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Abstract

This paper studies optimal taxation in a Dixit�Stiglitz model of monopolistic competition. In this setting,

taxes may be used as an instrument to o¤set distortions caused by producer markups. Since markups tend

to be higher in industries where �rms face less elastic demand, tax rates will be pushed lower in these

industries. This tends to work against the familiar inverse elasticities intuition associated with the Ramsey

tax rule. However, a key feature of the model is that the Ramsey rule responds to the industry demand

curve (Chamberlin�s DD) while the monopolistic markup is a response to the demand curve faced by �rms

(Chamberlin�s dd). Hence the elasticities of both these curves in�uence the optimal tax rate, but in opposite

directions.

JEL Classi�cation: D43, H21

Keywords: optimal taxation, monopolistic competition
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1 Introduction

This paper addresses optimal taxation in a multi-sector version of the Dixit�Stiglitz (1977) model of monop-

olistic competition. Since �rms with market power create economic distortions, taxes will be used in part to

o¤set the adverse welfare consequences of producer markups. Thus, the focus of study is taxation that not

only raises revenue e¢ ciently, it must also have an optimal corrective component to combat the monopolistic

distortions. This is potentially a rather complex problem with multiple policy objectives but only a limited

number of policy instruments. Nonetheless, the problem is an important one since varying degrees of imper-

fect competition are present in many markets yet the theory of optimal taxation has focused primarily on

the perfectly competitive case.1 Fortunately, despite the complexity of the problem some valuable insights

are available.

Since markups respond inversely to the elasticity of demand, corrective policy will work in the opposite

direction: taxes will respond positively to the elasticity of demand. This is in contrast to the familiar

Ramsey rule for e¢ cient taxation which tends to favor an inverse elasticities tax rule. So the two policy

objectives respond in opposite ways to the elasticity of demand � a pro-elasticities rule for the corrective

component and an inverse elasticities rule for the e¢ cient component. The optimal policy is a combination

of the two. But note that the Ramsey rule responds to elasticities of industry demand curves (Chamberlin�s

DD). By contrast, the markups, and hence the tax corrections, respond to elasticities of �rm demand

curves (Chamberlin�s dd). Thus the optimal balance between inverse elasticities and pro-elasticities tax rules

depends on careful measurement of the di¤erent elasticities.

The optimal tax problem for the Dixit�Stiglitz economy � an imperfectly competitive economy with

zero pro�ts and heterogeneous goods � has the same form as the optimal tax problem for an imperfectly

competitive economy with positive pro�ts and homogeneous goods. The latter problem has been studied

by Myles (1989). We exploit the equivalence between the two problems and use the methods of Myles to

show the compensated e¤ect of the optimal tax system on the number of �rms in the free entry equilibrium.

The results are consistent with the corrective role for taxation. If an industry faces a large monopolistic

distortion, the tax system�s direct response is to cause only a small reduction in entry.

The rest of the paper is organized as follows. Sections 2 and 3 present the model and its equilibrium

respectively. Section 4 studies the optimal tax problem when quantities are the control variables. Section 5

considers the case where prices are the control variables. Section 6 is a brief conclusion.

1Section 6 of Auerbach and Hines (2002) and chapter 11 of Myles (1995) discuss optimal taxation under imperfect compe-
tition.
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2 Model

There are I monopolistically competitive industries, labeled i = 1; : : : ; I. The representative consumer has

utility function

U(`; Y1; : : : ; YI)

where ` is leisure and Yi is an aggregator for industry i:

Yi :=

Z ni

0

ui(qi(j))dj:

Each �rm in industry i produces a distinct variety, so ni is both the number of �rms and the extent of variety

in the industry. The function ui gives the utility contribution for each variety of industry i consumption.

The representative consumer is endowed with L units of time, so L� ` is labor supply.

Labor is the only factor of production. Thus �rms�production functions can be inverted to yield cost

functions. Speci�cally, each of the ni �rms in industry i has the same cost function

Ci(q)

where q is the �rm�s output and the costs are measured in units of labor. There are �xed costs: Ci(0+) > 0

for i � 1, where Ci(0+) := limq#0 Ci(q).

Government purchases consist of g units of labor with g < L. Since g is exogenous and �xed, its e¤ect

on the consumer�s utility is omitted. The labor income tax rate is t0. The sales tax rate in industry i is ti.

With labor as numeraire, let pi(j) (or simply pij) denote the price charged by �rm j 2 [0; ni] in industry

i � 1. The corresponding consumer price is Pi(j) := (1+ti)pi(j) (or simply Pij). In a symmetric equilibrium,

pij = pi for all j 2 [0; ni] and Pi := (1 + ti)pi. The consumer price for labor is denoted P0 := 1� t0.

The model�s technical assumptions are in appendix A.

3 Equilibrium

This section describes agent behavior and the economy�s equilibrium. The representative consumer chooses

(`; q1(�); : : : ; qI(�)) � 0 to

maximize U(`; Y1; : : : ; YI)

subject to Yi =

Z ni

0

ui(qi(j))dj

IX
i=1

Z ni

0

(1 + ti)pi(j)qi(j)dj � (1� t0)(L� `):
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There is no income from dividends since free entry drives pro�ts to zero. Let U0, U1, . . . , UI denote the

partial derivatives of U . The �rst order conditions for an interior solution are

U0� ipij = Uiu
0
i(qij) i � 1; j 2 [0; ni]

where � i := (1 + ti)=(1 � t0). Thus the inverse demand curve for variety j in industry i is proportional to

u0i(qij) and hence the elasticity of the dd demand curve is �ij = u
0
i(qij)=[qiju

00
i (qij)].

At this point it is worth emphasizing the way the model captures the dd/DD distinction. We just saw

that the dd elasticity for �rms in industry i depends only on the properties of ui. As for DD, this is demand

for aggregate industry output. Here, since Yi plays the role of industry aggregate, DD demand is based on

utility derived from Yi which is governed by U . So demand properties derived from U are the model�s DD,

while those derived from ui are the model�s dd.

In a symmetric equilibrium the consumer�s �rst order conditions and the budget constraint are

U0� ipi = Uiu
0
i i � 1

`+

IX
i=1

� ipiqini = L:

Corner solutions can be ignored since, under assumptions 1(b) and 5 in appendix A, the government will

never choose tax rates that lead to a corner. Similarly, the de�nition of � i requires 1�t0 6= 0. The government

would never choose t0 = 1 since that would leave the consumer with no income.

