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Abstract 

Existing geotechnical approaches that describe volumetric changes in intertidal sediments 

in response to applied vertical effective stresses are limited by a lack of empirical research into 

their one-dimensional compression behaviour.  In this paper we address this deficiency by 

presenting the results of an investigation into the compression behaviour of minerogenic low 

marsh and tidal flat sediments.  We have tested samples of these sediment types obtained from 

Greatham Creek (Cowpen Marsh, Tees Estuary, UK).  Analysis of physical properties and 

oedometer compression tests demonstrates that, contrary to the implicit assumptions of existing 

models, the surface sediments studied are overconsolidated.  Structural variability between 

samples arises due to sedimentological factors, notably variations in organic content.  We 

attribute overconsolidation to tidal exposure and falls in groundwater level that cause desiccation 

and capillary suction stresses.  Greater rates of compression with respect to effective stress occur 
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in sediments with higher initial voids ratios and more open, unstable initial structures.   

Variability in structure decreases with application of higher effective stresses due to the 

destructuration of the sediments, which also creates increased homogeneity of compression 

behaviour under higher effective stresses.  We subsequently develop a new conceptual 

framework to describe compression behaviour in minerogenic intertidal sediments that 

incorporates overconsolidation.  We advocate a statistical approach that accounts for structural 

variability and variations in compression behaviour at effective stresses less than and greater 

than the yield stress.  We argue that our conceptual framework is broadly applicable to 

minerogenic intertidal sediments at different locations and burial depths within Holocene 

stratigraphic sequences providing site-specific compression data are collected.  Inter-site transfer 

and application of measured material properties should not be undertaken due to local variations 

in compression behaviour resulting from varying ecological, sedimentological, geochemical, 

climatic, geomorphic and hydrographic conditions.  The individual characteristics of different 

field locations should be carefully considered before the suggested framework is routinely 

applied.   

Keywords: Autocompaction; compression; intertidal sediments; salt marsh; mudflat; sea level. 

1.  Introduction and Aim 

Autocompaction describes an interlinked group of syn- and post-depositional diagenetic 

processes that result in volumetric reductions of sediments (Allen, 2000).  Autocompaction is a 

key geomorphic process in low energy intertidal environments, lowering the elevation of the land 

surface relative to the intertidal frame (Kaye and Barghoorn, 1964; Cahoon et al., 1995).  

Conceptual and exploratory numerical models (Allen, 1999) and observational (e.g. Cahoon et 

al., 1995; Cahoon et al., 2000) and stratigraphic (e.g. Long et al., 2006; Törnqvist et al., 2007) 
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data highlight the importance of autocompaction processes.  The increased rates of relative sea 

level (RSL) that result from autocompaction can contribute to degradation and erosion of these 

biogeomorphologically sensitive environments (Reed, 1990; 1995; French and Spencer, 1993; 

Day and Giosan, 2008) and an associated loss of valuable wetlands (Knutson, 1998; Spurgeon, 

1999; Hughes, 2004; French, 2006; Wamsley et al., 2010). 

Autocompaction complicates attempts to quantify past sea level changes obtained from 

intertidal sedimentary sequences by lowering sea level index points from the original altitudes at 

which they were deposited (Allen, 2000; Shennan and Horton, 2002; Edwards, 2006; Long et al., 

2006; Horton and Shennan, 2009).  Without correction for autocompaction, the rate and 

magnitude of inferred sea level rises can be overestimated (Shennan et al., 2000).  Any 

subsequent practical applications of geological sea level data obtained from intertidal sediments, 

such as for the analysis of causal relationships between climate, ice sheet behaviour, neotectonics 

and sea level (Wake et al. 2006; Shennan et al, 2009; Teferle et al. 2009; Engelhart et al., 2009), 

the detection of anthropogenic impacts on the rate of sea level rise (Donnelly et al., 2004; 

Gehrels et al., 2005; Kemp et al., 2009), and calibration and refinement of geophysical models 

(Peltier et al., 2002; Brooks et al., 2008), are confounded by this error. 

The rate of autocompaction varies in response to imposed stress conditions that are 

controlled by sedimentation rates and initial sediment bulk density (Tovey and Paul, 2002), and 

the type, thicknesses and configuration of over- and under-lying lithologies (Allen, 1999; 

Edwards, 2006; Long et al., 2006; Horton and Shennan, 2009; van Asselen et al., 2010).  Due to 

the interaction of these factors, cumulative autocompaction rates within a stratigraphic column 

are typically non-linear.  Average rates cannot simply be extrapolated through time and across 
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space without a process-based understanding of autocompaction and the volumetric response of 

the particular sediments under consideration. 

Predictive models of autocompaction are of potential value for the modelling of future 

and historic elevation changes in intertidal sediments.  However, little research has been 

undertaken to quantify the autocompaction mechanisms in response to different controlling 

variables.  Conceptual and numerical autocompaction modelling frameworks developed for use 

in classical civil engineering (e.g. Been and Sills, 1981), petroleum geology (e.g. Audet and 

Fowler, 1992) or subtidal marine geology (e.g. Skempton, 1970) are not directly applicable to 

low energy intertidal sediments due to differences in the environmental and stress conditions and 

the timescale(s) of interest.   

In this paper we start to address the limited understanding of autocompaction behaviour 

in low stress, low energy intertidal environments.  We target minerogenic (< 50 % organic matter 

by dry mass) sediments and the effects of mechanical compression processes.  Quantifying the 

effects of biological decay is beyond the remit of this study, but the sediments studied are 

broadly typical of the predominantly minerogenic deposits that accumulate in intertidal and salt 

marsh environments on NW European coasts (Allen, 2000).   The aim of this paper is to develop 

our understanding of the compression behaviour of minerogenic low energy intertidal sediments.  

In order to achieve this aim, we have the following objectives: 

1. To present results of field monitoring and laboratory testing programs designed to 

characterise the intertidal depositional environment and the relevant geotechnical 

characteristics of the materials that form there;   

2. To use these data to examine whether the assumptions of an existing, previously-used 

mechanical autocompaction model are valid; and 
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3. To develop a conceptual framework that describes and explains mechanical autocompaction 

behaviour in minerogenic intertidal sediments; and to consider the spatial and temporal 

transferability of the framework. 

2.  Autocompaction Models in Low Energy Intertidal Sediments 

 Autocompaction models seek to describe volumetric and elevation changes in sediments 

caused by decreases in pore space (increases in density) (Boudreau and Bennett, 1999), structural 

collapse (Delaune et al., 1994) or biological decay and chemical alteration of organic matter 

(Clymo, 1965; Lillebø et al., 1999) (see van Asselen et al., 2009).   

 Whilst progress has been made into the effects of microbiological and oxidation 

processes on peat decay (e.g Hackey and de la Cruz, 1980; Blum, 1993; Conn and Day, 1997; 

Latter et al., 1998; Charman, 2002; Gambolati et al., 2006), the complex operation and strong 

time-dependency of these non-mechanical diagenetic processes and the spatial and lithological 

variation therein has limited the development of quantitative models of biologically- and 

chemically-effected volumetric change.  In contrast, mechanical autocompaction (compression) 

models are more common (e.g. Pizzuto and Schwendt, 1997; Paul and Barras, 1998; Tovey and 

Paul, 2002) since the relationship between the vertical stress (pressure) exerted by the deposition 

of sediments and the density and volume of underlying materials can be better quantified.  

Crucially, the validity of these models depends on an empirically-informed understanding of 

mechanical autocompaction behaviour and quantification of volume changes.   

