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Abstract

This paper describes a new probability theory of the capacity value

of additional generation in electrical power systems. A closed form

expression for the ELCC (Effective Load Carrying Capability) or EFC

(Equivalent Firm Capacity) of a small additional capacity is derived.

This depends on the mean and variance of the distribution of available

additional generation capacity, and the shape of the distribution of

the difference between available existing capacity and demand, near

zero margin. The theory extends naturally to the case where the

pre-existing background and additional resource are not statistically

independent.

The theory may be used to explain and confirm the generality of

various well-known properties of capacity value results, as is illustrated
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using Great Britain examples. Of particular note is the common ob-

servation that if the distribution for demand is shifted so as to increase

the calculated risk, then the capacity value of additional generation

increases. The new theory demonstrates that this is not true in gen-

eral, but rather is a consequence of the shape near zero margin of the

probability distribution of the margin of existing generating capacity

over demand.

1 Introduction

Electrical energy supply should at all times be sufficient to meet demand, as

opportunities for large-scale storage are very limited with present technolo-

gies. However, since both supplies and demands are uncertain, there is always

a small Loss of Load Probability (LOLP) that supply will be insufficient to

meet demand.

Renewable sources of supply, of which installed capacities are increasing

rapidly in power systems worldwide, are naturally uncertain as their availabil-

ity to generate depends on the availability of the relevant natural resource1.

This is in contrast to conventional generation (coal, gas, nuclear etc.), whose

availability to generate given adequate fuel supplies is primarily a matter of

mechanical availability.

Given this qualitative difference, it is helpful to define an effective ca-

pacity (usually called capacity value or capacity credit, the terms are used

interchangeably) which measures in some sense the contribution of the ad-

ditional resource. Such capacity values have been used widely in practical

wind integration studies, for instance [1, 2]; an IEEE Power and Energy So-

1While tides are predictable many years ahead, the coincidence of a large tidal resource

with periods of very high demand remains uncertain far ahead of real time.
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ciety task force recently published a comprehensive review [3] of calculation

approaches and applications.

Various definitions of capacity value are possible. A comparison of re-

sults calculated using different definitions may be found in [4]. This paper

will consider the two most common ones, namely Effective Load Carrying

Capability (ELCC, the additional demand which the additional generation

can support without increasing risk), and Equivalent Firm Capacity (EFC,

the deterministic capacity whose addition would give the same decrease in

risk). The generation adequacy risk is typically measured by Loss of Load

Probability (LOLP, the probability that supply is insufficient to meet demand

at a particular time), or Loss of Load Expectation (LOLE, the expected num-

ber of periods during a given time window in which supply is insufficient to

meet demand.)

This paper will show that ELCC and EFC are mathematically the same,

apart from a shift of reference point and a sign change—an observation which

will be important for the subsequent probability theory. It should also be

noted that the concept of capacity value is only well-defined in relation to

the stochastic background created by the pre-existing supplies and demands.

A closed form expression (essentially the leading terms of a Taylor series)

for the capacity value will be derived in the case where the uncertainty in the

added capacity (as measured for example by its standard deviation) is small

in relation to that already to be found in the existing supply and demand;

ELCC and EFC are then, for practical purposes, coincident. The special case

of a normal distribution for the distribution of the margin of existing supply

over demand is known in the power systems literature as the z-method [5];

however, differently from previous analytical expressions for capacity values,

these new results make no assumptions about the form of the various distribu-
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tions, the derivation presented will be explicit about the limited assumptions

required, and the theory extends naturally to the case where the pre-existing

background and additional resource are not statistically independent.

As expected the zeroth-order term in the capacity value expression is just

the mean of the distribution of the additional capacity, while the first-order

term represents a correction proportional to its variance. Higher order terms

(negligible when the variation in the available capacity from the new gener-

ation is small in relation to the variation in the margin of existing supply

over demand) are in principle calculable, fairly readily when the additional

capacity is statistically independent of the existing capacity and demand.

However, their messy algebraic derivation provides no further insight, and

(where effects of finite network capacity are not considered) it is straightfor-

ward to obtain numerical results.