Firms are monopolists relative to their respective dd demand curves. Hence markups satisfy

pij
C 0i(qij)

=
1

1 + 1=�ij
=

u0i(qij)

u0i(qij) + qiju
00
i (qij)

:

In a symmetric equilibrium with free entry this yields

pi
C 0i(qi)

=
u0i(qi)

u0i(qi) + qiu
00
i (qi)

and piqi = Ci(qi)

where the latter is the zero pro�t condition. Eliminate pi from these equations to get

qiC
0
i(qi)

Ci(qi)
= 1 +

qiu
00
i (qi)

u0i(qi)
(1)

(Spence 1976, equation (71)). Under the model�s assumptions, for each industry i � 1 this equation has a

unique solution qi > 0. Hence output per �rm is determined independently of the government�s policy, and

so is the producer price pi = Ci(qi)=qi. Policy does, however, a¤ect the number of �rms in each industry.2

2This result � that policy has no e¤ect on output per �rm, but does a¤ect entry � is a consequence of the form of the dd
demand curves. From the consumer�s �rst order condition (U0� ipij = Uiu

0
i(qij)) we �nd that �rm j in industry i faces inverse

demand pij =  iu
0
i(qij) where  i := ��1i Ui=U0 is exogenous to the �rm. If the government were to reduce � i, dd would shift

outward. This alone would raise pro�ts, so entry would occur and this would shift demand inward. But the only mechanism
for shifting demand inward is a reduction in  i. Ultimately, the original reduction in � i must be exactly o¤set by a reduction
in Ui=U0 in equilibrium. Otherwise, pro�ts would not return to zero.
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With these results, the equilibrium conditions are

U0� iCi = Uiqiu
0
i i � 1 (2)

`+
IX
i=1

� iniCi = L (3)

g + `+
IX
i=1

niCi � L (4)

where the zero pro�t condition, piqi = Ci, has been used to eliminate pi in (2) and (3). Inequality (4) is

the resource constraint. Recall that government consumption consists of g units of labor/leisure and that

qi, ui, u0i, and Ci are evaluated at the level of qi that is consistent with pro�t maximization and zero pro�ts.

The government�s budget constraint is automatically satis�ed when the consumer�s budget and the resource

constraint are satis�ed (Walras�law).

An equilibrium is an intersection between the o¤er curve and the resource constraint. The o¤er curve is

the set of vectors (`; n1; : : : ; nI) that satisfy the consumer�s optimality conditions (2) and (3). The curve is

traced out as the vector of policy variables (�1; : : : ; � I) is allowed to take on all admissible values. Eliminate

(�1; : : : ; � I) from (2) and (3) to get a single equation in (`; n1; : : : ; nI) which generates the entire o¤er curve:

U0`+
IX
i=1

Uiqiu
0
ini = U0L: (5)

To �nd the policy variables � i that correspond to a particular solution to (5), invert (2):

� i =
Ui
U0

qiu
0
i

Ci
: (6)

Thus an equilibrium is a vector (`; n1; : : : ; nI) that solves (4) and (5) simultaneously.

The model has a free normalization since 1�t0; 1+t1; : : : ; 1+tI can all be multiplied by any positive scale

factor without a¤ecting the values of �1; : : : ; � I , and hence without a¤ecting the corresponding allocation.

4 Optimal tax problem: quantities as controls

This section characterizes the optimal tax rates in terms of demand properties, with a DD inverse elasticity

Ramsey e¤ect, a dd pro-elasticity corrective e¤ect, and interactions between them.

The optimal tax problem is to choose (`; n1; : : : ; nI) � 0 to

maximize U(`; n1u1; : : : ; nIuI)

subject to (4) and (5)

with ui = ui(qi) and qi determined as above. The optimal tax rates are found from (6). Appendix B shows

that this problem has a solution.
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4.1 First order conditions

The Lagrangian is

L = U � �

24g + `+ IX
j=1

njCj � L

35+ �
24`+ IX

j=1

Uj
U0
qju

0
jnj � L

35
where � and � are Lagrange multipliers associated with (4) and (5) respectively. Let U� be the optimal value

function. By the envelope theorem, � = �@U�=@g (since g is not an argument of U). Due to the sign of the

weak inequality (4), � � 0. It is natural to expect � to be positive. To see why, consider how the Lagrangian

would change if an exogenous lump sum tax T were added to the model. The consumer�s lump sum income

on the right hand side of (3) would become L�T (after a suitable normalization of values), while the resource

constraint would be una¤ected. Therefore, at the optimum, � = @U�=@T jT=0 . Intuitively, @U�=@T jT=0
should be positive since it represents a marginal shift in policy away from distortionary taxes and toward a

lump sum tax.

To facilitate comparison with the perfectly competitive case it is convenient to employ the change of

variables Yi := niui and to maximize with respect to Yi rather than ni. Clearly, this does not change the

problem. Then the Lagrangian is

L = U � �

24g + `+ IX
j=1

Cj
uj
Yj � L

35+ �
24`+ IX

j=1

Uj
U0

qju
0
j

uj
Yj � L

35 :
The �rst order conditions are

0 = U0 � �+ �

241 + IX
j=1

qju
0
j

uj
Yj
@

@`

�
Uj
U0

�35 (7)

0 = Ui � �
Ci
ui
+ �

24Ui
U0

qiu
0
i

ui
+

IX
j=1

qju
0
j

uj
Yj

@

@Yi

�
Uj
U0

�35 i � 1: (8)

As a benchmark, consider the optimal tax policy when a lump sum tax T is available. As indicated

above, � = @U�=@T jT=0 . So if T is chosen optimally rather than set equal to zero, � = 0. In that case, (7)

and (8) yield Ui=U0 = Ci=ui. Then from (6), � i = qiu0i=ui which gives the following result.

