt} = 155$, $J_{BH\mu} = 51$; B4,6), -46.9 (d, $J_{BHt} = 181$; B1); δ (¹H{¹¹B}) 3.44 (s; B5H), 3.19 (s; B4H, B6H), 2.05 (s; CH₃), - ⁹⁰ 0.95 (s; B1H), -2.14 (s; H_u);

- 1-Me-2,5-*endo*-MeCH-1-CB₄H₇ **10a**; δ (¹¹B) 4.3 (2B; d, J_{BHt} ~146; B2,5), -20.4 (2B, ddd, J_{BHt} = 169, $J_{BH\mu2,3/4,5}$ = 61, $J_{BH\mu3,4}$ = 37; B3,4); δ (¹H{¹¹B}) 3.26 (2H; s; B2,5H), 2.24 (2H; s; B3,4H), 1.60 (3H; s; C1CH₃), 0.63 (3H; d, ³ J_{HH} = 6; *endo* CH₃), 0.05 (2H; ⁹⁵ s; H_{42,3/4,5}),-0.58 (1H; m; CH_{exo}), -2.21 (1H; s; H_{43,4});
- 1-Me-2,5-*exo*-MeCH-1-CB₄H₇ **11a** δ (¹¹B) 2.8 (2B; B2,5), -19.7 (2B, ddd, $J_{BHt} \sim 173$, $J_{BH\mu2,3/4,5} \sim 64$, $J_{BH\mu3,4} = 37$; B3,4); δ (¹H{¹¹B}) 3.03 (2H; s; B2,5H), 2.17 (2H; s; B3,4H), 1.66 (3H; s; C1CH₃), 0.95 (3H; d, ³ $J_{HH} = 6$; *exo* CH₃), 0.78 (2H; s; H_{µ2,3/4,5}), ¹⁰⁰ -1.10 (1H; m; CH_{endo}), -2.13 (1H; s; H_{µ3,4});

1-Me,B-Et-1-CB₄H₈ **13a** $\delta(^{11}\text{B})$ 8.2 (1B; sextet, $J_{BH\mu,endo} \sim 30$; B2), 1.0 (1B; d of sextets, $J_{BHt} = 132$, $J_{BH\mu,endo} \sim 35$; B4), -1.8 (2B; d of sextets, $J_{BHt} = 140$, $J_{BH\mu,endo} \sim 32$; B3,5); $\delta(^{1}\text{H}\{^{11}\text{B}\})$ 2.90 (1H; s; B4H), 2.58 (2H; s; B3,5H), 1.32 (5H; s; H_{$\mu,endo})$, 1.22 ¹⁰⁵ (3H; m; C1CH₃), 1.11 (2H; q; BCH₂), 1.00 (3H; t; CH₂C<u>H₃)</u>.</sub>

Products from B₄H₁₀ and EtC=CMe:

- ¹¹⁰ 1-Et-2-Me-1,2-C₂B₃H₅ **7a**, δ (¹¹B) -12.5 (2B; dd; B3, B5), -17.9 (1B; dt; B4); δ (¹H{¹¹B}) 2.39 (1H; s; B4H), 2.06 (2H; s; B3H, B5H), 1.89 (2H; q, $J_{HH} = 7$; C1CH₂), 1.36 (3H; s; C2CH₃), 1.04 (3H; t, $J_{HH} = 7$; CH₃), -1.74 (2H; s; H_µ).
- $\begin{array}{l} 2\text{-Et-1-Me-1,} 2\text{-C}_2B_3H_5 \mbox{ 8b, } \delta(^{11}B) \mbox{ -12.2 (2B; dd; B3, B5), -17.3} \\ {}_{115} \mbox{ (1B; dt; B4); } \delta(^{1}H\{^{11}B\}) \mbox{ 2.42 (1H; s; B4H), 2.02 (2H; s; B3H, 115), -17.3} \\ \end{array}$

B5H), 1.80 (2H; q, J_{HH} = 7; C1CH₂), 1.54 (3H; s; C1CH₃), 0.95 (3H; t, J_{HH} = 7; CH₃), -1.67 (2H; s; H_µ).

