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Fractional resonances in the atom-optical o-kicked accelerator
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We consider resonant dynamics in a dilute atomic gas falling under gravity through a periodically pulsed
standing-wave laser field. Our numerical calculations are based on a Monte Carlo method for an incoherent
mixture of noninteracting plane waves, and we show that quantum resonances are highly sensitive to the
relative acceleration between the atomic gas and the pulsed optical standing wave. For particular values of the
atomic acceleration, we observe fractional resonances. We investigate the effect of the initial atomic momen-
tum width on the fractional resonances and quantify the sensitivity of fractional resonances to thermal effects.
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I. INTRODUCTION

The atom-optical kicked rotor can be realized by subject-
ing a dilute atomic gas to a pulsed optical standing wave.
This system has become well established as a convenient
way to study quantum chaotic dynamics [1-34]. In particu-
lar, quantum resonances and antiresonances [35-45] are a
dramatic signature of quantum chaos [46-48], and these phe-
nomena have been observed and studied in detail in cold
atom kicked-rotor experiments [1-4]. One of the features of
such experiments is that the optical standing wave can be
oriented vertically, allowing the atom cloud to fall under
gravity during the optical pulses. This realizes the quantum
kicked accelerator [4] and has led to the observation of quan-
tum accelerator modes [4—12] which are closely related to
quantum resonances. However, quantum resonances them-
selves have not been specifically investigated for the quan-
tum S-kicked accelerator.

In this paper, we consider the atom-optical quantum
kicked accelerator where the linear time-independent poten-
tial, typically provided by the gravitational acceleration, can
be freely chosen. This is possible in experiments with either
vertical or horizontal orientation of the optical standing wave
as an appropriate variation in the phase of the optical stand-
ing wave can induce an effective gravitational acceleration.
We find that the relative acceleration between the atom cloud
and the pulsed optical standing wave can lead to fractional
resonances. We characterize these fractional resonances and
consider in detail the effect of the initial atomic momentum
width on the fractional resonant dynamics. This generalizes
our previous discussion on the effect of temperature on quan-
tum resonances and antiresonances in the atom-optical quan-
tum kicked rotor [49].

This paper is organized as follows. In Sec. II we derive
the quantum J&-kicked accelerator Hamiltonian for the system
of a two-level atom falling through an optical standing wave.
We then consider the time evolution of the system based on
a Floquet operator approach. Our treatment closely follows
the derivation presented in Sec. II of [49]. In Sec. III we
consider fractional resonances in the zero-temperature limit
and, for the case of a broad, thermal atomic momentum dis-
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tribution. As in our previous work [49], we use the evolution
of the momentum moments to characterize the atomic dy-
namics. In Sec. IV we consider the dynamics of a plane-
wave state and investigate the effect of the initial momentum
on the system behavior. From that discussion we develop an
understanding of the temperature dependence of fractional
resonances. We present our conclusions in Sec. V.

II. ATOMIC SYSTEM
A. Model Hamiltonian

1. Freely falling two-level atom in a laser field

We consider a cloud of trapped and laser-cooled thermal
alkali-metal atoms that is released from all external fields
and falls under gravity through a vertically aligned pulsed
standing-wave potential [4-11,50]. We neglect interatomic
collisions and describe the system using a one-dimensional
model along the vertical axis [49]. The system Hamiltonian
describes a single two-level atom of mass M with internal
ground state |g) and excited state |e). The center-of-mass
motion is influenced by a linear potential proportional to the
local gravitational acceleration g. The internal atomic levels
are separated in energy by 7w, and are coupled by two laser
fields with frequency w; and wave-vector magnitude k; in
the vertical direction. The laser phases ¢, and ¢, can be
controlled independently. The lasers are of equal intensity
with Rabi frequency /2 and far detuned so that spontane-
ous emission can be neglected. Working in a rotating frame
[49], the Hamiltonian is

A2

A p L] .

H="HhAle)e| + Y Mgz + EﬁQR cos(k;Z+ ¢,/2)
X[e'®le)(g| + H.c.], (1)

where Z is the vertical center-of-mass atomic position opera-
tor, p is its conjugate momentum, ¢ is the time, ¢,=¢d;— ¢,
¢,=(d,+,)/2, and the detuning A=w,— w,.
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2. Transformation to an accelerating frame

In contrast to our previous work [49], we consider the
laser phases ¢ and ¢, to be time dependent. In particular,
we choose ¢,=kLa¢,t2 so that the laser field forms a “walking
wave” with acceleration —a,, [50]. This allows for the possi-
bility of exactly negating the effect of the gravitational force
by taking a4=g and for the versatility of investigating differ-
ent effective values of the gravitational acceleration by
choosing a at our convenience. The relative phase ¢, can be
tuned with an accuracy on the order of one part in a million
[50], allowing for precise control over the effective gravita-
tional acceleration [9].

Hamiltonian (1) can be transformed to the frame acceler-
ating with the walking wave by implementing the unitary
transformation U 1=exp{i[Ma¢2t—a¢ﬁt2/2+§(t)]/ﬁ}, where
for convenience §(t)=Ma¢t3(a¢—2g)/ 12. This yields

A2

A p 1
H =ﬁA|e><e|+ﬁ+Maz+ hQp

2
X cos(k;2)[e'?s|e)g| + H.c.], (2)

where we have used 01207=2—a¢t2/2 and lAllﬁlAf{=13
—Ma 4t and we have defined a= g—ay. It is evident from Eq.
(2) that, in the frame defined by U, a assumes the role of an
effective gravitational acceleration.

In the far-detuned limit (Qz/A<<1), the excited state |e)
can be adiabatically eliminated [49,51]. Also invoking the

unitary transformation U,=exp(—iQ3|g)(g|¢/8A), the Hamil-
tonian simplifies to

A2 2
N N 1
H' = Maz - K
2M+ az gA cos(K?), (3)

where K=2k;.

We consider the laser standing-wave amplitude to be pe-
riodically pulsed with period 7" and pulse duration ¢,. For
sufficiently short pulses, in exact analogy with our previous
work [49], it is possible to describe this system using Hamil-
tonian (3) with a train of S-function-kicks included in the
standing-wave term, i.e.,

o

)
Ay, = 2”—M + Mat -ty cos(KD)D St—nT),  (4)
n=0

where we have defined an effective potential depth ¢,
= leet,,/ 8A. A system governed by Hamiltonian (4) is known
as a o-kicked accelerator [4].