4.1.1 Lemma When lump sum taxation is available, the optimal policy is a subsidy for each industry:

� i < 1 for all i � 1. 3 ;4

3Recall � i is de�ned as (1 + ti)=(1� t0) so � i < 1 yields a subsidy (ti < 0) under any reasonable normalization with t0 � 0.
4This result is related to the consumer�s love of variety. Under the latter, the consumer would prefer q units of output from

each of 10 di¤erent varieties rather than 10q units from a single variety: 10ui(q) > ui(10q), or more generally, nui(q) > ui(nq)
for all n > 1. This yields ui(q)=q > ui(nq)=(nq) for all n > 1, hence q 7! ui(q)=q is a decreasing function of q. From basic
microeconomics, if an �average� function is declining, the marginal curve must lie below it. Hence, a consumer with a love of
variety has u0i(q) < ui(q)=q for all q > 0, and this implies � i < 1.
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Proof Since the optimum is � i = qiu0i=ui, the goal is to show that qiu
0
i(qi) < ui(qi). By assumption 2 in

appendix A, ui is strictly concave so it lies below its tangent lines: ui(q) < ui(�q) + (q� �q)u0i(�q) for all q 6= �q.

If we take q = 0 and note again from assumption 2 that ui(0) = 0, we get 0 < ui(�q) � �qu0i(�q) for all �q > 0.

In particular, if we take �q = qi, the equilibrium quantity, we get the desired result.

These subsidies are purely corrective. They undo some of the welfare damage from imperfect competition,

and they are �nanced with the lump sum tax.

The benchmark with lump sum taxation, � i = qiu0i=ui, states that optimal taxes respond positively to the

elasticity of the variety utility function. (I.e., the subsidy is smaller if this elasticity is larger.) As noted on

page 303 of Dixit and Stiglitz (1977), the numerator of this expression, qiu0i, is proportional to �rm revenue,

the factor that motivates private sector activity. The denominator is ui which is the full social value of the

�rm�s output. To the extent that this ratio is small, the monopolistically competitive market fails to provide

adequate incentives to �rms. The optimal response is a large subsidy (small � i).

Under reasonable conditions this benchmark for � i yields the pro-elasticities tax rule: optimal corrective

taxes respond positively to the elasticity of the dd demand curve.

4.1.2 Lemma Let qi and qj be the equilibrium levels of output per �rm in industries i and j respectively.

Suppose the dd demand curve is more elastic in industry i than industry j at the equilibrium output and

at all equiproportionate quantity reductions from equilibrium.5 Then if lump sum taxation is available, the

optimal policy has � i > � j.

Proof Recall from section 3 that the magnitude of the dd elasticity is �u0(q)=[qu00(q)]. So the hypothesis is

�qiu
00
i (�qi)

u0i(�qi)
< �

qju
00
j (�qj)

u0j(�qj)

for all � 2 (0; 1]. Integrate this relationship with respect to � over the interval [��; 1], and make use of the

identity �qu00(�q)=u0(�q) = � d
d� [log(u

0(�q))]:

� log(u0i(qi)) + log(u0i(��qi)) < � log(u0j(qj)) + log(u0j(��qj))

for all �� 2 (0; 1). Take the exponential of both sides of this inequality to get

u0i(
��qi)=u

0
i(qi) < u

0
j(
��qj)=u

0
j(qj)

for all �� 2 (0; 1). Integrate again, this time with respect to �� over the interval (0; 1), and make use of u(0) = 0

from assumption 2 in appendix A:
ui(qi)

qiu0i(qi)
<

uj(qj)

qju0j(qj)
:

5An �equiproportionate quantity reduction from equilibrium�means that quantity per �rm is �qi in industry i and �qj in
industry j for a scale factor � < 1.
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This proves the lemma since, with lump sum taxation, the optimal policy has � = qu0=u.

Return now to the case where no lump sum transfer is available. We begin with two speci�c examples

that illustrate some of the general features of the optimal tax policy.

4.2 Two examples

The examples below illustrate how optimal tax policy changes as we move from perfect competition to

monopolistic competition. In the �rst, if competition were perfect, uniform commodity taxation would be

optimal. When, instead, �rms are monopolistically competitive the example shows how optimal taxes are

adjusted away from uniform rates, and in particular, it shows the pro-elasticities corrective tax rule at work.

In the second example, perfect competition would deliver a pure inverse elasticities Ramsey optimal tax

rule. So when we have monopolistic competition instead, we see the interaction between the pro-elasticities

corrective role for taxation and the inverse elasticities e¢ ciency role.

In the �rst example,

U(`; Y1; : : : ; YI) := F (`) +

IX
i=1

�i log(Yi)

for some concave F . The utility contribution functions ui, and the cost functions Ci, are not speci�ed � they

need only satisfy the model�s technical assumptions. Direct substitution into (8) yields Ui = �Ci=ui which,

together with (6), gives � i / qiu0i=ui, a pro-elasticities corrective tax rule. (Again, this uses lemma 4.1.2�s

positive relationship between the elasticity of utility and the elasticity of dd.) The constant of proportionality

is �=U0 = �=F 0(`) which is a measure of the marginal burden of taxation. So the optimal policy has a two

part interpretation. First, take the purely corrective subsidies from the case where lump sum transfers were

available (lemma 4.1.1). But since lump sum transfers are not actually available, the second part of the

policy raises the required revenue by scaling up all the commodity tax rates in equal proportion. Since the

scaling up leaves relative tax rates una¤ected, in the end we still have a pro-elasticities dd tax rule. By

comparison, as noted above, if competition were perfect this U would result in an optimal policy of uniform

commodity tax rates (Besley and Jewitt, 1995).6 When competition is imperfect, the optimal taxes are a

natural combination of the pro-elasticities corrective policy and the perfectly competitive uniform policy.