Section 2 will describe the probability theory of capacity values (its ap-

plication to this area being new). Section 3 will then show how this theory

maps into a range of practical capacity value calculations involving different

underlying risk measures, and the insights which result. Finally conclusions

will be presented in Section 4.

2 Probability theory of capacity values

2.1 Definitions

Consider initially the state of a system at a given time.

Let the random variable M denote the excess of supply (for example,

conventional generation plus existing wind generation) over demand in an

existing system, and suppose thatM has a (cumulative) distribution function

FM with associated, and differentiable, density fM . Then the associated risk
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is the loss of load probability (LOLP):

P(M ≤ 0) = FM(0).

Suppose now that a further capacity is added, represented by the random

variable Y (which may or may not be independent of M) with distribution

function FY . Suppose also that EY = µY and varY = σ2

Y
.

The two most commonly used definitions of the capacity value of Y are:

Effective load carrying capacity (ELCC): This is given by the solution

νELCC

Y
of

P(M + Y − νELCC

Y
≤ 0) = P(M ≤ 0) = FM(0), (1)

i.e. the amount of further demand which may be added while main-

taining the same level of risk.

Equivalent firm capacity (EFC): This is given by the solution νEFC

Y
of

P(M + Y ≤ 0) = P(M + νEFC

Y
≤ 0) = FM(−νEFC

Y
), (2)

i.e. the amount of deterministic capacity νEFC

Y
whose addition would

result in the same level of risk as that of the random capacity Y .

Note that in the case where Y is deterministic (Y = µY always) we have

νELCC

Y
= νEFC

Y
= µY . More generally both νELCC

Y
and νEFC

Y
depend on the

distributions of both M and Y , and it is one purpose of this paper to explore

this relationship.

Remark 1. Observe also that it follows from (1) and (2) that the EFC νEFC

Y
is

also the ELCC in the case where the surplus random variable M is replaced

byM+νEFC

Y
. In particular we shall subsequently make use of this observation

to translate immediately results obtained for ELCCs to their equivalents for

EFCs.
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2.2 Capacity values for small additions

Suppose now that the variation in Y , as measured for example by its standard

deviation σY is relatively small in comparison to the variation in M . (This

will frequently be the case in applications as both existing capacity and

demand are subject to considerable uncertainty.) It is shown here that both

the ELCC and EFC are given by (typically very) small corrections to µY each

such correction being a multiple of σ2

Y
. (To simplify understanding of the

arguments below, and to check that they may be made rigorous with regard

to the dropping of small-order terms, e.g. in Taylor expansions, it may be

supposed that units are chosen so that M is of unit size, while the variation

in Y is of order ǫ ≪ 1, and hence σ2

Y
is of order ǫ2. In the application of

results there is of course no need to actually choose such units.) It is further

shown that when additionally µY itself is relatively small, the ELCC and

EFC essentially coincide.

The first case below assumes that M and Y are independent; the adjust-

ments required for the general case are then derived.

2.2.1 The case where M and Y are independent

The following result gives the capacity value for this case.

Result 1. Assume M and Y are independent, and the distribution function

FM(m) is left-tail exponential for all m ≤ 0 (i.e. FM(m) = cekMm). Then

the distribution of M ′ = M +W is FM ′(m′) = FM(m′ − ν), where

ν = −
1

λM

ln
[

dw e−kMwfW (w)
]

. (3)

Proof. Rewrite (1) as

∫

R

dFY (y)FM(νELCC

Y
− y) = FM(0). (4)
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(In the case where the distribution of Y has a density fY the term dFY (y)

in the above integral may be more familiarly written as fY (y)dy.) From the

Taylor expansion of FM about the critical point 0 it follows that

FM(y) = FM(0) + fM(0)y +
f ′
M
(0)

2
y2 + o(y2), (5)

as y → 0. Now recall that when σY = 0 (Y is deterministic), νELCC

Y
= µY .

More generally, under our present assumption that σY is small, νELCC

Y
− µY

is small, and so, in (4), y − νELCC

Y
is small (of order ǫ in the units of the

discussion above). The o(y2) term in (5) may then be ignored, and the

following is obtained by substitution into (4):

∫

R

dFY (y)

(

FM(0) + fM(0)(νELCC

Y
− y) +

f ′
M
(0)

2
(νELCC

Y
− y)2

)

= FM(0).