3. Transformation to a spatially periodic Hamiltonian

It is convenient to transform Hamiltonian (4) to a frame in
which it takes a spatially periodic form so that we can apply
Bloch’s theory [49,52-55]. This is accomplished by a unitary
transformation defined by the operator [53-56]

Us(1) = exp(iMaztih). (5)

The transformed Hamiltonian is then
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~ (p-Mar)? -
=————-h K —nT). 6
X Y b cos( Z% 8t-nT).  (6)

We expand the position and momentum operators into dis-
crete and continuous components, i.e.,

t=K'Qul+0), p=tKEk+p), (7)

where the eigenvalues of [ and k are integers, the eigenvalues
of fe [—r,7), and the eigenvalues of the quasimomentum

operator ,é e[-1/2,1/2). Substituting the reformulated op-
erators into Hamiltonian (6) yields

- [hK(k+PB) - Mar]?
Hﬂ(a =
oM

—hdoy cos(é)z 8t —nT).
n=0
(®)

The quasimomentum operator ,é commutes with Hamil-
tonian (8) [49,53]. Therefore, the quasimomentum is con-
served in the accelerating frame, and the laser field induces
coupling only between momentum eigenstates differing in
momenta by integer multiples of the two-photon recoil mo-
mentum %K [4].

B. Time evolution

1. Transformed Floquet operator in the accelerating frame

For a time-periodic system, the unitary time-evolution op-
erator for a single temporal period is known as the Floquet
operator. Hamiltonian (4) has temporal period 7, and we
choose to define the Floquet operator from just before one
kick to just before the next, i.e.,

)
F= exp(— é{;—M + Maf} T)exp[id)d cos(K9)].  (9)

In the accelerating frame defined by Eq. (5), Hamiltonian
(6) is not periodic in time; so strictly speaking there is no
Floquet operator. However, it is useful to consider the trans-
formed Floquet operator which is the time-evolution operator
describing kick-to-kick dynamics of the system in the accel-
erating frame. The Floquet operator (9), transformed accord-
ing to the unitary operator (5), becomes

F(nT,[n - 11T) = Us(nT)FUS([n - 1]7). (10)

The time variables on the left-hand side are required to
indicate explicitly that the transformed Floquet operator
corresponds to the system evolution from just before the (n
—1)th kick to just before the nth kick [53].

To evaluate the transformed Floquet operator (10), it is
convenient to separate the terms that depend on Z from those
that depend on p. The Floquet operator (9) can be rewritten
as

023423-2



FRACTIONAL RESONANCES IN THE ATOM-OPTICAL ...

. iMa2T3) i( P pa )}
F=exp| - -\ =1+—=T
exP( 6h eXP[ al\am 2

iMazT

Xexp[— +idy, cos(Kf)], (11)

as shown in Appendix A. Substituting Eq. (11) into Eq. (10),

then using (AJ3(nT)ﬁlAf3f(nT)=13—ManT and simplifying, we
find that

- iMa*
F(nT,[n-1]T) = exp(— %[3;12 —3n+ 1]T3>

[ A2 A
i| p pa 5
xexp| = | =12 0n_1)T
exP( ﬁLM =D D

Xexplig, cos(K?)]. (12)

The first exponential term in Eq. (12), i.e., the global phase,’
is not generally of interest. Therefore, we absorb it into the

transformed  Floquet  operator by  defining F n
=exp(iMa¥[3n?=3n+1]T3/6#)F(nT,[n—1]T), such that

. %) N
F,= exp(— ;;{ZP—MT— %(Zn - 1)T2] )exp[iqﬁd cos(K?)].
(13)

Finally, we substitute the discrete and continuous compo-
nents of Z and p from Eq. (7) into Eq. (13). A further sim-
plification is then possible due to quasimomentum conserva-
tion (see Sec. IT A 3) [53-55]. When the transformed Floquet
operator acts on a general quasimomentum eigenstate
|(B))==,ci|k+B), where the dimensionless momentum
eigenkets |k+8) satisfy plk+B)=%K(k+B)k+B) and (k'
+B'|k+B)=0,8(B-B') [49], the operator B can be re-
placed by its eigenvalue B. Hence, the transformed Floquet
operator, restricted to acting on a particular quasimomentum
subspace [53], is

~ i| B*K* . .
F,(B) = exp(— %{W(k + B)*T - whQ(k + B)(2n - 1)})

Xexplig, cos(KZ)]. (14)

In Eq. (14), we have defined Q= KaT?/2m. This param-
eter is a dimensionless rescaling of the effective gravitation
acceleration a= g—ays in the frame comoving with the laser
walking wave (see Sec. Il A 2). In the context of quantum
accelerator modes, () has been referred to as the unperturbed
winding number [10]. This is in analogy with the sine-circle
map [57], which can be considered a particular dissipative
limiting case of the dynamics of the quantum &-kicked ac-
celerator.

2. Quantum resonances and antiresonances

The time evolution described by the transformed Floquet
operator (14) varies significantly depending on the system

'"The global phase is corrected slightly from that given previously

[4].
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parameters. In this paper, we investigate the effect of the
effective gravity parameter {) on quantum resonant dynamics
in the strong-driving regime (K*Th¢,/M=1.5). In the
S-kicked particle system (i.e., the S-kicked accelerator with
0=0), quantum resonances and antiresonances occur for
pulse periodicities T equal to integer multiples of the half-
Talbot time T7/2 [58], i.e.,

27M

T—€1T—€
2 T RKES

(15)
where € is a positive integer (see [49], and references
therein). In this paper we consider in detail pulse periodici-
ties given by Eq. (15) only.

The transformed Floquet operator (14), for the case where
the pulse periodicity T is given by Eq. (15), simplifies to

F( B) = i BH-pO(2n-1)] e-m[lée+zlége-/2mzn-1)] i cosf
n 9

(16)

where, because the eigenvalues of k are integer, we have
used that exp(—i¢mk?)=exp(=i¢ak) [53-55]. This simplifi-
cation is not possible for rational fractions of the half-Talbot
time, which (for a=0) yield “higher-order” quantum reso-
nances [23] that are qualitatively different from the fractional
quantum resonances we consider [56]. In the case where T
={T;/2, the effective gravity parameter is ()
=2ml*aM? | h2K>.