The autocompaction model used most frequently in UK intertidal stratigraphic settings  is 

the One-Dimensional Virgin Compression Law (termed Terzaghi’s Compression Law by Massey 

et al., 2006), or variations thereof (e.g. Paul and Barras, 1998; Massey et al., 2006).  Such virgin 

compression models (VCMs) describe the volumetric state of sediments by the height of the 
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sedimentary column or the voids ratio (e), a dimensionless volumetric parameter defined as the 

ratio of the volume of voids to the volume of solid particles (Powrie, 2004).  A key assumption is 

the inverse relationship that is assumed to exist between volume or e and the common logarithm 

of vertical effective stress (σ’), defined as 

                              (1) 

where  is the total stress resulting from the combined weight of the overlying sediments, and u 

is pore water pressure (Powrie, 2004).  On a plot of e against σ’ (common logarithmic scale), this 

relationship plots as a straight line of negative gradient.  The full volumetric behaviour of 

sediments is typically modelled through ‘backwards’ extrapolation of the virgin compression line 

to the intercept (i.e. 1 kPa) on the basis of in situ properties (Figure 1) (Smith, 1985; Paul and 

Barras, 1998; Tovey and Paul, 2002; Massey et al., 2006).   
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Figure 1 Key components of compression models in elogσ’ space.   
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Virgin compression models are popular for two reasons.  Firstly, VCMs are simple to apply 

as they require only two geotechnical input parameters: the compression index, Cc, and e1, the 

voids ratio encountered at the depositional surface (1 kPa on a logarithmic effective stress scale).  

The compression index can be measured directly from oedometer testing or estimated from 

correlations with index properties, notably the liquid limit (Paul and Barras, 1998, after 

Skempton, 1944).  Secondly, the model has been shown to be a good approximation of the 

volumetric behaviour of natural in situ sediments (Skempton, 1970; Burland, 1990) that have not 

experienced an effective stress greater than that exerted by the current overburden.  Such soils 

are described as normally consolidated and their volumetric states can be described by the virgin 

compression line in elogσ’ space (Figure 1).  Virgin compression models are based on two key 

assumptions.  The first assumption is that the stratigraphic units studied are lithologically 

uniform with no variability in structure (voids ratio) at a specified effective stress, and display no 

variability in compression behaviour in response to applied effective stress. 

The second assumption is that the sediments are normally consolidated as a result of 

overburden loading and no other processes.  If processes other than overburden loading 

contribute to either effective stress increase, or result in bulk density increases without increases 

in effective stress, the sediments will be overconsolidated – that is, the sediment structure (voids 

ratio) would reflect previous exposure to an effective stress that is greater than the current 

overburden.  Such soil structures plot below the virgin compression line in elogσ’ space, 

indicated by the grey shaded area in Figure 1.  Overconsolidated sediments are more resistant to 

effective stress increases until the previous maximum effective stress (termed the 

preconsolidation stress) is exceeded.  Overconsolidated sediments follow a compression line in 

elogσ’ space of decreased gradient, described by the recompression index (Cr) (Figure 1).  If 
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overconsolidation occurs at the depositional surface as a result of processes other than those 

resulting from overburden deposition, the virgin compression line will not accurately describe 

volume changes at effective stresses less than the previous maximum value of effective stress 

experienced by the sediment.   This would contravene a key condition of VCMs, thereby 

questioning the accuracy of any research that uses VCMs to account for volumetric change. 

3. Field Site 

The study site is the northeastern corner of Cowpen Marsh in the Tees Estuary (Figure 2).  

The site is connected via Greatham Creek to Seal Sands and the North Sea.  The tidal range is 

6.1 m (spring tidal range of 4.6 m) (Admiralty Tide Tables, 2005).  The site comprises a small 

salt marsh platform adjacent to tidal mudflats that fringe the main tidal creek (Table 1).  The 

distribution of sediment and floral zones (Table 1) is linked to elevation with respect to the tidal 

frame and conforms to Allen’s (2000) generalised lithofacies model of late Holocene coastal 

sediments of NW Europe.  

Cowpen Marsh has been a Site of Special Scientific Interest since 1966 (Natural England, 

2009).  Hence, public access to the active intertidal zone is restricted and livestock grazing does 

not take place within the active marshland.  This minimises potential disturbance to the 

sediments.  
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Figure 2  Study site location.  Boxed area in (a) (regional context) is displayed in (b) (local scale 

plan showing sampling locations). 
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Table 1 Description of contemporary vegetation at Greatham Creek and its zonation by altitude 

and elevation above mean sea level.  Altitude and elevation ranges are based on point estimates; 

boundaries between different zones are transitional, occurring over a 0.1 – 0.3 m elevation range.  

A variable 0.2 – 0.3 m cliff marks the transition between mudflat and salt marsh zones.    

 

Floral zone Vegetation Approximate 

altitudinal 

range (m OD) 

Elevation 

range (m 

above mean 

sea level) 

Mudflat Minerogenic mudflat substrate with no in situ growth 

of vascular plant species. 

 

0.34 to 1.77 0.00 to 1.42 

Upper tidal flat/ 

pioneer marsh 

zone 

Mudflat substrate covered by a thin algal mat, with a 

scattered presence of Salicornia europea (1 - 5% 

coverage). 

 

1.89 to 1.92 1.54 to 1.57 

Low marsh 100 % coverage of substrate dominated by Puccinellia 

maritima (c. 50%) and Salicornia europea (c. 40%), 

with occasional Aster tripolium, Limonium vulgare, 

Sueda maritima, Spergularia, and Plantago maritima. 

 

2.20 to 2.31 1.85 to 1.96 

Mid marsh 100 % of substrate characterised by an increase in the 

dominance of Sueda maritima, Aster tripolium and 

Limonium vulgare and a corresponding decrease in 

Puccinellia maritima.  Increased species diversity at 

towards transition to high marsh, namely Festuca 

rubra and Festuca ovina.   

 

2.31 to 2.49 1.96 to 2.14 

High marsh 100 % coverage of substrate dominated by Elymus 

pycnanthus accompanied by Festuca rubra, Festuca 

ovina, and Limonium vulgare. 

2.49 to 3.25 2.14 to 2.90 
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4. Methods 

We undertook a combined environmental monitoring and geotechnical laboratory testing 

program to test the assumptions outlined in Section 2.  First, we installed a self-logging pressure 

transducer at -1.04 m OD to record variations in tidal water depths at 5 minute intervals.  This 

enables us to relate variations in surface lithology to the frequency and duration of local tidal 

submergence.  Barometric compensation was undertaken on tidal water depth measurements.  

We undertook near-continuous monitoring of tidal water depths above -1.04 m OD between 

November 2003 and January 2005.   

 We installed a groundwater monitoring well in a low marsh setting (surface altitude of + 

2.26 m OD) to enable us to calculate the maximum effective stress acting on surface sediments 

due to variations in groundwater level.   We hand-augered a 0.1 m diameter borehole into the 

ground surface to a depth of 2.0 m below ground level (m bgl) and installed a 1.5 m length of 

slotted PVC well casing within the borehole and plain (non-slotted) well-casing at depths 

between the ground surface and 0.5 m bgl.  We backfilled the space around the well casing with 

a coarse sand (0.45 – 2.0 m bgl) and bentonite (0.0 – 0.45 m bgl), sealing the base of the well 

casing with a watertight cap.  We installed a self-logging piezometer at known depth below 

ground level using stretch-proof stainless steel wire and fitted a watertight cap to the well at the 

ground surface, recording groundwater depths at 5 minute intervals between November 2003 and 

December 2004.  

