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Abstract

We define an interconnection network AQn,k which we call the augmented k-
ary n-cube by extending a k-ary n-cube in a manner analogous to the existing
extension of an n-dimensional hypercube to an n-dimensional augmented cube.
We prove that the augmented k-ary n-cube AQn,k has a number of attractive
properties (in the context of parallel computing). For example, we show that the
augmented k-ary n-cube AQn,k: is a Cayley graph, and so is vertex-symmetric,
but not edge-symmetric unless n = 2; has connectivity 4n−2 and wide-diameter
at most max{(n−1)k−(n−2), k+7}; has diameter ⌊k

3
⌋+⌈k−1

3
⌉, when n = 2; and

has diameter at most k

4
(n+1), for n ≥ 3 and k even, and at most k

4
(n+1)+ n

4
,

for n ≥ 3 and k odd.

keywords: interconnection networks; parallel computing; k-ary n-cubes; aug-
mented cubes.

1 Introduction

Hypercubes are perhaps the most well known of all interconnection networks for par-
allel computing, given their basic simplicity, their generally desirable topological and
algorithmic properties, and the extensive investigation they have undergone (not just
in the context of parallel computing but also in discrete mathematics in general; see,
for example, [27] for some essential properties of hypercubes). However, a multitude
of different interconnection networks have been devised and developed in a continu-
ing search for improved performance, with many of these networks having hypercubes
at their roots. Amongst these generalisations of hypercubes are k-ary n-cubes [14],
augmented cubes [12], cube-connected cycles [26], twisted cubes [19], twisted n-cubes
[18], crossed cubes [16], folded hypercubes [17], Mcubes [30], Möbius cubes [13], gen-
eralised twisted cubes [11], shuffle cubes [24], k-skip enhanced cubes [31], twisted
hypercubes [22], supercubes [29], and Fibonacci cubes [20].

Perhaps the most popular of these generalisations are the k-ary n-cubes [14]. A
k-ary n-cube Qk

n is essentially a ‘k-bit version’ of a ‘2-bit’ hypercube in that vertices
are represented by n-tuples of integers from {0, 1, . . . , k − 1} so that two vertices are
joined by an edge if, and only if, their representations are identical save in one bit
position, where in that position the bits differ by 1 modulo k (thus, a k-ary 2-cube,
for example, is just a k × k torus). It turns out that k-ary n-cubes have similar
properties to hypercubes yet provide more flexibility with regard to incorporating
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more processors; for the two parameters available, k and n, allow us to regulate
the degree of the nodes yet still incorporate large numbers of processors, although
usually at a cost to some other property such as the diameter or the connectivity.
Some properties of the k-ary n-cube are that it: has kn vertices and nkn edges; has
diameter n⌊k

2 ⌋; has wide-diameter n⌊k
2⌋ + 1, when n ≥ 3 or when n = 2 and k ≥ 6

[21]; has connectivity 2n [10]; is a Cayley graph, and so is vertex-symmetric [7], and
also edge-symmetric [4]; and has an O(nk) time optimal routing algorithm [3, 15].
A number of distributed memory multiprocessors have been built with a k-ary n-
cube forming the underlying topology, such as the Mosaic [28], the iWARP [9], the
J-machine [25], the Cray T3D [23], the Cray T3E [2], and the IBM Blue Gene [1].

Another generalisation of hypercubes are augmented cubes, recently proposed
by Choudum and Sunitha [12] as improvements over hypercubes. Hypercubes and
augmented cubes (of the same dimensions) have the same sets of vertices. However,
whereas the recursive construction of an n-dimensional hypercube is to take two
copies of an (n − 1)-dimensional hypercube and join corresponding pairs of vertices,
the recursive construction of an n-dimensional augmented cube AQn is to take two
copies of an (n−1)-dimensional augmented cube and as well as joining corresponding
pairs of vertices, pairs of vertices of Hamming distance n − 1 are also joined (that
is, vertices that are different in every component). Choudum and Sunitha show that
an n-dimensional augmented cube AQn: has 2n vertices and n2n edges; has diameter
⌈n

2 ⌉; has connectivity 2n − 1; is a Cayley graph and so is vertex-symmetric; and has
an O(n) time optimal routing algorithm.

In this paper, and inspired by [12], we extend a k-ary n-cube in a manner analogous
to the extension of an n-dimensional hypercube to an n-dimensional augmented cube.
Our definition of an augmented k-ary n-cube AQn,k, in comparison with that in [12],
is not a straightforward generalisation; however, we believe that it does reflect the
essence of the extension in [12], and our structural results bear this out. We give two
different definitions of an augmented k-ary n-cube in Section 2 and show that they
yield the same interconnection network. In Section 3, we show that an augmented
k-ary n-cube AQn,k is vertex-symmetric and, furthermore, a Cayley graph, though
not edge-symmetric unless n = 2. In Section 4, we show that an augmented k-ary
n-cube AQn,k has connectivity 4n−2, and that we can build a set of 4n−2 mutually
disjoint paths joining any two distinct vertices so that the path of maximal length
has length at most max{(n− 1)k − (n− 2), k + 7}; that is, AQn,k has wide-diameter
at most max{(n− 1)k− (n− 2), k + 7}. In Section 5, we examine the diameter of the
augmented k-ary n-cube AQn,k and show that the diameter of the augmented k-ary
2-cube AQ2,k is ⌊k

3⌋+⌈k−1
3 ⌉. We also show that the diameter of the augmented k-ary

n-cube AQn,k is at most k
4 (n+1), when n ≥ 3 and k is even, and at most k

4 (n+1)+ n
4 ,

when n ≥ 3 and k is odd. Our conclusions are presented in Section 6.

2 Basic definitions

We assume throughout that arithmetic on tuple elements is modulo k, and we denote
tuples of elements by bold type. Recall the definition of the k-ary n-cube Qk

n: the
vertex set V (Qk

n) is {(an, an−1, . . . , a1) : 0 ≤ ai ≤ k − 1}; and the edge set E(Qk
n)

is {(u,v) : u = (un, un−1, . . . , u1),v = (vn, vn−1, . . . , v1), either ui = vi − 1 or ui =
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vi + 1, for some i, and uj = vj , for all i 6= j}. Whilst we regard all graphs defined in
this paper as undirected, our definitions define all edges from the perspective of a given
vertex. Thus, in our definition of Qk

n we define the (undirected) edge (u,v) twice:
once from the perspective of u, as the edge (u,v); and once from the perspective of
v, as the edge (v,u). The reason we do this is that later we shall define paths in
our graphs and an undirected edge will be regarded differently depending upon the
direction it is being traversed in the path. The following definition adheres to this
convention.

Definition 1 Let n ≥ 1 and k ≥ 3 be integers. The augmented k-ary n-cube AQn,k

has kn vertices, each labelled by an n-bit string (an, an−1, . . . , a1), with 0 ≤ ai ≤ k−1,
for 1 ≤ i ≤ n. There is an edge joining vertex u = (un, un−1, . . . , u1) to vertex
v = (vn, vn−1, . . . , v1) if, and only if:

• vi = ui − 1 (resp. vi = ui + 1), for some 1 ≤ i ≤ n, and vj = uj , for all
1 ≤ j ≤ n, j 6= i; call the edge (u,v) an (i,−1)-edge (resp. an (i, +1)-edge); or

• for some 2 ≤ i ≤ n, vi = ui − 1, vi−1 = ui−1 − 1, . . . , v1 = u1 − 1 (resp.
vi = ui + 1, vi−1 = ui−1 + 1, . . . , v1 = u1 + 1), vj = uj, for all j > i; call the
edge (u,v) a (≤ i,−1)-edge (resp. a (≤ i, +1)-edge).

We emphasise that the graph AQn,k is undirected but that edges are labelled differ-
ently, as an (i, +1)-edge or as an (i,−1)-edge, for example, according to the perceived
orientation.

The augmented k-ary n-cube AQn,k can also be recursively defined as follows (the
proof of this fact is a simple induction).

Definition 2 Fix k ≥ 3. The augmented k-ary 1-cube AQ1,k has vertex set {0, 1, . . . ,

k − 1} and there is an edge joining vertex u to vertex v if, and only if, v = u + 1 or
v = u − 1. Fix n ≥ 2. Take k copies of an augmented k-ary (n − 1)-cube AQn−1,k

and for the ith copy, add an extra number i as the nth bit of each vertex (all vertices
have the same nth bit if they are in the same augmented k-ary (n − 1)-cube). Four
more edges are added for each vertex, namely the (n,−1)-edge, the (n, +1)-edge, the
(≤ n,−1)-edge and the (≤ n, +1)-edge (as defined in Definition 1).