6With U as given here, eU , which represents the same preferences, has the following two properties which are su¢ cient
to ensure that under perfect competition uniform taxation is optimal: �rst, eU is separable between leisure and the vector
(Y1; : : : ; YI) and second, eU is homogeneous of positive degree in (Y1; : : : ; YI). As a consequence, the parameters �i have no
bearing on the optimal taxes. A large �i might seem to encourage a low tax rate on commodity i, but this is not the case. In
order for the government to maximize the Cobb�Douglas part of the utility function, resources devoted to industry i should
be proportional to �i. Consumer sovereignty ensures that consumer expenditure is proportional to �i, so optimal policy entails
proportionality between consumer expenditure and resource cost. This is precisely what we get from uniform taxation since
consumer prices are proportional to producer prices.
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For the second example, the functional forms are

U(`; Y1; : : : ; YI) = `+
IX
i=1

�iY
1�1=Ei
i =(1� 1=Ei)

ui(q) = q�i

Ci(q) = Fi + ciq:

All parameters are positive and �i is restricted to be less than one. If all of the Ei ! 1, we get the log

case of the previous example. The elasticity of the �rms�dd demand curve in industry i is �i = u0i=(qu
00
i ) =

�1=(1� �i). The magnitude of �i is positively related to �i as required for lemma 4.1.2. Assume the labor

endowment L is su¢ ciently large that the consumer chooses ` > 0. Although U does not satisfy assumption 1

in appendix A, it is nonetheless su¢ ciently well behaved to ensure the existence of an interior optimal tax

equilibrium. Also, since U delivers an inverse elasticities tax rule under perfect competition (Myles, 1995,

page 107), it is a natural choice to underscore the e¤ects of imperfect competition.

Output per �rm in industry i is determined by (1) which yields

qi =
�iFi

(1� �i)ci
and, by zero pro�ts, pi =

ci
�i
:

In equilibrium, the industry i aggregator is Yi = niq
�i
i with qi as above. Then the equilibrium conditions (4)

and (5) are

g + `+

IX
i=1

Yiq
1��i
i ci=�i � L

`+

IX
i=1

Y
1�1=Ei
i �i�i = L:

The government chooses ` and the Yis to maximize U subject to these two conditions. Substitute for `

from the latter. The Lagrangian is

L = L+

IX
i=1

Y
1�1=Ei
i �i

�
1

1� 1=Ei
� �i

�
+ �

"
�g +

IX
i=1

�
Y
1�1=Ei
i �i�i � Yiq

1��i
i ci=�i

�#
:

The �rst order condition for Yi yields

Y
�1=Ei
i �i [1 + (�� 1)�i(1� 1=Ei)] = �q

1��i
i ci=�i: (9)

Then from (6),

� i =
��i

1 + (�� 1)�i(1� 1=Ei)
; (10)

or equivalently,

1� �i=� i = (1� 1=�)(1� �i + �i=Ei): (11)
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Since � = �@U�=@g, if optimal lump sum taxation were available, � would equal the consumer�s marginal

utility from the labor endowment, and with quasi-linear preferences that marginal utility is one. In that case,

(10) is the benchmark � i = �i, the pro-elasticities purely corrective tax policy which depends only on the dd

elasticity. In the absence of lump sum taxation, � exceeds one.7 The other reference point for comparison

is perfect competition, �i = 1. Then (11) is the Ramsey inverse elasticities rule 1 � 1=� i = (1 � 1=�)E�1i ,

which depends only on the DD elasticity.

In the general case, (11) shows that the ingredients for the optimal policy consist of two pure e¤ects: the

corrective benchmark �i and the Ramsey rule 1=Ei. These ingredients are blended in a way that tends to

dilute the full impact of each pure e¤ect. Finally, (11) shows that major policy errors could occur if one uses

the familiar tax rule for the perfectly competitive case when the economy is actually imperfectly competitive.

4.3 Distance function

The �rst order conditions (7) and (8) are somewhat messy for analysis. A cleaner approach uses the distance

function (Deaton and Muellbauer 1980). This provides a representation for preferences which has certain

homogeneity and concavity properties that Deaton (1979) exploits to provide a very neat and simple optimal

tax formula for the perfectly competitive case. Deaton�s result can be extended for monopolistic competition.

Let d(u; `; Y1; : : : ; YI) be the distance function for the utility function U .8 Denote �rst order partial

derivatives of d with respect to `; Y1; : : : ; YI by d0; d1; : : : ; dI respectively, and similarly, denote second order

partial derivatives by dij for i; j � 0. De�ne

�0 := 1 and �i := qiu
0
i=ui for i � 1

z0 := 1 and zi := Ci=ui for i � 1
(12)

and modify notation so that Y0 := `. Then from (6), and using di=dj = Ui=Uj ,

� i =
1 + ti
1� t0

=
di�i=zi
d0�0=z0

=
di�i
d0zi

: (13)

Following Deaton (1979), the optimal tax problem is to choose values for u and (Y0; Y1; : : : ; YI) � 0 to
7From (9), Y 1�1=Eii �i�i = �Yiq

1��i
i ci=[1 + (�� 1)�i(1� 1=Ei)]. Take the sum over i and use the two constraints from the

optimization problem to get g +
PI
i=1 Yiq

1��i
i ci=�i � �

PI
i=1 Yiq

1��i
i ci=[1 + (� � 1)�i(1 � 1=Ei)]. Since g > 0 the following

inequality must be satis�ed:
PI
i=1 Yiq

1��i
i ci f�=[1 + (�� 1)�i(1� 1=Ei)]� 1=�ig > 0. Since �=[1 + (� � 1)�i(1 � 1=Ei)] =

1=[�i(1 � 1=Ei) + ��1(1 � �i + �i=Ei)], and since �i < 1, the left hand side of this inequality is an increasing function of
� 2 (0; 1]. Furthermore, the inequality is violated at � = 1. It follows that � must exceed one.

8The distance function is de�ned implicitly by U(`=d; Y1=d; : : : ; YI=d) = u. The utility function U(�) is recovered by solving
d(u; `; Y1; : : : ; YI) = 1 for u. For each value of u the distance function is concave, homogeneous of degree 1, and increasing
(under the additional assumption that U is monotone) in (`; Y1; : : : ; YI). See Deaton and Muellbauer (1980) for further details.
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maximize u subject to

d(u; Y0; Y1; : : : ; YI) = 1 (14)

IX
i=0

di�iYi = d0L (15)

g +
IX
i=0

ziYi � L: (16)

The Lagrangian is

L = u+ �(d� 1) + �

0@ IX
j=0

dj�jYj � d0L

1A+ �
0@L� g � IX

j=0

zjYj

1A :
As in section 4.1, at an optimum � � 0 and for all cases of interest � > 0. The �rst order condition for Yi,

i � 0, is

0 = �di + �

0@di�i + IX
j=0

dji�jYj � d0iL

1A� �zi:
De�ne

Hi := �i �
d0i
di
L+

IX
j=0

dji
di
�jYj i � 0 (17)

so the �rst order condition can be written

0 = �di + �diHi � �zi i � 0: (18)

