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Poiseuille flow in a fluid overlying
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This paper numerically investigates the instability of Poiseuille flow in a fluid overlying
a porous medium saturated with the same fluid. A three-layer configuration is adopted.
Namely, a Newtonian fluid overlying a Brinkman porous transition layer, which in
turn overlies a layer of Darcy-type porous material. It is shown that there are two
modes of instability corresponding to the fluid and porous layers, respectively. The
key parameters which affect the stability characteristics of the system are the depth
ratio between the porous and fluid layers and the transition layer depth.

1. Introduction
The instability of parallel flows and in particular Poiseuille or Couette flow has

been a major problem in fluid mechanics for a long time. Extensive coverage of the
early work on such problems is given by Drazin & Reid (1981, chap. 4). More recent
work has concentrated on eigenvalue studies in an attempt to reconcile discrepancies
between theoretical and experimental results (see e.g. Gustavsson 1986; Butler &
Farrell 1992; Friedlander & Howard 1998; Straughan 1998, chap. 8). In this paper,
we address the problem of Poiseuille flow when a Newtonian fluid overlies a porous
material saturated with the same fluid. The instability for this problem was first
addressed by Chang, Chen & Straughan (2006).

The problem of fluid flow over a porous medium has a rich history, especially in
connection with thermal convection (see e.g. Nield 1977, 1983, 1991, 1998; Chen &
Chen 1988; Straughan 2002; Carr & Straughan 2003; Carr 2004; Chang 2005, 2006;
Nield & Bejan 2006; Hirata et al. 2007). A key finding was made by Chen & Chen
(1988) who employed a Navier–Stokes fluid overlying a Darcy porous medium and
discovered that the linear instability curves for the onset of thermal convection may
be bi-modal. Their work hinges on the parameter d̂ which is defined by

d̂ =
d

dm

=
depth of fluid layer

depth of porous layer
. (1.1)

Chen & Chen (1988) discovered that when d̂ � 0.13, the instability commences
in the porous layer and is dominated by that medium, whereas when d̂ is greater than
this value, instability is dominated by the fluid layer. This switching of instability
by the fluid or porous layer is manifested mathematically by the neutral curve having
two local maxima (or minima) which change with variation of d̂ to yield a global
maximum. This was a major departure from the classical Bénard problem where only
one turning point is found.

The reason for studying flow of a fluid overlying a porous medium is the numerous
applications in industry and to geophysical problems. Many of these are discussed in
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Figure 1. Three-layer configuration for Poiseuille flow.

Nield (1977, 1983, 1991, 1998), Nield & Bejan (2006), and in the numerical papers
of Choi & Waller (1997), Das, Nassehi & Wakeman (2002), Discacciati, Miglio &
Quarteroni (2002) and Miglio, Quarteroni & Saleri (2003). Of particular relevance
here are Nield (1983, 1991, 1998) and Lu & Chen (1997) where the question of which
porous model is most appropriate (Darcy, Forchheimer, Brinkman) is posed.

The instability problem studied by Chang et al. (2006) considered Poiseuille flow of
a Newtonian fluid overlying a Darcy porous medium saturated with the same fluid.
In addition to two modes of instability corresponding to the porous and fluid layers,
respectively, Chang et al. (2006) found a third mode which they attributed to a shear
layer at the interface. This mode was important and for certain parameter values
could dominate the instability. Motivated by (Nield 1983, p. 45), who suggested the
use of a Brinkman equation in the boundary-layer region where the fluid enters the
porous medium, we here reconsider the Poiseuille-flow instability problem when we
have a three-layer configuration (see figure 1). We have a Newtonian fluid overlying
a transition layer composed of a Brinkman porous material which in turn overlies a
layer of porous material of Darcy type. We believe such a study is timely, especially
since Goharzadeh, Khalili & Jorgensen (2005) address precisely this problem from
an experimental viewpoint. They raise the important question as to what is the extent
of the Brinkman layer, i.e. how deep is the transition layer? If the transition layer
depth is δ1, κ is permeability and D is a typical grain diameter, they conclude that the
transition-layer thickness is of the order of the grain diameter, i.e. δ1/D = O(1), which
was theoretically predicted by Goyeau et al. (2003). (In this paper the transition depth
is denoted by βdm ≡ δ1.) This is striking and they also conclude δ1/

