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We derive a simple analytical expression for the two-body force in a sub-class of MOND-like
theories and make testable predictions in the modification to the two-body orbital period, shape,
and precession rate, and escape speed etc. We demonstrate the applications of the modified Kepler’s
law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND
in the orbit of Large Magellanic Cloud, the M31 galaxy, and the merging Bullet Clusters. MOND
appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies
are also generalized to restricted three-body, many-body problems, rings and shells.

PACS numbers: 98.10.+z, 95.35.+d, 98.62.Dm, 95.30.Sf

INTRODUCTION

The Kepler’s law, or the full analytical solution to the two-body problem is perhaps the most powerful prediction
of Newton’s gravitational law, |F1| = | − F2| = Gm1m2

r2
12

for the forces between any two point masses m1,m2 orbiting

each other with a separation r12. For bound orbits the Kepler’s law predicts the relations between masses and the

orbital period (T ∝
√

r3
12,max

(m1+m2)G
). The total mass of any binary or merging cosmological bodies can be constrained

by the fact that first a binary must be bound, and second the binary’s period has to be smaller or comparable to the
age of the universe. These simple conditions of boundness and timing have powerful applications in constraining the
unknown physics of the widely-speculated cosmological dark matter.
For example, if the Milky Way had nothing except its baryonic mass m1 ∼ 5× 1010 solar masses, then the specific

gravitational potential Gm1

r would be too shallow to bound the fast moving satellites of the Milky Way, e.g., the LMC
and Sgr with velocity about 300-380 km/s at 50 kpc and 16 kpc from our center well exceeds their local escape speed
of about 100-150km/s. To explain the long tidal tails around these satellites, one must deepen the potential, e.g., by
adding a dark matter halo, so that these satellites can be on bound orbits and have a few pericenter passages to create
the tidal tails. There are constraints coming from being bound and constraint Another example is the colliding Bullet
clusters, which shows enormous relative velocity in the shocked X-ray gas ∼ 4000 km/s; in comparison if the merging
clusters were modeled as two baryonic gas clouds of total mass ≤ 1014M⊙ falling for the first time from infinity to the

present separation of 400-700 kpc, one expects at most a Keplerian escape speed
√

2G(m1+m2)
r12

≤ 1500km/s. It has

been suggested that even the gravity of cosmologically reasonable amount of dark matter is barely enough, and an
attractive fifth force between dark matter might be necessary to explain the fast speed of the bullet in a Newtonian
gravity[7, 10, 21].
Likewise the Kepler’s law allows us to time the motions of celestial objects. For example, in the limit that the

local group can be approximated as two points masses: the Milky Way and M31 galaxy, Kepler’s law can be used to
estimate their total mass m1 +m2 ∼ (2− 3)× 1012M⊙, one order of magnitude larger than the baryonic mass, hence
one can argue the existence of dark halos in these two galaxies under Newton’s gravity if r12 is comparable to the
semi-axis of the orbit, and the half-period T/2 ∼ 14 Gyrs so that the two has enough time to move apart and turn
around in a Hubble time.
Nevertheless there is another way to make galaxy potential deeper without introducing unknown matter. The

Modified Newtonian Dynamics (MOND) predicts an enhancement of the gravitational coupling constant when the

gravity drops below a0 ∼ 1.2 × 10−10m/s2, G̃ ∼ G
[

1, a0

|g|

]

max
. This produces the effect of a dark halo without

actually invoking real dark matter [3]. It is interesting to derive the modified Kepler’s law for the MOND theories,
and contrast their predictions on satellite orbits with Newton’s gravity. Unfortunately, the prediction of the MOND
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theories generally invokes solving a modified Poisson equation ∇ · g

4πG̃
=
∑

i miδ(r − ri) numerically over all 3-
dimensional space for the gravity g before obtaining the forces on the two-bodies. The problems become even harder
if there are N > 2 bodies. To study the orbit, one would need an N-body code to integrate the orbits step by step
and solve for the modified Poisson equation each step. To date there have been no realistic simulations of the orbits
of two point-masses in MOND.
Here we show that in some versions of MOND, the virial is a fully analytical expression for arbitrary matter

densities. In the limit that we can neglect the sizes of the bodies, one can invert the virial r12F12 to find the forces
F12 between two bodies. This completely by-passed the Modified Poisson equation. The advantage of this analytical
result, rigorous in limited versions of the MOND theory, is to facilitate the estimation of the modification effects
of MOND-like theories. E.g., Previous calculations of the timing of the encounter of the Bullet Cluster in MOND
are based purely on numerical simulations [1, 9, 17], which made the essential physics somewhat more obscure. Our
result allows one to gain similar level of analytical intuition as enjoyed in standard Dark Halo theories in Newtonian
gravity, albeit the analytics can never substitute more rigorous and realistic numerical cosmological calculations and
simulations in all these theories.
It is worth recalling two interesting features in Newton’s gravity: the pericenter of the bodies has no precession