Simplifying,

fM(0)(µY − νELCC

Y
) =

f ′
M
(0)

2
E
(

(Y − νELCC

Y
)2
)

=
f ′
M
(0)

2
(σ2

Y
+ (µY − νELCC

Y
)2). (6)

Recalling again that σ2

Y
is small in relation to fM(0)/f ′

M
(0), it is straightfor-

ward that the quadratic equation (6) in µY − νELCC

Y
has the solution

νELCC

Y
= µY −

f ′
M
(0)

2fM(0)
σ2

Y
+O(σ4

Y
),

as σ2

Y
→ 0 so that (3) follows as required.

Remark 2. (In the units suggested at the start of this section) the second

“correction” term on the right side of (3) is of order ǫ2, and the error in (3)

as the solution of the quadratic equation (6) is of order ǫ4. However, a more

careful analysis of the Taylor expansion used in the above proof shows that,

at least under very mild regularity conditions, the overall error in (3) is of

order ǫ3.
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Remark 3. It follows immediately from the observation of Remark 1 (or by

a repetition of the above analysis), that, under the same conditions as those

of Result 1, the corresponding approximation for the EFC νEFC is given by

νEFC

Y
= µY −

f ′
M
(−νEFC

Y
)

2fM(−νEFC

Y
)
σ2

Y
. (7)

In particular when the mean µY of Y , and so also νEFC

Y
, is small the EFC

and the ELCC essentially coincide.

2.2.2 The case where M and Y may be dependent

Recall that the variation of Y about its mean value µY is assumed to be small

in relation to the variation in M . Thus the major contribution to the proba-

bility given by the left side of (1) is from values of M in the neighbourhood

of 0. In the case where M and Y are not necessarily independent it is natural

to simply modify the expression (4) to use the conditional distribution of Y

given M = 0. Then Result 1 remains as before except only that µY and

σ2

Y
are replaced by µY |M=0 and σ2

Y |M=0
, the respective mean and variance of

the distribution of Y conditional on M = 0. (It is easy to check, for exam-

ple, that this represents the required modification in the multivariate normal

case—see below.)

Thus the distribution of the additional capacity corresponding to those

times when the system is critically loaded should be used, as would be ex-

pected.

2.2.3 Further observations

The following further observations, for the case where M and Y are inde-

pendent, all follow from Result 1. The corresponding observations for the

“non-independent” case, again whenever the variation in Y is small in re-
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lation to that in M , are obtained as usual by using instead the conditional

distribution of Y given M = 0.

1. The capacity value of the addition Y is its mean µY , less a correction

to allow for the additional uncertainty σY (note that f ′
M
(0)/fM(0) will

typically be positive). However, when the variation of Y about its

mean is small (of order ǫ), then σ2

Y
—and so the correction given by

Result 1—is actually very small (of order ǫ2).

2. The correction from the mean identified above becomes more significant

as σY increases. In particular if µY and σY are scaled up in proportion

to each other, as when the size of the additional resource is simply

scaled up, then the relative correction

f ′
M
(0)

2fM(0)

σ2

Y

µY

given by Result 1 grows in proportion to the scale factor.

3. If several independent small capacity increments Yi, also independent

of M , are made, then the capacity value of the total is the sum of

the individual capacity values. (There is no contradiction here with

the previous observation, since, as independent increments are added,

the standard deviation of their sum, relative to the mean of the sum,

decreases.) Thus, under the addition of independent resources, the

usual benefits of statistical aggregation apply.

4. It is readily verified that, in general, when the left tail of the distribution

of the surplus M is light-tailed, then

d

dx

f ′
M
(x)

fM(x)
< 0 (8)

9



(in the region of the left tail—indeed this inequality might almost be

taken as a definition of “local” light-tailedness). It thus follows from

Result 1 that if the distribution of M is shifted so as to decrease the

risk, then the corresponding capacity value of an added resource de-

creases. This corresponds to often-made empirical observations, and

to the result of direct calculation for the normal distribution. For a

heavy-tailed distribution (very rare in practice in the present context)

the inequality in (8) is in general reversed, and here if the distribution

of M were shifted so as to decrease the risk, then the corresponding

capacity value of an added resource would increase.