√
κ = O(50) (which

was theoretically predicted by Ochoa-Tapia & Whitaker 1995) whereas previously it
had been thought that δ1 was of the same order as

√
κ . We use the important findings

of Ochoa-Tapia & Whitaker (1995), Goyeau et al. (2003) and Goharzadeh et al.
(2005) to suggest parameter values for our transition layer. Our findings are notably
different from those of Chang et al. (2006). In particular, we see that the effect of the
third mode effectively disappears when the transition layer is introduced. Also, we
find that a key parameter is the depth of the transition (Brinkman) layer. This aspect
is discussed in detail in § 3.4.

2. The governing equations
We consider a fluid occupying the three-dimensional layer {(x, y) ∈ �2} × {z ∈

(0, d)}, with a homogeneous porous medium occupying the layer {(x, y) ∈ �2} × {z ∈
(−dm, 0)}. The interface between the porous medium and the fluid is at z = 0. The
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governing equations in the fluid are given by the Navier–Stokes equations

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν�ui, (2.1)

∂ui

∂xi

= 0. (2.2)

Equations (2.1) and (2.2) are assumed to hold for time t > 0. In these equations, ui

and p are velocity and pressure, and ρ and ν are density and kinematic viscosity.
Standard index notation is employed throughout, with the symbol � representing the
Laplace operator.

The porous medium is divided into two layers; namely z ∈ (−dm, −βdm), which
will be referred to as the Darcy layer, and z ∈ (−βdm, 0), which will be referred to
as the Brinkman layer, where β ∈ (0, 1). Note that we define the porosity ε to be
constant throughout the porous medium. The governing equations in the Brinkman
layer are those of the Brinkman model

ρ

ε

∂ub
i

∂t
= −∂pb

∂xi

+ µe�ub
i − µ

κ
ub

i , (2.3)

∂ub
i

∂xi

= 0, (2.4)

for time t > 0, in the spatial region {(x, y) ∈ �2} × {z ∈ (−βdm, 0)}. In these equations,
the variables ub

i and pb are the superficial average velocity (or Darcy velocity or
filtration velocity) and fluid phase intrinsic average pressure, where µe, µ, κ and
ρ are effective viscosity, dynamic viscosity, permeability and density, respectively.
The parameter β may be varied to assess the effect of the depth of the transition
layer. In order to evaluate µe, we adopt the approach of Whitaker (1986), where
µ/µe = ε. Although this relation is employed throughout the paper, owing to the
well-documented challenges in evaluating the actual effective viscosity, variations in
µ/µe are explored numerically in § 3.5.

The Darcy layer occupies the spatial region {(x, y) ∈ �2} × {z ∈ (−dm, −βdm)},
where the governing equations are those of Darcy flow,

ρ

ε

∂um
i

∂t
= −∂pm

∂xi

− µ

κ
um

i , (2.5)

∂um
i

∂xi

= 0, (2.6)

for time t > 0, where the variables um
i and pm are the superficial average velocity and

fluid-phase intrinsic average pressure.
The derivation of appropriate boundary conditions at the interfaces is non-trivial.

We assume the continuity of normal stresses at the two interfaces. This yields the two
interface conditions,

−p + 2µ
∂u3

∂z
= −pb + 2µe

∂ub
3

∂z
at z = 0, (2.7)

−pm = −pb + 2µe

∂ub
3

∂z
at z = −βdm. (2.8)

This does not mean that the pressure is discontinuous at the respective interfaces.
In the porous medium, we interpret the pressure as a pore-averaged pressure and
so conditions (2.7), (2.8) are consistent with continuous pressure in the fluid on the
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microscopic level. However, we observe that both Chang et al. (2006) and ourselves
have employed conditions of continuity of pressure in (2.7), (2.8) and we found little
variation in our numerical results. Therefore, we believe the interface conditions (2.7),
(2.8) are acceptable. In addition to (2.7), we assume the velocity is continuous at z = 0,

i.e. ui = ub
i . Similarly at z = −β , we have the continuity of normal velocities such that