With respect to the above definition, we refer to the subgraph of AQn,k induced by
the vertices whose first component is i, for some fixed i ∈ {0, 1, . . . , k−1}, as AQi

n−1,k

(this subgraph is clearly a copy of AQn−1,k).
Clearly, when n ≥ 2, AQn,k has kn vertices, (2n − 1)kn edges, and every vertex

has degree 4n − 2.
We adopt the following notation with regard to identifying specific vertices rel-

evant to a given vertex in AQn,k. Let v = (vn, vn−1, . . . , v1) be some vertex of
AQn,k. For each i ∈ {0, 1, . . . , k − 1} and each j ∈ {1, 2 . . . , n}, we denote the ver-
tex (vn, vn−1, . . . , vj+1, i, vj−1, . . . , v1) by v|ij . For j ∈ {1, 2, . . . , n}, we refer to the
neighbour (vn, . . . , vj+1, vj + 1, vj−1, . . . , v1) (resp. (vn, . . . , vj+1, vj − 1, vj−1, . . . , v1),
(vn, . . . , vj+1, vj + 1, vj−1 + 1, . . . , v1 + 1), (vn, . . . , vj+1, vj − 1, vj−1 − 1, . . . , v1 − 1))
as v(j,+1) (resp. v(j,−1), v(≤j,+1), v(≤j,−1)). We can combine our notation as the
following example shows: v(j,+1)|

3
n denotes the vertex obtained by taking the vertex
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v(j,+1) and fixing its nth component at 3 whilst leaving all other components as they
were.

Paths in graphs are given as sequences of vertices (on occasion, a path might
consist of a solitary vertex). A path in AQn,k might be specified by the source vertex
and a sequence of labels detailing the edges to be traversed, e.g., the path in AQ3,5

detailed as having the source vertex (0, 0, 0) and then following the edges labelled
(≤ 2, +1), (3,−1), (1, +1) is actually the path (0, 0, 0), (0, 1, 1), (4, 1, 1), (4, 1, 2).

The augmented 5-ary 2-cube is depicted in Fig. 1 (in two different ways): in the
first drawing, the edges of the underlying 5-ary 2-cube (that is, the (2, +1)-edges,
the (2,−1)-edges, the (1, +1)-edges and the (1,−1)-edges) are drawn using narrow
pen and the “augmented” edges (that is, the (≤ 2, +1)-edges and the (≤ 2,−1)-
edges) are drawn using broad pen; in the second, the (1, +1)-edges, the (1,−1)-edges,
the (≤ 2, +1)-edges, and the (≤ 2,−1)-edges are drawn using narrow pen and the
(2, +1)-edges and the (2,−1)-edges are drawn using broad pen.

AQ 2,5

(0,0)

(1,0)

(4,0)

(3,0)

(2,0)

(4,4)(4,3)(4,2)(4,1)

AQ 2,5

(0,0)

(1,1)

(4,4)

(3,3)

(2,2)

(4,3)(4,2)(4,1)(4,0)

(0,4)(0,3)(0,2)(0,1)

(1,0)

(3,2)

(2,1)

(0,4)(0,3)(0,2)(0,1)

(1,4)

(3,4)

(2,4)

Figure 1. Two views of an augmented 5-ary 2-cube.

3 Symmetry

In this section, we examine AQn,k as to any symmetric properties it might have. We
begin with a useful lemma which will be used to reduce case analyses in subsequent
proofs, and the proof of which is trivial (especially given Fig. 1).

Lemma 3 (a) The following are automorphisms of AQn,k:

(i) the mapping taking the vertex (vn, vn−1, . . . , v1) to (vn − an, vn−1 − an−1,

. . . , v1 − a1), where (an, an−1, . . . , a1) ∈ {0, 1, . . . , k − 1}n is fixed;

(ii) the mapping taking the vertex (vn, vn−1, . . . , v1) to (ǫvn, ǫvn−1, . . . , ǫv1),
where ǫ ∈ {+1,−1} is fixed.

(b) For i, j ∈ {0, 1, . . . , k− 1}, the mapping taking the vertex (i, vn−1, vn−2, . . . , v1)
to (j, vn−1, vn−2, . . . , v1) is an isomorphism of AQi

n−1,k to AQ
j
n−1,k.

(c) The mapping taking the vertex (i, j) to the vertex (j, i) is an automorphism of
AQ2,k.
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(d) The mapping taking the vertex (i, j) to the vertex (j − i, j), if i ≤ j, and the
vertex (i, j) to the vertex (k − (i − j), j), if i > j, is an automorphism.

A graph is vertex-symmetric (also known as vertex-transitive) if it has an auto-
morphism mapping any given vertex to any other given vertex. The property of a
graph being vertex-symmetric is important when that graph is used as an interconnec-
tion network for parallel computing, for having a vertex-symmetric interconnection
network makes parallel algorithm design and topological analysis easier, as well as
allowing flexibility in, for example, linear array simulations.

An immediate corollary of Lemma 3 is the following.

Corollary 4 The augmented k-ary n-cube AQn,k is vertex-symmetric.

Proof Given vertices u = (un, un−1, . . . , u1) and v = (vn, vn−1, . . . , v1) of AQn,k,
by Lemma 3, the mapping taking an arbitrary vertex (wn, wn−1, . . . , w1) to (wn −
(un − vn), wn−1 − (un−1 − vn−1), . . . , w1 − (u1 − v1)) is an automorphism mapping u

to v.

However, we can do better. Let Γ be a finite group and let S ⊆ Γ be a set
of generators of Γ not containing the identity and closed under inversion; that is,
s−1 ∈ S whenever s ∈ S. The simple undirected graph G(Γ, S) with vertex set Γ and
where two vertices g and h are adjacent if, and only if, gh−1 ∈ S, is called the Cayley
graph of Γ (with generating set S). Knowledge that an interconnection network is
a Cayley graph not only immediately yields that the graph is vertex-symmetric but
also provides an algebraic description of the graph that will be useful in, for example,
developing routing algorithms.

Let (Zk)n denote the n-fold Cartesian product of the group (Zk,⊕k), where Zk =
{0, 1, . . . , k−1} and where ⊕k denotes addition modulo k. Let x = (xn, xn−1, . . . , x1)
∈ (Zk)n; so x−1 = (k − xn, k − xn−1, . . . , k − x1).

Proposition 5 For every n ≥ 1, AQn,k
∼= G((Zk)n, S), where S is the set

{(0, . . . , 0, 0, k − 1, k − 1), (0, . . . , 0, k − 1, k − 1, k − 1), . . . , (k − 1, . . . , k − 1, k − 1),

(0, . . . , 0, 0, 1, 1), (0, . . . , 0, 1, 1, 1), . . . , (1, . . . , 1, 1),

(k − 1, 0, 0, . . . , 0), (0, k − 1, 0, . . . , 0), . . . , (0, . . . , 0, k − 1),

(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

Proof By definition, V (AQn,k) = Zk × Zk × . . . × Zk (repeated n times). Let
u = (un, un−1, . . . , u1) and v = (vn, vn−1, . . . , v1) be vertices of AQn,k.

Suppose that u and v are adjacent in AQn,k. So, for some i, one of the following
holds:

1. v = (un, un−1, . . . , ui+1, ui ⊕k 1, ui−1, . . . , u1)
2. v = (un, un−1, . . . , ui+1, ui ⊕k 1, ui−1 ⊕k 1, . . . , u1 ⊕k 1)
3. v = (un, un−1, . . . , ui+1, ui ⊕k (k − 1), ui−1, . . . , u1)
4. v = (un, un−1, . . . , ui+1, ui ⊕k (k − 1), ui−1 ⊕k (k − 1), . . . , u1 ⊕k (k − 1))

Thus, we have (respectively):
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1. u ⊕k v−1 = (un ⊕k (k − un−1), . . . , ui+1 ⊕k (k − ui+1), ui ⊕k (k − (ui + 1)),
ui+1 ⊕k (k − ui+1), . . . , u0 ⊕k (k − u0))

= (0, . . . , 0, k − 1, 0, . . . , 0) ∈ S

2. u ⊕k v−1 = (0, . . . , 0, k − 1, . . . , k − 1) ∈ S

3. u ⊕k v−1 = (0, . . . , 0, 1, 0, . . . , 0) ∈ S

4. u ⊕k v−1 = (0, . . . , 0, 1, . . . , 1) ∈ S.

Hence, u⊕k v−1 ∈ S.
Conversely, suppose that u⊕k v−1 ∈ S. So, u⊕k v−1 is of the form (0, . . . , 0, 1, 0,

. . . , 0) or (0, . . . , 0, 1, . . . , 1) or (0, . . . , 0, k − 1, 0, . . . , 0) or (0, . . . , 0, k − 1, . . . , k − 1).
Hence, for some i, one of the following holds:

1. u = (un, . . . , ui+1, ui ⊕k (k − 1), ui−1, . . . , u1)
2. v = (un, . . . , ui+1, ui ⊕k (k − 1), ui−1 ⊕k (k − 1), . . . , u1 ⊕k (k − 1))
3. v = (un, . . . , ui+1, ui ⊕k 1, ui−1, . . . , u1)
4. v = (un, . . . , ui+1, ui ⊕k 1, ui−1 ⊕k 1, . . . , u1 ⊕k 1).