because there is no distinction of a radial oscillation period and a period to turn 360 degrees in angular direction.
The virial of the two-body system W ≡∑2

i=1 ri ·Fi equals to −Gm1m2

r12
, which applies at any time, whether the orbit

is elliptical or hyperbolic. We will discuss how these properties are modified in MOND. Note that the concept of
virial applies in all classical gravity theories, and is more general than the Newtonian virial theorem, and one can
speak of the instantaneous virial without any assumption of time-averaging or equilibrium state of the objects.
The outline of the present work is as follows: in §2 we give the actions for two specific versions theories for MOND,

and show the simple expression for the virial in these theories. In §3 derives the two-body force from the virial,
and give the equation of motion. §4 generalizes the results to many-body, rings and shells. In §5 we illustrate the
applications of the analytical results in calculating the orbits of the Local Group objects. We summarize in §6.

HOW TO CALCULATE THE VIRIAL IN NEWTONIAN AND MONDIAN GRAVITY

For calculability, we adopt the multi-field version of MOND according to Bekenstein [2, 3] or the recent Qusai-linear
MOND (QMOND) version of Milgrom[15]. In the low-speed weak field limit, particles move under their Newtonian
potential ΦN and the MONDian scalar field potential Φs (which plays the role of Dark Matter potential). These two
potentials are given by following Poisson equations for an N-body system

∇2ΦN = 4πGρ , ∇2Φs = ∇ · (νQMOND∇ΦN ), νQMOND =

( |∇ΦN |
a0

)−1/2

, in QMOND (1)

∇2ΦN = 4πGρ , ∇ · (µMOND∇Φs) = ∇2ΦN , µMOND =

( |∇Φs|
a0

)

, in MOND, (2)

where the νQMOND-function or the µMOND-function leads to a deep-MOND effect, and the matter density,

ρ(r) =

N
∑

i=1

mi

V (r− ri(t), b)
∼

N
∑

i=1

Li/c
2, (3)

consists of N softened particles, each with the Lagrangian density

Li ≡
[

c2 +
1

2

(

dri
dt

− rida

adt

)2

− ΦN (ri)− Φs(ri)

]

mi

V (r− ri(t), b)
(4)

where mi/V (r− ri(t), b) is a spherical density profile with a softening radius b of the particle center ri(t), e.g., a so-
called Hernquist density profile. [26] The softened particles ensure that we do not over-generalize the above theories
to situations of strong gravity.
The above modified Poisson equations can be obtained self-consistently from minimizing the following action with

respect to ΦN or Φs:

SQMOND =

∫

dtdr3

{

N
∑

i=1

Li −
[

|∇ΦN |2
8πG

+
∇Φs · ∇ΦN

4πG
+

|∇ΦN |3/2a1/20

6πG

]}

, (5)
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SMOND =

∫

dtdr3

{

N
∑

i=1

Li −
[ |∇ΦN |2

8πG
+

|∇Φs|3
12πGa0

]

}

(6)

The equation of motion for both versions of MOND is derived by variation of the action S with ri, which gives

d

dt

dri
dt

+
rid

2a

adt2
= −∂(ΦN +Φs)

∂ri
(7)

Here the particles are coupled to the total potential

Φ ≡ ΦN +Φs (8)

which is consisted of two parts, the Newtonian part ΦN and the scalar field part Φs. The gradient of the scalar field
−∇Φs in both versions of MOND plays the effective role of the dark matter gravity [23, 25], which is predicted here
of the amplitude (Ga0

∑

imi)
1/2/r at distances r far from the N particles, i.e., a test particle at a large distance r

would accelerate with

−∂(ΦN +Φs)

∂r
≈ −

N
∑

i=1

Gmi
r

r3
− (

N
∑

i=1

Ga0mi)
1

2

r

r2
(9)

To see that our formulation indeed recovers the Newtonian and deep-MOND limits in a static universe, we note
that at small radii from a mass mi, a test particle’s acceleration g goes as Gmir

−2, and at large radii the acceleration
g goes as (Ga0mi)

1

2 r−1. With a bit of algebra one can show the equivalent µ-function in MOND is given by µ(g) =

gN
g = ν−1 = 1−

[

1
4 +

√

1
4 + g

a0

]−1

if one can assume the distribution of the matter and gravity has spherical symmetry

[24].