um
3 = ub

3. Allowing the continuity of tangential stresses on the interface z =0, yields
the condition

µ

(
∂uγ

∂z
+

∂u3

∂xγ

)
= µe

(
∂ub

γ

∂z
+

∂ub
3

∂xγ

)
at z = 0, (2.9)

for γ = 1, 2. The remaining interface boundary condition must be defined at the
interface between the Darcy and Brinkman layers at z = − β. The stress vector on
this interface as approached from the Brinkman layer is

tb
i = nj tji = −pbni + 2µed

b
ijnj ,

where n = (0, 0, 1) is the unit normal from the Brinkman layer. Thus, the tangential
component of the stress vector, tγ , γ = 1, 2 is given by

tb
3γ = 2µed

b
γ 3 = µe

(
ub

γ,3 + ub
3,γ

)
.

This leads to the Jones (1973) boundary conditions

∂ub
γ

∂z
+

∂ub
3

∂xγ

=
α√
κ

(
ub

γ − um
γ

)
(γ = 1, 2), (2.10)

where α is a constant which depends on the porous medium. We could omit the term
∂ub

3/∂xγ on the left-hand side of (2.10) and this would amount to using a Beavers
& Joseph (1967) boundary condition. Straughan (2002) found that the Jones and
Beavers–Joseph boundary conditions led to almost the same numerical results. We
believe this is true here and so employ the invariant condition (2.10).

2.1. The basic flow

To introduce Poiseuille flow into the model, we assume a constant pressure gradient
in the x-direction. The basic solution, denoted by (ui, p), (ub

i , pb) and (um
i , pm), is

derived using the aforementioned boundary conditions, together with u = 0 at z = d

and um
3 = 0 on z = − dm. This yields,

u(z) = 1
2
c1z

2 + c2z + c3,

ub(z) = c4e
f z/

√
κ + c5e

−f z/
√

κ − κc1,

um = −κc1,

where f =
√

µ/µe (=
√

ε, using Whitaker 1986),

c1 =
1

µ

dp

dx
, c2 = Ac1(κ − 1

2
d2)((f + α)e2βf dm/

√
κ − (f − α)),

c3 =
−A

2

√
κc1d((f + α)e2βf dm/

√
κ (f d + 2

√
κ) + (f − α)(f d − 2

√
κ)),

c4 = Af c1

√
κ(κ − 1

2
d2)(f + α)e2βf dm/

√
κ , c5 = Af c1

√
κ(κ − 1

2
d2)(f − α),

and 1/A= (f + α)(f
√

κ + d) exp[2βf dm/
√

κ] + (f
√

κ − d)(f − α). To facilitate the
interpretation of the relative magnitudes of velocity, the length scales in the fluid
and porous layers are normalized by dividing by d and dm, respectively, and the
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dimensional basic velocities in both layers are normalized by dividing by V , the
maximum of u(z). This yields the velocity function

U (z) =
u

V
=

4M1(d̂M3

√
δ − M1d̂

2z2 − d̂M2z)

M2
2 + 4d̂M3M1

√
δ

, (2.11)

for the fluid layer, z ∈ (0, 1),

Ub(z) =
ub

V
=

4M1

(
2δM1 − f

√
δ(2δ − d̂2)

(
(f + α)e(f/

√
δ)(z+2β) + (f − α)e−f z/

√
δ
))

M2
2 + 4d̂M3M1

√
δ

for the Brinkman layer, z ∈ (−βdm, 0), and

Um =
um

V
=

8δM2
1

M2
2 + 4d̂M3M1

√
δ

for the Darcy layer, z ∈ (−dm, −βdm), where δ = κ/d2
m is the Darcy number, and

M1 = e2βf /
√

δ(f + α)(f
√

δ + d̂) + (f
√

δ − d̂)(f − α),

M2 = (2δ − d̂2)((f + α)e2βf /
√

δ − (f − α)),

M3 = e2βf /
√

δ
(f + α)(f d̂ + 2

√
δ) + (f d̂ − 2

√
δ)(f − α).

Figure 2 shows the basic velocity profiles for d̂ = 0.03, 0.1, 0.2. The remaining
parameters are δ =2.5 × 10−5, β =0.1 and α =0.1.