So u and v are adjacent in AQn,k.

As remarked earlier, (by definition) all Cayley graphs are vertex-symmetric and
so we obtain an alternative proof of Corollary 4.

We end this section on symmetry by noting that although the augmented k-ary
n-cube is vertex-symmetric (and, indeed, a Cayley graph), it is edge-symmetric only
when n = 2 (recall that a graph is edge-symmetric if given any two edges (a, b) and
(a′, b′), either there is an automorphism mapping a to a′ and b to b′ or there is an
automorphism mapping a to b′ and b to a′). Our key observation is that if a graph is
edge-symmetric then the number of common neighbours of end-vertices of any edge
must be constant.

Suppose that n ≥ 3 and k ≥ 3. Consider the edges ((0, 0, . . . , 0), (1, 0, . . . , 0)) and
((0, 0, . . . , 0), (0, 1, . . . , 1)) of AQn,k. It is easy to see that (0, 0, . . . , 0) and (1, 0, . . . , 0)
have 2 common neighbours (namely (1, 1, . . . , 1) and (0, k−1, . . . , k−1)), if k ≥ 4, and
3 common neighbours (namely (1, 1, . . . , 1), (0, 2, . . . , 2), and (2, 0, . . . , 0)), if k = 3,
while (0, 0, . . . , 0) and (0, 1, . . . , 1) have 4 common neighbours (namely (1, 1, . . . , 1),
(0, 0, 1, . . . , 1), (0, 1, 0, . . . , 0), and (k−1, 0, . . . , 0), if k ≥ 4, and 5 common neighbours
(namely (1, 1, . . . , 1), (0, 0, 1, . . . , 1), (0, 1, 0, . . . , 0), (2, 0, . . . , 0), and (0, 2, . . . , 2)), if
k = 3.

Suppose that n = 2 and k ≥ 3. By Lemma 3, there are automorphisms fixing the
vertex (0, 0) of AQ2,k and mapping the vertex (0, 1) to (0, k − 1), (1, 0), (k − 1, 0),
(1, 1) and (k − 1, k − 1). Thus, there is an automorphism of AQ2,k mapping any
edge incident with (0, 0) to any other edge incident with (0, 0). As AQ2,k is vertex-
symmetric, this yields that AQ2,k is edge-symmetric. Thus, we obtain the following
result.

Proposition 6 Fix k ≥ 3. The augmented k-ary 2-cube AQ2,k is edge-symmetric,
but the k-ary n-cube AQn,k is not edge-symmetric when n ≥ 3.

4 Connectivity

In this section, we examine the connectivity of AQn,k. The connectivity of a graph
G = (V, E) is the minimum number of vertices (and their incident edges) needing
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to be removed so that what remains is a disconnected graph. By Menger’s Theorem
(see, for example, [8]), a graph G = (V, E) has connectivity at least c if, and only if,
given any two distinct vertices of V , there are c vertex-disjoint paths joining them.
Having a high connectivity is a desirable property of any interconnection network as
it provides fault-tolerance with regard to message routing, allows for hot-spots to be
avoided, and allows large messages to be split up into smaller ones and routed in
parallel along vertex-disjoint paths.

The connectivity of a graph G is denoted κ(G). Henceforth, we write that two
paths (which may have common start vertices or common end vertices) are disjoint
to mean that they are vertex-disjoint. We show that κ(AQn,k) = 4n − 2, whenever
n ≥ 2 and k ≥ 3. We begin by proving this result for AQ2,k and then for the general
case using a proof by induction (on n).

4.1 The base case of our induction

The base case of our forthcoming induction is provided by the following result.

Lemma 7 The connectivity of AQ2,k is 6; that is, κ(AQ2,k) = 6.

Proof We prove our result by constructing 6 disjoint paths joining any two distinct
vertices of AQ2,k. By Lemma 3, w.l.o.g. we may suppose that our two given vertices
of AQ2,k are u = (0, 0) and v = (i, j), where 0 ≤ i < j. For the case when k = 3,
Lemma 3 tells us that we need only consider the cases when v is (1, 2) and (2, 2). The
6 disjoint paths between (0, 0) and (1, 2) are as follows:

1. (0, 0), (2, 2), (1, 2);

2. (0, 0), (2, 0), (1, 2);

3. (0, 0), (0, 2), (1, 2);

4. (0, 0), (0, 1), (1, 2);

5. (0, 0), (1, 0), (1, 2);

6. (0, 0), (1, 1), (1, 2).

The 6 disjoint paths between (0, 0) and (2, 2) are as follows:

1. (0, 0), (2, 2);

2. (0, 0), (1, 1), (2, 2);

3. (0, 0), (0, 2), (2, 2);

4. (0, 0), (2, 0), (2, 2);

5. (0, 0), (1, 0), (2, 1), (2, 2);

6. (0, 0), (0, 1), (1, 2), (2, 2).

For k > 3, we have 2 different cases to consider. Recall, 0 ≤ i < j.

Case (i) 0 < i < j. Consider the following 6 paths:

α1: u, (k − 1, 0), (k − 2, 0), . . . , (k − j + i, 0), (k − j + i− 1, k − 1), (k − j + i− 2, k −
2), . . . , (i + 1, j + 1),v;

α2: u, (k − 1, k − 1), (k − 2, k − 2), . . . , (j, j), (j − 1, j), (j − 2, j), . . . , (i + 1, j),v;

α3: u, (0, 1), (0, 2), . . . , (0, j − i), (1, j − i + 1), (2, j − i + 2), . . . , (i − 1, j − 1),v;

α4: u, (0, k − 1), (0, k − 2), . . . , (0, j + 1), (0, j), (1, j), (2, j), . . . , (i − 1, j),v;
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α5: u, (1, 1), (2, 2), . . . , (i, i), (i, i + 1), (i, i + 2), . . . , (i, j − 1),v;

α6: u, (1, 0), (2, 0), . . . , (i, 0), (i, k − 1), (i, k − 2), . . . , (i, j + 1),v.

These paths are clearly mutually disjoint.

Case (ii) i = 0 and 1 ≤ j. Consider the following 6 paths:

α1: u, (k − 1, 0), (k − 1, 1), . . . , (k − 1, j − 1),v;

α2: u, (k − 1, k − 1), (k − 1, k − 2), . . . , (k − 1, j),v;

α3: u, (0, 1), (0, 2), . . . , (0, j − 1),v;

α4: u, (0, k − 1), (0, k − 2), . . . , (0, j + 1),v;

α5: u, (1, 1), (1, 2), . . . , (1, j),v;

α6: u, (1, 0), (1, k − 1), (1, k − 2), . . . , (1, j + 1),v.

These paths are clearly mutually disjoint. The result follows.

For any graph G and any two distinct vertices u and v of G, a c-container Cc(u, v),
for some c ≥ 1, is a collection of c vertex-disjoint paths joining u and v in G. The
width of Cc(u, v) is c, the number of paths, and the length of Cc(u, v) is the length
of the longest path. Suppose further that G has connectivity c. We say that the
wide-diameter of G is at most d′ if for every pair of distinct vertices u and v of G,
there is a container Cc(u, v) of width c and of length at most d′. By examining each of
the different constructions in the proof of Lemma 7, we see that the maximal length
path joining u = (0, 0) and v = (i, j) is k. Thus, we obtain the following result.

Corollary 8 AQ2,k has wide-diameter at most k.

4.2 The induction step

We now prove our general connectivity result.

Theorem 9 κ(AQn,k) = 4n − 2, whenever k ≥ 3 and n ≥ 2, and given any two
distinct vertices of AQn,k, there are 4n− 2 mutually disjoint paths joining these two
vertices so that the length of the longest of these paths is at most max{(n−1)k−(n−
2), k + 7}; that is, AQn,k has wide-diameter at most max{(n − 1)k − (n − 2), k + 7}.

Proof When n = 2 and k ≥ 3, the result holds by Lemma 7. We proceed by
induction on n. Our induction hypothesis is that any two distinct vertices of AQn−1,k

are joined by a set of 4n − 6 mutually disjoint paths (the base case of the induction
is covered by Lemma 7).

We shall also calculate the length of a longest path as constructed according to this
proof. Let dn(w,w′) be the maximal length of any path as constructed according to
this proof joining any two vertices w and w′ of AQn,k, and let δn = max{dn(w,w′) :
w and w′ are distinct vertices of AQn,k}. We shall obtain a recursive estimate of δn.

Fix k, n ≥ 3. Given any two distinct vertices u and v of AQn,k, we shall construct
4n − 2 disjoint paths joining them. By Lemma 3, w.l.o.g. we may assume that
u = (0, 0, . . . , 0) and v = (vn, vn−1, . . . , v1), with 0 ≤ vn ≤ ⌊k

2⌋.
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Case 1: v = (vn, 0, 0, . . . , 0), where 1 ≤ vn ≤ ⌊k
2 ⌋; so, v|0n = u.