Multiply (18) by Yi and sum from i = 0 to I. Simplify using (14), (15), and (16) with equality. Also, use

Euler�s theorem. (Each dj is homogeneous of degree 0 in (Y0; Y1; : : : ; YI).) This yields

0 = � + �d0L� �(L� g):

Use this to substitute for � in (18): 0 = �di(Hi � d0L)� �(zi � di(L� g)), or equivalently

�(zi=di � L+ g) = �(Hi � d0L) i � 0: (19)

Take (19) at i = 0 and subtract from it (19) at i � 1: �(z0=d0 � zi=di) = �(H0 � Hi). Multiply by d0=�;

substitute for zi, i � 1, from (13); and use z0 := 1 to get9 1 � �i=� i = (�d0=�)(H0 �Hi). Finally use (19)

at i = 0 to substitute for �=�:

1� �i=� i =
1� d0(L� g)
H0 � d0L

(H0 �Hi) i � 1: (20)

9 In the expression that follows, � must not equal zero. From the envelope theorem � = �@U�=@g, so if � were zero there
would be no reduction in utility when the government requires a bit more revenue. In this case, the optimal taxation problem
would be particularly uninteresting.
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When competition is perfect, (20) reduces to the formula in Deaton (1979). The perfectly competitive

case is captured with �i = 1 for all i � 0 in which case (15) and (17) collapse to 1 = d0L and Hi = 1�d0iL=di
respectively. Then direct substitution into (20) gives

1� 1=� i =
g

L
�
�
1� d0i=di

d00=d0

�
:

Since d00 < 0 by concavity, � i is larger for larger values of d0i=di � more on this below.

Return now to the general case (20). Since [1� d0(L� g)]=(H0 � d0L) = �d0=� from (19) at i = 0, and

since �d0=� > 0, (20) shows that � i > �i if and only if H0 � Hi > 0. The results may be summarized as

follows.

4.3.1 Proposition When lump sum transfers are available the benchmark for optimal taxes is � i = �i. In

the absence of such transfers, the optimal � i is given by (20). Hence � i exceeds the benchmark as H0 �Hi
exceeds zero. From the de�nitions in (17) it follows that � i=�i is larger for larger values of

(a) 1� �i

(b) �d00L=d0 + d0iL=di

(c)
PI

j=0 �jd0jYj=d0 �
PI

j=0 �jdijYj=di

where (c) uses symmetry dij = dji.

Since 1� �i > 0, condition (a) pushes up � i=�i. But note, the higher the benchmark �i, the smaller the

upward adjustment in (a). This smooths out di¤erences in tax rates and moderates the lump sum tax case,

which should be expected since here taxes are necessarily distortionary. That is, the corrective subsidies

that address the monopoly problems generate a revenue requirement and here this requirement must be met

with distortionary taxes, so the subsidies should be exercised in moderation.

Condition (b) is the Deaton (1979) result for the perfectly competitive case. Embedded within this is the

familiar Ramsey inverse elasticities tax rule. This is somewhat di¢ cult to see here due to general equilibrium

e¤ects, however the second example in section 4.2 highlights this point. To interpret (b) in the general case,

terms of the form dijYj=di = @ log(di)=@ log(Yj) are compensated inverse demand elasticities. Roughly,

they show how the consumer�s marginal utility from i is a¤ected by a change in Yj along an indi¤erence

surface. Thus dij > 0 indicates that i and j are complementary. So (b) suggests relatively higher tax rates for

complements of leisure. That is, since the direct e¤ect of taxes is to push up the prices of goods i � 1 relative

to leisure, this distortion can be o¤set in part by taxing leisure indirectly through taxes on its complements.

Now consider (c) and focus on the second sum since the �rst is common for all i. Condition (b) addressed

cross-price e¤ects between i and leisure but what about other cross-price e¤ects? In (b), the complements

of leisure received higher tax rates. The feature of leisure that drives this is simply that it is supplied to

13



the market (as labor). More generally, the complements of any good in net supply should receive upward

adjustments to their tax rates; and the complements of any good in net demand should receive downward

adjustments (conversely for substitutes). Since goods j � 1 are in net demand, their complements should

receive downward adjustments: dij > 0 ) � i # for j � 1, and conversely for substitutes. The second sum

in (c) quanti�es this.10 Under perfect competition these adjustments taken together cancel out the j = 0

term in (c). That is, since the perfectly competitive case is represented by �j = 1 for all j, the sums in (c)

are then zero due to homogeneity. But when imperfect competition is present and �j < 1 for j � 1, this no

longer applies. In this case, the adjustments transmitted from goods j � 1 to � i are reduced according to

the degree of distortion in industry j. E.g., if j is highly distorted so that �j is small and the benchmark is

a considerable subsidy to j, the adjustment �dij > 0 ) � i #�is reduced, as shown in (c).

The following special case highlights the role of (c). Suppose �i = � < 1 for all i � 1 (and �0 := 1). I.e.,

the extent of the monopolistic distortion is the same in all industries. Then by degree zero homogeneity, (c)

simpli�es to (1� �)d00`=d0 � (1� �)d0i`=di. This o¤sets part of (b). So the e¤ect of imperfect competition

is to counteract the Ramsey rule in (b). Furthermore, this e¤ect is more pronounced when the monopolistic

distortion is larger (when � is smaller).

Now we can put the pieces together. The optimal policy has four components. Two of these are �pure:�

the corrective benchmark �i, and Ramsey e¢ cient taxation in (b) with the latter extending the inverse

elasticities tax rule to general equilibrium. The overall policy is not merely the sum of these two. Rather,

they interact with one another and as a result each of the pure components is weakened or moderated to

some degree. The benchmark is weakened by (a); Ramsey, by (c). Nonetheless, the broad picture is one

of two main in�uences. Corrective taxation tends to respond positively to the elasticity of the dd demand

curve while e¢ cient taxation tends to respond inversely to the elasticity of DD.