APPLICATION TO TWO-BODY PROBLEM IN GENERAL

Zhao & Famaey [25] found that, in the absence of cosmic expansion, the virial W and its Newtonian counterpart
WN satisfy a simple relation

|W | =
∫ ∞

0

dr3ρr · (∇ΦN +∇Φs) = |WN |+ 2

3

√

Ga0(
∑

mi)3, |WN | =
∫ ∞

0

dr3ρr · ∇ΦN (10)

which applies to both QMOND and multi-field MOND for an isolated matter distribution in any geometry.
We now apply this to a general two-body system. Following Milgrom[14], we argue that the total virial can be

broken apart into the internal part and orbital part. In the limit the bodies are separated with distances much bigger
than their sizes so that the mutual gravity is much weaker than the internal gravity in the vicinity of each (compact)
mass, we can neglect the external field when applying Poisson’s equation inside each body, each body can be treated
as isolated system, hence each satisfies its own virial theorem.
From this we can estimate the internal virial,

|Wi| =
∫

dr3ρr · ∇ΦN,i +
2

3

√

Gm3
i a0. (11)

Subtracting off the internal virial
∑

i Wi from the total virial W , we find the interaction virial r12F12 is given by

r12 · F12 =
Gm1m2

r12
+

2

3

√

G(m1 +m2)3a0 −
2
∑

i=1

2

3

√

Gm3
i a0. (12)

where we have used the fact that the total Newtonian potential energy subtracting the Newtonian potential energy
of each body yields just the mutual potential energy. As far as the particles have very small sizes compared to their
separation, we have r12 ·F12 = r12F12, where r12 has a negligible spread in distance. So we find that the mutual force

F12 =
Gm1m2

r212
+

Ξ
√

G(m1 +m2)3a0
r12

, Ξ ≡ 2

3

(

1−
2
∑

i=1

(

mi

m1 +m2

)3/2
)

(13)
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Clearly the force is Newtonian at short distance, and at large distance tends to a MONDian 1/r force with a non-trivial
normalization.
The accelerations of the bodies F12

m1

and −F12

m2

, or the gravity F12 between bodies are actually independent of their
relative velocities and history, hence the expression is general for the mutual (MONDian) gravity between two (widely-
separated compact) bodies. The above expression for force is rigourous if the sizes of bodies are smaller than their
distance. In reality the (spherical) particles can have a finite size, say b, so that the distance between two bodies have
a distribution of width ∼ b instead of a single value |r12|. Extended bodies also introduce new effects, such as studied
in [6] in the context of the Birkhoff theorem. Nevertheless one could adapt the formulae to approximate the effect of of
non-spherical bodies or softened particles. Such a formula is given in Appendix for two axisymmetrical particles with
a bulge of length scale b and disk scale length k. Especially in calculating the force between two spherical particles,
one replaces r12 → r12+ b in eq. 13. In all cases we ensure a construction of MOND two-body force that is conserving
momentum, energy and angular momentum of the whole system.
Note that the two-body force here is far from obvious. A naive application of MOND could often lead to incorrect

answer, e.g., F1 = Gm1m2

r2 +m2

√

Gm1a0

r2 or F2 = Gm1m2

r2 +m1

√

Gm2a0

r2 , which would violate momentum-conservation

[1]. Also our two-body result does not hold rigorous if adopting the Bekenstein-Milgrom (BM84) theories of MOND
where the scalar field is not used, e.g., the calculations in [6]. In general the forces must be computed numerically by
first solving the Poisson equations and then integrating the force over the volume of the (extended) body concerned.
Our analytical result here helps to calibrate numerical grid or boundary effects in a numerical code.

Two-body equation of motion in cosmological background

We are almost ready to apply our derived force to the two-body problem except that we have to consider the
effect of the Hubble expansion, which is non-negligible for any timing arguments. Considering the expansion of the
background universe a(t) so that the relative distance of particles 1 and 2 in proper coordinates r1−r2 = (x1−x2)a(t),
we find the equation of motion is given by

d

dt

dri
dt

=
d2a

adt2
ri +

(

Fi

mi

)

. (14)

Note here the frictional term da
dt

dxi

dt in equations in co-moving coordinates has canceled itself when the equation is
written for the proper coordinates ri. Approximate the scale factor as a(t) = (t/t0)

n, then the cosmological term
is n(n − 1)t−2, and is zero if n = 0 (static) or n = 1 (empty open universe). For LCDM parameters, the Hubble
parameter da

adt =
1

14Gyr

√
0.667 + 0.333a−3, we find the following approximation, a(t) ∝ (ey−1)2/3, where y ≡ t/11Gyr

and d2a
adt2 = 2

3(11Gyrs)2 e
y(23e

y − 1)(ey − 1)−2 so that we expect a nearly constant d2a
adt2 = 4

9(11Gyrs)2 at late times and in

the future, and d2a
adt2 = − 2

9t2 at earlier times when a(t) ∝ t2/3. Generally the cosmological term is an attractive force
in matter-domination, and repulsive in vaccum domination. For the latter part, we shall consider only a universe

dominated by a pure vaccum energy density ρc =
3H2

0

8πG , the cosmological term

gC =
d2a

adt2
r12 = τ−2r12, τ ≡

(

8πGρc
3

)−1/2

(15)

acts as a static repulsive potential force for an exponentially growing scale factor a(t) = exp(t
√