Defining Ky, = [ (1+28)€—Q(2n—1)] we may write Eq.
(16) in a more concise way, i.e.,

F(B) = el+BImt—K VB y=iK Yk yich cos6 (17)

The first term in the transformed Floquet operator (17) pro-
vides a quasimomentum dependent phase, and the third term
describes the momentum kick due to a laser field pulse. Con-
sidering the second term in Eq. (17) it is evident that, for an
integer value of Q, exp(—iKy,k)—exp(-iKy,k) and the
n-dependence of the transformed Floquet operator (17) drops
out. Furthermore, when 8=0, Kvy,— mw(€+{}), and we find
that integer changes in the value of () can be equivalently
described by modifying the number of half-Talbot times
making up a kick period 7, i.e., we can define an effective
kick period T=€'T;/2 from the integer €'=€+(). Recall
that, for the S-kicked rotor where {2=0, even (odd) values of
€ are associated with resonant (antiresonant) behavior [49].
Therefore, we expect that for a sufficiently narrow atomic
momentum distribution centered around zero, quantum reso-
nance (antiresonance) will be observed for even (odd) €¢’.
Indeed, a change in () by an odd integer value will change
the system dynamics from resonant to antiresonant (or vice
versa).

3. Rational values of (2

The main focus of this paper is on rational values (par-
ticularly noninteger values) of (), i.e., Q=r/s, where r and s
are integers with no common factors and s>0. To illustrate
why these particular values are of interest it is useful to make
one further transformation of Hamiltonian (6) into the frame
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where the atom cloud is on average stationary, i.e., we apply
the unitary operator U,=exp(~=i[ap2/2—Ma*316]/%) to
Hamiltonian (6). The transformed Hamiltonian is

0

22
Ay, = 2”—M —tipy> cos(Kz—n*mQ) 8t —nT).  (18)
n=0

In this frame, we see that the effect of (), when the nth
kick is applied, is to shift the phase of the standing-wave
potential by an amount n>7(). For the case where Q=r/s,
this introduces an additional temporal periodicity into the
system because the phase of the optical standing-wave pulses
repeats identically with a period denoted by n; kicks. The
additional periodicity can equivalently be deduced from the
Floquet operator (17). In Appendix B we show that np=s(1
+srmod 2), i.e., nyp=s for even sr and ny=2s for odd sr.
Hamiltonian (18) can then be rewritten as
np—1

Y

Hg, = T ﬁ¢dzo cos(KZ —n'*mrls)
X > 8t = [nm+n'1T), (19)
n=0

which applies for all possible values of 7.

For the case where () is an even integer, ny=1 and the
standing-wave pulses are always in phase. It follows that the
atomic dynamics are unchanged from the =0 case. When
Q is an odd integer, ny=2, and from Eq. (19) we find that
consecutive optical pulses are exactly 7 radians out of phase.
We primarily consider T=€T;/2, in which case the dynamics
for even () will always be either resonant or antiresonant
depending on whether € is even or odd, respectively.
Changes in () by an odd integer cause the dynamics to swap
between resonant and antiresonant, as described in Sec.
I B 2. Fractional values of () lead to fractional resonances
and antiresonances. Fractional resonances will be the main
focus of this paper (see Sec. III).

4. Momentum eigenstate evolution

It is convenient to first determine the time evolution of the
system when the center-of-mass state of the atoms is initially
prepared in the momentum eigenstate |W(r=0))=|k+ ).
Once the eigenstate evolution is known, the evolution of any
general state can be determined, as illustrated previously for
the =0 case [49].

At time t=nT, the evolution of state [k+ /) can be deter-
mined by consecutively applying transformed Floquet opera-
tors defined by Eq. (17) for each of the n periods. More
formall)” |\I,(t:nT)>:Fn(B)Fn—l(B)Fn—Z(B). ! Fl(ﬂ)|k+ﬁ>
Due to quasimomentum conservation (see Sec. IT A 3), the
final state can be expanded using momentum eigenstates
with the initial quasimomentum g, i.e.,

s

(W(t=nT))y= X c(B.nT)|j+p). (20)

Jj=—

The derivation of the probability amplitudes c(8,nT)
closely follows the derivation for the =0 case [49] and is
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presented in detail elsewhere [56]. In summary,”

ij(ﬂ,l’lT) = Jj_k(w)ei(i_k))(e—2inYkein27T(k+B)Qe—in7TBZ€’

(21)
where we'X=g,v for’
n—1
=i e—i(2nY—anTQ)E ei(2jY—j27rQ) (22)
j=0

and Y=m(14+28)¢/2. For convenience, we often specify the
parameter dependence of v by writing v=wv, ((£2, B).

The sum in Eq. (22) can be evaluated analytically for
particular choices of the dimensionless effective gravitational
acceleration (). For integer values of ), i.e., Q=r; [56],

sin(n[Y — 7r,/2])

v (r, — ie—i(n+1)(Y—77r1/2) .
n,f( 1 B) Sin(Y—’]Tr]/Z)

(23)

In Appendix C we consider half-integer values of (), i.e.,
Q=r,/2. We find that, for even values of n,

sin(nY)
sin(2Y)
(24)

V. 0(ry/2, B) = 2ie Y1) coq(Y — 7rp/4)

In the B=0 subspace, where Y — 7{/2, v can be evalu-
ated analytically for =1/s at kick values n which are spe-
cific multiples of s. It has been shown elsewhere [56] that for
s(€—1) even and n a multiple of st

. n
V,,’g(l/S,O) — l-e—l77{;'L€—n2/s—(s(2—1)/4]7 ) (25)
\s

Using similar methods, for s(£—1) even or odd and n a mul-
tiple of 2s, we find that

n[1+(=1)*¢1]

v, o(1/5,0) = je~imnt-nls=(s2=1)/4]
, 2\s

(26)

From Eq. (26) two main classes of behavior can be identi-
fied. For odd values of s(€-1), Eq. (26) collapses to zero,
i.e., the initial state is reconstructed every 2s kicks [see Egs.
(20) and (21) with w=0]. We refer to this temporal recon-
struction with period 2s as fractional antiresonant behavior.
In contrast, for even values of s({—1), Eq. (26) reduces to
Eq. (25) and |v|=n/\s. This leads to fractional resonant be-
havior, where energy is transferred from the laser field to the
atom cloud in quasiperiodic bursts. Fractional resonances are
the main focus of this paper and are discussed in detail in
Secs. IIT and IV.