5. Finally, note that the shape of the distribution of Y (other than the

assumption that its variance is relatively small) is irrelevant to Result 1

and its consequences.

2.2.4 Special cases for the distribution of M

1. The Gaussian case. Suppose that M ∼ N(µM , σ2

M
), where µM > 0.

Then f ′
M
(0)/fM(0) = µM/σ2

M
, so that (3) becomes

νELCC

Y
= µY −

µM

2σ2

M

σ2

Y
. (9)

This is precisely the result obtained from what is commonly known

as the z-method, first derived in [5] under an explicit assumption that

the distribution of available surplus capacity M does not change shape

when further capacity Y is added. However, for this to be so essentially

requires that the distribution of both M and Y be normal. This indeed

is the only case under which we have the precise result given by (9) (as

may be verified from the differential equation given by a comparison

of (3) and (9)). Result 1 of the present paper gives the corresponding
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result for more general distributions of M and Y , subject only to the

assumption made there as to their relative variation.

2. The exponential-tail case. Suppose that, in the region of x = 0, the

density of M satisfies fM(x) ≈ k exp(λx), for some constant k, as

might approximately be the case if the right tail of the distribution of

demand D were approximately exponential. Then (3) becomes

νELCC

Y
= µY − λσ2

Y
. (10)

2.3 Further dependence results

Consider again the case where M and Y may be dependent. Here the use

the modified version of Result 1 requires the conditional distribution of Y

given M = 0; specifically it requires µY |M=0 and σ2

Y |M=0
as defined earlier.

Suppose now that M = X −D where, typically, X is existing generation

and D is demand. Then the above calculations require knowledge of the

joint distribution of X, D and Y . The calculations themselves are routine,

if messy. However, there are two cases in which matters become slightly

simpler.

The first case is where X is independent of the joint distribution of D

and Y , as will frequently be the case if X represents conventional generation.

The conditional distribution of Y given M = 0 is then given (in cumulative

form) by

P(Y ≤ y |M = 0) =

∫

R

P(Y ≤ y |X = x,D = x) dFX|M=0(x)

=

∫

R

P(Y ≤ y |D = x) dFX|M=0(x) (11)

where FX|M=0 is the (cumulative) distribution function of X conditional on

M = 0, and where the second line in the above expression use the assumed in-

dependence of X. (Where X has a corresponding conditional density fX|M=0
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dFX|M=0(x) may be replaced in (11) by fX|M=0(x)dx.) The conditional mean

µY |M=0 and variance σ2

Y |M=0
of Y given M = 0 may then be calculated as

usual. In particular, the following standard results may be derived from (11),

µY |M=0 =

∫

R

y dP(Y ≤ y |M = 0)

=

∫

R

y

[
∫

R

dP(Y ≤ y |D = x)dFX|M=0(x)

]

=

∫

R

[
∫

R

y dP(Y ≤ y |D = x)

]

dFX|M=0(x)

=

∫

R

µY |D=x dFX|M=0(x) (12)

and, similarly,

E(Y 2 |M = 0) =

∫

R

E(Y 2 |D = x) dFX|M=0(x)

so that

σ2

Y |M=0
= E(Y 2 |M = 0)− µ2

Y |M=0
. (13)

These expressions are natural when the joint distribution of Y and D is

known (as well as the distribution of the independent random variable X).

For example, in the case where X and D have respective densities fX and

fD, the above expression (12) may be written as

µY |M=0 =

∫

R

µY |D=x fX(x)fD(x) dx
∫

R

fX(x)fD(x) dx
.

The second case is where D is independent of the joint distribution of X

and Y , as may again well be the case. Here the results are entirely analogous

to those given above, with the roles of X and D simply interchanging.
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2.4 Capacity values over time

Thus far the probability theory has been associated with a single “snapshot”

in time. However, capacity values are typically defined to correspond to a

extended period such as a year, where the relevant probability distributions

vary from day to day, or hour to hour, within that extended period.