5 Optimal tax problem: prices as controls

The analysis thus far has used primal variables (Y0; Y1; : : : ; YI) as controls. Recall that Y0 is leisure and

Yi := niui(qi) for i � 1. An alternative approach is to use prices or the tax rates as controls. This approach

will show the e¤ect of the optimal tax system on the number of �rms in each industry. There is a direct

e¤ect in which industries with a greater departure from perfect competition experience a smaller percentage

decline in the number of �rms. Thus the tax system spares those industries already hit hard by monopolistic

competition. There is also an indirect e¤ect that works through the impact of the tax system on an industry�s

complements and substitutes.

Let T0 := 1 � t0. De�ne �i and zi as in (12) and let Ti := zi(1 + ti)=�i for i � 1, from which the tax

10The j = 0 terms in (c) �t more appropriately within (b), which would then become �d00(L � `)=d0 + d0i(L � `)=di, and
would have the same interpretation as previously. These terms are presented in (c) to facilitate comparison with the perfectly
competitive case.
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rates can be recovered easily. The T variables correspond to consumer prices in the perfectly competitive

case while the z variables correspond to producer prices. Then the equilibrium conditions (2), (3), and (4)

can be written

UiT0 = U0Ti i � 1 (21)

IX
i=0

�iTiYi = T0L (22)

g +
IX
i=0

ziYi � L: (23)

Consider an arti�cial economy in which the representative consumer chooses (Y0; Y1; : : : ; YI) � 0 to

maximize U(Y0; Y1; : : : ; YI) subject to
IX
i=0

TiYi �M

where (T;M) � 0 is taken parametrically. Recall that the consumer in the Dixit�Stiglitz economy actually

chooses quantities of leisure and the output of each �rm, not industry aggregates like Yi for i � 1. If T� 0

and M > 0, the problem has a unique solution characterized by (21) and

IX
i=0

TiYi =M: (24)

Let Y(T;M) � 0 be the maximizer and V (T;M) the indirect utility function. By construction, this

maximizer satis�es the equilibrium condition (21) for the Dixit�Stiglitz economy. Conversely, any vector

(Y0; Y1; : : : ; YI) that satis�es (21) solves the arti�cial consumer�s problem for some M .

If M > 0 is chosen appropriately, the solution for the arti�cial economy also satis�es (22). To see this,

note that if M = 0, Y(T; 0) = 0 so the left hand side of (22) is less than the right hand side. Under the

assumption of normal goods, for larger values of M the LHS increases and eventually exceeds the RHS. In

particular, for each T� 0 there is a unique M > 0, denoted M(T), such that

IX
i=0

�iTiYi(T;M(T)) � T0L: (25)

Observe that M(�) is homogeneous of degree one. Since �i < 1 for i � 1, (24) and (25) imply that

M(T) > T0L for all T� 0.

Based on the above results, the optimal tax problem has an equivalent representation in which the

government chooses T� 0 to

maximize V (T;M(T))

subject to g +
IX
i=0

ziYi(T;M(T)) � L

9>>=>>; Problem (P)

where V is the indirect utility function de�ned above.
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Notice the restriction T� 0. This is required to ensure that the consumer�s problem has a solution, i.e.,

to ensure that Y(T;M) is de�ned. However, with this restriction the optimal tax problem might not have

a solution since its constraint set is not compact. This issue is addressed in appendix C.

Problem (P) above has the form of an optimal tax problem for an economy with homogeneous goods

(with quantities measured by Yi and consumer prices by Ti) and feedback e¤ects M(T) from prices to the

consumer�s lump sum income. Such feedback e¤ects are found when �rms earn positive pro�ts that are

not all taxed away. Since M(T) > T0L the feedback e¤ects here are indeed additions to the consumer�s

income, much like pro�ts. Thus the optimal tax problem for the economy with free entry (zero pro�ts)

and heterogeneous goods has the same form as the optimal tax problem for an economy with positive

pro�ts and homogeneous goods. This latter economy must be imperfectly competitive since the resource

constraint indicates constant returns technology yet pro�ts are positive. Myles (1989) analyzes a problem

of the form (P) and his approach motivates what follows.

The Lagrangian for problem (P) is

V (T;M(T)) + �

0@L� g � IX
j=0

zjYj(T;M(T))

1A :
The �rst order condition for Ti, i � 1, is

@V

@Ti
+
@V

@M

@M

@Ti
� �

0@ IX
j=0

zj

�
@Yj
@Ti

+
@Yj
@M

@M

@Ti

�1A = 0:

Use Roy�s identity to replace @V=@Ti with �Yi@V=@M , and use the Slutsky equation to replace @Yj=@Ti
with @Y cj =@Ti � Yi@Yj=@M where the superscript c indicates the Hicksian compensated demand from the

utility function U . Then, by symmetry of the Slutsky matrix, replace @Y cj =@Ti with @Y
c
i =@Tj :

�Yi
@V

@M
+
@V

@M

@M

@Ti
� �

0@ IX
j=0

zj

�
@Y ci
@Tj

� Yi
@Yj
@M

+
@Yj
@M

@M

@Ti

�1A = 0:

Collect terms:

�Yi

0@ @V

@M
� �

IX
j=0

zj
@Yj
@M

1A+ @M
@Ti

0@ @V

@M
� �

IX
j=0

zj
@Yj
@M

1A� � IX
j=0

zj
@Y ci
@Tj

= 0 i � 1:

Implicit di¤erentiation of (25), and the same Slutsky steps as above, gives @M=@Ti:

@M

@Ti
= Yi �

�iYi +
PI

j=0 �jTj@Y
c
i =@TjPI

j=0 �jTj@Yj=@M
i � 1

which, when substituted above yields

�

0@�iYi + IX
j=0

�jTj
@Y ci
@Tj

1A @V=@M � �
PI

j=0 zj@Yj=@MPI
j=0 �jTj@Yj=@M

= �
IX
j=0

zj
@Y ci
@Tj

i � 1:
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Divide through by Yi and de�ne � as follows:11

� := �
@V=@M � �

PI
j=0 zj@Yj=@MPI

j=0 �jTj@Yj=@M

to get
IX
j=0

zj
@ log Y ci
@Tj

=
�

�

0@�i + IX
j=0

�jTj
@ log Y ci
@Tj

1A i � 1: (26)

This is a Ramsey rule for consumption quantities, modi�ed for the economy with monopolistic competition.