The vertex u has 4n−6 neighbours in AQ0
n−1,k. For each of these neighbours w, apart

from (0, 1, 1, . . . , 1) and (0, k−1, k−1, . . . , k−1), build the path from w by traversing
(n, +1)-edges until AQvn

n−1,k is reached, before moving to v. This accounts for 4n− 8
mutually disjoint paths from u to v. From the neighbour (0, k − 1, k − 1, . . . , k − 1),
build the path by traversing (n, +1)-edges until AQvn−1

n−1,k is reached, before moving to

v. From the neighbour (0, 1, 1, . . . , 1), traverse (n,−1)-edges until AQvn+1
n−1,k is reached,

before moving to v. This accounts for another 2 paths from u to v that are mutually
disjoint and disjoint from all the other paths constructed above.

From the neighbour (k − 1, k − 1, . . . , k − 1) of u, traverse (n,−1)-edges until
AQvn

n−1,k is reached, before moving to v. From the neighbour (1, 1, . . . , 1) of u, traverse
(n, +1)-edges until AQvn

n−1,k is reached, before moving to v. Finally, two additional
paths are obtained by traversing (n, +1)-edges from u until v is reached, and by
traversing (n,−1)-edges from u until v is reached. All paths constructed are mutually
disjoint and can be visualized as in Fig. 2. Note that the length of the longest
constructed path is max{vn + 2, k − vn + 1}; so, dn(u,v) ≤ k.

Having dealt with Case 1, let us henceforth assume that v|0n 6= u. We now define
some paths which we shall use throughout the subsequent cases.

Our induction hypothesis is that there are 4n − 6 disjoint paths joining any two
distinct vertices of AQn−1,k. So, by our induction hypothesis, there is a set Π of
4n − 6 disjoint paths joining u and v|0n in AQ0

n−1,k (by assumption u and v|0n are
distinct). Let us denote 4 of these paths as follows:

• π1 is the path passing through the neighbour u(≤n−1,−1) of u;

• π2 is the path passing through the neighbour u(≤n−1,+1) of u;

• π3 is the path passing through the neighbour v(≤n−1,−1)|
0
n of v|0n;

• π4 is the path passing through the neighbour v(≤n−1,+1)|
0
n of v|0n.

Note that although π1 and π2 are always distinct, as are π3 and π4, it may be the
case that either π1 or π2 is identical to either π3 or π4 (note also that any one of the
above paths may consist of a solitary edge). We examine each of these circumstances
separately. Moreover, there are two distinct situations: when vn = 0; and when
vn 6= 0.

Note that every path π in Π, from u to v|0n, is such that there is a path πi in
AQi

n−1,k, where i ∈ {1, 2, . . . , k−1}, from u|in to v|in obtained by taking the isomorphic
image of π under the natural isomorphism (which takes (0, an−1, an−2, . . . , a1) to
(i, an−1, an−2, . . . , a1); see Lemma 3). Throughout this proof, we extend this notation
to arbitrary paths in AQ0

n−1,k.

Consider the situation when vn = 0 (and so v|0n = v). For each path πj , where
j ∈ {1, 2, 3, 4}, that is not the path u,v|0n, truncate πj at the penultimate vertex
(that is, the vertex of the path that is a neighbour of v|0n) and also remove the first
edge: denote this truncated path by ρj (note that a path might be truncated so that
it consists of a solitary vertex). Do likewise with all isomorphic images of π1, π2, π3

and π4 (in AQ1
n−1,k, AQ2

n−1,k, and so on).
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u

(k-1,0,0,...,0)

(1,0,0,...,0)

AQ n-1,k
0

AQ n-1,k
1

AQ n-1,k
k-1

AQ n-1,k
v  +1n

AQ n-1,k
n

v  -1

AQ n-1,k
v  n

 v = (v  ,0,0,...,0)n

(k-1,k-1,k-1,...,k-1)

(0,k-1,k-1,...,k-1)

(1,k-1,k-1,...,k-1) (0,1,1,...,1)

(k-1,1,1,...,1)

(1,1,1,...,1)

α
1 α

2

α
4

α
3

Figure 2. The 4n − 2 disjoint paths in Case 1.

Suppose that ρ1 6= ρ3. If neither ρ1 nor ρ3 is the path u,v then we construct
additional paths u, ρk−1

1 ,v|k−1
n ,v and u,u|k−1

n , ρk−1
3 ,v through AQk−1

n−1,k. If ρ1 = u,v

then we have that v = (0, k−1, k−1, . . . , k−1). In this case, we construct additional
paths u,u|k−1

n , ρk−1
3 ,v and u,v|k−1

n ,v through AQk−1
n−1,k. If ρ3 = u,v then we have

that u = (0, vn−1 − 1, vn−2 − 1, . . . , v1 − 1), with vn−1 = vn−2 = . . . = v1 = 1.
In this case, we construct additional paths u,u|k−1

n ,v and u, ρk−1
1 ,v|k−1

n ,v through
AQk−1

n−1,k.
Suppose that ρ1 = ρ3. We have that ρ1 6= ρ2. In this case, we construct additional

paths u, ρk−1
1 ,v and u,u|k−1

n , ρk−1
2 ,v|k−1

n ,v through AQk−1
n−1,k.

We proceed in an analogous fashion by considering ρ2 and ρ4 in the same way,
and constructing disjoint paths from u to v through AQ1

n−1,k. Consequently, we
obtain 4n − 2 disjoint paths from u to v in AQn,k. We clearly have that dn(u,v) =
dn−1((0, 0, . . . , 0), (vn−1, vn−2, . . . , v1)) + 2 ≤ δn−1 + 2.

Henceforth, we shall assume that vn 6= 0.
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Case 2: u 6= v|0n, u is not adjacent to v|0n, and u and v|0n do not have a neighbour of
AQ0

n−1,k in common.

In particular, u,v is not a path in Π.

Sub-case 2.1: ρ1 6= ρ4 and ρ2 6= ρ3.

We begin by building 6 specific paths:

α1: u, ρk−1
1 ,v|k−1

n ,v|k−2
n , . . . ,v|vn+1

n ,v;

α2: u,u|k−1
n , ρk−1

4 ,v(≤n,+1)|
k−2
n ,v(≤n,+1)|

k−3
n , . . . ,v(≤n,+1),v;

α3: u,u|1n,u|2n, . . . ,u|vn

n , ρvn

3 ,v;

α4: u,u(≤n,+1),u(≤n,+1)|
2
n,u(≤n,+1)|

3
n, . . . ,u(≤n,+1)|

vn−1
n , ρvn

2 ,v;

α5: u, ρ2,v|
0
n,v|1n, . . . ,v|vn−1

n ,v;

α6: u, ρ3,v(≤n,−1)|
1
n,v(≤n,−1)|

2
n, . . . ,v(≤n,−1),v.

These paths can be visualized as in Fig. 3, and can easily be seen to be mutually
disjoint.

There are 4n− 8 paths in Π apart from π2 and π3; let π be any one of them. We
truncate π at the penultimate vertex, and then extend this path along (n, +1)-edges
until we reach AQvn

n−1,k. Finally, we extend the path by an edge to v. Again, it is easy
to see that the resulting set of 4n − 2 paths are mutually disjoint. Furthermore, we
have that dn(u,v) = dn−1((0, 0, . . . , 0), (vn−1, vn−2, . . . , v1)) + max{k− vn − 1, vn} ≤
δn−1 + k − 2.

Sub-case 2.2: ρ1 = ρ4 and ρ2 6= ρ3.

Note that, by definition, ρ1, ρ2 and ρ3 are distinct. Referring to Sub-case 2.1 (and
Fig. 3), if we can amend paths α1 and α2 so that they remain disjoint and also disjoint
from all of the other 4n − 4 paths then we are done. Replace α1 and α2 with the
paths α′

1 and α′
2 defined as:

α′
1: u, ρk−1

1 ,v(≤n,+1)|
k−2
n ,v(≤n,+1)|

k−3
n , . . . ,v(≤n,+1),v;

α′
2: u,u|k−1

n , ρk−1
2 ,v|k−1

n ,v|k−2
n , . . . ,v|vn+1

n ,v.

Again, it is easy to see that the resulting set of 4n − 2 paths are mutually disjoint.
The amendments made can be visualized as in Fig. 4. Furthermore, we have that
dn(u,v) = dn−1((0, 0, . . . , 0), (vn−1, vn−2, . . . , v1)) + max{k − vn, vn} ≤ δn−1 + k − 1.
Sub-case 2.3: ρ1 6= ρ4 and ρ2 = ρ3.