The appropriate measure of risk is now the sum of the LOLPs associated

with the individual time periods within the longer period, i.e. the loss of load

expectation (LOLE):
∑

t

P(Mt ≤ 0),

(where t indexes the individual time periods), and, for example, the defini-

tion (1) of the ELCC now becomes the solution νELCC

Y
of

∑

t

P(Mt + Yt − νELCC

Y
≤ 0) =

∑

t

P(Mt ≤ 0) =
∑

t

FMt
(0). (14)

Sometimes it may be sufficient to concentrate attention on particular

“risky” hours or days over which the relevant random variables (defining Mt

and Yt) may be considered to be identically distributed, in which case the

“snapshot” capacity value becomes the “extended” capacity value.

Otherwise one must work directly with, for example, equation (14). Under

the analogous conditions to those of Result 1, i.e. that, for all t, the variance

σ2

Yt
is small in relation to that of Mt and that Mt and Yt are independent,

then, to a similarly good approximation,

νELCC

Y
=

1
∑

t
fMt

(0)

(

∑

t

fMt
(0)µYt

−
1

2

∑

t

f ′
Mt

(0)σ2

Yt

)

. (15)

The proof is as that of Result 1 with obvious modifications, and the result

does of course reduce to that of Result 1 in the identically distributed case.

Note also that the expression (15) simplifies considerably in the case where

the Yt are identically distributed.
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In the case where Mt and Yt fail to be independent, one again may work

with conditional distributions.

2.5 Estimation of capacity values

The determination of capacity values requires knowledge of the associated

probability distributions, and thus requires the availability of appropriate

data.

In the “snapshot” case where the ELCC is to be estimated for a given

time, sufficient knowledge is required of the joint distribution of the surplus

M and the added capacity random variable Y . Ultimately this will have

to be obtained from observation: for example repeated values of the triple

(Xt, Dt, Yt) might be observed over a sufficient number of time periods for

which this triple may be considered identically distributed, the best inference

being obtained in the case where there is also independence over time periods.

In the more general case where there is a requirement to estimate the

ELCC associated with an extended period of (for example) a future year or

peak season, then if relevant historical data are available a similar procedure

may be followed. Suppose again that, for each future t, the random variable

Mt = Xt − Dt where Xt represents existing generation capacity and Dt

represents demand. Rewrite (14) as

∑

t

P(Xt −Dt + Yt − νELCC

Y
≤ 0) =

∑

t

P(Xt −Dt ≤ 0). (16)

Suppose now that the random variables Xt may be considered independent

of the random variables Dt and Yt, and that the distribution of the former

is known (for example, from a knowledge of the probabilities of outages

of individual generation plant). Suppose also that observed historic values

(dt, yt) of the pair (Dt, Yt) are available from one or more years (recall that
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typically Yt is some form of renewable generation such as wind). Then the

associated ELCC νELCC

Y
may be estimated as the solution of

∑

t

P(Xt − dt + yt − νELCC

Y
≤ 0) =

∑

t

P(Xt − dt ≤ 0), (17)

where the probability measure P now simply models the distributions of the

random variables Xt (frequently these random variables will be considered

independent and identically distributed), the sums are over historic times,

and the (dt, yt) are rescaled according to projected future peak demand and

additional installed generating capacity. This is the so-called hindcast ap-

proach, described in an application context in [3]. Its validity, in particular

the consistency of the estimated ELCC, may be justified by an appeal to a

fairly general version of the Central Limit Theorem.

3 Application to practical capacity value cal-

culations

3.1 Great Britain data

The insights available from the above theory will be illustrated using sample

data from Great Britain (GB). The discussion will be set in the context of

well-known properties of capacity value calculations, which were surveyed

in [4] and which have not previously been explained fully in terms of the

underlying probabilistic model, as well as observations arising from the new

theory. In all cases, the capacity value of a wind generation fleet, when

added to an existing background of all-conventional generating plant, will be

considered. The probability distribution of available conventional capacity

will thus be assumed to be independent of both demand and the available

wind capacity.
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Coincident hourly time series for transmission-metered wind load factor

[6] (LF, the wind output as a proportion of maximum) and demand [7] are

available for Great Britain for the four winters between 2006 and 2010. The

wind time series may be rescaled to a projection of wind power output for any

given scenario of installed capacity, under an assumption that the probability

distribution of load factors remains unchanged over time. An equivalent scal-

ing may be made for demand using each winter’s Average Cold Spell (ACS)

peak demand2. There are some difficulties of comparability between years in

both these rescalings of historic metered data, as both the geographical dis-

tribution of wind farms and underlying demand patterns change over time; in

particular, an increasing amount of distribution-connected wind generation

appears as negative demand in GB transmission-metered data from recent

years. For practical wind integration studies, greater care in the use of his-

toric data must therefore be taken, however for this illustrative purpose the

simple approach taken is quite satisfactory.