We determined variations in lithology at the depositional surface by collecting surface 

sediment samples along a transect from mean sea level to highest astronomical tide level (HAT, 

3.25 m OD) at approximately 0.05 m vertical intervals.  Surface sediment samples of 100 cm
3
 

(100 cm
2
 by 1 cm deep) were obtained using a sharp knife or trowel, immediately placed in air-



 

13 

 

tight bags to prevent moisture loss and were stored in a refrigerator.  Sample locations and 

reference ground levels were levelled to Ordnance Datum Newlyn (m OD) using a Leica 

TC1010 combined Electronic Distance Measurement (EDM)/theodolite Total Station.  We 

determined organic content by loss on ignition (Heiri et al., 2001).  Analysis of particle size was 

undertaken using laser granulometry following pre-treatment with 20 % hydrogen peroxide to 

remove fibrous organic matter.  Supernatant liquid was decanted before aqueous sodium 

hexametaphosphate (3.3 wt %), buffered with sodium carbonate (0.7 wt %), was added to the 

sediment to aid dispersion of flocculated particles.  Granulometric analysis was undertaken using 

a Coulter LS 230 with Polarization Intensity Differential Scattering (PIDS). 

  We collected multiple, undisturbed, Class 1 block sediment samples (as described by 

British Standards Institute, 1999) from the upper 0.2 m of the depositional surface at two 

constant altitudes, one from the tidal flat and the other from a low marsh setting.  The block 

samples were stored in confined, sealed and refrigerated conditions to prevent disturbance due to 

stress relief, loss of moisture and bacterial decomposition.  Physical properties (moisture content, 

specific gravity, bulk density, Atterberg limits, voids ratios) were determined according to BS 

1377 (British Standards Institute, 1990; Head, 1988).  Collection of multiple block samples from 

constant altitudes provided us with ample material to undertake repeat analysis of physical and 

sedimentological (particle size distribution and organic content) properties.  We were therefore 

able to determine any variability in these properties at each specific sampling altitude.  We 

calculate voids ratios using the Height of Solids method (Head, 1988) and estimate 

preconsolidation stresses using the graphical construction suggested by Casagrande (1936), 

which is based on an analysis of the intersection between the recompression line and the virgin 

compression line. 
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We undertook standard geotechnical compression testing on sub-samples obtained from 

the undisturbed block samples using fixed ring, front loading oedometers that, by laterally 

confining sediment samples (75 mm diameter, 19 mm high), prevent horizontal strains and allow 

one-dimensional compression, as occurs in undisturbed sedimentary systems (Powrie, 2004).  

The oedometer specimen preparation, set-up and testing procedure largely follow BS 1377 

(British Standards Institute, 1990; Head, 1988).  Each new stage of compression involved an 

approximate doubling of the previous loading pressure (i.e. a load increment ratio, ∆/, 

approximately equal to unity).  Each loading stage generally lasted 24 hours, though in some 

tests loading stages were extended (48 or 68 hour loading durations) or truncated to consider the 

effect of time-dependent creep processes.  The results of the extended/truncated creep tests are 

beyond the scope of this paper and are discussed elsewhere (Brain, 2006).  However, such small 

variations in load increment duration did not alter the compression behaviour of the sediments 

tested and do not affect the conclusions drawn in this paper (Brain, 2006).   

For two samples (LM-6 and MF-6), compression testing was undertaken using a separate 

apparatus, a back-pressured shear box (BPS). The direct shear capability of the BPS was 

disabled, allowing one-dimensional compression.  Vertical load was applied and measured 

through the application of an hydraulically-controlled actuator and load cell.  Samples (100 mm 

x 100 mm x 20 mm; width x length x height) were laterally confined.  Further details of the BPS 

equipment and experimental procedure are reported in Brain (2006).   

Prior to the application of 26 kPa to individual samples, load increment ratios did not 

always equal unity.  A range of loading scenarios was used in order to constrain preconsolidation 

stresses more accurately.  For each oedometer test, samples were loaded until the maximum 

compression limit of the oedometer apparatus was reached – i.e. when further downward 
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movement of the load hanger was prevented by the fully-lowered screw jack unit.  This often 

occurred prior to the application of the maximum planned load increment stage.   

5.  Results 

5.1 Tidal water and groundwater variations 

We express the duration of tidal submergence as a percentage of total time monitored 

(after Gehrels et al., 2001).  The relationship between altitude and flooding duration is 

curvilinear in graphical form (Figure 3).  MSL is flooded for 50 % of total time.  As altitude 

increases, this value decreases at a generally constant rate until approximately 2.4 m OD, which 

is submerged for c. 5 % of total time.  Above this altitude, and particularly between mean high 

water spring tide (MHWST) level and HAT level, flooding duration decreases rapidly.  At these 

levels, high in the intertidal frame, the salt marsh surface is rarely submerged (< 2 % of total 

time, equivalent to brief time periods of less than two hours on one or two tides per month).  
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Figure 3  The relationship between flooding duration (expressed as a percentage of total time) 

and altitude at Greatham Creek. 
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Monthly trends in groundwater variation are displayed in Figure 4.  Between the winter 

months of November 2003 and February 2004, groundwater levels are generally within 0.40 m 

of the low marsh surface.  The warmer weather after this date and a decrease in the quantity and 

frequency of precipitation resulted in a fall in groundwater levels to a maximum depth 0.92 m 

beneath the ground surface on May 30
th

 2004.  During these periods, the groundwater fluctuated 

over a larger range of depths than during wetter winter conditions. 
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Figure 4  Boxplots illustrating monthly variations in the depth of the groundwater level in 

relation to the low marsh depositional surface (0.0 m on the vertical axis).  Boxplot ‘tails’ 

represent10
th 

and 90
th

 percentiles.  Outliers are represented by indiviual data points.   
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5.2 Surface sediments 

From Figures 5 and 6, three broad sediment zones can be identified in the upper intertidal 

zone at Cowpen Marsh.  The first zone coincides with the mudflat, at altitudes between 

approximately 0.34 m OD and 1.75 m OD.  It is characterized by relatively low and constant loss 

on ignition values of approximately 15 %, a silt content of 65 – 75 %, with variable clay (20 – 35 

%) and low sand (< 10 %) contents.  The second zone represents the pioneer, low and mid marsh 

floral environments and lies between c. 1.75 and 2.75 m OD.  Within this zone, loss on ignition 

increases from 15 % to 50 %.  Silt content ranges between 75 % and 80 %, with clay (c. 20 %) 

and sand (< 5 %) values display less variation.  The third zone (2.75 m OD to 3.25 m OD) is 

indicative of the high marsh floral assemblage.  In this zone, loss on ignition increases to 85 %.  

Sand content increases from < 5 % to 50 %, clay content decreases to < 5% and silt content 

decreases from 70 % to 50 %.  The scatter observed around these general trends and values 

reflects the transitional nature of marsh floral zones.  
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Figure 5 Variations in loss on ignition with altitude.  Reference water levels and approximate 

marsh floral zones are also displayed. 
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Figure 6  Variations in silt, clay and sand content with altitude.  Reference water levels and 

approximate marsh floral zones are also displayed. 
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5.3 Material selection 

Sediments in the mudflat, pioneer, low marsh and mid marsh zones have loss on ignition 

values of < 50 %.  However, pioneer marsh sediments were dry, cracked and friable.  Mid marsh 

sediments consisted of moist, poorly humified vascular plant remains with insufficient 

minerogenic content to bind the biogenic component.  These factors prevented preparation of 

samples that are suitable for geotechnical compression testing.  Hence, two minerogenic 

sediment sampling locations were selected for testing in this study: low marsh and mudflat.  In 

order to investigate variations in mechanical autocompaction behaviour within each lithology, 

samples for geotechnical testing were always obtained from the same elevations within the 

intertidal frame.  The mid-points of the altitudinal ranges in which mudflat and low marsh 

sediments are found were chosen as sampling altitudes.  These are the furthest removed from the 

transitional areas at the edges of each zone and so were taken to be the most representative of 

each sediment type.  Their altitudes are 2.26 m OD (annual flooding duration of c. 6 %) for the 

low marsh samples and 1.06 m OD (annual flooding duration of c. 35 %) for the mudflat 

samples.  Our tide gauge data reveal that the mudflat surface (1.06 m OD) is flooded on the 

majority of tides.  Tidal waters did not submerge this altitude during neap tide phases in January, 

March and September 2004.  In contrast, the low marsh surface (2.26 m OD) is generally only 

flooded on high tides during spring tide phases.   