Note that if competition were perfect so that �j = 1 for all j � 0, then by homogeneity (26) would reduce to
IX
j=0

zj
@ log Y ci
@Tj

=
�

�
i � 1

which is the Ramsey quantity rule under perfect competition (e.g., Samuelson 1986): for each commodity, the

optimal tax system reduces compensated demand by an equal percentage, to a �rst order approximation.12

With monopolistic competition, the Ramsey quantity rule is modi�ed by the term in parentheses in (26).

Since Yi := niui(qi) for i � 1, and since qi is una¤ected by the tax system, the percentage change in Y ci

equals the percentage change in nci . Thus (26) tells us the compensated e¤ect of the optimal tax system on

the number of �rms in industry i. In the parentheses, �i gives a direct e¤ect while the sum gives an indirect

e¤ect via i�s Hicksian substitutes (@ log Y ci =@Tj > 0) and complements (@ log Y
c
i =@Tj < 0).

5.1 Proposition Subject to approximation, the optimal tax system has the following compensated e¤ect on

the number of �rms ni that enter industry i, i � 1:

(a) a direct e¤ect whereby industries with a higher degree of monopolistic competition (smaller �i) have a

smaller percentage reduction in the number of �rms; and

(b) an indirect e¤ect whereby the percentage reduction in nci is greater if i�s Hicksian substitutes have a

relatively small degree of monopolistic competition (large �j) and if i�s Hicksian complements have a

relatively large degree of monopolistic competition (small �j).

11� is the increase in utility that would arise from a marginal shift toward lump sum taxation. More speci�cally, let TLS
denote an exogenous lump sum tax. This a¤ects the equilibrium conditions only through the consumer�s budget equation (3),
which has become (25) in this arti�cial economy. So the right hand side of (25) becomes T0L� TLS . This a¤ects the de�nition
of M(�) and, through implicit di¤erentiation, gives @M=@TLS . Let V � denote the maximum value function for problem (P).
Then by the envelope theorem � = @V �=@TLS which we expect to be positive, and � = �@V �=@g � 0 which is strictly positive
in all cases of interest.
12 In the perfectly competitive case the zj terms that appear in (26) are equivalent to producer prices. Due to homogeneity,

the left hand side of (26) equals �
PI
j=0(Tj � zj) @ log Y

c
i =@Tj , where Tj � zj is the amount of the tax in sector j. (Since

T0 := 1 � t0 and z0 := 1, T0 � z0 is also the amount of the tax on leisure in sector 0.) Hence the jth term in the sum is the
approximate percentage change in Y ci caused by the jth tax. The whole sum then approximates the total percentage change in
Y ci caused by the entire tax system, holding utility constant.
When monopolistic competition is present, the arti�cial consumer price is Tj := zj(1 + tj)=�j for j � 1, and the change

in this price caused by taxation is Tj � zj=�j . So, again by homogeneity, the approximate total percentage change in Y
c
i is

�
PI
j=0(zj=�j) @ log Y

c
i =@Tj , which di¤ers in magnitude from the left hand side of (26) by the presence of �j . Nonetheless, the

left hand side of (26) still gives an approximation for the total percentage change in Y ci when the e¤ect of imperfect competition
is not too severe, i.e., when the terms �j are not signi�cantly less than one.
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Part (a) of the proposition tells us the optimal tax system avoids overkill: if an industry already bears

a heavy burden from imperfect competition, then the tax system responds with a relatively lighter burden.

Part (b) is a partial o¤set to this: if industry j has a small �j and hence is treated lightly under (a), then

its complements get an increased burden under (b). The interpretation of this proposition is thus similar

to proposition 4.3.1 above. Taxes should be used to undo some of the damage caused by monopolistic

distortions, but with moderation due to general equilibrium e¤ects.

6 Conclusion

This paper addresses optimal taxation in a monopolistically competitive economy. In an ideal world the

government would have a rich enough set of policy instruments to fully correct market imperfections and

to raise su¢ cient revenue. In a more realistic setting, the available instruments must serve a double duty.

Here, commodity taxes were used both (i) as a corrective instrument against the adverse e¤ects of producer

markups and also (ii) as a (distortionary) source of government revenue. For objective (i), if the �rms in an

industry face relatively less elastic demand and hence choose relatively large markups, the optimal policy

should try to o¤set this with a lower tax rate � low elasticity, low tax rate.13 This works in the opposite

direction to the familiar inverse elasticities tax rule that addresses objective (ii). Thus under imperfect

competition there are two opposing in�uences on the optimal tax rates.

If we abstract from distributional concerns and consider a representative consumer economy, the optimal

tax formula is given in section 4.3.14 The formula does not simply add the solutions to (i) and (ii) above.

Interactions arise. In large part, these interactions are due to the fact that for (i) it is Chamberlin�s dd

demand curve that in�uences the producer markups while for (ii) it is the DD demand curve that in�uences

the Ramsey rule. The elasticities of both these demand curves must be taken into account when designing

an optimal tax scheme. More generally, misleading policy prescriptions are likely to arise if imperfect

competition is ignored.

The tax system a¤ects the number of �rms in a free entry equilibrium. When taxes are set optimally,

the compensated e¤ect on entry has both a direct e¤ect and an indirect e¤ect. For the direct e¤ect, those

industries hit hardest by monopolistic distortions should be hit softest by tax distortions � they should ex-

perience the smallest percentage reduction in entry. The indirect e¤ect takes into account general equilibrium

linkages and moderates the impact of the direct e¤ect.

13This reduction in tax rates is not a reward for monopolists. Rather, it is �compensation� for consumers.
14The analysis may be extended to the case of heterogeneous consumers. The optimal tax formula becomes rather unwieldy

but it continues to be in�uenced by many of the same factors as in the representative consumer case.
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Appendix A Technical assumptions

The following �ve assumptions provide a set of conditions under which the consumer�s and �rms�problems

have solutions, and equilibrium exists. Furthermore, under the restriction that identical �rms be treated

identically, equilibrium is unique in the sense that each choice of tax rates (t0; t1; : : : ; tI) can generate at

most one equilibrium.

Assumption 1(a) is standard and it implies that U is locally non-satiated. Assumption 1(b) states that

any indi¤erence surface of U that has a non-empty intersection with the interior of the non-negative orthant

is in fact contained entirely within the interior of the non-negative orthant. This rules out corner solutions.