As in our previous work [49], we study the evolution of
momentum moments as a useful way to characterize the
atomic dynamics. If the state of the atoms is initially pre-

The sign of the {)-dependent phase has been corrected from that
given in Egs. (8), (A13), and (A15) of [56].

The parameter v in this paper is related to a previously defined
parameter u [49] according to v=iu®.

*The phase has been corrected from that given in Eq. (40) of [56].
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pared in the momentum eigenstate |k+ 3), the gth-order mo-
mentum moment after time n7 is given by

[

BN, = HK)T 2 e (BnDPG + B)Y, (27)

j==

where w=¢,|v| is determined by evaluating v, e.g., as given
by Eq. (23)-(26).

5. Evolution of an incoherent mixture

To generalize the above treatment to the case of a cold
thermal atomic cloud, we consider an incoherent mixture of
plane waves with a Gaussian initial momentum distribution
D(p)=D,(B)/ 1K, i.e.,

1 —M+mv
Dk(ﬂ)—w\%exp( I (28)

This corresponds to a Maxwell-Boltzmann distribution for
free particles with temperature 7,,=%2K*w?/ Mkg. Consider-
ing the evolution of the initial density operator for system
[49], we find that the momentum distribution after time nT is
given by

Dy(B,t=nT)= 2 |cy(BnT)D}P), (29)

j:—x
and the gth-order momentum moment is given by

12

(P, = (hK)" f dB 2 |ey(BaT)PDUB)G + B)'.

—12 jk=—o0
(30)

For the numerical results presented in this paper we use a
Monte Carlo approach that has been described previously
[49]. The initial condition consists of A/ plane waves initially
distributed in momentum according to Dy(B) of Eq. (28).
The final momentum distribution (29) is constructed by av-
eraging the distributions resulting from each of the indi-
vidual plane-wave time evolutions and collecting the data
into a finite number of equal width momentum-space bins.
The resolution of the averaged atomic momentum distribu-
tion can be improved by increasing the number of bins per
unit momentum K.

III. FRACTIONAL RESONANCES
A. Fractional resonances in the =0 subspace
1. Fractional resonances with rational (2

We first consider the dynamics of the atom-optical
o-kicked accelerator when the initial state of the system is a
zero-momentum eigenstate, i.e., the dynamics are confined to
the B8=0 subspace. Figure 1 shows the resulting momentum
distributions and corresponding second-order and fourth-
order momentum moments when the pulse periodicity is
equal to the Talbot time T, (£=2). We have chosen ¢,
=0.87 as an illustrative value typical of recent experiments
[4-10,15,24].
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FIG. 1. (Color online) (Left-hand panel) Momentum distribu-
tions with a resolution of #K and (right-hand panel) momentum
moments of order g=2 (O) and g=4 (X) for a &-kicked accelerator.
The initial condition is a zero-momentum eigenstate and parameters
are N=1, T=T; (£=2), ¢,=0.87, (a) and (b) Q=0, (c) and (d)
0=1/8, (e) and (f) O=1/4, (g) and (h) Q=1/2, (i) and (j) Q=1,
and (k) and (1) Q=(1+5)/2. In the right-hand panel the solid and
dashed lines correspond to Eqgs. (31) and (32), respectively. The
vertical lines in (d), (f), and (h), indicate where n is an integer
multiple of s (as taken from Q=1/s).

As a basis for comparison with the fractional quantum
resonances, we show the known kicked-rotor behavior of the
Q=0 case [see Figs. 1(a) and 1(b)], i.e., a quantum resonance
is observed and the ballistic expansion of the atom cloud is
characterized by quadratic growth in the second-order mo-
mentum moment. This growth is described by (5?),
=h?K>¢n?/2, as indicated by the solid line in Fig. 1(b) (see
[49] and references therein).

The quantum resonant dynamics are highly sensitive to
the value of (), and as predicted in Sec. 1 B 2, quantum
antiresonance is observed for Q=1 [see Figs. 1(i) and 1()].
Quantum antiresonance is characterized here by reconstruc-
tion of the initial state every second kick, and the second-
order and fourth-order momentum moments oscillate accord-
ingly [i.e., between the n=0 and n=1 values of Egs. (31) and
(32), respectively [49]].

When the effective gravity is chosen such that (Q=1/s,
where s(£—1) is even (see Sec. I B 4), we observe fractional
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resonances [see Figs. 1(c), 1(e), and 1(g)]. At a fractional
resonance, the energy transfer to the system is less efficient
compared with the pure resonant case ({2=0). The atomic
momentum distribution expands in bursts of period ny=s,
and the quasiperiodic nature of the energy transfer is directly
observable in the evolution of the second-order momentum
moment [see Figs. 1(d), 1(f), and 1(h)]. The quasiperiodic
behavior arises because, in the frame where the atom cloud is
on average stationary, the phase of the optical standing-wave
pulses varies from kick to kick with period np=s(1
+sr mod 2), as discussed in Sec. II B 3.

For comparison, Figs. 1(k) and 1(1) correspond to an irra-
tional value of (). In this case, quasiperiodic behavior is not
observed.

2. Momentum moment evolution

For a zero-momentum eigenstate, the dynamic evolution
of the system is well characterized by the evolution of the
second-order momentum moment. For Q=1/s, even s(€
—1), and n an integer multiple of s, it can be shown that [56]

2 2
R Pan
(%)= (hK)* == (31)
2s
Equation (31) describes quadratic growth in the second-order
momentum moment (and therefore the kinetic energy) with a
growth rate inversely proportional to 5.0
In that same parameter regime, the fourth-order momen-

tum moment evolution for an initial zero-momentum eigen-
state is [56]
3t 2,2

¢d ¢d ) (32)

<154>,,=(ﬁ1<)4( R

To leading order, Eq. (32) describes quartic growth with a
rate inversely proportional to s2. Therefore, the second and
fourth roots of the second-order and fourth-order momentum
moments, respectively, each grow (to leading order) linearly
in n at a rate proportional to 1/+s, as shown in Figs. 1(b),
1(d), 1(f), and 1(h). We observe that, when n is not an integer
multiple of s, the momentum moments oscillate periodically
around the analytic predictions (31) and (32).