5.4 Physical properties 

A description is provided in Table 2 of the mudflat and low marsh sediments using the 

universal classification scheme proposed by Troels-Smith (1955).  The physical properties of the 

materials and the number of tests undertaken on each sediment type are displayed in Table 3.  

The two sediment samples are very similar in terms of the minerogenic component.  Silt content 

is essentially equal in the two lithologies (approximately 70 %).  The mudflat sediments have a 
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slightly higher sand content (mean = 15.21 %) than the low marsh sediments (mean = 12.17%).  

There is also a lower clay content in the mudflat (mean = 12.44 %) than the low marsh (15.81 %) 

sediments.  In contrast, loss on ignition data suggest that the organic content differs more 

obviously between the two materials.  The higher loss on ignition values of the low marsh 

samples (mean = 24.68 %) reflect in situ organic growth and some detrital material.  The lower 

values in the mudflat (mean = 16.83 %) may result from detrital organic and faunal faecal inputs 

(G. Sills, personal communication).  
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Table 2 Description of the selected upper intertidal sediments.   

Sediment 

type 

Troels-Smith (1955) 

analysis 

Description 

Mudflat 1011-  Ag3As1Ga+Lf+ Very soft, wet, homogeneous, light brown, very 

slightly sandy, slightly clayey SILT with 

frequent bioturbation burrows and occasional 

iron staining.  No air pockets visible in the soil 

structure. 

 

Low Marsh 2021-  Ag2Th2
1
As+ 

Ga+Sh+Lf+ 

Soft, moist, brown, very slightly sandy, slightly 

clayey, organic SILT.  Frequent in situ rootlets 

and partly humified organic matter.  Occasional 

iron staining and streaking.  ‘Open’ soil structure 

with visible air pockets present. 
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Table 3 Physical properties of contemporary low marsh and mudflat samples at Greatham Creek. 

 Low Marsh Mudflat 

Mean Min. Max. S.D.
~

 n* Mean Min. Max. S.D.
~
 n* 

Loss on 

ignition (%) 
24.68 23.45 27.05 1.20 36 16.83 

14.1

1 

19.3

7 
1.57 30 

Sand (%) 12.17 7.71 15.75 2.54 36 15.21 
12.4

7 

18.7

0 
1.75 30 

Silt (%) 72.01 68.58 74.78 1.66 36 72.35 
69.6

6 

74.6

2 
1.27 30 

Clay (%) 15.81 14.14 17.60 1.20 36 12.44 
10.1

1 

14.7

9 
1.52 30 

Specific 

gravity, Gs 
2.48 2.48 2.49 0.00 3 2.63 2.61 2.65 0.02 3 

Natural 

moisture 

content, w (%) 

163.8 
137.0

5 

216.3

4 
21.81 36 78.45 

61.0

2 

92.8

8 
10.54 30 

Liquid limit 

(%) 
96.71 96.59 96.83 0.17 2 48.99 

48.7

9 

49.1

9 
0.28 2 

Plastic limit 

(%) 
56.31 56.06 56.56 0.00 2 28.94 

28.6

4 

29.2

5 
0.43 2 

Plasticity index 40.40 - - - 1 20.05 - - - 1 

Initial voids 

ratio, e 
4.28 3.69 4.88 0.38 8 2.22 1.71 2.68 0.33 7 

Bulk density, 

ρd, at natural 

moisture 

content (g cm
-3

) 

1.23 1.16 1.27 0.03 8 1.62 1.48 1.42 0.07 7 

~ 
S.D. = standard deviation. 

*
 
n = number of samples upon which descriptive statistics are based.   
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 Initial voids ratios vary considerably between the two sediment types.  The mean initial 

voids ratio of the low marsh sediment is 4.28.  This is more than twice the mean value of the 

initial voids ratio of the mudflat sediments (2.22).  This finding corroborates visual observations 

that the low marsh sediment displays an obvious ‘open’ structure (Table 2).  The low marsh also 

displays a greater range of initial voids ratios, from a minimum of 3.69 to a maximum of 4.88 

(range of 1.19; standard deviation of 0.38).  The lower structural variability of the mudflat 

sediments is illustrated by the smaller range (0.96) and standard deviation (0.33) of initial voids 

ratios. 

5.5 Compression behaviour 

 elog’ plots for low marsh and mudflat samples are displayed in Figure 7 and the 

material properties obtained from these plots in Table 4.  All low marsh samples display a 

consistent pattern of compression behaviour in elog’ space.  It is also apparent that the material 

is overconsolidated; the calculated preconsolidation stresses are higher than the existing 

overburden (0 kPa, since all samples were collected from the depositional surface).  

Preconsolidation stresses for low marsh materials ranged from 20 kPa to 27 kPa (Table 4).  The 

mean value of Cr in the low marsh samples is 0.23.  For the low marsh samples, the mean value 

of the compression index, Cc, is 1.89.  This difference in compression indices demonstrates the 

variation in compressibility at stresses greater and less than the preconsolidation stress.   
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Figure 7  elogσ’ plots displaying one-dimensional compression behaviour of (a) low marsh 

samples and (b) mudflat samples.  Vertical grey bars indicate the range of estimated 

preconsolidation stresses. 
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Table 4 Material and selected physical properties of intertidal samples tested in one-dimensional 

compression 

Sample Cr Cc ’c (kPa) e1 LOI (%) w (%) 

Low marsh samples 

LM-1 0.19 1.44 23 4.30 23.82 147.57 

LM-2 0.19 1.71 26 3.98 23.63 155.61 

LM-3 0.16 1.54 24 4.02 23.75 151.37 

LM-4 0.08 1.41 24 3.69 24.66 137.05 

LM-5 0.25 2.12 27 4.51 24.12 170.06 

LM-6 0.52 2.27 23 4.88 27.05 182.91 

LM-7 0.17 1.92 24 4.26 25.57 162.39 

LM-8 0.26 1.88 20 4.60 26.14 172.42 

Mean 0.23 1.89 23.88 4.28 24.84 159.92 

Standard 

deviation 

0.12 0.43 2.10 0.38 1.27 14.93 

Range 0.44 0.86 7 1.19 3.42 45.86 

Mudflat samples 

MF-1 0.19 0.57 8 2.34 17.32 83.51 

MF-2 0.15 0.62 8 2.22 15.12 79.57 

MF-3 0.14 0.73 10 2.68 19.37 92.88 

MF-4 0.06 0.50 12 1.71 14.11 61.02 

MF-5 0.04 0.63 14 2.32 16.22 80.48 

MF-6 0.02 0.52 10 1.86 16.56 69.47 

MF-7 0.25 0.64 14 2.41 16.78 88.83 

Mean 0.12 0.60 10.86 2.22 16.49 79.39 

Standard 

deviation 

0.08 0.08 2.54 0.33 1.67 10.99 

Range 0.23 0.23 6 0.97 5.26 31.86 

Key 

Cr = Recompression index  e1   = Initial voids ratio 

Cc = Compression index  LOI = Loss on ignition 

’c = Preconsolidation stress w = Natural moisture content 
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There is variability in the general trends in compression behaviour of low marsh sediments 

(Figure 7, Table 4).  This is best illustrated by considering the differences in Cc, which range 

from a minimum of 1.41 (LM-4) to a maximum of 2.27 (LM-6).  Variability also exists for 

values of Cr, which range from 0.08 (LM-4) to 0.52 (LM-6).  Samples LM-4 and LM-6 also have 

the minimum (3.69) and maximum (4.88) values of e1 respectively.   