Note that, by definition, ρ1, ρ2 and ρ4 are distinct. Referring to Sub-case 2.1 (and
Fig. 3), if we can amend paths α3, α4, α5 and α6 so that they remain disjoint and
also disjoint from all of the other 4n− 6 paths then we are done. Replace α3, α4, α5

and α6 with the paths α′
3, α′

4, α′
5 and α′

6 defined as:
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ρ
3

u

v

(0,v    -1,v    -1,...,v -1)n-1 n-2 1

(0,v    ,v     ,...,v  )n-1 n-2 1

(k-1,k-1,k-1,...,k-1)

(k-1,0,0,...,0)

(1,0,0,...,0)

(1,1,1,...,1)

(1,v    -1,v    -1,...,v -1)n-1 n-2 1

(k-1,v    -1,v     -1,...,v  -1)n-1 n-2 1

(1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    ,v     ,...,v  )n-1 n-2 1

(1,v    ,v     ,...,v  )n-1 n-2 1

(0,v    +1,v    +1,...,v +1)n-1 n-2 1

AQ n-1,k
0

AQ n-1,k
1

AQ n-1,k
k-1

AQ n-1,k
v  +1n

AQ n-1,k
n

v  -1

AQ n-1,k
v  n

ρ
1
k-1

ρ
4
k-1

ρ
3

α
1

α
2

α
3

α
4

ρ
2

v  n

v  n

ρ
2α

5

α
6

Figure 3. The 6 disjoint paths in Sub-case 2.1.

α′
3: u,u|1n,u|2n, . . . ,u|vn

n , ρvn

1 ,v;

α′
4: u,u(≤n,+1),u(≤n,+1)|

2
n,u(≤n,+1)|

3
n, . . . ,u(≤n,+1)|

vn−1
n , ρvn

2 ,v;

α′
5: u, ρ2,v(≤n,−1)|

1
n,v(≤n,−1)|

2
n, . . . ,v(≤n,−1),v;

α′
6: u, ρ1,v|

0
n,v|1n, . . . ,v|vn−1

n ,v.

Again, it is easy to see that the resulting set of 4n − 2 paths are mutually disjoint.
The amendments made can be visualized as in Fig. 5. Furthermore, we have that
dn(u,v) = dn−1((0, 0, . . . , 0), (vn−1, vn−2, . . . , v1))+max{k−vn−1, vn} ≤ δn−1+k−2.

Sub-case 2.4: ρ1 = ρ4 and ρ2 = ρ3.

By making the amendments in Sub-cases 2.2 and 2.3, we obtain a set of 4n−2 mutually
disjoint paths. Furthermore, we have that dn(u,v) = dn−1((0, 0, . . . , 0), (vn−1, vn−2,

. . . , v1)) + max{k − vn, vn} ≤ δn−1 + k − 1.
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ρ
3

u

(0,v    -1,v    -1,...,v -1)n-1 n-2 1

(0,v    ,v     ,...,v  )n-1 n-2 1

(k-1,k-1,k-1,...,k-1)

(k-1,0,0,...,0)

(k-1,v    -1,v     -1,...,v  -1)n-1 n-2 1

(k-1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    ,v     ,...,v  )n-1 n-2 1

(0,v    +1,v    +1,...,v +1)n-1 n-2 1

AQ n-1,k
0

AQ n-1,k
k-1

ρ
1
k-1 ρ

4
k-1

α
1

α
2

α
3

α
4

ρ
2α

5

α
6

=

ρ
2
k-1

Figure 4. The amendments in Sub-case 2.2.

Case 3: u 6= v|0n and u and v|0n are not adjacent, but u and v|0n have a neighbour of
AQ0

n−1,k in common.

All the constructions in Sub-cases 2.1, 2.2, 2.3 and 2.4 work here unless (vn−1 −
1, vn−2 − 1, . . . , v1 − 1) = (1, 1, . . . , 1), i.e., unless v = (vn, 2, 2, . . . , 2). Thus, this is
the only situation to deal with (note that k ≥ 4, as otherwise u and v|0n would be
adjacent).

One of the paths in the set Π is the path u, (0, 1, 1, . . . , 1),v, and let π be the path
passing through (0, 3, 3, . . . , 3). Truncate π at the penultimate vertex (0, 3, 3, . . . , 3)
and also remove the first edge: denote this truncated path by ρ (note that the path
ρ might consist of the solitary vertex (0, 3, 3, . . . , 3)). Define the paths ρi, for i ∈
{1, 2, . . . , k − 1}, as we did earlier.

Sub-case 3.1: vn > 1.

We begin by building 6 specific paths:

α1: u, ρk−1,v(≤n,+1)|
k−2
n ,v(≤n,+1)|

k−3
n , . . . ,v(≤n,+1),v;

α2: u,u|k−1
n ,v(≤n,−1)|

k−1
n ,v|k−1

n ,v|k−2
n , . . . ,v|vn+1

n ,v;

α3: u,u|1n,u|2n, . . . ,u|vn

n ,v(≤n,−1)|
vn

n ,v;

α4: u,v(≤n,−1)|
1
n,v(≤n,−1)|

2
n,v(≤n,−1)|

3
n, . . . ,v(≤n,−1)|

vn−1
n ,v;

α5: u, ρ,v(≤n,+1)|
1
n,v(≤n,+1)|

2
n, . . . ,v(≤n,+1)|

vn

n ,v;

α6: u,v(≤n,−1)|
0
n,v|0n,v|1n, . . . ,v|vn−1

n ,v.

These paths can be visualized as in Fig. 6, and can easily be seen to be disjoint.
There are 4n−8 paths in Π apart from π and u, (0, 1, 1, . . . , 1),v; let π′ be any one

of them. We truncate π′ at the penultimate vertex, and then extend this path along
(n, +1)-edges until we reach AQvn

n−1,k. Finally, we extend the path by an edge to v.
Again, it is easy to see that the resulting set of 4n − 2 paths are mutually disjoint.
Furthermore, we have that dn(u,v) = dn−1((0, 0, . . . , 0), (2, 2, . . . , 2))+max{k−vn−
2, vn} ≤ δn−1 + max{k − 4, ⌊k

2⌋}.
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u

v

(0,v    -1,v    -1,...,v -1)n-1 n-2 1

(0,v    ,v     ,...,v  )n-1 n-2 1

(k-1,k-1,k-1,...,k-1)

(k-1,0,0,...,0)

(1,0,0,...,0)

(1,1,1,...,1)

(1,v    -1,v    -1,...,v -1)n-1 n-2 1

(k-1,v    -1,v     -1,...,v  -1)n-1 n-2 1

(1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    ,v     ,...,v  )n-1 n-2 1

(1,v    ,v     ,...,v  )n-1 n-2 1

(0,v    +1,v    +1,...,v +1)n-1 n-2 1

AQ n-1,k
0

AQ n-1,k
1

AQ n-1,k
k-1

AQ n-1,k
v  +1n

AQ n-1,k
n

v  -1

AQ n-1,k
v  n

ρ
1
k-1

ρ
4
k-1

α
1

α
2

α
3

α
4

α
5

α
6

ρ
3
v  nρ

2
v  n =

ρ
3

ρ
2 =

ρ
1
v  n

ρ
1

Figure 5. The amendments in Sub-case 2.3.

Sub-case 3.2: vn = 1.

We begin by building 6 specific paths:

α1: u, ρk−1,v(≤n,+1)|
k−2
n ,v(≤n,+1)|

k−3
n , . . . ,v(≤n,+1),v;

α2: u,u|k−1
n ,v(≤n,−1)|

k−1
n ,v|k−1

n ,v|k−2
n , . . . ,v|2n,v;

α3: u,u|1n, ρ1,v;

α4: u,v(≤n,−1)|
1
n,v;

α5: u, ρ,v|0n,v;

α6: u,v(≤n,−1),v.
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(0,2,2,...,2)

(k-1,0,0,...,0)

(1,0,0,...,0)
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1

AQ n-1,k
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AQ n-1,k
n

v  -1
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(0,k-1,k-1,...,k-1)

(1,2,2,...,2)
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α
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α
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α
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α
6

α
3

ρ
k-1

ρ

Figure 6. The paths in Sub-case 3.1.

Case 4: u and v|0n are adjacent.

These paths can be visualized as in Fig. 7, and can easily be seen to be mutually
disjoint. There are 4n − 8 paths in Π apart from π and u, (0, 1, 1, . . . , 1),v; let π′

be any one of them. We truncate π′ at the penultimate vertex, and then extend
this path along an (n, +1)-edge and then an edge to v. Again, it is easy to see that
the resulting set of 4n − 2 paths are mutually disjoint. Furthermore, we have that
dn(u,v) = max{dn−1((0, 0, . . . , 0), (2, 2, . . . , 2)) + k − 3, k + 1} ≤ δn−1 + k − 3.

Sub-case 4.1: v|0n 6∈ {(0, k − 1, k − 1, . . . , k − 1), (0, 1, 1, . . . , 1), (0, 2, 2, . . . , 2)}.