For the infinitely narrow initial momentum distributions
considered here, the evolution of the fourth-order momentum
moment does not provide significant additional information
over and above that extracted from the second-order momen-
tum moment evolution (see Fig. 1). However, as we show in
Sec. III B, the situation is quite different for initially broad
thermal momentum distributions, so we have included a de-
scription of the fourth-order momentum moment dynamics
here for completeness.

3. Dependence on 2 of resonant features

In Fig. 2 we study the evolution of the second-order mo-
mentum moment as () is varied continuously from 0 to 2 for

SFor odd values of s(£—1) fractional antiresonances occur and all
the momentum moments return to their zero initial value every 2s
kicks [see Eq. (26)].
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both T=T;/2 (€=1) and T=T; (€=2). The initial condition
is in every case a zero-momentum eigenstate. We observe a
rich structure of resonant and antiresonant features. Resonant
(antiresonant) features appear dark (pale) and become nar-
rower and more prominent with increasing n. The values of
Q used in Fig. 1 are marked on Fig. 2(b), and the regions
immediately surrounding these values are shown in more
detail in Figs. 2(c)-2(h).

In particular, we see from Figs. 2(a) and 2(b) that chang-
ing € from 1 to 2 transposes the {) dependence of the various
resonant and antiresonant features by one, as can also be
deduced from the structure of the transformed Floquet opera-
tor (17) (see Sec. 11 B 2).

B. Fractional resonances for a finite-temperature cloud
1. Manifestation of fractional resonances at finite temperature

In the case of a finite-temperature cloud, where the initial
momentum distribution is described by Gaussian (28), many
quasimomentum subspaces are initially populated. As previ-
ously discussed for Q=0 [49], this results in some significant
differences in the overall finite-temperature dynamics com-
pared with the dynamics of a system restricted to the S=0
subspace.

Figure 3 shows, as a function of kick number, the momen-
tum distributions and second-order and fourth-order momen-
tum moments for the parameters used in Fig. 1, with the
exception that in Fig. 3 the initial condition in each case is a
Gaussian momentum distribution with w=2.5 (correspond-
ing to a temperature of approximately 5 wK in the case of
cesium [24]). There are distinct differences in this case com-
pared to the zero-momentum eigenstate evolutions shown in
Fig. 1. For integer values of ) [49,56], considered for the
sake of comparison with the fractional resonant cases, pure
resonant and antiresonant behavior occurs for the zero-
momentum eigenstate [see Figs. 1(a) and 1(i)]. At finite tem-
perature the momentum distribution behaves identically, ir-
respective of whether () is even or odd [see Figs. 3(a) and
3(i)]. We observe that a small fraction of the cloud expands
ballistically but much of the distribution remains clustered
near zero momentum. This behavior is due to resonances and
antiresonances occurring concurrently in a finite-temperature
cloud and has been well described previously for Q=0 [49].

For (0=1/s, we again observe a small fraction of the
cloud expanding ballistically at finite temperature [see Figs.
3(c), 3(e), 3(g), and 3(i)]. However, as s increases, the rate of
ballistic expansion in the wings of the distribution is re-
duced. This is characteristic of fractional resonances and was
more clearly observable in the zero-momentum eigenstate
evolutions shown in Fig. 1. Also, with increasing s, the frac-
tion of the cloud clustered near zero momentum becomes
increasingly delocalized, as can be seen in Fig. 3 after 20
kicks. This indicates that, for rational values of (), the anti-
resonances are not as effective at localizing the atom cloud.
A description of the fractional resonances at finite tempera-
ture is developed in Sec. IV.

The evolutions of the second-order momentum moment
are extremely similar for each value of () illustrated in Fig.
3. We have found this to be a general property at finite tem-
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FIG. 2. (Color online) <ﬁ2),1/ % in units of %K for a &-kicked accelerator initially in a zero-momentum eigenstate. Parameters are N'=1,
¢,=0.8m, (a) T=T7/2 (€=1), and (b) T=T; (€=2). The markers highlight particular features for 7=T7 (€=2), which are shown in more
detail in (c) Q=0, (d) Q=1/8, (e) Q=1/4, (f) Q=1/2, (g) Q=1, and (h) Q=(1+5)/2.

perature, which reflects the fact that resonant and antireso-
nant dynamics are occurring concurrently in the cloud. This
rules out the second-order momentum moment as a useful
means of concisely distinguishing different fractional reso-
nances from one another or indeed from the nonresonant
case shown in Figs. 3(k) and 3(1).

In contrast, the fourth-order momentum moment evolu-
tions remain comparatively distinct, as shown in the right-
hand panel of Fig. 3. We find that for larger values of s
(where Q=1/s), the fourth-order momentum moment in-
creases at a slower rate. This is a quantitative signature of the
fact that as s increases both the resonant and antiresonant
dynamics become less efficient, and consequently the mo-
mentum distributions become less peaked. The fourth-order
momentum moment evolution is sensitive to this and pro-
vides a useful way to characterize the manifestation of frac-
tional resonances at finite temperature. However, we note
that the fourth-order momentum moment evolutions for ()
=0 [Fig. 3(b)] and Q=1 [Fig. 3(j)] are, such as the second-
order momentum moment evolutions, essentially indistin-
guishable.