Individual low marsh virgin compression lines are essentially linear in elog’ space 

(Figure 7).  However, samples which were subjected to stresses greater than 393 kPa (LM-1, 

LM-3, LM-4-, LM-6) illustrate a slight decrease in the gradient of the virgin compression line at 

higher stresses, giving the virgin compression line a log-curvilinear form.  A convergence of 

compression lines at higher stresses is evident.  This is accompanied by a reduction in the range 

of voids ratios as effective stress increases.  This is further demonstrated in Figure 8, where the 

standard error of voids ratios is shown to be decreasing as effective stress increases.   
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Figure 8  Relationship between the standard error of voids ratios with vertical effective stress.  

Vertical bars indicate the range of estimated preconsolidation stresses for the low marsh (light 

grey) and mudflat (dark grey) samples tested.  
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Low marsh recompression lines are also not wholly log-linear, becoming steeper as the 

calculated preconsolidation stresses are approached.  In addition, the transition from the lower 

gradient recompression line to the steeper virgin compression line appears to begin at effective 

stresses less than the range of preconsolidation stresses.  The standard error of voids ratios begins 

to decrease during the recompression phase (Figure 8).   

Mudflat samples also show consistent trends in elog’ compression behaviour.  All 

samples are overconsolidated and preconsolidation stresses range from 8 to 14 kPa (mean = 

10.86 kPa) (Figure 7, Table 4).  Recompression gradients (mean Cr = 0.12) are less steep than 

those of the virgin compression line (mean Cc = 0.60), signifying differences in compressibility 

at stresses greater and less than the preconsolidation stress.  Variability exists in the compression 

indices of the mudflat samples (Figure 7, Table 4).  The highest observed value of the 

recompression index, Cr, (0.25) is from sample MF-7 and the lowest value of Cr was calculated 

for sample MF-6.  The highest value of Cc (0.73) was obtained from sample MF-3 which also 

has the highest initial voids ratio (2.68).  The lowest value of Cc is 0.50 (MF-4), which 

corresponds with the value of the lowest initial voids ratio (1.71).   

Mudflat sediment recompression and virgin compression lines are generally log-linear, 

though as observed in the low marsh sediments, the recompression line begins to steepen before 

preconsolidation stresses are reached.  Also, the gradients of individual virgin compression lines 

start to decrease at higher effective stresses, notably in samples MF-1, MF-2, MF-3, MF-5 and 

MF-7.  Compression lines converge at as effective stresses increase, though this trend is less 

pronounced than in the low marsh sediments.  The standard error of voids ratios decreases at a 

largely constant rate at effective stresses less than c. 800 kPa.  
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 6. Discussion 

6.1 Initial structural variability 

All low marsh samples were obtained from constant altitude (2.26 m OD) and displayed 

minor variations in lithological properties.  The mudflat samples, again collected from fixed 

altitude (1.06 m OD), also displayed only small variations in lithological parameters.  However, 

considerable structural variability was observed within each sediment type and between the low 

marsh and tidal flat samples.   

The higher loss on ignition values in the low marsh sediment (mean loss on ignition value 

of 24.58 %, compared to 16.82 % in the mudflat sediments analysed) reflect the presence of 

vascular plants which are known to create well-aerated, highly porous soil structures (Delaune et 

al., 1994) that may be more prone to compression.  In addition, the lower flow velocities on the 

salt marsh (Leonard and Luther, 1995; Möller et al., 1999; Christiansen et al., 2000) during tidal 

flooding leads to slow deposition and an open random fabric (Burland, 1990).  Sediment trapping 

by vegetation (Alizai and McManus, 1980; French and Spencer, 1993) and biofilms (Austen et 

al., 1999) and the subsequent flaking of silt-rich crusts (Allen, 2000) may also assist in the 

creation of an initial open soil structure.  In contrast, the absence of in situ vascular vegetation 

growth on the mudflat surface precludes the formation of an organogenic openly structured 

fabric.  Initially denser structures are created by more rapid deposition rates from a denser 

suspension (Been, 1980; Been and Sills, 1981; Burland, 1990; Sills, 1998; Lintern, 2003).  This 

results in a more compact, oriented soil fabric and lower initial voids ratios (Burland, 1990).   

Within-sample variations in initial structure are likely to result from minor variations in 

depositional conditions.  Spatial and temporal variations in water chemistry, flow velocity and 

the density of sediment in tidal waters will cause differences in floc size and soil structure.  In 
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addition, in the low marsh environment, variations in plant species assemblage and canopy 

height may result in variations in flow velocities, creating differences in settling style and 

sedimentation rate.  Plater et al. (1998), for example, demonstrate both spatial and temporal 

(downcore) variations in sedimentation rate at Cowpen Marsh using radionuclides. 

6.2 Overconsolidation 

One-dimensional compression testing of low marsh and mudflat materials obtained from 

the intertidal zone at Cowpen Marsh demonstrates that both the low marsh and mudflat are 

overconsolidated, and to different degrees.  It is reasonable to infer that the observed 

overconsolidation is caused by variations arising from the tidal cycle and associated groundwater 

level changes, which together expose surface and near-surface sediments to a range of subaerial 

and vadose zone conditions and processes.   

We make first-order approximations of the influence of groundwater falls on effective 

stresses acting on surface sediments using standard soil mechanics and theory.  In hydrostatic 

situations, pore water pressures decrease above the water table at a rate of 9.81 kPa m
-1 

(Powrie, 

2004).  This increases effective stress without an increase in total stress (Equation 1).  The 

maximum observed groundwater depth below the low marsh surface was 0.92 m (May 30
th

 

2004).  Using hydrostatic principles, the effective stress acting on surface sediments as a result of 

this groundwater fall was approximately 9 kPa.  This would have caused a calculated 

preconsolidation stress in the low marsh materials of 9 kPa.  The greater preconsolidation 

stresses estimated from the oedometer test results are likely to have resulted from a more 

complex interaction of desiccating processes and the soil moisture demands of vegetation, both 

of which create negative pore water pressure (soil suction) (Marinho and Chandler, 1993; Wilson 

et al., 1997; Mathur, 1999).  The presence of vascular plants in the low marsh sediment also 
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aerates the soil and enhances the withdrawal of moisture from soil insterstices via 

evapotranspiration and evaporation (Powrie, 2004).  The effects of such processes are 

demonstrated by the work of Smethurst et al. (2006), who installed a network of piezometers and 

tensiometers at a cut-slope, vegetated by rough grass, herbs and small shrubs, in the London Clay 

at Newbury, Berkshire, UK.  They reported maximum summer soil suction values of between c. 

50 kPa at 1.0 m depth and c. 450 kPa at 0.3 m depth.  They attribute this to a soil moisture deficit 

caused by vegetation suction.  It is reasonable to assume that similar processes operate within 

salt marshes.  However, soil moisture deficits and hence suction stresses are likely to be lower in 

coastal sediments as a result of tidal inundation on at least a monthly basis and a generally higher 

coastal groundwater table.   