Note that as (0, k − 1, k − 1, . . . , k − 1) 6= v|0n 6= (0, 1, 1, . . . , 1), none of the vertices
(0, k−1, k−1, . . . , k−1), (0, 1, 1, . . . , 1), (0, vn−1−1, vn−2−1, . . . , v1−1) and (0, vn−1+
1, vn−2 + 1, . . . , v1 + 1) is identical to either u or v|0n. Note also that as u and v|0n
are adjacent, so are (i, 1, 1, . . . , 1) and (i, vn−1 + 1, vn−2 + 1, . . . , v1 + 1) and also
(i, k−1, k−1, . . . , k−1) and (i, vn−1−1, vn−2−1, . . . , v1−1), for i ∈ {1, 2, . . . , k−1}.
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v

(0,1,1,...,1)

(0,2,2,...,2)

(k-1,0,0,...,0)

(1,0,0,...,0)

(k-1,2,2,...,2)

(0,3,3,...,3)

AQ n-1,k
0
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2
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1
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α
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α
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α
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(2,2,2,...,2)(2,0,0,...,0)

ρk-1

ρ1

ρ

Figure 7. The paths in Sub-case 3.2.

One of the paths in Π is the edge (u,v|0n). For each path in Π, apart from
the edge (u,v|0n) and the path passing through (0, vn−1 − 1, vn−2 − 1, . . . , v1 − 1),
truncate this path at the penultimate vertex and extend it using (n, +1)-edges until
AQvn

n−1,k is reached before extending it further by an edge to v. As regards the
path in Π passing through (0, vn−1 − 1, vn−2 − 1, . . . , v1 − 1), truncate this path at
(0, vn−1 − 1, vn−2 − 1, . . . , v1 − 1) and extend it using (n, +1)-edges until AQvn−1

n−1,k is

reached before extending it further by an edge to v. Also, extend the edge (u,v|0n)
using (n, +1)-edges to v. These 4n−6 paths from u to v can be visualized as in Fig. 8.

Form the following paths:

α1: u,u(≤n,+1),u(≤n,+1)|
2
n, . . . ,u(≤n,+1)|

vn+1
n ,v(≤n,+1),v;

α2: u,u|1n,u|2n, . . . ,u|vn

n ,v;

α3: u,u|k−1
n ,v|k−1

n ,v|k−2
n , . . . ,v|vn+1

n ,v;

α4: u,u(≤n,−1),v(≤n,−1)|
k−1
n ,v(≤n,−1)|

k−2
n ,v(≤n,−1)|

k−3
n , . . . ,v(≤n,−1)|

vn

n ,v.

All paths can be visualized in Fig. 8. It is easy to see that as (0, 1, 1, . . . , 1) 6= (0, vn−1−
1, vn−2−1, . . . , v1−1), i.e., v|0n 6= (0, 2, 2, . . . , 2), the 4n−6 paths, constructed above,
and the paths α1, α2, α3 and α4 are all mutually disjoint. Furthermore, we have that
dn(u,v) = max{dn−1((0, 0, . . . , 0), (vn−1, vn−2, . . . , v1)) + vn, k − vn + 2, vn + 3} ≤
δn−1 + ⌊k

2 ⌋.

Case 4.2: v|0n = (0, 1, 1, . . . , 1).

One of the paths in Π is the edge (u,v|0n). For each path in Π, apart from the edge
(u,v|0n), truncate this path at the penultimate vertex and extend it using (n, +1)-
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edges until AQvn

n−1,k is reached before extending it further by an edge to v. Extend

the edge (u,v|0n) using (n,−1)-edges to v.

u

v

(0,v    -1,v    -1,...,v -1)n-1 n-2 1

(0,v    ,v     ,...,v  )n-1 n-2 1

(k-1,k-1,k-1,...,k-1)

(k-1,0,0,...,0)

(1,0,0,...,0)

(1,1,1,...,1)

(1,v    -1,v    -1,...,v -1)n-1 n-2 1

(k-1,v    -1,v     -1,...,v  -1)n-1 n-2 1

(1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    +1,v    +1,...,v +1)n-1 n-2 1

(k-1,v    ,v     ,...,v  )n-1 n-2 1

(1,v    ,v     ,...,v  )n-1 n-2 1

(0,v    +1,v    +1,...,v +1)n-1 n-2 1

AQ n-1,k
0

AQ n-1,k
1

AQ n-1,k
k-1

AQ n-1,k
v  +1n

AQ n-1,k
n

v  -1

AQ n-1,k
v  n

(k-1,1,1,...,1)

(0,1,1,...,1)

(0,k-1,k-1,...,k-1)

α
1

α
2

α
3 α

4

Figure 8. The paths in Sub-case 4.1.

Let the path ρ in AQk−1
n−1,k be defined as (k−1, k−1, k−1, . . . , k−1), (k−1, 0, k−

1, . . . , k−1), (k−1, 1, k−1, . . . , k−1), (k−1, 2, k−1, . . . , k−1), (k−1, 2, 0, . . . , 0), (k−
1, 2, 1, . . . , 1), (k−1, 2, 2, . . . , 2) (unless (k−1, k−1, k−1, . . . , k−1) = (k−1, 2, 2, . . . , 2)
when ρ is just a solitary vertex). Note that ρ avoids (k − 1, 0, 0, . . . , 0) and (k −
1, 1, 1, . . . , 1). Define the paths:

α1: u, ρ,v(≤n,+1)|
k−2
n ,v(≤n,+1)|

k−3
n , . . . ,v(≤n,+1),v;

α2: u,u|k−1
n ,u|k−2

n , . . . ,u|vn

n ,v;

α3: u,u|1n,u|2n, . . . ,u|vn−1
n ,v;

α4: u,v|1n,v|2n, . . . ,v|vn−1
n ,v.
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Our collection of 4n−2 paths from u to v can be visualized as in Fig. 9, and they are
clearly mutually disjoint. Furthermore, we have that dn(u,v) = max{dn−1((0, 0, 0,

. . . , 0), (1, 1, . . . , 1)) + vn, k − vn + 6} ≤ max{δn−1 + ⌊k
2⌋, k + 5}.

u (0,1,1,...,1)

(k-1,k-1,k-1,...,k-1)

(k-1,0,0,...,0)

(1,0,0,...,0)

AQ n-1,k
0

AQ n-1,k
1

AQ n-1,k
k-1

AQ n-1,k
v  +1n

AQ n-1,k
n

v  -1

AQ n-1,k
v  n

(0,k-1,k-1,...,k-1)

 v = (v  ,1,1,...,1)n

(1,1,1,...,1)

(k-1,1,1,...,1)

(1,2,2,...,2)

(0,2,2,...,2)

(k-1,2,2,...,2)

ρ

α
1α

2

α
3

α
4

Figure 9. The paths in Sub-case 4.2.

Case 4.3: v|0n = (0, k − 1, k − 1, . . . , k − 1).

One of the paths in Π is the edge (u,v|0n). For each path in Π, apart from the edge
(u,v|0n) and the paths passing through (0, 1, 1 . . . , 1) and (0, k − 2, k − 2, . . . , k − 2,
truncate this path at the penultimate vertex and extend it using (n, +1)-edges until
AQvn

n−1,k is reached before extending it further by an edge to v. Extend the edge

(u,v|0n) using (n, +1)-edges to v, and extend the truncated path through (0, k −
2, k − 2, . . . , k − 2) using (n, +1)-edges to (vn − 1, k − 2, k − 2, . . . , k − 2) and then to
v. This accounts for 4n− 7 mutually disjoint paths.

Let the path ρ in AQvn+1
n−1,k be defined as (vn + 1, k − 2, k − 2, . . . , k − 2), (vn +

1, k− 1, k− 2, . . . , k− 2), (vn + 1, 0, k− 2, . . . , k− 2), (vn + 1, 1, k− 2, . . . , k− 2), (vn +
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1, 1, k− 1, . . . , k− 1), (vn + 1, 1, 0, . . . , 0), (vn + 1, 1, 1, . . . , 1) (unless (vn +1, k− 2, k−
2, . . . , k−2) = (vn +1, 1, 1, . . . , 1) when ρ is just a solitary vertex). Note that ρ avoids
(vn + 1, 0, 0, . . . , 0) and (vn + 1, k − 1, k − 1, . . . , k − 1). Define the paths:

α1: u,u|k−1
n ,u|k−2

n , . . . ,u|vn+1
n ,v;

α2: u,v|k−1
n ,v|k−2

n , . . . ,v|vn+1
n ,v;

α3: u,u(≤n,+1),u(≤n,+1)|
2
n,u(≤n,+1)|

3
n, . . . ,u(≤n,+1)|

vn

n ,v;

α4: u,u|1n,u|2n, . . . ,u|vn

n ,v;

α5: u,u(≤n,+1)|
0
n,u(≤n,+1)|

k−1
n ,u(≤n,+1)|

k−2
n , . . . ,u(≤n,+1)|

vn+2
n , ρ,v(≤n,−1)|

vn

n ,v.