8πGρc/3) for positive
ρc. We adopt a vacuum universe with the cosmic e-folding time τ ≈ 11 Gyrs.
The two-body relative acceleration

g12 = τ−2r12 −
[

F12

m2

]

m1 +m2

m1
(16)

= τ−2r12 −
G(m1 +m2)

r212
−

√
Ga0
r12

2(m1 +m2)

3(m1m2)

(

(m1 +m2)
3/2 −m

3/2
1 −m

3/2
2

)

, (17)

MANY-BODY PROBLEM IN MOND

Consider a 2D or 3D symmetric distribution of N > 1 identical particles of mass mi = m/N plus a central particle
of mass M. As long as the symmetry guarantees that the forces on the particles mi is pointing to the central mass
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FIG. 1: shown is an example of N = 6 self-gravitating particles each with mass mi = M/(50N) initially on a ring of radius 16
kpc moving 280 km/s tangentially around the Milky Way (red point at origin M = 5× 1010 solar masses); the arrows indicate
the force towards the central mass; one can see the precession of the pericenter and the stretching of the ring for the past 1
Gyrs. The right panel shows a semi-log plot of the Milky Way’s potential 2V (r) (in units of square km/s) for a tracer particle
(solid) and N = 6 massive particles on a ring of mass M/2 (dashed line) as function of its distance r, where we have labeled
the location of the cut off radius, where 2V (rcut) ∼ 0; This allows some stars to escape. In contrast stars are unable to escape
from a logarithmically divergent potential of an isolated MOND galaxy in an empty universe. All length units are in kpc.

.

M, and that particle M does not experience any force, we can use the same virial theorem to obtain a relation of the
acceleration g of each particle at |ri| = r, and the Newtonian acceleration gN and the cosmological acceleration gC as
follows

0 +

N
∑

i=1

ri ·mi(g− gN − gC) =
2

3

[

(G(M +m)3a0)
1/2 − (GM3a0)

1/2 −
N
∑

i=1

(Gm3
i a0)

1/2

]

(18)

Note that the first zero stands for the zero-virial acting on the central mass M. Also note that any non-symmetry or
finite sizes would prevent us inverting the virial for the force because the force on each particle would not all be of the
same amplitude and pointing radially. Such symmetric configurations are generally contrived with no counterparts in
reality, except for perhaps N = 2 for binary systems, and N ∼ ∞ for astronomical rings and shells, which are fairly
common due to mergers of galaxies, which can form polar rings around spiral galaxies, and shells around elliptical
galaxies.
Making a correction for the expansion of the vacuum only universe of a constant cosmic density ρc, and taking into

account of the finite size b, we get

g =
d2r

dt2
+

j2

r3
= τ−2r − G(M + m̃N )

(r + b)2
− 1

r + b
(GM̃a0)

1/2 (19)

where j is the specific angular momentum of the system, which can be solved from the pericenter radius rperi, where

dr/dt = 0. Here M̃
M is a dimensionless parameter depending on the mass ratios and the detailed geometry of the

system and αN ≡ m̃N/m is a geometrical factor taking into account of the addition of Newtonian forces among the
N particles.

M̃1/2 ≡ (M +m)5/2

Mm
Ξ1 if N = 1 (20)

≡ (M +m)3/2

m
ΞN otherwise, (21)

where ΞN = 2
3

[

1− M3/2+m3/2N−1/2

(M+m)3/2

]

. Note that the N = 1 case is special because the particle M would move around

the center of the mass to balance with the single particle m conserve total momentum, while the particle M coincides
with the center of mass for N > 1 symmetrically distributed particles of identical mass m/N . In the appendix we
give two expressions which shows the asymptotic behavior more clearly in cases with extreme mass ratio. We find
M̃ → M for small mass ratio m/M → 0, and M̃ → (1 −N−1/2)2(4/9)m for large mass ratio m/M → ∞. If N = 1,
we have M̃ → M or m for extreme mass ratios. It can be shown that 0.6(M + m) < M̃ ≤ (M + m) for any mass
ratios and N .
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For N point masses distributed on regular polygon, we find

m̃N

m
= 1, if N = 1 (22)

