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ABSTRACT 

The exact solution for the deflection and stresses in an end–loaded cantilever is widely used 

to demonstrate the capabilities of adaptive procedures, in finite elements, meshless methods 

and other numerical techniques. In many cases, however, the boundary conditions necessary 

to match the exact solution are not followed. Attempts to draw conclusions as to the 

effectivity of adaptive procedures is therefore compromised. In fact, the exact solution is 

unsuitable as a test problem for adaptive procedures as the perfect refined mesh is uniform. 

In this paper we discuss this problem, highlighting some errors that arise if boundary 

conditions are not matched exactly to the exact solution, and make comparisons with a more 

realistic model of a cantilever. Implications for code verification are also discussed. 

 

Keywords:  adaptivity, finite element method, meshless, closed form solution, beam, error 

estimation, meshfree. 

1. INTRODUCTION 

Adaptive methods are well-established for analysis of elastostatic problems using finite 

elements and are now emerging for meshless methods. Many publications in this area 

measure the capability of adaptive procedures by comparison with the limited number of 

exact solutions which exist. One of these problems is that of a cantilever subjected to end 

loading [1]. The purpose of this paper is to highlight potential sources of error in the use of 

this solution relating to the particular boundary conditions assumed and to show that it is a 

solution neither appropriate for testing adaptivity nor as a model of a real cantilever. 

While some may consider that the observations we make are self-evident and well-known, 

the literature contains many counter examples. This paper provides graphic illustration of the 
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effect of various boundary conditions on the cantilever beam solution. To our knowledge 

these effects have not been presented in detail in the existing literature. We also demonstrate 

the difference between the behaviour of a real cantilever and the idealised Timoshenko 

cantilever. It is our hope that this paper will help to reduce the misuse of the Timoshenko 

cantilever beam in the evaluation of adaptive analysis schemes, and perhaps encourage the 

use of a more realistic cantilever beam model as a benchmark problem instead.     

2. PROBLEM DEFINITION 

Figure 1 shows a cantilever beam of depth D, length L and unit thickness, which is  fully-

fixed to a support at x = 0 and carries an end load P. Timoshenko and Goodier [1] show that 

the stress field in the cantilever is given by 
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where E is Young’s modulus, ν is Poisson’s ratio and I is the second moment of area of the 

cross-section. 

Crucially [1] states that  
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“ … it should be noted that this solution represents an exact solution only if the shearing 

forces on the ends are distributed according to the same parabolic law as the shearing stress 

τxy and the intensity of the normal forces at the built-in end is proportional to y.” 

If this is ignored then the solution given by equations (1) to (5) is incorrect for the ends of 

the cantilever.  

The solution has been widely used to demonstrate adaptive procedures in finite element 

methods (e.g. [2, 3, 4]), boundary elements (e.g. [5]) and (most commonly) meshless 

methods (e.g. [6-12]). However, inspection of equations (1) to (5) shows the stresses to be 

smooth functions of position, with no stress concentrations or singularities. Therefore it 

would not appear to be a suitable test for an adaptive procedure where a uniform mesh or 

grid is refined to improve accuracy locally to areas of high gradients in field quantities. Any 

analysis that yields a non-smooth field for this problem (and there are many examples in the 

literature on adaptivity) is an analysis of a cantilever under different boundary conditions, for 

which the exact solution is incorrect.  

The performance of an adaptive procedure is widely measured using the effectivity index 

θ  which is defined for a refined mesh (or grid) as  

η
ηθ

*

= ........................................................................................................................(6) 

where η  is the error estimate based on the difference between the solution from the fine 

mesh the coarse mesh, and  is the error estimate based on the difference between the exact 

solution and the coarse mesh [2]. The effectivity index θ for the cantilever problem is 

meaningless unless the boundary conditions are modelled as specified in [1].  

*η
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3. ANALYSIS OF THE TIMOSHENKO AND GOODIER CANTILEVER 

It is not possible to model the cantilever in [1] using finite elements by applying the stated 

traction boundary conditions only. In that case the problem is unstable as there is an 

unrestrained rotational rigid-body mode. Instead stability and an accurate model can be 

achieved by imposing the load as a parabolically varying shear force at each end according 

to equation (3) and by applying essential boundary conditions at the “fixed end” according to 

equations (4) and (5). 

To demonstrate the effects of using different boundary conditions five adaptive analyses of 

cantilevers have been carried out. The boundary conditions for each analysis are shown in 

Figure 2 and have been chosen to match the conditions used in various previous 

publications. In analysis A full-fixity is applied to the nodes at the support, while the load P 

is applied uniformly distributed over the vertical surface at x = L, e.g. references [2, 13]. In 

analysis B the load is instead distributed parabolically, e.g. [6]. In analysis C, fixity at the 

support is released via rollers above and below the fixed mid-point, e.g. [14, 15, 16]. In 

analysis D traction boundary conditions are applied at x = 0 to the cantilever of analysis C. 

Finally, analysis E includes parabolic variation of applied shear traction at x = L with 

essential boundary conditions at x = 0 to match the solution in equations (4) and (5). 