2-Et-3-Me-2,3-C₂B₄H₆ **9b**, ⁵² δ (¹¹B) -1.8 (1B, d, *J*_{BHt} ~160; B5), -3.9 (1B, dd, *J*_{BHt} = 157, *J*_{BHµ} = 55; B4), -4.4 (1B, dd, *J*_{BHt} = 154,

- $^{5} J_{BH\mu} = 56; B6), -47.4 (d, J_{BHt} = 178; B1); \delta(^{1}H\{^{11}B\}) 3.52 (s; B5H), 3.28 (s; B4H), 3.25 (s; B6H), 2.47 (dq, J_{HH}=14, J_{HH}=7; CH_{a}H_{b}CH_{3}), 2.33 (dq, J_{HH}=14, J_{HH}=7; CH_{a}H_{b}CH_{3}); 2.09 (3H; s; CH_{3}), 1.21 (t, J_{HH}=7; CH_{2}CH_{3}), -0.88 (s; B1H), -2.16 (s; H_{\mu5,6}), -2.17 (s; H_{\mu4,5}).$
- ¹⁰ 1-Et-2,5-*endo*-MeCH-1-CB₄H₇ **10b**; $\delta(^{11}B)$ 3.0 (2B; d, $J_{BHt} \sim 146$; B2,5), -21.1 (2B, ddd, $J_{BHt} = 166$, $J_{BH\mu2,3/4,5} = 65$, $J_{BH\mu3,4} = 39$; B3,4); $\delta(^{1}H\{^{11}B\})$ 3.24 (2H; s; B2,5H), 2.24 (2H; s; B3,4H), 1.90 (2H; q, $J_{HH} = 7$; CH₂CH₃), 0.94 (3H; t, $J_{HH} = 7$; CH₂CH₃), 0.63 (3H; d, $^{3}J_{HH} = 7$; *endo* CH₃), -0.09 (2H; s; H_{µ2,3/4,5}), -0.61 (1H; m; ¹⁵ CH_{exp}), -2.27 (1H; s; H_{µ3,4}).
- 1-Me-2,5-*endo*-EtCH-1-CB₄H₇ **12b** δ (¹¹B) 3.5 (2B; B2,5), -20.3 (2B, ddd, $J_{BHt} = 167$, $J_{BH\mu2,3/4,5} = 61$, $J_{BH\mu3,4} = 37$; B3,4); δ (¹H{¹¹B}) 3.25 (2H; s; B2,5H), 2.26 (2H; s; B3,4H), 1.59 (3H; s; C1CH₃), 0.83 (2H; m; *endo* CH₂CH₃), 0.97 (3H; t, $J_{HH} = 7$;
- ²⁰ CH₂CH₃), -0.02 (2H; s; H_{μ 2,3/4,5}), -0.61 (1H; m; CH_{*exo*}), -2.21 (1H; s; H_{μ 3,4}).

1,B-Et₂-1-CB₄H₈ **13b** δ (¹¹B) 8.8 (1B; sextet, $J_{BH\mu,endo} \sim 30$; B2), 1.7 (1B; d of sextets, $J_{BHt} = 132$, $J_{BH\mu,endo} \sim 35$; B4), -1.5 (2B; d of sextets, $J_{BHt} = 140$, $J_{BH\mu,endo} \sim 32$; B3,5); δ (¹H{¹¹B}) 2.90 (1H; s;

 $_{25}$ B4H), 2.58 (2H; s; B3,5H), 1.22 (5H; s; H_{µ,endo}), 1.50 (2H; q; C1CH₂), 1.11 (2H; q; BCH₂), 0.93 (3H; t; CH₂C<u>H₃</u>), 0.99 (3H; t; CH₂C<u>H₃</u>).

Products from B₄H₁₀ and Me₃SiC≡CH:

³⁰ 1-Me₃Si-1,2-C₂B₃H₆ **1e**, $\delta(^{11}B)$ -11.7 (2B; dd, $J_{BHt} = 171$, $J_{BH\mu} = 44$; B3, B5), -13.9 (1B; dt, $J_{BHt} = 169$, $J_{BH\mu} = 47$; B4); $\delta(^{1}H\{^{11}B\})$ 2.21 (1H; s; B4H), 2.11 (1H; s; C2H), 2.09 (2H; s; B3H, B5H), 0.11 (9H; s; CH₃), -2.09 (2H; s; H_µ).

35 Products from B_4H_{10} and EtC=CEt:

The quenched gas-phase reactions of B_4H_{10} with EtC=CEt gave carbaborane products with cut-offs at m/z 120, 132, 134 and 135 which were not investigated further, but based on this study these products are likely to be 1,2-Et₂-1,2-C₂B₃H₅ (120), 2,3-Et₂-2,3-C₂D₃H₅ (120), 1,2-Et₂-2,3-C₂D₃H₅ (120), 1,2-Et₂-2,3-C₂

 $_{40}$ C₂B₄H₆⁵³ (132), 1-Et-2,5- μ -EtCH-1-CB₄H₇ (134) and 1-Et-B-EtCH₂-1-CB₄H₈ (136).