Note the significant behaviour of the velocity profiles in figure 2, which is in contrast
to the two-layered approach adopted by Chang et al. (2006). Because of the nature
of the interface conditions between a fluid and a Darcy porous medium, the velocity
is always significantly discontinuous there, as is evident in figure 1 of Chang et al.
(2006). However, our figure 2 shows that this is not the case with our present model.
There is still a discontinuity in velocity profile between the Brinkman and Darcy
layers, but we can provide an error indicator for this. Let

γ = max

∣∣∣∣ub − um

um

∣∣∣∣
=

(d̂2 − 2δ)f 2eβf/
√

δ

M1

√
δ

defined at z = −βdm. (2.12)

It is easy to show (using the definition of the constant M1) that β is inversely
proportional to the relative error γ. This indicates that the discontinuity of the
velocity profile may become numerically significant if the proportion of the porous
medium occupied by the transition (β) is too small. We return to analyse (2.12) in § 3.4.
All the remaining parameters have negligible impact on γ, within their acceptable
ranges.

2.2. Perturbation equations

In order to study the instability of the basic solution, we introduce perturbations
and non-dimensionalize in an analogous fashion to Chang et al. (2006). Although
nonlinear disturbances are not addressed in this paper, this would be an interesting
subject for future study owing to the potential for subcritical instabilities which are
believed to exist in Poiseuille-flow layers (cf. Drazin & Reid 1981).

Squire’s theorem is also employed to reduce the three-dimensional problem to
an equivalent two-dimensional one, by using a change of variables. Details on this
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Figure 2. Dimensionless basic velocities for the fluid layer (U ), the Brinkman layer (Ub) and
the Darcy layer (Um). The dotted lines represent the boundaries between the layers, at z = 0
and z = −β .

procedure are similar to those found in Drazin & Reid (1981). During this process
we introduce normal modes of the form

ui = ui(z)e
i(ax+by−act), p = π(z)ei(ax+by−act),

where the streamfunction ψ is defined as u1 = ∂ψ/∂z, u3 = − ∂ψ/∂x, with eigen-
function φ such that

ψ = φ(z)eia(x−ct).

Similar definitions apply for ψb and ψm.

In this manner, it can be shown that the tenth-order governing equations have the
form

(D2 − a2)2φ = Re(U − c)ia(D2 − a2)φ − iaReU ′′φ, z ∈ (0, 1), (2.13a)(
1 − iabcbRebδ

ε
− δ

f 2

(
D2

b − a2
b

)) (
D2

b − a2
b

)
φb = 0, z ∈ (−β, 0), (2.13b)(

1 − iamcmRemδ

ε

)(
D2

m − a2
m

)
φm = 0, z ∈ (−1, −β), (2.13c)
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where the Reynolds numbers Re, Reb and Rem correspond to the fluid, Brinkman and
Darcy layers, respectively. System (2.13) has been multiplied by δ, which is usually
small, to avoid numerical error. In Chang et al. (2006) the analogous equation is
(2.21). The boundary conditions for the tenth-order system (2.13) at z = 1 are

φ = Dφ = 0, (2.14)

and

φm = 0 (2.15)

at z = − 1. On the interface z = zb = 0, we have

Reφ = Rebφb,

ReDφ = d̂RebDbφ
b, (2.16)

f 2(D2 + a2)φ = d̂2 Reb

Re

(
D2

b + a2
b

)
φb,

and

Re(−iaRe(U − c)Dφ + (D2 − 3a2)Dφ + U ′iaReφ)

= Rebd̂3

(
1

f 2

(
D2

b − 3a2
b

)
+

iabcbReb

ε
− 1

δ

)
φb. (2.17)

The final boundary conditions are at the interface zm = zb = −β, where

Rebφb = Remφm,

D2
bφ

b + a2
bφ

b =
α√
δ
Dbφ

b − αRem

√
δReb

Dmφm,

⎫⎪⎬
⎪⎭ (2.18)

and

Reb

(
iabcbReb

ε
− 1

δ
+

1

f 2
(D2

b − 3a2
b)

)
Dbφ

b = Rem

(
iamcmRem

ε
− 1

δ

)
Dmφm (2.19)

3. Numerical results
We now solve the eigenvalue problem (2.13)–(2.19) by means of a D2 Chebyshev

tau method. The details are similar to those given by Dongarra, Straughan &
Walker (1996). Equations (2.13a) and (2.13b) are both written as two second-order
equations and we solve equations (2.13), not as a tenth-order system, but as five
second-order equations. Each of (2.13a)–(2.13c) is transformed to the Chebyshev
domain (−1, 1) and boundary conditions are incorporated (Carr & Straughan 2003).
The numerical results have been checked by varying the number of polynomials to
verify convergence.