2. Evolution of momentum moments

Deriving analytic expressions for the momentum moment
evolution of a finite-temperature gas is more involved than
arriving at the zero-temperature results (31) and (32). How-
ever, it is possible to derive such expressions for integer [56]

and half-integer values of (). In particular, we consider a
thermal limit where w is taken to be large for the initial
Gaussian momentum distribution (28). _

For integer values of (), in the limit w>1/+27€ [56],

2
P*h= (fiK)z(W2 + %1") , (33)
and
4 4 2
(PM, = (ﬁlf)“(%n3 + %n + %ln +3wlgin + 3w4> .
(34)

For half-integer values of () (see Appendix D), in the limit
w1/ 2\577& and with the restriction that n is even, the
evolution of the second-order momentum moment is again
given by Eq. (33), but the evolution of the fourth-order mo-
mentum moment is given by

4 4 2
5
Y, = (hK)“(—(Zdn3 + —sdn + —(Zdn +3wlin + 3W4) .

(35)
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FIG. 3. (Color online) (Left-hand panel) Momentum distribu-
tions with a resolution of AK and (right-hand panel) momentum
moments of order g=2 (O) and ¢g=4 (X), for a &-kicked accelera-
tor. The initial atomic momenta are distributed according to Eq.
(28) and parameters are N=10000, w=2.5, T=T; (£=2), ¢,
=0.87, (a) and (b) =0, (c) and (d) Q=1/8, (e) and (f) Q=1/4, (g)
and (h) Q=1/2, (i) and (j) Q=1, and (k) and (1) Q=(1++5)/2. In
the right-hand panel, the solid lines correspond to Eq. (33). The
dashed lines in (b) and (j) correspond to Eq. (34), and the dashed
line in (h) corresponds to Eq. (35). The vertical lines in (d), (f), and
(h), indicate where n is an integer multiple of s (as taken from ()
=1/s).

Consequently, and as observed in Fig. 3, the system dynam-
ics for integer and half-integer () values cannot be distin-
guished using (5?),. However, the leading-order term of the
fourth-order momentum moment evolution is cubic in n, and
the leading-order coefficient for half-integer () is exactly half
the leading-order coefficient in the integer () case. Therefore,
it is possible to distinguish between fractional resonances
with integer and half-integer values of () using (5%),.

Our numerical calculations indicate that, for rational )
=r/s and in the large-w limit, ($?), grows (on average) ac-
cording to Eq. (33) and (p*), grows to leading order (on
average) cubically with n and with a growth rate proportional
to 1/s. We emphasize that while we have only shown these
trends to be exactly true for s=1 and s=2, the generalization
to higher values of s is strongly supported by our numerical
calculations.

PHYSICAL REVIEW A 79, 023423 (2009)

IV. EFFECT OF THE INITIAL ATOM CLOUD
TEMPERATURE ON FRACTIONAL RESONANCES

A. Momentum dependence of fractional resonance features
1. Motivation

In Sec. IIT A we considered the dynamics of the J-kicked
accelerator restricted to the =0 subspace and observed frac-
tional resonances for Q=1/s and T=T; (€=2). We found
that the fractional resonances could be characterized by qua-
dratic growth of the second-order momentum moment at a
rate inversely proportional to s, i.e., (5*),xn’/s [see Eq.
(31)]. Analogously, the fourth-order momentum moment
evolves, to leading order, as {p*),>n*/s* [see Eq. (32)].

In contrast to the zero-temperature limit, at finite tempera-
ture (see Sec. III B) we found that the second-order momen-
tum moment grows linearly with n at a rate that appears to be
essentially independent of (), i.e., {*),>n, and that the
fourth-order momentum moment appears to evolve, to lead-
ing order, cubically as (p*),*n’/s.

The differences observed between the zero-temperature
limit and the thermal (large-w) limit arise because different
quasimomentum subspaces evolve according to slightly dif-
ferent (i.e., B8 dependent) transformed Floquet operators [see
Eq. (17)]. For a broad initial momentum distribution, all qua-
simomentum subspaces are populated and the observed mo-
mentum moment dynamics result from the appropriate aver-
age over all the different B-subspace evolutions [49]. It is
therefore instructive to consider the dynamics of the different
B subspaces independently.

2. Role of the quasimomentum 3

To better understand the 8 dependence of the system evo-
lution, we investigate the evolution of momentum eigen-
states |k+8), where k=0 and B8 e[-1/2,1/2). In particular,
we consider the evolution of the momentum variance,

BN = P — P2 (36)

For a momentum eigenstate, the variance displays clear sig-
natures of the fractional resonances through the second-order
momentum moment (see Sec. IIT A and Fig. 1). However, the
variance is more useful in this context because it evolves
independently of k [49], and its initial value is always zero
irrespective of k and S.

Figure 4 shows the quasimomentum dependence of the
evolution of <<ﬁ2>>,1/ 2 for T=T; (€=2) and for a variety of
different values of €). In Fig. 4(a), we show, for the sake of
comparison, the known results for the S-kicked particle ({2
=0): resonances occur for =0 and 8= *1/2 and antireso-
nances occur for 8=+ 1/4 [49]. For Q=1 [see Fig. 4(e)], the
resonance and antiresonance features are shifted in momen-
tum by 1/4 compared to the {1=0 case.

For Q=1/s, Figs. 4(b)-4(e) show that increasing s in-
creases the density in S of resonance and antiresonance fea-
tures. However, the resonances and antiresonances remain
evenly spaced, and as we discuss in Sec. IV A 4, the frac-
tional resonance width is independent of s.

In Fig. 4(f) we show the quasimomentum dependence of
the evolution of <<ﬁ2>),1,/ 2 for an irrational value of . We find
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that the resonance and antiresonance features observed for
rational values become irregular and less well defined.

3. Fractional resonance condition

It is possible to quantify the B separation between frac-
tional resonances. In the 8=0 subspace, for ()=1/s, frac-
tional resonances occur for even s(€—1) (see Secs. II B 4 and
III A). In general, for ()=r/s, it can be shown that fractional
resonances occur for even s[r—(1+28)¢] [56]. Inverting
this, we find that fractional resonances occur for quasimo-
mentum values,

g —{ m

A= 20 ts’ G37)
where m is an integer. The fractional resonances are sepa-
rated in momentum by 1/¢s, breaking up momentum space
into qualitatively similar (although not identical) regions.
The fractional resonances observed in Fig. 4 are consistent
with Eq. (37).