=

N−1
∑

i=1

(4N sin
iπ

N
)−1, otherwise

specifically α2 = 1
8 for N = 2, α3 =

√
3
9 for N = 3, α4 = 1+2

√
2

16 for N = 4, α6 = 5
24 +

√
3

18 for N = 6 etc. etc.. By
choosing a large N we can essentially model a circular ”ring” of self-gravitating particles. A similar calculation can
be done for αN if the points are distributed on regular polyhedra; the expressions are given Appendix C. For large
N the configuration is a fair approximation to a spherical ”shell” distribution of self-gravitating particles.
The above analytical results reveal several interesting distinctions of the MOND force with Newtonian force. (i)

On a ring or a polygon with N → ∞, the Gm̃/r2 term in the Newtonian force diverges, and
√

Ga0M̃/r term in
the MOND part approaches a common constant rotation curve because the MONDian M̃1/2/M1/2 term depends
on the mass ratio m/M and linearly on N−1/2, while in Newtonian the m̃/m term depends purely non-linearly on
the geometry parameter N − 1. (ii) The MONDian force gives the same flat rotation curve while the Newtonian
force produces Keplerian rotation curves of different amplitudes whether the N particles form a polygon/ring or a
polyhedron/shell. (iii) The MONDian force does produce precession while the Newtonian force does not.

Effective potential, orbital period and precession

The equation of motion eq. 19 can be reduced to purely radial motion as

d2r

dt2
= − d

dr
V (r), V (r) ≡ j2

2r2
− r2

2τ2
− G(M + m̃N )

r + b
+ (GM̃a0)

1/2 ln(r + b) (23)

where we absorb the centrifugal force into an effective potential V (r), j is the specific angular momentum of the
system. We can integrate the equation of motion using energy conservation to get

1

2

(

dr

dt

)2

+ V (r) = V (rapo) = E. (24)

For non-radial motion with an angular momentum barrier the effective potential relates also the pericenter with
the apocenter via V (rperi) = V (rapo) = E, where dr/dt = 0. The time from the pericenter to the apocenter and then
turn back to the pericenter is given by

Tradial =

∫ rapo

rperi

2dr

|dr/dt| . (25)

Each of the particles on a polygon/ring will make a rosette orbit, which can precess while keeping the configuration
self-similar; the whole pattern resembles a closing/opening shutter. The backward precession angle per orbit is
determined by[4]

∆φ = 2π −
∫ rapo

rperi

j

r2
2dr

(dr/dt)
(26)

In the case that the N particles are on a circular orbit of speed vcir, we have a potential of N-fold rotational symmetry
with a pattern rotation angular speed ωpattern = vcir(r)/r and the rotation curve vcir(r) is given by

vcir(r) =

[

− r2

τ2
+

G(M + m̃N)

(r + b)
+

r

r + b
(GM̃a0)

1/2

]1/2

(27)

where the angular momentum j is found by requiring the effective potential satisfies dV/dr = 0 at radius r = rapo =
rperi. Clearly the rotation curve vcir(r) is flat at large radii if there is no cosmological background. The pattern
rotation period or pattern speed of the potential is especially useful for modeling a self-consistent m = N = 2 bar
potential in MOND. Note that the precession here does not change the orbital plane fixed by the constant angular
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momentum vector, only the direction of the pericenters, in some sense similar to mercury’s pericenter precession
due to GR corrections to the Kepler force of two bodies. Any precession of the orbital plane would be the effect of
non-spherical shapes of the bodies, which we do not go into in this paper.
Fig. 1 gives an illustration of the many-body problem in MOND, where the orbital parameters are inspired by

those of the Sgr satellite, whose mass is broken into a self-gravitating tidal debris on a polar plane around the Milky
Way. We approximate the Sgr mass by N = 6 massive particles on a circle of 16 kpc around the central mass M,
representing the Milky Way. One can clearly see the precession of the pericenter, the rotation/expansion/shrinking
of the initial ring.
For radial motion with j = rperi = 0, the speed that the particles cross the origin is given by

√

2(V (rapo)− V (0)).
E.g., the N particles can move radially on a set of self-similiar regular polyhedron (an approximation to more realistic
shells). For the radial motion, there is a maximum (or an edge) of the effective potential due to the repulsive force
gC balancing the Newtonian and MONDian inward force,

0 =
dV

dr
|j=0 =

[

τ−2r − G(M + m̃N )

(r + b)2
− 1

r + b
(GM̃a0)

1/2

]

r=redge

. (28)

Neglecting the r−2 term due to Newtonian force, and neglecting the finite size b, we get the edge of the potential is at

redge = (GM̃a0)
1/4τ. (29)

The particles in the MONDian system will not be bound if the N particles have a specific energy E above V (redge),
in which case the orbits will generally be hyperbolic-like while keeping the self-similiarity of the configuration.
A radial orbit with a large apocenter at rapo would have a period

Tradial ≈ 2τ

∫ 1

0

dx

[

(x2 − 1) + 2y−2 ln
1

x

]−1/2

, y ≡ rapo
redge

(30)

where we have neglected the finite size b and Newtonian potential, and rescaled all length with the radius rapo and
redge. Note that an radial orbit which just escapes with E = V (redge) will take infinite amount of time to reach redge
because of the linear decline of the radial speed dr/dt ∝ (redge − r) near the edge.