The probability distribution of available conventional capacity is based

on the list of units connected to the GB system in winter 2008/093. Each

individual unit is modelled as a 2-state random variable, with either 0 or max-

2ACS peak demand is the standard measure of underlying peak demand level in Great

Britain, independent of the weather conditions in the year in question. For a given winter,

it is essentially the peak demand which would be observed given that winter’s underlying

demand patterns and a typical winter’s weather. This is distinct from the actual observed

peak demand which depends on that particular winter’s weather as well as underlying

patterns. A formal definition may be found in the glossary of [8].
3The results are presented using data from (at the time of writing) two years ago, as

the margin of conventional plant over peak demand was then deemed to be economically

sustainable in the long run, making calculations representative of the long-run risk levels.

At present, the plant margin is much higher due to gas generation being commissioned in

anticipation of a large capacity of coal generation retiring around 2013.
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imum capacity available. In combining the units, their availability states are

assumed to be independent, and the availability probabilities for each class

of generating unit are taken from [9]; in a small number of cases, the maxi-

mum contribution from each station is capped due to finite network capacity

or emissions constraints. When the individual unit or station distributions

are convolved explicitly, this is usually called the Capacity Outage Proba-

bility Table (COPT) method. In all examples, the distributions of available

conventional capacity at different times are assumed to be identically dis-

tributed. This is reasonable if there is little planned maintenance at times

when risk is high, and hence all units that are mechanically available are

available to generate if required. This assumption of identical conventional

plant distributions across relevant times is usually made in practical capacity

value calculations.

The wind and demand data have the great benefit of being metered data,

so do they do not include errors arising from conversion of meteorological

records to these power system quantities. There are however a number of

other factors which should be included in a quantitative projection of future

risk levels in GB, such as how underlying demand patterns may change,

how the distribution of available wind LF will change as the geographical

distribution of wind capacities changes, the future conventional plant mix

and its availability properties, and the uncertainty in all of these. The results

presented should therefore not be treated as quantitative assessments of risk

levels on the real GB system. Nevertheless, this data will prove very suitable

in illustrating the application of the new theory to a range of risk calculation

structures which are in widespread use.

The marginal distributions of the wind and demand data are visualised

in Fig. 1 (in what is essentially cumulative form). The observed distribution
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of demands decays slightly faster than exponential at high demands; this

plot also illustrates how (by definition) demand exceeds ACS peak in some

winters. The wind data is visualised by plotting the mean load factor across

all hours with demand above a given level. While there is much variability

about this trend, this illustrates how the typical load factor deteriorates from

typical winter values of about 30%, to low 20s % as demand increases from

90% to 95% of ACS peak. Above 95% of ACS peak, the quantity of data is

too small to permit a robust statistical analysis; more detailed discussion of

these limited data issues may be found in [10].

The probability distribution of available conventional capacity is plotted

in Fig. 2. The left tail of this distribution decays more rapidly than the right

tail of the distribution of demands, indicating that in GB the calculated

LOLE will be dominated by times of extreme demand.

3.2 Fixed demand, risk index LOLP

In this first example, a fixed peak demand d is assumed. The theory of Section

2 applies directly to this case, with margin M = X − d. The risk index is

then the LOLP at time of annual peak demand. An annual peak demand risk

assessment approach has historically been used in Great Britain, for instance

in the System Operator’s generation adequacy assessment contained in its

annual Winter Outlook [9], or in the pre-privatisation generation planning

standard [11].