4. Fractional resonance width

Fractional resonances have a momentum width that de-
pends on € and the kick number n. As shown previously for
the S-kicked particle [49], an expression for the resonance
width can be derived by considering antiresonance features

PHYSICAL REVIEW A 79, 023423 (2009)
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in close proximity to the resonance. Figure 5 shows a zoom
in on the B=0 fractional resonances from Figs. 4(a)-4(d).
We observe hyperbolic curves of zero-momentum variance
which we call reconstruction loci [49]. These are due to
higher-order antiresonances which periodically reconstruct
the initial state.

The locations of the higher-order antiresonances that form
the reconstruction loci can be determined for s=1 and s=2
using Egs. (23) and (24), respectively. The derivation is iden-
tical to that of the Q=0 case [49], and we find that the
reconstruction loci are described by B=m/n{, where m is an
integer. The reconstruction loci closest to the resonance are
then described by B= = 1/n¢.

We define the fractional resonance width as follows. The
hyperbolic curves lying halfway between the fractional reso-
nance and the reconstruction loci are the sequence of points
at which the state begins the process of reconstruction. These
transition loci are described by 8= * 1/2n€. The resonance
width can then be defined as the 8 separation between the
two transition loci adjacent to the fractional resonance, i.e.,

6BFR = L . (3 8)
nt
The fractional resonance width (38) is independent of s
for s=1 and s=2. Our numerical calculations indicate that
the fractional resonance width is, in general, independent of
s, as illustrated in Fig. 5.

B. Temperature dependence of the momentum
moment evolution

We investigate the effect of the initial atom cloud tem-
perature by considering the evolution of the second-order
and fourth-order momentum moments for Gaussian initial
atomic momentum distributions with different widths w [see
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panel) (5%, for a Gaussian initial atomic momentum distribution
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(32)]. The solid lines correspond to the large-w limit lower bound
[see (left-hand panel) Eq. (33), (b) Eq. (34), and (d) Eq. (35), all
with w=0]. The vertical dotted lines indicate n=ngg [see Eq. (39)],
and the solid vertical lines in (c)—(h) indicate where n is an integer
multiple of s (as taken from Q=1/s).

Eq. (28)]. Figure 6 shows (p?), and (p*), for different values
of w and Q).

As w increases, for a given (), the momentum moment
evolutions make a gradual transition from the zero-
temperature limit behavior discussed in Sec. III A 2 toward
the large-w limit described in Sec. III B 2. The dashed lines
in Fig. 6 indicate the zero-temperature limit, given by Eqgs.
(31) and (32) for the second-order and fourth-order momen-
tum moments, respectively. The solid lines in the figure are
lower bounds for the momentum moment evolutions in the
large-w limit, i.e., they are given by the large-w limit expres-
sions in Sec. III B 2 evaluated with w=0. For the second-
order momentum moment, the solid lines correspond to Eq.
(33) with w=0. Note that for finite w, the large-w limit of
(p?),, will be larger than that for w=0 but will increase at the
same rate. For the fourth-order momentum moment evolu-
tion, the lower bounds depend on () and are defined by Eqgs.
(34) and (35), each with w=0, for integer and half-integer (),
respectively. We have not evaluated analytic expressions for
the lower bounds for general rational ) although Figs. 6(f)
and 6(h) strongly indicate that similar large-w limiting be-
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havior exists. In addition to the general growth trends of the
momentum moments, the quasiperiodic behavior with period
np=s is still observable (see Sec. I B 3).

The deviation of the momentum moment evolution from
the zero-temperature limit occurs at a particular kick number
npr (indicated by the vertical dotted lines in Fig. 6). As is
well understood for the Q=0 case [49], the energy trans-
ferred to the system becomes limited when the initial mo-
mentum width of the atom cloud becomes comparable with
the momentum width of the resonance. If the initial momen-
tum width is large compared to the resonance width, anti-
resonances play a role in the system dynamics and the mo-
mentum moment evolution tends toward the thermal large-w
limit. In the case of the fractional resonances the same argu-
ments apply, and indeed the width of the fractional reso-
nances is independent of (), as described in Sec. IV A 4. We
define npg such that two standard deviations of the initial
Gaussian momentum distribution lie within the resonance
width 6Bgg (see Sec. IV A 4), ie.,

1

NgR = dwd . (39)

In Fig. 6 we also find that as s increases (where Q=1/5s),
the fractional resonances become increasingly sensitive to
the initial temperature of the system, i.e., the momentum
moments approach their large-w limiting behavior for lower
values of w. This is most clearly observed in the second-
order momentum moment, where the moment evolutions
tend increasingly toward the solid line as s increases. We can
explain this in terms of the number of resonance features
spanned by the initial atomic momentum distribution. The
fractional resonances are separated in momentum by 1/€s
(see Sec. IV A 3). Thus, we can define a thermalization
width wy,, above which the atomic momentum distribution
initially spans more than a single resonance feature and the
atomic dynamics reach a thermal limit. For Q=1/s, this
would be manifested in, for example, linear rather than qua-
dratic growth in (), with n and cubic rather than quartic
growth in (p*), (see Sec. III B 2). Quantitatively, we define
wy, such that one standard deviation of the initial Gaussian
momentum distribution lies within the fractional resonance
separation, i.e.,

1
W = 2_€s (40)

Equation (40) is consistent with the large-w limit described
in Sec. I B 2 [and taken more formally in Appendix D,
where terms involving exp(—m*w?/ 2wt2h) were taken to be
negligible].

Finally, we note that if €} is chosen to be irrational [see
Figs. 6(i) and 6(j)], we observe that the second-order mo-
mentum moment grows linearly with n, and the fourth-order
momentum moment grows quadratically. The data becomes
smoother as w increases, but the growth rate appears to be
largely independent of w.

023423-10



FRACTIONAL RESONANCES IN THE ATOM-OPTICAL ...

C. Momentum cumulant evolution
1. Motivation and background

In Sec. IV B we found that the evolution of the momen-
tum moments depends explicitly on w [see Egs. (33)—(35)].
For this reason, we defined a lower bound for the large-w
limit of the momentum moment evolutions. As can be shown
explicitly for integer [56] and half-integer values of (), this
difficulty does not arise if we consider the change in the
momentum cumulants from their initial value. In this way it
is possible to have a well-defined high-temperature limit.