Analysis E is the only one that exactly models the boundary conditions (traction and 

essential) of the cantilever in [1] for which equations (1) to (5) are correct.  

4. NUMERICAL RESULTS 

The behaviours of the cantilevers shown in Figure 2 have been studied using conventional 

adaptive finite element modelling. In each case the cantilevers are of dimensions D = 2, L = 

8 and the applied end load is equivalent to a uniform stress of 1 unit per unit area (i.e. P = 
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2). The material properties used are E = 1000 and ν = 0.25. Meshes of 8-noded quadrilaterals 

were adaptively refined using the Zienkiewicz-Zhu approach [2] until the energy norm of the 

error was < 1% of the energy norm of the solution.  

Figure 3 shows the final refined mesh for each analysis. Also shown are the contours of 

shear stress throughout the cantilevers. Of greatest importance here is the result for analysis 

E. The refined mesh is uniform because the stress field varies smoothly and corresponds to 

the solution in [1]. The other results are non-uniform due to differences in the boundary 

conditions imposed. It is clear that unstructured refinement is produced due to differences in 

the boundary conditions.  

In analysis A, where the load is applied as a uniform shear traction to the right hand end, the 

stress conditions at the top and bottom right hand corners change rapidly and cause local 

refinement in these regions. This is caused by the incompatibility between the boundary 

conditions for shear at the corners. The top and bottom faces enforce a zero stress boundary 

condition at the corners, while the applied uniform traction enforces non zero shear stress 

boundary conditions at the same places. When the traction is applied with parabolic 

variation, yielding zero shear stress boundary conditions at the corners, local refinement in 

does not occur in these areas. This is demonstrated by analyses B through E. 

In both analysis A and B, where full restraint is provided to the left hand end, stress 

concentrations occur in the top and bottom left hand corners, and non-zero vertical stresses 

occur over the depth of the beam at the left hand end. The resulting shear stress distribution 

exhibits singularities at the top and bottom corners. This complex stress field causes a 

significant amount of adaptive refinement in this area. Within about D/2 of the left hand 

support, the shear and vertical stress distributions show little similarity to the Timoshenko 

solution. Consequently any attempt to use the Timoshenko solution to evaluate the accuracy 
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of the adaptive solution in this area will clearly yield misleading results. 

In analysis C, vertical restraint is provided only at the mid-depth of the beam at the left hand 

end, while horizontal restraint is provided throughout the depth. This removes the vertical 

stress component, and improves the agreement of the horizontal stresses with the 

Timoshenko solution. However, the variation of the shear stress over this boundary varies 

considerably from the Timoshenko problem, and contains a singularity at the point of 

vertical restraint. This causes significant refinement in this area of the beam during the 

adaptive analysis, and again considerable difference between the Timoshenko solution and 

the correct solution of the problem with these boundary conditions in the area x < D/2. 

In analysis D, in addition to the boundary conditions applied in analysis C, vertical traction 

equal to the Timoshenko solution (i.e. varying parabolically) is applied to the right hand end. 

This means that the vertical restraint at the mid-depth serves simply to stabilise the solution, 

and carries no vertical load. This improves the solution considerably, and with a 1% error 

target leads to uniform refinement. However, some variation of the internal shear stress near 

the support is evident. (This variation is subtle. The contour lines diverge slightly at the 

restrained left hand end.) Non-zero vertical stresses are also present, and we have found that 

as the error target is made more severe, local refinement occurs in this region, and the 

vertical and shear stress distributions are notably different from the Timoshenko solution. 

In analysis E, the displacements at the support are prescribed to agree precisely with the 

Timoshenko solution. (An alternative approach would be to provide vertical restraint at the 

mid-depth of the beam and horizontal restraints at the top and bottom corners, then apply 

horizontal and shear tractions to the end in accordance with the Timoshenko solution. The 

final results would be the same.) In this case the solution converges quickly to the 

Timoshenko solution, and there are no regions which induce preferential refinement of the 
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mesh. This is consistent with the exact cubic variation of displacement through the depth of 

the beam being approximated by quadratic shape functions at all cross-sections of the beam. 

In contrast to analysis D, the shear stress contours plotted in Figure 3 are horizontal along 

the entire length of the beam. 

These observations are confirmed when the stresses at the support are examined in detail. 

Figure 4 shows plots of the three stress components though the cantilever depth at x = 0. The 

horizontal axis on these plots represents the y-axis in Figure 1. These plots demonstrate the 

agreement between the exact solution of [1] and analysis E, and the lack of agreement for all 

other analyses. Notably, when the support is treated as fully-fixed, the horizontal stress 

distribution varies significantly from the linear variation of the Timoshenko solution, 

particularly near the corners.  The most significant differences occur in the shear stress 

distribution, indicating that the distribution of shear stress required to satisfy the Timoshenko 

assumption does not result naturally from any conventional boundary conditions, and must 

be imposed artificially. Analysis D, when the Timoshenko shear stress is applied but when 

the prescribed displacements in the x direction are not consistent with the Timoshenko 

solution (and are instead zero), yields the closest agreement to analysis E. However, 

differences in both the vertical and shear stress are still evident.  