Notes and references

^a Chemistry Department, Durham University, South Rd, Durham, DH1 15 3LE, UK. E-mail: m.a.fox@durham.ac.uk

^bDepartment of Chemistry, University of Leeds, LEEDS LS2 9JT, U.K. Email: rgreatrex@leeds.ac.uk

 \ddagger Dedicated to Prof Ken Wade, a superb chemist, on the occasion of his $_{50}$ 75 $^{\rm th}$ birthday.

 For references and reviews of carboranes see R. N. Grimes, Carboranes, Academic Press, New York, 1970; T. Onak in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, New York, 1982, vol. 1, p. 411– 457; T. Onak in Comprehensive Organometallic Chemistry II, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, New York, 1995, vol. 1, p. 217–255; B. Štíbr, Chem. Rev., 1992, 92, 225; M. A. Fox in Comprehensive Organometallic Chemistry III, eds. R. H. Crabtree and D. M. P. Mingos, Editors, Elsevier, Oxford, 2007, vol 3, p.49-112.

- T. L. Heying, S. L. Clark, M. Hillman, H. L. Goldstein, R. J. Polak, D. J. Mangold, J. W. Szymansk and J. W. Ager, *Inorg. Chem.*, 1963, 2, 1089.
- T. P. Onak, R. E. Williams and H. G. Weiss, J. Am. Chem. Soc., 1962, 84, 2830.
- I. Shapiro, C. D. Good and R. E. Williams, J. Am. Chem. Soc., 1962, 84, 3837.
- I. Shapiro, B. Keilin, R. E. Williams and C. D. Good, J. Am. Chem. Soc., 1963, 85, 3167.
- 6. R. N. Grimes and C. L. Bramlett, J. Am. Chem. Soc., 1967, 89, 2557.
- R. N. Grimes, C. L. Bramlett and R. L. Vance, *Inorg. Chem.*, 1968, 8, 55.
- 8. C. L. Bramlett and R. N. Grimes, J. Am. Chem. Soc., 1966, 88, 4269.
- R. N. Grimes, C. L. Bramlett and R. L. Vance, *Inorg. Chem.*, 1968, 7, 1066.
- 10. D. A. Franz and R. N. Grimes, J. Am. Chem. Soc., 1971, 93, 387.
- 11. D. A. Franz and R. N. Grimes, J. Am. Chem. Soc., 1970, 92, 1438.
- 12. D. A. Franz, J. W. Howard and R. N. Grimes, J. Am. Chem. Soc., 1969, **91**, 4010.
- D. A. Franz, V. R. Miller and R. N. Grimes, J. Am. Chem. Soc., 1972, 94, 412.
- 14. W. A. Ledoux and R. N. Grimes, J. Organomet. Chem., 1971, 28, 37.
- 15. V. R. Miller and R. N. Grimes, Inorg. Chem., 1972, 11, 862.
- M. Hofmann, M. A. Fox, R. Greatrex, P. v. R. Schleyer, J. W. Bausch and R. E. Williams, *Inorg. Chem.*, 1996, 35, 6170.
- M. A. Fox, R. Greatrex, N. N. Greenwood and M. Kirk, Coll. Czech. Chem. Commun., 1999, 64, 806.
- M. A. Fox and R. Greatrex, J. Chem. Soc., Chem. Commun., 1995, 667.
- M. A. Fox, R. Greatrex, A. Nikrahi, P. T. Brain, M. J. Picton, D. W. H. Rankin, H. E. Robertson, M. Buhl, L. Li and R. A. Beaudet, *Inorg. Chem.*, 1998, 37, 2166.
- P. N. Condick, M. A. Fox, R. Greatrex, C. Jones and D. L. Ormsby, *Chem. Commun.*, 2002, 1448.
- M. A. Fox, R. Greatrex, M. Hofmann and P. v. R. Schleyer, Angew. Chem., 1994, 106, 2384; Angew. Chem. Int. Ed. Engl. 1994, 33, 2298.
- M. A. Fox, R. Greatrex and A. Nikrahi, *Advances in Boron Chemistry*, Ed. W. Siebert, The Royal Society of Chemistry, 1997, p.315.
- 23. M. A. Fox, R. Greatrex and A. Nikrahi, Chem. Commun., 1996, 175.
- 24. P. v. R. Schleyer, J. Gauss, M. Bühl, R. Greatrex and M. A. Fox, J. Chem. Soc., Chem. Commun., **1993**, 1766.
- 25. P. M. Tucker, T. Onak, J. Am. Chem. Soc. 1969, 91, 6869.
- 26. P. M. Tucker, T. Onak, J. B. Leach, Inorg. Chem. 1970, 9, 1430.
- 27. S. Heřmánek, Chem. Rev., 1992, 92, 325.
- 28. T. Onak, R. P. Drake and G. B. Dunks, Inorg. Chem., 1964, 3, 1686.
- R. Greatrex, N. N. Greenwood and M. Kirk, J. Chem. Soc., Chem. Commun., 1991, 1766; M. A. Fox, R. Greatrex, N. N. Greenwood and M. Kirk, Polyhedron, 1993, 12, 1849.
- R. Köster, R. Boese and B. Wrackmeyer, Angew. Chem., 1994, 106, 2380; Angew. Chem. Int. Ed. Engl. 1994, 33, 2294.
- B. Gangnus, H. Stock, W. Siebert, M. Hofmann and P. v. R. Schleyer, Angew. Chem., 1994, 106, 2383; Angew. Chem. Int. Ed. Engl. 1994, 33, 2296.
- 32. B. Wrackmeyer and H. J. Schanz, Coll. Czech. Chem. Commun., 1997, 62, 1254.
- R. Köster, R. Boese, B. Wrackmeyer and H. J. Schanz, J. Chem. Soc., Chem. Commun., 1995, 1691.
- 34. M. A. Fox, R. Greatrex, M. Hofmann, P. v. R. Schleyer and R. E. Williams, *Angew. Chem.*, 1997, **109**, 1542; *Angew. Chem. Int. Ed. Engl.* 1997, **36**, 1498.
- 35. H. A. Boyter Jr. and R. N. Grimes, Inorg. Chem., 1988, 27, 3075.
- 36. P. T. Brain, M. Bühl, M. A. Fox, R. Greatrex, D. Hnyk, A. Nikrahi, D. W. H. Rankin and H. E. Robertson, J. Mol. Struct., 1998, 445, 319.
- R. Greatrex, N. N. Greenwood and C. D. Potter, J. Chem. Soc., Dalton Trans., 1984, 2435.