Our collection of 4n−2 paths from u to v can be visualized as in Fig. 10, and they
are clearly mutually disjoint. Furthermore, we have that dn(u,v) = max{dn−1((0, 0,

. . . , 0), (k − 1, k − 1, . . . , k − 1)) + vn, k − vn + 8} ≤ max{δn−1 + ⌊k
2⌋, k + 7}.

u (0,k-1,k-1,...,k-1)

(k-1,0,0,...,0)

(1,0,0,...,0)

AQ n-1,k
0

AQ n-1,k
1

AQ n-1,k
k-1

AQ n-1,k
v  +1n

AQ n-1,k
n

v  -1

AQ n-1,k
v  n

 v = (v  ,k-1,k-1,...,k-1)n

(1,k-1,k-1,...,k-1)

(k-1,k-1,k-1,...,k-1)

(1,1,1,...,1)

(0,1,1,...,1)

(k-1,1,1,...,1)

α
1

α
2

α
3

α
4

(k-1,k-2,k-2,...,k-2)

(1,k-2,k-2,...,k-2)

(0,k-2,k-2,...,k-2)

ρ

α
5

Figure 10. The paths in Sub-case 4.3.
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Case 4.4: v|0n = (0, 2, 2, . . . , 2).

As u and v|0n are adjacent, we must have that k = 3 and that v = (1, 2, 2, . . . , 2).
By Lemma 3, there exists an automorphism of AQn,k mapping (1, 2, 2, . . . , 2) to
(2, 1, 1, . . . , 1) and fixing u. Thus, this sub-case reduces to Sub-case 4.2.

As regards the length of the longest path constructed, we have that δn ≤ max{δn−1

+k − 1, k + 7} and δ2 = k. Thus, δn ≤ (n − 1)k − (n − 2), unless: n = 3 and
k = 3, 4, 5, 6, 7; n = 4 and k = 3, 4; or n = 5 and k = 3, when δn ≤ k + 7. The result
follows by induction.

5 The diameter

The diameter of any graph G = (V, E) is the maximum of the set {dG(x, y) : (x, y) ∈
V × V, dG(x, y) is the length of the shortest path joining x and y in G}. Obviously,
the smaller the diameter of an interconnection network, the lower the communication
latency (be this under store-and-forward or wormhole routing). In this section, we
obtain the diameter of AQ2,k and an upper bound on the diameter of AQn,k when
n ≥ 3.

We begin with some immediate observations as regards the order of edges in
paths in AQn,k. Consider some path ρ from some vertex u of AQn,k to some
vertex v of AQn,k within which there is an λ-edge, where λ ∈ {(i, +1), (i,−1), (≤
i, +1), (≤ i,−1)}, for some i, as the ath edge of the path, and a µ-edge, where
µ ∈ {(j, +1), (j,−1), (≤ j, +1), (≤ j,−1)}, for some j, as the bth edge of the path,
where a 6= b. The path obtained from ρ by traversing a µ-edge as the ath edge of the
path and a λ-edge as the bth edge of the path, and leaving the labels of all other edges
as they were, is still a path from u to v. Also, if ρ is a shortest path between u and
v and there is a (i, +1)-edge (resp. (i,−1)-edge, (≤ i, +1)-edge, (≤ i,−1)-edge) in ρ,
for some particular i, then there is no (i,−1)-edge (resp. (i, +1)-edge, (≤ i,−1)-edge,
(≤ i, +1)-edge) in ρ. We use these observations throughout the proof of the following
result.

Proposition 10 The diameter of AQ2,k is ⌊k
3 ⌋ + ⌈k−1

3 ⌉, and for n ≥ 3 the diameter

of AQn,k is at most k
4 (n + 1), if k is even, and at most k

4 (n + 1) + n
4 , if k is odd.

Proof By Corollary 4, we may restrict our attention to the lengths of paths from an
arbitrary vertex of AQn,k to the vertex 0 of AQn,k when determining the diameter
of AQn,k.

Let v = (v2, v1) be a vertex of AQ2,k.

Case (i): k ≡ 0 (mod 3).

Sub-case (a): v1, v2 6∈ {k
3 + 1, k

3 + 2, . . . , 2k
3 − 1}.

By traversing edges with labels from {(i, +1), (i,−1) : i = 1, 2, . . . , n}, we can obtain
a path of length at most 2k

3 from v to 0.

Sub-case (b): exactly one of v1 and v2 is in {k
3 + 1, k

3 + 2, . . . , 2k
3 − 1}.

Suppose that v1 ∈ {k
3 + 1, k

3 + 2, . . . , 2k
3 − 1}. By traversing (1, +1)-edges or (1,−1)-

edges, we can move from v to (v2, v2), and by traversing (≤ 2, +1)-edges or (≤ 2,−1)-
edges we can then move to 0. This yields a path of length at most 2k

3 −1 from v to 0.
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If v2 ∈ {k
3 +1, k

3 +2, . . . , 2k
3 −1} then we proceed similarly except that we first traverse

(2, +1)-edges or (2,−1)-edges to get to (v1, v1), before traversing (≤ 2, +1)-edges or
(≤ 2,−1)-edges to get to 0.

Sub-case (c): v1, v2 ∈ {k
3 + 1, k

3 + 2, . . . , 2k
3 − 1}.

Proceeding similarly to as in Sub-case (b) results in a path from v to u of length at
most 2k

3 − 1.

In consequence, when k ≡ 0 there is a path from v to 0 of length at most 2k
3 =

⌊k
3⌋ + ⌈k−1

3 ⌉.

Case (ii): k ≡ 1 (mod 3).

We proceed similarly to as in Case (i) except that we consider the values of v1 and v2

as to whether they lie in {⌊k
3 ⌋+1, ⌊k

3 ⌋+2, . . . , ⌊k
3 ⌋+ ⌈k

3 ⌉−1}. We thus obtain a path

from v to 0 of length at most ⌊k
3 ⌋ + ⌈k

3 ⌉ − 1. In consequence, when k ≡ 1 (mod 3)

there is a path from v to 0 of length at most ⌊k
3 ⌋ + ⌈k

3 ⌉ − 1 = ⌊k
3 ⌋ + ⌈k−1

3 ⌉.

Case (iii): k ≡ 2 (mod 3).

We proceed similarly to as in Case (i) except that we consider the values of v1 and
v2 as to whether they lie in {⌈k

3 ⌉ + 1, ⌈k
3⌉ + 2, . . . , 2⌈k

3 ⌉ − 1}. We thus obtain a path

from v to 0 of length at most ⌊k
3 ⌋+ ⌈k

3⌉. In consequence, when k ≡ 2 there is a path

from v to 0 of length at most ⌊k
3 ⌋ + ⌈k

3 ⌉ = ⌊k
3 ⌋ + ⌈k−1

3 ⌉.

Whilst ⌊k
3⌋+ ⌈k−1

3 ⌉ is an upper bound on the diameter of AQ2,k, it is also a lower
bound as we now show. Suppose that k ≡ 0 (mod 3) and the length of a shortest path
ρ from (k

3 , 2k
3 ) to (0, 0) is less than ⌊k

3⌋+ ⌈k−1
3 ⌉ = 2k

3 . If the edges of ρ are all (i, +1)-
edges or (i,−1)-edges then we immediately obtain a contradiction. Thus, there must
be some (≤ 2, +1)-edges or (≤ 2,−1)-edges in ρ. By symmetry, we may suppose that
there are (≤ 2,−1)-edges (and so, as ρ is a shortest path, there must be no (≤ 2, +1)-
edges in ρ). Moreover, we may clearly assume that all these (≤ 2,−1)-edges appear
as a prefix of ρ.

Suppose that there are at most 2k
3 − ⌈k

2⌉ (≤ 2,−1)-edges in ρ and that traversing
these (≤ 2,−1)-edges takes us to (v′2, v

′
1). For an arbitrary vertex (v2, v1) of AQ2,k,

define wt(v2, v1) = min{v2, k − v2} + min{v1, k − v1}, i.e., the distance of (v2, v1)
from (0, 0) in the k-ary 2-cube Qk

2 . As wt(k
3 , 2k

3 ) = wt(v′2, v
′
1) = 2k

3 , this yields a
contradiction (as any path from (v′2, v

′
1) to (0, 0) traversing only edges with labels

from {(1, +1), (1,−1), (2, +1), (2,−1)} has length at least wt(v′2, v
′
1)). Thus there

must be between 2k
3 − ⌈k

2 ⌉+ 1 and k
3 (≤ 2,−1)-edges in ρ (clearly there cannot exist

more than k
3 such edges as otherwise we could obtain a shorter path than ρ).