The data are used as described in Section 2.5. Figure 3 compares the di-

rect solution to (1), and the marginal approximation (3), for a range of fixed

peak demands. The probability distribution of available wind load factor

used is the empirical distribution of historic load factors across hours where

the demand was above 90% of ACS peak. The marginal approximation is
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very good at small installed wind capacities. These results illustrate the the-

oretical result that for small wind penetrations the percentage ELCC is the

mean wind load factor of 29.2%, and for higher penetrations the percentage

ELCC decreases as the increased variability of supply due to the additional

generation becomes more important. This is consistent with observations

made in [3], [4], and elsewhere.

The new theory also explains (in terms of differences in f ′
M
(0)/fM(0))

the increase in calculated ELCC as the demand is increased This effect has

also been observed in many other studies, for instance [4], and is usually

explained intuitively in terms of additional generation being more valuable

to the system when the risk level is higher. The new result (3) demonstrates

that whether the ELCC increases or decreases as the demand is increased

actually depends on the sign of

d

dm

f ′
M
(m)

fM(m)

∣

∣

∣

∣

M=0

.

The values of f ′/f for the plots in Fig. 3 are given in Table 1, and the standard

deviation of the distribution of the wind load factor is 23.4%. If the derivative

of f ′/f is negative (as it is in examples presented here), which is equivalent to

the distribution being locally lighter-tailed than an exponential distribution,

then the correction due to the variation of the additional generation decreases

as the fixed demand is increased, and the ELCC increases. However, if

the distribution of margin were locally heavier-tailed than an exponential

distribution, the change in the ELCC would be in the opposite direction. The

intuitive explanation in terms of ‘higher risk, higher value of new generation’

is thus not correct in general (though the circumstances under which it is

not correct are apparently seldom realised in practice).

Another example of the effect of f ′
M
(0)/fM(0) is the difference between

the ELCC calculation using a COPT-based distribution of available conven-
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tional capacity (i.e. explicit convolution of the distributions for individual

generating units), and the ELCC using a Gaussian approximation, in Fig. 4.

The reduction of capacity values below the mean is greater for the Gaussian

approximation, for which f ′
M
(0)/fM(0) = 0.00124 as compared to 0.00102

for the COPT calculation.

All of these examples illustrate how the calculated capacity value is a

function of the pre-existing system background, and not just of the additional

generation.

3.3 Risk index LOLE, demand and wind independent

In this example, the distribution of available wind LF is based on the em-

pirical distribution of historic LFs over hours where demand was above 90%

of ACS peak, and is assumed independent of demand. The historic demands

are scaled to a common ACS peak of 60 GW, and the distribution of demand

D is the empirical distribution of rescaled historic demands. In addition, as

described in Section 3.1, the distributions of available conventional capacity

at relevant times are assumed to be identical.

The distribution of M = X − D is calculated by convolution of the

distributions for D and available conventional capacity X. The ‘snapshot’

expression (1) may then be applied, with P(M + Y ≤ 0) corresponding to

LOLE divided by the number of time periods in the sum defining the LOLE.

Fig. 4 illustrates that once more (1) is a good approximation for small

installed wind capacities. It may further be observed that in this variable

demand case the ELCC results are quite similar to those using a fixed demand

of 60 GW (for the former, f ′
M
(0)/f ′

M
(0) is 0.00111, and for the latter 0.00103.)
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3.4 Risk index LOLE, demand and wind non-independ-

ent

The results of a hindcast-based ELCC calculation — as discussed in Sec-

tion 2.5 and requiring no prior assumptions about the distributions of D and

W or their dependence structure — are shown in Fig. 4. In comparison with

the results based on a wind distribution independent of demand, and based

on all hours above 90% of ACS peak, the hindcast results are somewhat

lower. This is because, as discussed in Section 3.1, the estimated LOLE is

dominated by demands near ACS peak, at which the typical wind load factor

is lower than across all times when demand is above 90% of ACS peak.

The results from previous sections would more closely match those from

this hindcast result if the cutoff were a higher percentage of ACS peak, for

instance 95%. However, due to the paucity of data available (and other

issues described in Section 3.1), the authors make no claim that the results

presented accurately represent true risk levels or wind’s true contribution in

Great Britain; the examples presented are instead intended to illustrate the

results of Section 24.