Escape speed, the edge of potential, and the cutoff of the effective dark halo

Following [23], we can define the effective DM mass MEDM ≡ (g−gN )r2/G. This is the equivalent Newtonian mass
of the DM to generate the same potential as in MOND. Neglecting the finite size b, we find MEDM has a positive
part linear to r and a negative r3 part, hence the corresponding effective DM density ρEDM ≡ dMEDM

4πr2dr has a positive
1/r2 part , and a uniform negative part ρc − 3Pc/c

2 = −2ρc with the point of zero effective density at

rcut =
redge√

3
= (GM̃a0)

1/4 τ√
3
. (31)

At this radius the circular speed vcir(rcut) and the total dynamical mass inside can be estimated by Mcut =

v2cirrcutG
−1 = M + m̃ + 2

3G

√

GM̃a0rcut. A circular orbit bound at r = rcut has a period Tcir =
√
2πτ . For ex-

ample the cut off radius of the Milky Way is about 2000 kpc, where the peak of the effective potential curve is (see
Fig 1).
A working definition of an escaping orbit is an orbit which reaches rcut, since a radial orbit which reaches an

apocenter rapo = rcut would have a period Tradial ≈ (1.5− 1.7)τ ∼ 16− 19Gyrs. Such an orbit takes slightly too long
to return over the Hubble time 14Gyrs. So the escape speed at any radius r is defined as

vesc(r) =
√

2V (rcut)− 2V (r)|j=0. (32)

E.g., we can estimate the escape speed near the solar neighborhood r = 8kpc adopting rcut ∼ 1500kpc and
(GMa0)

1/4 = 180 km/s for the Milky Way. Our analytical formulae predicts a local escape speed vesc ∼
√

2 ln rcut

r × (GM̃a0)
1/4 km/s ∼ 580

(

M̃
M

)1/4

∼ 580
[

M̃
M

]1/4

km/s, consistent with the observed value ∼ 550 km/s [23]

for solar neighbourhood stars. The so-called external field effect is not as critical here as in [23], but our prediction

depends on the cosmological constant and depends on the satellite-galaxy mass ratio m/M through the function M̃
M ,

which is unity for a single star orbiting a galaxy; interestingly the escape speed is smaller for a more massive satellite
in MOND, however, the difference is fairly small as long as the satellite is less massive than the mass of the host
galaxy. (see Fig. 1).
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FIG. 2: shows the orbits computed for the LMC-MW pair with a LMC baryonic mass M/5 (small circles) or M/10 (lines)
respectively for the past 12 Gyrs; the LMC is presently moving to the left with 380km/s at 45kpc below the MW, which is
held at the origin (shown by the red dot). A generic difference with Newtonian Keplerian orbits is that the MONDian orbits
depends on the mass ratio, and the direction of the pericenter or apocenter changes as the nearly elliptical orbit precess.

TIMING THE MAGELLANIC CLOUD, THE ANDROMEDA, THE BULLET CLUSTER

Timing is a classical argument which assumes two presently neighbouring bodies were very close at birth within an
expanding Hubble flow away from each other. The mutual gravity eventually overcomes the Hubble flow and brings
their orbits close to each other again. Their orbital or dynamical age must then be close to the Hubble time. A few
timing applications of our analytical result is shown in Fig. 2, Fig. 3 and Fig. 4. The relative distances of these are
such that the LMC moves inside the Milky Way, and is presently near the pericentre, and the M31 is approaching us
from about 800 kpc after falling out of the Hubble expansion.
First consider the dynamical age of the Large Magellanic Cloud (LMC), a satellite on an non-circular orbit around