Suppose that there exist m+ 2k
3 −⌈k

2 ⌉ (≤ 2,−1)-edges in ρ, where 1 ≤ m ≤ ⌈k
2 ⌉−

k
3 ,

and that traversing these edges takes us to the vertex (v′2, v
′
1). Then wt(v′2, v

′
1) =

2k
3 − 2(m − 1) − 1. Any path from (v′2, v

′
1) to (0, 0) not using (≤ 2, +1)-edges nor

(≤ 2,−1)-edges has length at least 2k
3 −2(m−1)−1. Thus, the length of ρ is at least

(2k
3 −2(m−1)−1)+(m+ 2k

3 −⌈k
2 ⌉) = 4k

3 −m+1−⌈k
2⌉ ≥

4k
3 − (⌈k

2 ⌉−
k
3 )+1−⌈k

2 ⌉ =
5k
3 − 2⌈k

2 ⌉ + 1 = 2k
3 , which yields a contradiction.

Arguing in an analogous fashion with the vertex (⌊k
3 ⌋, ⌊

k
3 ⌋+ ⌈k

3 ⌉) of AQ2,k, when

k ≡ 1 (mod 3), and with the vertex (⌈k
3 ⌉, 2⌈

k
3 ⌉) of AQ2,k, when k ≡ 2 (mod 3), yields

that the diameter of AQ2,k is ⌊k
3 ⌋ + ⌈k−1

3 ⌉ irrespective of the value of k (mod 3).
Let n ≥ 3 and v = (vn, vn−1, . . . , v1) be a vertex of AQn,k.

21



Case (i): k is even.

Define Σn
i=1|

k
2 − vi| = α. Traversing k

2 (≤ n,−1)-edges from v leads to a vertex
v′ = (v′n, v′n−1, . . . , v

′
1) such that Σn

i=1min{v′i, k − v′i} = α, and so by traversing
(i, +1)-edges and (i,−1)-edges, for various i, as appropriate, we obtain a path of
length k

2 + α from v to 0. Alternatively, we could simply start from v and traverse

(i, +1)-edges and (i,−1)-edges, as appropriate, to obtain a path of length nk
2 −α from

v to 0.
Suppose that k

2 + α ≤ nk
2 −α, i.e., 2α ≤ k

2 (n− 1). So, there is a path of length at

most k
2 + k

4 (n − 1) = k
4 (n + 1) from v to 0. If 2α > k

2 (n − 1) then there is a path of

length less than nk
2 − k

4 (n − 1) = k
4 (n + 1) from v to 0. Thus, when k is even there

is a path of length at most k
4 (n + 1) from v to 0.

Case (ii): k is odd.

We proceed similarly to as in Case (i) but the numerics are slightly messier. Define
Σn

i=1|⌈
k
2 ⌉−vi| = α. Similarly to as in Case (i), we obtain a path from v to 0 of length

at most ⌊k
2 ⌋ + α and also one of length at most n⌈k

2⌉ − α.

Suppose that ⌊k
2 ⌋ + α ≤ n⌈k

2 ⌉ − α, i.e., 2α ≤ n⌈k
2 ⌉ − ⌊k

2⌋. So, there is a path of

length at most ⌊k
2⌋ + n

2 ⌈
k
2⌉ −

1
2⌊

k
2⌋ ≤

k
4 (n + 1) + n

4 from v to 0. If 2α > n⌈k
2 ⌉ − ⌊k

2 ⌋

then there is a path of length less than n⌈k
2⌉ −

n
2 ⌈

k
2⌉ + 1

2⌊
k
2⌋ ≤

k
4 (n + 1) + n

4 . Thus,

when k is odd there is a path of length at most k
4 (n + 1) + n

4 from v to 0.

Note that we only have an upper bound on the diameter of AQn,k, when n ≥ 3.
Ascertaining the exact value of the diameter appears to be combinatorially quite
challenging. However, we conjecture that our upper bound is actually quite close to
the true diameter.

6 Conclusions

In this paper, we have defined a new class of graphs, the class of augmented k-ary
n-cubes, and we have examined these graphs in relation to some properties pertinent
to their use as interconnection networks for parallel computing. We have tabulated
our comparison between k-ary n-cubes and augmented k-ary n-cubes in Fig. 11.

k-ary n-cube Qk
n augmented k-ary n-cube AQn,k

number of vertices/edges kn/nkn kn/(2n − 1)kn

vertex-/edge-symmetric yes/yes yes/no unless n = 2
connectivity 2n 4n − 2
wide-diameter (n ≥ 3) n⌊k

2⌋ + 1 ≤ max{(n − 1)k − (n − 2), k + 7}
wide-diameter (n = 2) 2⌊k

2 ⌋ + 1 ≤ k

diameter (n ≥ 3) n⌈k
2 ⌉ ≤ k

4 (n + 1) (k even)
≤ k

4 (n + 1) + n
4 (k odd)

diameter (n = 2) 2⌈k
2 ⌉ ⌊k

3 ⌋ + ⌈k−1
3 ⌉

routing O(nk) time O(nk) time

Figure 11. A comparison between Qk
n and AQn,k.
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Both AQn,k and Qk
n have kn vertices, with the former having (n − 1)kn more

edges than the latter, and both interconnection networks are Cayley graphs, and
so vertex-symmetric; however, AQn,k is not edge-symmetric, unless n = 2, whereas
Qk

n is. AQn,k has a much improved connectivity of 4n − 2 in comparison with the
connectivity of Qk

n which is 2n, although this comes at the expense of an increased
vertex degree, which is 4n − 2 as opposed to 2n for the k-ary n-cube (both AQn,k

and Qk
n are ‘maximally connected’, in the sense that if disjoint paths are used to

transmit messages from one vertex to another in either network then there are no
unused neighbours of the source vertex). We have also shown an upper bound on the
diameter of an augmented k-ary n-cube at roughly one half that of a k-ary n-cube.

Recall that both the k-ary n-cube and the augmented k-ary n-cube come with
two parameters which are both variable. Suppose that we have a k-ary n-cube, which
involves kn vertices, and we wish to obtain an augmented K-ary N -cube of comparable
size, but not necessarily by choosing the parameters N = n and K = k, so that the
degrees of the two networks are also comparable. Choose

K =
k

2
and N =

n

1 − 1
log(k)

(we assume for simplicity that both N and K are integral). Thus, kn = KN . More-
over, the degree of the k-ary n-cube Qk

n is 2n and the degree of the augmented K-ary
N -cube AQN,K is

4N − 2 =
4n

1 − 1
log(k)

− 2 ≤
4n

1 − 1
log(3)

− 2 < 11n − 2,

with the diameter of Qk
n being nk

2 in comparison to an upper bound of

K

4
(N + 1) =

k

8
(

n

1 − 1
log(k)

+ 1) <
nk

2
(0.68 +

1

4n
)

on the diameter of AQN,K when k is even, and of

K

4
(N + 1) +

N

4
= N(

K

4
+

1

4
) +

K

4
=

n

1 − 1
log(k)

(
k

8
+

1

4
) +

k

8

<
nk

2
(0.68 +

1

k − k
log(k)

+
1

4n
)

on the diameter of AQN,K when k is odd (in both the even and odd case, this is
asymptotically roughly two-thirds the diameter of Qk

n). Note that the actual im-
provement in diameter could well be better than this, given that we have only given
an upper bound as to the diameter of a AQN,K . In consequence, we conclude that
augmented k-ary n-cubes can be regarded as improvements over k-ary n-cubes.

We have an additional and important comment to make. The augmented k-ary
n-cube AQn,k is ‘built on top’ of the k-ary n-cube AQk

n; that is, Qk
n is a spanning

subgraph of AQn,k. It is not as if we have simply chosen to argue that our network is
a viable network without even considering routing and broadcasting; for all routing
and broadcasting algorithms which work for Qk

n also work for AQn,k. Moreover, the
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constructions used in the proof of Proposition 10 yield a very simple routing algorithm
of time complexity O(nk) (albeit possibly non-optimal).

There are numerous directions for further research. One obvious one is an exact
characterization of the diameter of an augmented k-ary n-cube. However, even in the
absence of this exact characterization, our upper bound results still yield a significant
improvement. Whereas the wide-diameter of Qk

n is n⌊k
2 ⌋ + 1, the wide-diameter of

AQn,k has an upper bound of ≤ max{(n− 1)k − (n − 2), k + 7}, when n ≥ 3, and k,
when n = 2. This is possibly to be expected, given that we are constructing 4n − 2
paths in AQn,k whereas only 2n paths need to be constructed in Qk

n. Nevertheless,
it would be interesting to try and improve upon our wide-diameter bound and bring
it closer to the diameter of AQn,k.

Finally, there are numerous other aspects relating to augmented k-ary n-cubes
which are worthy of study: for example, the embedding of other networks in AQn,k

(cf. [4, 5, 12]), the tolerance of faults within AQn,k (cf. [5, 6]), and broadcasting and
routing in AQn,k (cf. [3, 12]).
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