- R. Greatrex, N. N. Greenwood and C. D. Potter, J. Chem. Soc., Dalton Trans., 1986, 81.
- 39. B. C. Harrison, I. J. Solomon, R. D. Hites and M. J. Klein, J. Inorg. Nucl. Chem., 1960, 14, 195.
- 40. R. E. Williams and F. J. Gerhart, J. Organomet. Chem., 1967, 10, 168
- T. Onak, K. Gross, J. Tse and J. Howard, J. Chem. Soc., Dalton Trans. 1973, 2633.
- 42. M. Bühl and M. L. McKee, Inorg. Chem., 1998, 37, 4953.
- 43. M. L. McKee, J. Am. Chem. Soc., 1995, 117, 8001.
- 44. M. L. McKee, J. Am. Chem. Soc., 1996, 118, 421.
- 45. H. Sayin and M. L. McKee, Inorg. Chem., 2007, 46, 2883.
- 46. D. F. Gaines and T. V. Iorns, Inorg. Chem., 1971, 5, 1094.
- 47. T. P. Onak and F. J. Gerhart, Inorg. Chem., 1962, 1, 742.
- 48. J. Dobson and R. Schaeffer, *Inorg. Chem.*, 1970, **9**, 2183.
- 49. M. A. Toft, J. B. Leach, F. L. Himpsl and S. G. Shore, *Inorg. Chem.*, 1982, **21**, 195.
- 50. W. R. Vaughan and R. C. Taylor, J. Phys. Chem., 1959, 31, 1425.
- M. Bown, J. Plesek, K. Base, B. Stibr, X. L. R. Fontaine, N. N. Greenwood and J. D. Kennedy, *Magn. Reson. Chem.*, **1989**, 27, 947.
- 52. M. A. Fox, R. Greatrex, M. Hofmann and P. v. R. Schleyer, J. Organomet. Chem., 2000, 614-615, 262.
- 53. R. B. Maynard, L. Borodinsky and R. N. Grimes, *Inorg. Synth.*, 1983, 22, 211.