The variation of stress through the depth of the beam at x = L/2 was also investigated, but is 

not plotted since for all analyses all three stress components are indistinguishable from the 

exact solution, a point discussed further below. This is also evident from Figure 3, where the 

shear stress distribution in the middle of the beam appears identical in all cases, despite the 

variation in boundary conditions at the end, clearly demonstrating St Venant’s principle. 

No attempt to measure effectivity index θ is necessary here since, as explained above, such a 

measure is meaningless for analyses A to D inclusive; the true “exact” solution one would 
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use to determine θ  is not available. When θ  has been measured in previous work, the fact 

that the exact solution in [1] is incompatible with the numerical model is obvious at the 

supports, see for instance Figure 3 of [2]. 

5. REALISTIC BOUNDARY CONDITIONS 

In reality, the boundary conditions applied to the cantilevers in analyses A to E above are 

never fully realised. The support is never rigid and could certainly never impose the essential 

boundary conditions required to match the Timoshenko cantilever in [1].  Equally, realistic 

loads are unlikely to be the same as the required traction boundary conditions or indeed 

applied as true point loads.  

Despite this it is still possible to obtain some agreement with the exact solution in [1]. Figure 

5 shows a finite element model of a cantilever that approaches the conditions expected in 

reality. The essential boundary conditions are no longer imposed at x = 0 but are modelled as 

additional elements of the same stiffness. The load is applied in a more realistic location and 

distributed over a small area. All other aspects of this model match those in analyses A-E 

above. Figure 6 shows the stress results for this model, overlain on the final refined mesh 

using the same error criterion as above. At locations away from the essential and traction 

boundary conditions, the fields in all cases are smooth and match the exact solution of [1], 

much as was found in analyses A-D. The realistic cantilever shows particular concentrations 

of shear stress at the sharp “corners” at the support, most closely matching the results found 

here for analysis A, where the support is fully fixed. 

6. CONSEQUENCES FOR ADAPTIVITY, VERIFICATION AND VALIDATION. 

 The analyses A to D presented above, using boundary conditions that do not match the 

analytical solution of Timoshenko, can still be used to test adaptive procedures. Comparison 
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can be made with a fine reference mesh to demonstrate convergence of an adaptive 

procedure. However it should be noted that for problems with rigid fixities (such as A and B 

above) the corner singularites that arise can never be captured precisely by the reference 

solution. The use of realistic boundary conditions described in Section 5 leads to less 

intensive singularities and could therefore be regarded as better suited for testing an adaptive 

procedure without using an analytical solution.  

Verification and validation (V&V) of computational methods in science and engineering is 

an increasingly important concern [17, 18] and particularly so in finite element codes [19]. 

Verification has been described as “solving the equations right” in which the code is checked 

for bugs, but more importantly is checked against analytical solutions where these are 

available. Validation checks if the code provides predictions in line with experimental data, 

sometimes described as “solving the right equations”. To end this paper on a positive note, 

the Timoshenko problem with the boundary conditions correctly modelled clearly provides a 

means of FE code verification where an analytical solution is vital (the Method of Exact 

Solutions). 

7. CONCLUSIONS 

This paper has examined the effect of boundary conditions on the correct solution for a 

cantilever beam problem. Replication of the solution of Timoshenko and Goodier is shown 

to require implementation of precise prescribed displacements (both horizontal and vertical) 

at the built in end incompatible with normal support conditions, in addition to application of 

vertical load as a shear traction varying parabolically over the depth. There are many 

examples in the literature where this has not been done correctly. This paper has clearly 

illustrated the deviations from the Timoshenko solution caused by various boundary 

condition combinations used in the literature. When the boundary conditions are applied 
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correctly, the optimum mesh or grid for solution of the problem is always uniform. The 

Timoshenko and Goodier [1] solution for a cantilever beam is therefore unsuitable as a test 

problem for adaptive procedures. A realistic model of a cantilever which includes a support 

region of finite stiffness and the application of load over a finite area has been presented. 

Such a model is an ideal benchmark problem for adaptive analysis, as there are three isolated 

areas where the exact stress field varies rapidly, together with an area where the solution is 

very smooth. Unfortunately no exact solution is available for this problem, but a very fine 

solution can always be used in place of the exact solution to ascertain the error level. Such a 

procedure is far more satisfactory than comparing a numerical solution to an exact solution 

for a problem with different boundary conditions, as has been done all too often in the past. 
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Figure 1:  Coordinate system for the cantilever problem 
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Figure 2:  The five different cantilever problems analysed. 
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Figure 3:  Final refined meshes and contours of shear stress for the five cantilever problems 

analysed. 
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Figure 4:  Plots of stresses across the section at x = 0 for the five analyses 
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Figure 5:  A realistic model of a cantilever 
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Figure 6:  Stress contours and refined meshes for the realistic cantilever problem 
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