Variations in preconsolidation stress between the low marsh and mudflat sediments are 

likely to result from the lower flooding duration of the low marsh sampling site (6 % of total 

time, as opposed to 35 % of total time at the mudflat sampling site).  This increases the duration 

of exposure to desiccating subaerial processes and reduces the opportunity for soil moisture 

contents to be recharged.  Similarly, the vegetated salt marsh surface increases the potential for 

soil moisture deficits and negative pore water pressures.  Within-material variability in 

preconsolidation stress results from small-scale spatial and temporal differences in effective 

stress acting at the depositional surface.  Prior burial by sediment and subsequent erosion of this 

overburden is an additional potential cause of the overconsolidation observed in the sediments 

obtained from the depositional surface at Greatham Creek.  No obvious lithostratigraphic 

evidence of erosion, such as sharp lithostratigraphic contacts, was observed within the upper 0.3 

m of the stratigraphy at our sampling locations (Brain, 2006).  Whilst this alone does not 

preclude erosion as the mechanism, basic geotechnical analysis further suggests that erosion 
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cannot be the sole cause of the observed overconsolidation.  It is possible to calculate the 

approximate thickness of eroded overburden sediments that would have caused the observed 

preconsolidation stresses in the sediments at the depositional surface, the lowest of which was 8 

kPa in the mudflat material.  If the hypothetical eroded overburden sediments were composed of 

a saturated sand (uniform bulk density of 2 g cm
-3

), and assuming hydrostatic conditions and 

dissipation of all excess pore water pressures, a preconsolidation stress of 8 kPa would have been 

effected in the sediments immediately beneath the erosion surface by 0.8 m of eroded 

overburden.  If buried by a less dense material obtained from the intertidal zone (e.g. bulk 

density of 1.44 g cm
-3

), a preconsolidation stress of 8 kPa would have been effected in the 

sediments by removal of approximately 1.85 m of overlying material.  Using the maximum 

estimate of late twentieth century sedimentation rates calculated for Cowpen Marsh by Plater et 

al. (1998) (22.67 mm yr
-1

), deposition of even 0.8 m of overburden sediment would have taken 

approximately 30 years.  Hence, the sediments at the current depositional surface that display 

overconsolidation would be expected to display a minimum age of 30 years if erosion of 

overlying sediments of sufficient thickness to cause even the minimum preconsolidation stresses 

had occurred.  Plater et al. (1998) develop radionuclide chronologies for shallow (c. 0.2 – 0.3 m) 

sediment cores obtained from the mudflat and salt marsh environments at Cowpen Marsh.  These 

chronologies demonstrate that the uppermost 0.1 – 0.2 m of the stratigraphic column 

accumulated within the past 30 years.  Hence, the sediments at the contemporary depositional 

surface are recent and so erosion of large thicknesses (≥ 0.8 m) of overburden is highly unlikely 

to have occurred.  Despite radionuclide evidence of erosion at some locations at Cowpen Marsh 

by Plater and Abbleby (2004), the erosion depths involved appear to be relatively shallow (< 0.1 

m) and so this erosion cannot account for the preconsolidation stresses observed within the 
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sediments at Greatham Creek, particularly given the cautious nature of the values used in our 

calculations (i.e. lowest preconsolidation stresses, highest sedimentation rates and hence 

minimum thicknesses of hypothetically eroded sediments).    

6.3 Compressibility and destructuration 

Mean values of all compression indices for the low marsh (Cr = 0.23, Cc = 1.89) are 

higher than those of the mudflat (Cr = 0.12, Cc = 0.60), indicating higher compressibility (more 

than three times greater during virgin compression) of the low marsh sediments.  The general 

higher compressibility of the low marsh materials is likely to be related to the higher levels of 

organic material in the soil in comparison with mudflat sediments (Delaune et al., 1994).  The 

more open initial structure of the low marsh sediments is more prone to volumetric reduction in 

response to loading than the initially denser mudflat materials (after Burland, 1990).   

Similar intralithology relationships are evident. Strong, statistically significant 

correlations exist between e1 and both Cc and Cr in the low marsh; and between e1 and Cc in the 

mudflat (Table 5).  These generally strong, positive and statistically significant correlations 

further suggest that sediments with more open initial structures are more susceptible to 

compression at effective stresses less than and greater than the preconsolidation stress.  Since 

minor variations in e1 are likely to be controlled by small variations in the depositional 

environments (Section 6.1), changes in structure and compression behaviour through space at the 

depositional surface translate into rapid stratigraphic variations in compressibility within a 

sedimentary sequence. 
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Table 5 Correlations between initial voids ratios and compression indices of low marsh and 

mudflat samples tested for compression behaviour. 

 
Low Marsh Mudflat 

Compression 

index, Cc 

Recompression 

index, Cr 

Compression 

index, Cc 

Recompressio

n index, Cr 

Initial voids 

ratio, e1 

r 0.823 0.879 0.936 0.598 

p 0.012 0.004 0.002 0.157 

r = Pearson’s correlation coefficient, p = significance (two-tailed).  Significant correlations are in 

bold type. 
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These relationships help to explain the observed convergence of the virgin compression 

lines, a phenomenon previously noted by Schofield and Wroth (1968), Skempton (1970), 

Burland (1990) and Tovey and Paul (2002), and also reductions in structural variability observed 

at higher stresses.  Samples with denser initial structures are less compressible both pre- and 

post-yield as they are structurally more stable and closer to the ‘intrinsic’ (i.e. independent of 

depositional structures) state of the material (Burland, 1990).  Less dense samples are highly 

structured relative to the intrinsic properties of the material; such structures result from the 

variations in depositional conditions and lithological characteristics discussed above.  

Application of an effective stress to sediments with initially open fabrics begins to break down 

the sedimentary structures in a ‘destructuration’ process (Leroueil et al., 1979; Burland, 1990).   

With increased application of effective stress, destructuration removes the influence of 

depositional conditions and causes increased homogeneity of compression behaviour, as 

indicated by the convergence of compression lines, and structure, as indicated by decreases in the 

standard errors of voids ratios with increasing effective stress (Figure 8).  In both low marsh and 

mudflat sediments, the effects of destructuration are less pronounced at effective stresses greater 

than c. 800 kPa, when the standard error of voids ratios remains largely stable (Figure 8).   

6.4 Limitations of Virgin Compression Models 

Our basic one-dimensional compression tests reveal important differences in compression 

behaviour from those described by the VCM.  We now explore the implications of our findings 

for use of the VCM when predicting volume changes in minerogenic intertidal sediments.   

Variations in voids ratio at the depositional surface occur in both low marsh and mudflat 

sediments.  This violates an assumption of VCMs that intra-lithology variability in structure does 

not exist and that a deterministic approach is valid.  Single values of initial voids ratio used in 
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VCMs are unlikely to adequately describe the range of structures observed at the depositional 

surface.   

The oedometer compression testing shows that both the low marsh and mudflat sediments 

are overconsolidated and that each lithology displays a range of calculated preconsolidation 

stresses.  Again, this challenges an assumption of VCMs that sediments are normally 

consolidated.  The VCM, involving a backwards extrapolation of the virgin compression line to 1 

kPa, provides an inadequate representation of the one-dimensional compression behaviour of 

minerogenic intertidal sediments at stresses less than the preconsolidation stress.  Hence, use of 

the VCM to predict the past compression behaviour of minerogenic sediments, using in situ 

material properties, would overestimate voids ratios (and hence volumes and layer thicknesses) 

at effective stresses less than the preconsolidation stress.   

Characterisation of the physical properties of the low marsh and mudflat materials reveals 

little variation in their lithology.  Despite this, compression testing shows that both low marsh 

and mudflat samples display variations in compression behaviour.  Values of the key 

compression indices (Cc and Cr) vary between samples of the same lithology.  This demonstrates 

that the compression behaviour of an apparently uniform lithological unit cannot adequately be 

described by single values of the compression indices.  This contrasts with the assumption of the 

VCM that there is no intra-lithology variability in compressibility and that a deterministic 

approach is therefore valid.   