the galaxy. Recent observations found the LMC moves with a speed of 360 km/s almost tangentially at a distance
45-50 kpc from the Milky Way, which is too fast for a Newtonian Dark Halo to keep it bound[23]. In our scenario the
MONDian Milky Way has a baryonic massM1 = 5×1010 solar masses, and the LMC has a baryonic mass M2 = M1/5,
hence (Ga0M̃)1/4 = 180km/s, we find rcut = 1500 kpc, rmax = exp((360/180)2/2) × 45kpc = 350kpc = rcut/5. We
estimate the oscillation period in the radial direction Tradial = 0.3τ = 4 Gyrs. The period in the circular direction
is about 1.4 times longer. This implies that the Large Magellanic Cloud could be bound and have enough time to
circulate the Milky Way more than once in MOND (cf. Fig. 2). This is consistent with the standard scenario where
the Magellanic stream is pulled out from the Magellanic Clouds during one of its pericentric passages of the Milky
Way, and possibly interactions among themselves [11]. We also note that the baryonic mass of the Milky Way
adopted for modeling the LMC is roughly consistent with the local escape speed and the orbit of the Sgr dwarf. As
shown in Fig. 1, in particular our model orbit has a pericenter and apocenter of 10 and 50 kpc respectively, and a
present 280 km/s tangential velocity at a radius 16 kpc from the Milky Way. These parameters are consistent with
the observational data and typical orbits found in previous dark halo models [13].
We have also computed the orbit of the M31, whose parameters are not well-determined observationally. The

M31 galaxy is presently at ∼ 800kpc and is moving at 130km/s towards us. Its tangential velocity is unknown,
although perhaps small. We study two models: in one model M31 has an equal baryonic mass as the Milky Way
M2 = M1 = 5 × 1010 solar masses and M31 has a nominal small transverse velocity of 40km/s. In another model
M31 is twice as heavy as the Milky Way[5] and has a larger transverse velocity 100km/s to avoid collision with the
M33[12].
Shown in Fig. 3 are the orbits in the past 12 Gyrs, earlier than which the disks of the Milky Way and M31 are

likely not yet formed. MOND prefers either a small baryonic mass for the Local Group, or a significant transverse
velocity of the M31, something that can be falsified by future measurements of the transverse velocity. A transverse
velocity helps to keep the pericenter distance large, about 200-300kpc, hence any tidal effect from the M31 on the
LMC is small, which is perhaps a desirable feature to bound the LMC within 45-450 kpc of the Milky Way. However,
if we adopted a radial orbit and a large mass for the M31 as in the standard interpretation of Local Group timing
with a Keplerian orbit of M31 and MW dark halos [4, 18], there would be some tension between the long age of the
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FIG. 3: Shown are two possible orbits for M31 (green)-MW (red) for the past 12 Gyr: the left panel shows a possible nearly
radial orbit with the M31’s baryonic mass the same as that of the Milky Way (M = 5× 1010 solar masses) and the right panel
shows a significantly non-radial orbit of the M31 with a mass 2M . The origin is set at the present position of the MW, while
the M31 is presently 800 kpc away on the right. The arrows indicate the force towards the center of mass.

.

FIG. 4: shows the orbit of the Bullet subcluster with respect to the main cluster (green dot fixed at origin) with a mass ratio
1:2 (red circles) and 1:3 (red line) respectively for 9 Gyrs earlier than its present age; the Bullet is at 700kpc to the right of
the main cluster and is moving to the right at 4000km/s; both models assume the same combined mass M1 +M2 = 6× 1014

solar masses.

universe and short orbital period of M31-MW binary predicted in MOND, implying that the two systems had an
earlier flyby, and are coming close to each other for the second time. Our model cannot yet include any acceleration
of the whole M31-MW binary towards the Virgo cluster, which creates the so-called external field effect, which can
generally reduce the MOND force or potential, and lengthen the period [8, 23].
To time the Bullet Cluster, which is at z = 0.3 when the age of the universe is 10 Gyrs, we can set Tradial ∼ 10

Gyrs. A possible orbit is shown in Fig. 4. Allowing for some hydrodynamical effect [21], we set the speed of

encounter
√

2 ln
rapo

r (GM̃a0)
1/4 ∼ (3000− 4000) km/s at the present separation r = 700 kpc, we find (GM̃a0)

1/4 ≥
3000/

√

2 ln(7) ∼ 1500 km/s, hence the matter M̃ ≥ 2.5× 1014 solar masses, much larger than the combined baryonic
content ≤ 1014 solar mass for both systems. This implies the need for non-baryonic matter, perhaps (sterile) neutrinos
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in both systems[19]. These crude estimates are consistent with the previous findings [1, 17].