The relevant theory is developed in Sections 2.4 and 2.5. The leading

order expression for the hindcast ELCC is then

νELCC

Y
=

∑

t
ytfX(dt)

∑

t
fX(dt)

(18)

and Fig. 4 includes a comparison with this result. The next order in the

marginal ELCC result is not presented for the hindcast calculation, as it

requires explicit estimation of σY |D.

4Furthermore, the choice of 90% cutoff emphasises this point that the results should

not be interpreted as a quantitative assessment of generation adequacy risk levels in GB.

It is possible that a more practically realistic cutoff such as 95% might serve only to create

confusion on this point.
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Section 2.3 demonstrates that the marginal capacity value result in the

non-independent case is dominated by demand levels at which the product

fX(x)fD(x) is high. In GB, it is extremely unlikely that M = X −D will be

below zero unless the demand is extremely high, as the distribution of X is

narrow compared to the scale on which that for D varies; this corresponds

to fX(x)fD(x) being large only when X is near peak demand. In a smaller

system, however, where there are fewer conventional units, the distribution

of available conventional capacity will typically be broader relative to peak

demand; as a consequence, it would not be necessary to have a truly extreme

demand in order for M to be negative, and hence the wind resource at lower

demands will be significant in determining the ELCC. This provides a further

example of the calculated capacity value of the additional wind generation

depending on the pre-existing background of demand and conventional plant.

4 Conclusions

This paper presents the probability theory of the capacity value of additional

generation in power systems. Without any assumptions regarding distribu-

tion shapes, a closed-form expression for the effective load carrying capa-

bility or equivalent firm capacity of additional generation may be derived.

The leading order term in this expression is simply the mean of the distribu-

tion for available additional capacity, and the next order term is a correction

proportional to the variance of the distribution for available conventional

capacity.

The theory may be used to explain and confirm the generality of various

well-known properties of capacity value results. Of particular note is the

common observation that if the distribution for demand is shifted so as to
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increase the calculated risk, then the capacity value of additional generation

increases. This is usually explained in terms of additional generation being

more valuable to the system when the risk level is higher. However, the

new theory demonstrates that this effect will only be observed when the

distribution of the margin of available existing capacity over demand is locally

light-tailed near zero margin; if the distribution were locally heavy-tailed,

then the calculated capacity value would decrease as risk is increased in this

manner.

The theory extends in a natural way to cases where the available addi-

tional capacity and demand are not independent (as may well be the case

when the additional generation represents wind capacity). In this case, the

leading order result may be verified using a standard hindcast calculation.
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A Nomenclature

Throughout, capital letters denote random variables.

X Available existing capacity.

Y Available additional capacity.

D Demand.

M Margin of existing capacity over demand.

νELCC

Y
Effective Load Carrying Capability (ELCC) of additional generation

Y .

νEFC

Y
Equivalent Firm Capacity (EFC) of additional generation Y .

ACS Average Cold Spell. ACS peak is the standard measure of underlying

demand level in Great Britain.

COPT Capacity Outage Probability Table. Usual name given to derivation of

distribution of available conventional capacity by convolving distribu-

tions for individual units or stations.

LF Load factor, a generator’s output as a proportion of maximum.
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LOLP Loss of Load Probability, the probability of insufficient generating ca-

pacity being available to meet demand at any instant in time.

LOLE Loss of Load Expectation, the expected number of periods in a time

window in which capacity is insufficient available capacity to meet de-

mand, or equivalently the sum over periods of LOLP.
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Figure 1: Visualisation of the historic wind and demand data used in the

Great Britain examples.
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Figure 2: Probability distribution of available conventional capacity.
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Figure 3: Wind ELCC in the GB test system for a range of fixed peak

demands. Solid lines indicate a direct solution to (1), and dashed lines the

marginal approximation (3).
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Figure 4: Wind ELCC in the GB test system for fixed peak demand of 60

GW (with both COPT-based and Gaussian approximation for conventional

plant), an LOLE calculation with wind and demand independent, and a

hindcast calculation. Again, solid lines indicate a direct solution to (1), and

dashed lines the marginal approximation (3).
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ACS peak [GW] 58 59 60 61 62

(f ′/f) [×103] 1.35 1.19 1.023 0.86 0.67

Table 1: f ′
M
(0)/fM(0) for the peak demand levels shown in Fig. 3.
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