  These points challenge the validity of applying a single value of the compression index 

to a geotechnically variable, although lithologically uniform, material.  The implications become 

evident when considered in relation to existing approaches.  Current procedures to predict 

volume change in intertidal sediments begin by splitting a stratigraphic column into a number of 
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layers, within which the geotechnical and lithological properties are assumed to be constant (Paul 

and Barras, 1998; Pizzuto and Schwendt, 1997; Tovey and Paul, 2002; Massey et al., 2006).  The 

ideal situation would involve obtaining one-dimensional compression test and voids ratio 

measurements at the highest possible resolution; 0.02 m, for instance, to allow an oedometer test 

to be undertaken on the material.  Such an approach is impractical given the time that would be 

required to test at this resolution throughout even a short (e.g. 1 metre) core.  Instead, it has been 

common practice to obtain a value of the compression index for an arbitrarily defined 

stratigraphic layer based on a single oedometer or liquid limit test and then apply this value to 

the entire unit.  Due to the observed variation in the compression behaviour in surface sediments, 

such an approach would appear to be inadequate, since rapid downcore variation in 

compressibility is likely to take place in apparently homogenous lithologies.   

The observed destructuration in intertidal sediments creates further problems when 

estimating historical compression behaviour and volumetric change for decompaction 

procedures.  Convergence of virgin compression lines and the removal of depositional structures 

limits the use of oedometer tests undertaken on samples obtained from depth in predicting 

previous compression behaviour and volumetric conditions.  Due to the increased homogeneity 

of structure and compression behaviour at higher stresses, ‘memory’ of the previous compression 

behaviour and depositional structures and volume is lost.  A simple backwards extrapolation of 

the virgin compression line based on in situ properties would not permit prediction of the initial 

structural variations that are subsequently lost upon increased exposure to vertical effective 

stress.  This would potentially lead to over- or under-estimations of layer thicknesses at low 

effective stresses.   
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6.5 A new framework for modelling compression in minerogenic intertidal sediments 

On the basis of our findings, VCMs do not adequately describe compression behaviour in 

minerogenic intertidal sediments.  Our results allow us to make informed decisions to develop a 

framework that more accurately describes the volumetric evolution of minerogenic intertidal 

sediments.   

The elog’ framework remains sufficient for describing compression behaviour in 

response to variations in effective stress, but with the some modifications to the VCM.  To 

account for the observed overconsolidation at the depositional surface, both the recompression 

line and the virgin compression line must be described in the conceptual framework.  A value of 

the initial voids ratio is also required; this relates to the intercept of the recompression line rather 

than the intercept of the virgin compression line.  It was noted in Section 5.5 that the transition 

from the low gradient, overconsolidated recompression line to the steeper gradient virgin 

compression line begins to occur at an effective stress lower than the preconsolidation stress.  

We therefore distinguish between the preconsolidation stress and the yield stress.  We use the 

latter to describe the effective stress at which soil stiffness decreases as compression behaviour 

begins to move from the recompression line to the virgin compression line.  It represents the 

point at which structural resistance to compression begins to break down (Nash et al., 1992).  

Importantly, we consider the yield stress to be related to the actual compression behaviour of the 

soil and so is of greater use in describing compression behaviour than estimations of the 

preconsolidation stress.  Finally, a statistical approach model is required that is capable of 

describing variations and uncertainty in initial (e1) and post-yield structure (voids ratio), yield 

stress and pre- and post-yield compression behaviours (Cr and Cc).  Our proposed conceptual 

framework to describe compression behaviour in minerogenic intertidal sediments is illustrated 
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in Figure 9.  A more detailed description of model development is beyond the scope of this 

paper, as are model application and validation.  Such work is ongoing. 
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Figure 9  Components of the proposed conceptual framework to describe compression 

behaviour.   Dashed lines indicate error margins that incorporate variations in structure and 

compression behaviour at effectives stresses less than and greater than the yield stress.  A 

decrease in the vertical range of the error margins at effective stresses greater than the yield 

stress represents the loss of depositional structure and resistance to compression at and following 

yield. 
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The conceptual framework describes the compression behaviour of minerogenic intertidal 

sediments in response to increases in effective stress.  It only describes the volumetric effects of 

the consolidation process, during which overburden total stresses are transferred from pore water 

to the soil skeleton over time and hence increasing effective stresses.  The framework does not 

describe the time element of the consolidation process that results from variable hydraulic 

conductivity and drainage paths (see Price, 2009, for example).  Similarly, time-dependent creep 

processes that typically operate as consolidation ends (i.e. at constant effective stress) are 

assumed to be negligible but warrant further investigation. An additional assumption of our 

conceptual description of compression behaviour is that post-depositional diagenetic changes in 

chemical composition of the sediment do not occur.  Such changes would result in increased bulk 

density and compressive strength via interparticle cementation (Tovey and Yim, 2002).   

6.6 Model transferability 

Before the conceptual framework developed above can be applied to minerogenic 

intertidal sediments at different locations, particularly when hindcasting the compression 

behaviour of fossil sediments, it is important to demonstrate that the processes that determine the 

key model parameters are universal, rather than simply relating to a specific set of samples 

obtained from Cowpen Marsh. Sections 6.1 - 6.3 describe the likely lithological and 

environmental controls on each of the components of the conceptual compression framework 

(Figure 9).  Given the granulometric similarity of the mudflat and low marsh samples and the 

observed differences in loss on ignition, e1, Cr and Cc between the two lithologies, organic 

content appears to exert a strong control on the initial structure and compressibility of soils.  The 

organic content of low energy intertidal sediments is controlled by relative elevation and, hence, 

flooding duration and frequency, which partly control the vertical zonation of salt marsh 
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vegetation (Silvestri et al., 2005).  Overconsolidation results from the operation of the tidal cycle 

and the consequent subaerial exposure and groundwater water level falls.  In turn, these 

phenomena allow desiccation to occur and create capillary suction stresses, causing soil moisture 

deficits and resultant additional vegetation suction stresses.  These overconsolidating processes 

control the preconsolidation and yield stresses in intertidal sediments.   

Importantly, all model parameters are related, either directly or indirectly, to the 

operation of the tidal cycle and the associated processes summarised above.  Variations in values 

of the model parameters (e1, Cr and Cc and the yield stress) can be expected to occur within a 

given intertidal zone with specific sedimentological, ecological, geomorphic and hydrographic 

conditions.  At subtidal levels, where the environment is considerably less dynamic and where 

subaerial exposure and groundwater variations do not occur by definition, the lower end member 

of the continuum exists.  Overconsolidation is unlikely here and so the compression behaviour in 

elog’ space can be described by a standard VCM (Figure 10, Graph 1).  Within the fully 

minerogenic section of the intertidal zone, similar materials form but their compression 

behaviour is modified by subaerial desiccation and groundwater variations.  Hence, with 

increased elevation above LAT, the yield stress can be expected to increase (Figure 10, Graphs 2 

and 3).  In the partially organic low marsh environment, the in situ production of organic matter 

leads to an increase in e1 which, in turn, results in greater values of Cr and Cc.  Furthermore, the 

greater frequency and duration of subaerial exposure increases the yield stress (Figure 10, Graph 

4).  In mid marsh environments, where minerogenic sedimentation still contributes to lithological 

composition, it is possible that the material property continuum continues, with higher organic 

contents creating more open, compression prone structures (higher higher initial voids ratios and 

compression indices) and increased subaerial exposure yield stresses resulting in greater yield 
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stresses (Figure 10, Graph 5).  However, towards the higher elevations within the intertidal zone, 

the applicability of the proposed modelling framework is uncertain due to higher organic 

contents (Figure 10) and the associated variations in autocompaction processes. 
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Figure 10  Hypothetical variations in the general compression behaviour of sediments at varying 

elevations within a typical NW European salt marsh: (a) variations in compression behaviour in 

relation to environmental conditions and controls (schematic diagram not to scale); (b) summary 

and comparison of varying compression behaviours. 
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Since the controlling processes are common to all low energy intertidal environments, the 

conceptual compression model here is considered to be applicable to other minerogenic 

sediments forming in low energy intertidal areas.  However, parameters obtained from one 

specific intertidal area may not be directly transferable to others.  Varying hydrographic and 

geomorphic settings and local sedimentological, ecological, geochemical and climatic conditions 

are likely to influence the specific values of the compression framework parameters.  