The parameters, unless stated otherwise, are fixed at δ =2.5 × 10−5, α =0.1, β = 0.1,

ε = 0.3 and f =µ/µe = ε. In § 3.5, f is considered as a free parameter. These values
have been chosen to be consistent with a porous-layer depth of 3 cm so that a
direct comparison can be made with Chang et al. (2006), and the experiments of
Goharzadeh et al. (2005). Although most of the results are derived for a small-scale
porous medium, which is highly relevant to practical experimentation, § 3.3 studies
length scales of up to 1 m in the context of geological and industrial applications
(Straughan 2002; Nield & Bejan 2006). This is achieved by adopting realistic values
for the permeabilities of soil and Foametal (which is used extensively in industrial
applications such as heat exchangers, chemical reactors and fluid filters).
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Figure 3. Critical Reynolds number against wavenumber with several assigned values of

depth ratio; (a) d̂ = 0.03, (b) d̂ = 0.032, (c) d̂ =0.034, (d) d̂ = 0.038, (e) d̂ = 0.04, (f ) d̂ = 0.05.
The remaining parameters are δ =2.5 × 10−5, α = 0.1, β = 0.1 and ε = 0.3.

3.1. Depth ratio d̂ effects

The change from dominance by the porous layer to dominance by the fluid layer
is found in the range d̂ ∈ (0.032, 0.036). This is very different from that of Chen &
Chen (1988) who found the changeover was for d̂ = O(0.13). In fact, Chang et al.
(2006) also found critical d̂ values in the same range. This suggests that Poiseuille-
flow problems may behave very differently from those of thermal convection, i.e. the
transition layer for Poiseuille flow may well be larger.

In figure 3(a), d̂ = 0.03 and we see the instability dominated by one mode, the
porous mode. As we increase d̂ to d̂ = 0.032 (see figure 3b), the fluid mode appears.
As d̂ is increased (figure 3c, d), the fluid mode moves down and eventually dominates
the instability. In figure 3(e, f), this behaviour continues as d̂ is increased. Figure 4
shows the eigenfunctions (streamfunctions) as d̂ crosses through the changeover point.
When d̂ = 0.03, the porous mode dominates. We see a flow reversal at the interface
which is consistent with what is found by Chang et al. (2006). In figure 4(b), the fluid
mode is totally dominant and flow reversal (for the real part of the eigenfunction) is
not present.
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Figure 4. Normalized streamfunction with respect to two depth ratios at a critical state,

where (a) d̂ = 0.03, ac =0.4, Rec = 1075, and (b) d̂ = 0.034, ac = 1.8, Rec =942. The solid and
dashed lines represent the real and imaginary parts, respectively. The remaining parameters
are δ =2.5 × 10−5, α = 0.1, β = 0.1 and ε = 0.3.

Before moving on to variation in porosity, note that varying the coefficient α had
a negligible effect.

3.2. Porosity ε effects

The neutral curves for varying the porosity are shown in figure 5. In figure 5(a), the
porous mode dominates although the fluid mode is present. In figures 5(b) to 5(d),
where the porosity increases, the fluid mode moves down and eventually dominates
the instability.

3.3. Porous-layer depth dm effects

In figure 6, we show the effects of the porous-layer depth on the critical d̂ = d/dm

value (i.e. where the instability switches between the porous and fluid layers). This
is achieved by defining the permeability κ of the porous medium to represent soil
(κ = 1.8 × 10−10 m2) and Foametal (κ = 8.19 × 10−8 m2), respectively (cf. Straughan
2002; Nield & Bejan 2006), and varying δ = κ2/dm. Since δ is a dimensionless quantity,
the graphs for soil and Foametal are derived from a single set of results, where dm

simply needs to be rescaled in accordance with the relevant permeability.
It is clear from figure 6 that as the porous-layer depth dm is increased, the critical

d̂ value decreases. As we would expect, the results show that a higher permeability
corresponds to a higher critical d̂ value.