SUMMARY

In short, previous tests of MOND have largely been limited to fitting rotation curves or velocity dispersion curves
inside axisymmetric galaxies or galaxy clusters. A few studies in the literature on non-axisymmetric configurations
have relied primarily on numerical codes [6, 9, 16, 22, 23]. The numerical complexity severely limits our theoretical
intuitions on this class of non-linear theory of gravity.
Here we derive the modified Kepler’s law analytically for a two-body system and for restricted many-body problem

in the context of two versions of theories for MOND. We demonstrate the powerful use of modified Kepler’s law by
applying our analytical results to make predictions of the orbital motions for real systems. These analytical results
are also useful for testing numerical codes (e.g., [6]) and for getting intuitions. It appears that in the case of the
Bullet Cluster a pure MOND without non-baryonic matter (e.g., neutrinos) is not enough to explain the fast motions
of the bullet. On the other hand the timing of the M31’s orbit would imply an uncomfortably low mass for the M31
unless its orbit towards the Milky Way has significant amount of angular momentum, which is a strong prediction
for MOND to survive in the context of the two-body problem in the Local Group. The baryonic mass of the Milky
Way ∼ 5× 1010 solar masses seems enough to consistently explain the rotation curve [24], the local escape speed, and
the morphology and kinematics of the Sgr stream (Fig. 1); note in our approximation we have neglected the effects of
the detailed form the MOND µ function in these regimes. The orbit of the LMC is bound around the Milky Way in
MOND, however, with only two pericentric passages in the past 12 Gyrs, so it remains to be seen if these pericentric
passages are enough to generate the detailed morphology of the Magellanic Stream.
To conclude, our analytical formulae for the MOND gravity in two-bodies provide some tools for studying MOND

beyond rotation curve fitting, where MOND has been very successful. We propose to use the timing argument in two-
body problem to probe the dynamics of the LMC, M31 and the Bullet clusters in MOND. The ultimate falsification
or proof rests on more detailed numerical modeling with improved kinematic data.

Appendix A: Motion-independent force and finite-size correction

Assume the body m1 is a Kuzmin-Hernquist disk-bulge flattened system (as introduced in Shan et al. 2008)[20]
with two imaginary centers at | ± k| above or below the plane of the disk [4], one can apply the formulae as if m1 is
a spherical Hernquist body of scale length b centered on a point below the plane whenever the body m2 is above the
plane, and vice versa. So the equation of motion for m1 and m2 are

m2d
2r2

dt2
= −m1d

2r1

dt2
= F = +

∂

∂r2

Gm1m2

|r2 − r1 ± k|+ b
− 2
√

Ga0(m1 +m2)3

3

(

1− m
3

2

1 +m
3

2

2

(m1 +m2)
3

2

)

∂

∂r2
ln |r2 − r1 ± k|+ b.

(33)
For two spherical particles with k = 0, the mutual force

F12 = m1a1 = m2a2 =
Gm1m2

(r12 + b)2
+

Ξ
√

G(m1 +m2)3a0
r12 + b

, Ξ ≡ 2

3

(

1−
2
∑

i=1

(

mi

m1 +m2

)3/2
)

, (34)

where we have opted to smooth our point-like particle with a common scale b by a Hernquist-smoothing Kernel, which
is not always rigorous, but allows a non-divergent estimation of forces in situations where the bodies are overlapping.
The essential thing is to keep the forces rigourous for point mass and that F12 = F21 in general such that the system
conserves total momentum. The forces on the two bodies are in opposite directions, keeping their center of mass fixed.

Appendix B: Alternative expression for M̃ in binary configuration, and in symmetric many-body

configurations

Following expressions for the effective MONDian mass M̃ have better asymptotic behavior for N = 1 binary
configuration with two masses M and m, and for a central mass M plus a N > 1 symmetric identical particles of mass
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m/N .

M̃1/2 ≡ (M +m)1/2(1− 2M1/2m1/2

3(M +m)
)

[

1

2
+

M3/2 +m3/2

2(M +m)3/2

]−1

if N = 1 (35)

=

[

2M(M +m) + (2/3)m2

(M +m)3/2 +M3/2
− 2m1/2

3N1/2

]

, otherwise

For equal mass binary m = M , and N = 1, we have M̃ = 2
[

1− 2
6

]2 [ 1
2 + 1

23/2

]−2
m ∼ 1.2m.

Appendix C: expressions for m̃N for N > 1 identical masses distributed on a regular polyhedra

It is somewhat lengthy but straightforward to calculate the Newtonian force vectors between N particles distributed
on regular polygons and polyhedra of radius r. Summing up the forces on each particle, one can find the forces
are indeed centripedal, the acceleration is given by Gm̃N/r, The expressions for αN = m̃N

m are found as follows:

α6 = 1
24 +

√
2
6 for a N = 6 points on octahedron and α8 =

1+
√

3/2+
√
3

32 for a N = 8 points on a cube. There are
totally 5 possible regular polyhedra or platonic solids, with N = 4, 6, 8, 12, 20 vertices for tetrahedron, octahedron,
cube, icosahedron, and dodecahedron.
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