 Zong and Horton (1999) present details of the sedimentological characteristics of six UK 

low energy coastal sites representing different tidal ranges (meso- to macro-tidal) and 

geomorphic settings (estuarine, embayment and lagoonal).  The sedimentological characteristics 

of the six sites vary. For example, sand content in the tidal flat environments at Roudsea Marsh, 

Morecombe Bay (macrotidal, estuarine), Thornham Marsh, Norfolk (macrotidal, lagoonal) and 

Tramaig Bay, Jura (microtidal, embayment) range from 50 – 100 % (Zong and Horton, 1999).  

Vegetation cover (%) and species composition varies within and between sites (see Table 2 of 

Zong and Horton, 1999).  Similarly, loss on ignition varies between sites, from the low values (≤ 

c. 30 % at all elevations) observed in the Nith Estuary, Solway Firth (macrotidal, estuarine) to 

the highly organic substrate of the Kentra Bay site in Argyll (mesotidal, embayment) where loss 

on ignition values range from > 50 % in the low marsh to 100 % in the high marsh. The effect of 

these variations in sediment composition and character are likely to influence initial structural 

characteristics (e1) and subsequent compression behaviour (Cc and Cr).  In addition, variations in 

granulometric characteristics may influence the operation of autocompaction processes, since 

coarser sediments with pore sizes and configurations more conducive to rapid drainage may 

experience more enhanced drying than sediments containing greater proportions of silts and 

clays.  However, the overconsolidating effects of drying may be more pronounced in cohesive 
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sediments that can experience greater suction stresses during desiccation (cf. Hawkins, 1984; 

Marinho and Chandler, 1993).  Further research is required to determine the significance of 

varying granulometric and organic composition on values of initial structural characteristics (see 

Bird et al., 2004; Bartholdy et al., 2010), preconsolidation stresses and compression indices.   

Additional sedimentological and geochemical factors may also affect compression 

behaviour and values of each of the framework parameters.  Under suitable reduction-oxidation 

(redox) conditions, variations in local sediment composition and pore water chemistry can result 

in the concentration of redox-sensitive compounds and geochemical zonation (Cundy and 

Croudace, 1995; 1996; van Huissteden and van de Plassche, 1998; Thomson et al., 2002).  The 

enrichment of redox sensitive elements can result in point contact cementation (Hawkins, 1984) 

in sediments at the depositional surface (i.e. syn-depositional enrichment and cementation).  This 

may result in lower initial voids ratios and compression indices and greater yield stresses, 

reflected in increased structural resistance to compression (cf. Nygard et al., 2004; Gutierrez and 

Wangen, 2005).   

Variations in tidal range may lead to changes in the degree of overconsolidation 

experienced at different elevations.  In larger estuarine systems, such as that of the Severn 

(extreme hypertidal range of 14.8 m; Allen, 2000), overconsolidation towards HAT may increase 

due to prolonged desiccation during summer neap tides and as groundwater levels fall (Hawkins, 

1984; see also Crooks, 1999; Barras and Paul, 2000).  In contrast, a smaller tidal range may 

result in a lesser degree of overconsolidation since surface sediments are likely to be in closer 

proximity to tidal water and groundwater, allowing continued saturation of the near-surface 

sediments via tidal flooding and capillary action.  More pronounced overconsolidation will lead 

to greater preconsolidation and yield stresses.  Variations in yield stress are also likely to result 



 

50 

 

from local climatic factors, such as mean and extreme temperatures and precipitation patterns, 

which have the potential to lower or raise groundwater levels and, hence, desiccate or moisten 

intertidal sediments (cf.  Greensmith and Tucker, 1971; Greensmith and Tucker, 1986). 

In larger minerogenic sedimentary systems such as the Ganges – Brahmaputra delta, 

India/Bangladesh, South Asia, sedimentation rates are significantly higher than those generally 

observed in contemporary UK saltmarshes as a result of rapid tectonically-driven relative sea 

level rise (Goodbred and Kuehl, 2000).  Here, Allison and Kepple (2001) obtain a recent 

sedimentation rate of 11 mm yr
-1

 on the basis of 
137

Cs dating.  It is possible that these high 

sedimentation rates reduce the opportunity for drying during neap tides and warm periods.  As a 

result, the degree of overconsolidation may be lower, since deposited sediments are buried 

before they can dry out and undergo the associated effective stress increases. 

Given this potential for variation in values of the compression framework parameters as a 

result of varying local ecological, sedimentological, geochemical, climatic, geomorphic and 

hydrographic conditions, there is evidently a requirement to obtain site-specific values of e1, Cr 

and Cc and the yield stress using laboratory geotechnical testing.  Each lithology in a given 

intertidal zone has its own distinctive initial structure and subsequent compression behaviour.  

Providing that the sediments considered are primarily minerogenic, the framework to describe 

compression behaviour presented in Section 6.5 should remain applicable.  A larger database of 

material and physical properties from a greater range of elevation from different sites would 

allow this hypothesis to be tested.   

7. Conclusions 

This paper addresses the autocompaction behaviour of recently deposited minerogenic 

sediments by presenting, for the first time, a suite of geotechnical experiments designed to test 
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fundamental assumptions that underpin existing geotechnical autocompaction models.  Our main 

conclusions are as follows: 

1. Low marsh and mudflat samples display inter- and intra-lithology variability in structure 

(voids ratio), both at the depositional surface and as compression proceeds.  These variations 

are largely due to differences in organic content and salt marsh root content.  

2. All low marsh and mudflat materials are overconsolidated to varying degrees.  Low marsh 

samples analysed have been subjected to effective stresses in the range 20 – 27 kPa prior to 

the commencement of burial.  In the mudflat samples, preconsolidation stresses range from 8 

– 14 kPa.  We argue that the observed overconsolidation results from desiccation and 

capillary suction stresses caused by varying degrees of subaerial exposure, falls in 

groundwater level and the moisture requirements of vascular plants.   

3. Variations in compression behaviour occur both within and between lithologies.  Samples 

with higher initial voids ratios, and hence more open and unstable initial structures, are more 

compressible than samples with initially denser structures (lower voids ratios).  

4. Structural variability decreases with application of higher effective stresses due the operation 

of destructuration processes that remove influence and ‘memory’ of initial structure and 

result in increased homogeneity of compression behaviour at higher effective stresses.   

5. We contend that the Virgin Compression Model provides an inadequate description of the 

one-dimensional compression behaviour of minerogenic intertidal soils.  Without 

modification on the basis of our findings, the VCM is likely to overpredict layer thicknesses 

at effective stresses less than the yield stress.  In addition, destructuration prevents accurate 

estimation of the range of structures and, hence, layer thicknesses that occur at lower values 

of effective stress if in situ conditions are used as the basis of such estimates.   
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6. We address the deficiencies of VCMs by developing a new conceptual framework that 

describes overconsolidation.  We recommend the use of a statistical model to account for 

structural variability.  We argue that the model parameters are controlled by factors common 

to all low energy intertidal environments, namely flooding frequency and duration and 

associated ecological zonation.  We therefore suggest that the conceptual framework is 

broadly applicable to minerogenic intertidal sediments at different locations and burial depths 

within Holocene stratigraphic sequences.  However, site-specific measurements of the 

constituent framework parameters are required to account for local variations in ecological, 

sedimentological, geochemical, climatic, geomorphic and hydrographic conditions.  Hence, 

the individual characteristics of different field locations should be carefully considered 

before the suggested framework is routinely applied.   
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