Note that the neutral curves are identical for all the porous-layer depths at their
corresponding critical d̂ . This indicates that the results for the 3 cm layer are applicable
to other depths and permeabilities.
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Figure 5. Critical Reynolds number against wavenumber with several assigned values of

porosity; (a) ε = 0.2, (b) ε = 0.3, (c) ε = 0.5, (d) ε =0.7. The remaining parameters are d̂ =
0.034, δ = 2.5 × 10−5, α = 0.1 and β = 0.1.
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Figure 6. Critical d̂ against porous layer depth dm. The Foametal and soil graphs refer to
fixed permeabilities κ of 8.19 × 10−8 m2 and 1.8 × 10−10 m2, respectively.
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Figure 7. Critical Reynolds number against wavenumber with several assigned values of β;
in descending order the neutral curves are (a) β = 0.001, 0.005, 0.01, 0.05, (b) β = 0.1, 0.15, 0.2,

0.3. The remaining parameters are d̂ = 0.13, ε =0.3, δ = 2.5 × 10−5 and α = 0.1.

3.4. Transition-layer effects

In figure 7, we show the effects of varying the Brinkman-layer depth parameter, β .
This parameter has a major effect on instability.

If we consider a Poiseuille flow in the experimental situation of Chen & Chen
(1988) where the total depth was 3 cm and the porous medium was composed of
3 mm glass beads, then, using the results of Goharzadeh et al. (2005) which predicts
βdm/D = δ1/D = O(1), we expect a value of β in the region of 0.1. In figure 7, we
present the neutral curves for β varying from 1 × 10−3 to 0.3. (The computations are
difficult for β very small and we were unable to compute β → 0 to see whether we
recover the results of Chang et al. (2006), although our computations do reproduce
the numerical results of Chang et al. (2006) when we take β = 0 and study the
fluid-/Darcy-layer problem.)

In figure 7(a), we see that for β increasing between 1 × 10−3 and 0.05, the fluid
dominance effect is amplified, such that the porous mode is effectively removed by
increasing the depth of the Brinkman layer.

Recalling that the relative error of the velocity profile at the Brinkman/Darcy
interface γ is defined in (2.12), we find that γ ∈ (4.25, 22.53) for β ∈ (0.001, 0.01),
but γ ∈ (6 × 10−14, 0.05) for β ∈ (0.05, 0.3). Therefore, we see that if β is taken large
enough to make the discontinuity of the velocity profile numerically insignificant,
increasing β beyond this point makes negligible change to the neutral curve, which
is reflected in figure 7(b). The value of β was taken to be 0.1 throughout the paper
as this forced the discontinuity of the velocity profile to be numerically insignificant,
which was one of the main aims of this paper.

3.5. Viscosity ratio µ/µe effects

The neutral curves for a wide range of the viscosity ratio f =
√

µ/µe are shown
in figure 8. In figure 8(a), the fluid mode dominates although the porous mode is
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Figure 8. Critical Reynolds number against wavenumber with several assigned values of
f =

√
µ/µe; (a) f = 0.5, (b) f = 0.6, (c) f = 0.7, (d) f = 0.8. The remaining parameters are

d̂ = 0.034, ε = 0.3, β = 0.1 and α = 0.1.

present. The porous mode completely dominates as f is increased. In the context of
the relatively large range of f studied, these results indicate that if the predictions
of ratio f are close in value, it may be taken as constant, but if there is substantial
variation this clearly may affect the neutral curve. For example, it was found for the
results shown in this paper that the Whitaker formula (µ/µe = ε) and the Einstein
formula (µe/µ = 1+5/2(1− ε)), generate values of f which are close enough in value
to cause an insignificant impact on the neutral curve.

This work was supported by a Research Project Grant of the Leverhulme Trust -
grant F/00128/AK.
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