Assumption 1(c) will be used for comparative statics analysis. The assumption of normal goods (positive

income elasticity of demand) is not unreasonable at this level of aggregation (industry aggregates and a

representative consumer).

The second assumption places smoothness and concavity restrictions on the functions ui. For each �rm,

the third assumption ensures that the absolute value of the dd elasticity exceeds one and is non-increasing

in quantity. This plays a role in making the �rms�pro�t functions bounded and concave. Assumptions 2

and 3 are satis�ed, for example, by the constant elasticity functions ui(q) = Aiq�i for Ai > 0 < �i < 1.

The fourth assumption restricts the cost functions, again with the aim of ensuring that the pro�t functions

are well-behaved and that the equilibrium is unique. These restrictions will be satis�ed, for example, if the

cost functions are a¢ ne (�xed cost followed by constant marginal cost).

The last assumption is that the consumer�s o¤er curve has a non-empty intersection with the resource

constraint, i.e., equilibrium exists. Essentially, this requires that government purchases g not be too large a

burden on available resources.

Assumption 1:

(a) U is de�ned on the non-negative orthant where it is a continuous function that does not attain a maxi-

mum. On the interior of the non-negative orthant, U is strictly quasi-concave and twice continuously

di¤erentiable.

(b) Suppose (`; Y1; : : : ; YI)� 0 and 0 2 f^̀; Ŷ1; : : : ; ŶIg. Then U(`; Y1; : : : ; YI) > U(^̀; Ŷ1; : : : ; ŶI).

(c) The gradient of U never vanishes. The determinant of the bordered Hessian matrix of U never vanishes.

All of the goods `; Y1; : : : ; YI are normal under U .

Assumption 2: For all i � 1, ui is de�ned and continuous on IR+ and is three times continuously dif-

ferentiable on IR++; ui is strictly increasing and strictly concave; u0i " 1 as qi # 0 and u0i # 0 as qi " 1;
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ui(0) = 0.15

Assumption 3: For all i � 1,

(a) �1 < qu00i (q)=u0i(q) < 0 8q > 0,

(b) q 7! qu00i (q)=u
0
i(q) is continuous at q = 0,

(c) d[�qu00i (q)=u0i(q)]=dq � 0 8q > 0.

Assumption 4: For all i � 1, Ci maps IR+ to IR+. On IR++ each Ci is twice continuously di¤erentiable,

strictly increasing, and convex. Ci(0) = 0, Ci(0+) > 0, and d[qC 0i(q)=Ci(q)]=dq > 0 for all q > 0 � the ratio

of marginal costs to average costs is increasing in output.

Assumption 5: There exists (`; n1; : : : ; nI)� 0 that simultaneously solves (4) and (5).

Appendix B Existence of an optimum for section 4

The proof simply amounts to showing that the problem can be written as the maximization of a continuous

function on a non-empty compact set.

De�ne

S := f(`; n1; : : : ; nI)� 0 : (5) is satis�edg:

By continuity, S is closed relative to the interior of the non-negative orthant. That is, it is the intersection of

the interior of the non-negative orthant with some closed set K 2 IRI+1. Therefore the closure of S in IRI+1

is the union of S and (perhaps) some points on the boundary of the non-negative orthant. Assumptions 1(b)

and 5 make it impossible for any of these boundary points to solve the optimization problem. Thus the

problem can be restated: Choose (`; n1; : : : ; nI) � 0 to

maximize U(`; n1u1; : : : ; nIuI)

subject to (4) and (`; n1; : : : ; nI) 2 closure (S):

It follows immediately that a maximum exists. Furthermore, any maximum must be in the interior of the

non-negative orthant under assumptions 1(b) and 5.

Appendix C Existence of an optimal T for section 5

Truncate the consumption set f(Y0; Y1; : : : ; YI) � 0g by intersecting it with a compact convex set K that

contains the feasible set (de�ned by (23)) in its relative interior. Let YK(T;M) be the solution to the

15The condition ui(0) = 0 is not merely a normalization. If it is violated, utility is a¤ected by the existence of a variety even
if it is not consumed. This paper will not address tax policy in the presence of existence values.
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arti�cial consumer�s problem after truncation. This is de�ned for all (T;M) � 0. When M = 0 there may

be multiple solutions. If so, pick any one of them as YK(T; 0).

The function YK(T;M) is not necessarily monotonic in M when it maps into the boundary of K.

Therefore, the procedure used in the text to de�neM(T) will not work here: there may be some T for which

no M will solve (25), and there may be other T for which there are multiple solutions. Thus, an alternative

procedure is required.

Let YK� be the unique maximizer of U on the truncated consumption set (with no budget constraint).

The consumer in the arti�cial economy will choose YK(T;M) = YK� whenever M �
PI

i=0 TiY
K�
i . Since

YK� fails to satisfy (23), such large values of M are not feasible. So if T is in the unit simplex �, there is

no loss of generality in restricting M �
PI

i=0 Y
K�
i . Let

X := ��
h
0;
PI

i=0 Y
K�
i

i
X 0 := ��

�
0;
PI

i=0 Y
K�
i

i
so that M can equal 0 in X but not in X 0. Now let

S := f(T;M) 2 X :
IX
i=0

�iTiY
K
i (T;M) = T0Lg;

cf (25). By continuity, S is compact. (For each i, 0 � TiY Ki (T;M) �M implies continuity at M = 0.) The

resource constraint (23) must be treated with some care because of the possible discontinuity in YK(T;M)

when M = 0. Let

R := f(T;M) 2 X 0 : g +

IX
i=0

ziY
K
i (T;M) � Lg:

This set is closed relative to X 0. The closure of R in IRI+2+ consists of R together with (perhaps) some points

with M = 0. But no solution to the government�s optimization problem can possibly have M = 0 since

YK(T; 0) must be a boundary point of the non-negative orthant for any T in the simplex.

The problem can now be stated as

maximize V K(T;M)

subject to (T;M) 2 S \ closure (R)

which must have a solution (T�;M�), even if V K is only upper semi-continuous when M = 0. Since this

solution satis�es the feasibility constraint (23), and since by choice of K any feasible allocation is interior to

K, it follows that (T�;M�) also solves the original problem (without truncation to K).
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