A gth-order momentum moment {p?), is dependent upon
all moments up to order (¢g—1). In particular, ($%), and (5*),
are not independent quantities. Using an iterative process,
mutually independent cumulants ({(p?)), can be constructed
from the moments (5),,,{(p*),, ...,{p?), [53,59—61]. The first-
order cumulant {{p)), is simply the mean (p),. The second-
order cumulant ((5?)), is the variance [as defined in Eq.
(36)]. The fourth-order momentum cumulant, the kurtosis, is

(B = (B*) = Kp*Xp) + 12(5%)(P)* - 3(p°) - 6(B)",
(41)

where we have dropped the n subscripts for brevity.

For a symmetric momentum distribution, the odd-ordered
momentum moments are identically zero, and the second-
order and fourth-order cumulants simplify to

PN =P (42)

(B M= B =37 (43)

If the momentum distribution is symmetric initially, one can
show that, for ()=r/s, it must evolve to a symmetric distri-
bution every s kicks [56]. One can therefore infer (and in-
deed observes) that the odd moments should be bounded in
value and remain relatively insignificant in comparison to the
rapidly growing even moments. We therefore, at times, make
use of Egs. (42) and (43) even when their use is not fully
justified. Numerically, the fact that we employ a Monte Carlo
method yields small although in general nonzero odd mo-
ments. Therefore, in numerical calculations we evaluate the
momentum moments using Eq. (30) and then determine the
cumulants from the moments using Eqgs. (36) and (41).

2. Zero-temperature limit

Before considering the high-temperature limit of the cu-
mulant dynamics, it is first instructive to consider the zero-
temperature limit where the initial state is a zero-momentum
eigenstate. The initial state is symmetric in p so ((p?)),
=(p?), is given by Eq. (31) which is valid for n an integer
multiple of s (where ()=1/s). Substituting Egs. (31) and (32)
into Eq. (43) yields the known result [56]

3t )
_3da | )

44
852 2s (44)

(BN = (ﬁK)4<

where again n is an integer multiple of s.
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3. High-temperature limit

For a Gaussian (and therefore symmetric) initial momen-
tum distribution of standard deviation w, by definition
{p*Mo=(hK)*w? [see Egs. (42) and (E2)]. In the thermal
limit, where w is taken to be large, the momentum variance
is given by Eq. (33). Subtracting the initial value gives

2
= (0= (P )
which is independent of w. Note that Eq. (45) applies to both
integer and half-integer values of () (although for half-
integer values of ) it applies only for even values of n). Our
numerical calculations strongly indicate that Eq. (45) should
apply for all values of () (see Fig. 3 and Sec. III B 2).

A Gaussian distribution has no nonzero cumulants of or-
der greater than two so, when considering an initially Gauss-
ian momentum distribution, we have ((5*)),=0. For integer
values of (), we substitute Eqs. (33) and (34) into Eq. (43)
and find that [56]

$a 5 30’ bi b )

4 4 3

=K'\ —n—-——+—n+—_nl|. (46
B Nn=( )<4n 7 gnton). (46)
Equation (46) is also independent of w. An analogous ex-
pression for half-integer values of () can be found by substi-

tuting Egs. (33) and (35) into Eq. (43) to yield

4 4 2 4 2

{ph), = (ﬁK)“(%’;f - —3(12:"1 + %n + %n) (47)
which is valid for even n. Equations (46) and (47) show that
the cubic leading-order cumulant behavior, and its coeffi-
cient, is unchanged compared to the corresponding momen-
tum moments [see Egs. (34) and (35)]. For general rational
values of (), we expect that the change in the momentum
cumulants, compared to their initial values, will again be

independent of w, for w sufficiently large.

4. Temperature dependence of the momentum
cumulant evolution

The second-order momentum cumulant evolution is es-
sentially described by the second-order momentum moment
evolution [see Eq. (36) with negligible {p),]. Therefore, the
temperature dependence of the second-order momentum cu-
mulant evolution does not provide any further information
than that presented for the second-order momentum moment
evolution in Sec. IV B. In this section we concentrate on the
temperature dependence of the fourth-order momentum cu-
mulant evolution.

Figure 7 shows the evolution of the cube root of the
fourth-order momentum cumulant for different values of w
and (). The fourth-order momentum cumulant initially
evolves according to the zero-temperature limit, indicated by
the dashed lines in the figure, and is negative indicating a
broad momentum distribution characteristic of quantum
resonance phenomena. At the kick number n=npy [see Eq.
(39)], the cumulants deviate from the zero-temperature limit
and eventually become positive, indicating a sharply peaked
momentum distribution which is caused by antiresonances

023423-11



SAUNDERS et al.

[*)
=3
=]

(PN ()

-100

Up NP (mK)Y?

-200
200

100

UPN'P (1K)

200 s N
200

U (K

200 S
200

100 - b

S Y
i

ﬁt‘%ﬁﬁ@zﬁjﬂ*tﬂ%twy*?*m? tauh
-100 i

UP W' 1K)

2200 I I I
0 25 50 75 100
n

FIG. 7. (Color online) ((134»,1,/ 3 for a &-kicked accelerator with
Gaussian initial momentum distribution of standard deviation w
=1/4 (O), w=1/16 (), w=1/32 (X), w=1/64 (<), w=1/128
(A), and w=1/1024 (+). Parameters are N'=10 000, T=T; (£=2),
¢,=0.8m, (a) Q=0, (b) Q=1/2, (c) Q=1/4, (d) Q=1/8, and (e)
Q=(1+v‘§)/2. The dashed lines correspond to Eq. (44), and the
solid lines correspond to (a) Eq. (46) and (b) Eq. (47). The vertical
lines in (b)—(d) indicate where n is an integer multiple of s (as taken
from Q=1/s).

playing a significant role in the dynamics. For irrational val-
ues of () [Fig. 7(e)], the absence of resonance and antireso-
nance features means that the fourth-order cumulant remains
negative.

For sufficiently large values of w, the fourth-order mo-
mentum cumulant tends to the thermal limit, indicated by the
solid lines in Figs. 7(a) and 7(b). In the thermal limit, the
fourth-order momentum cumulant evolution is independent
of w and is characterized by cubic growth with n [see Egs.
(46) and (47)]. The growth rate is smaller for higher values
of s (where }=1/s), indicating the less peaked momentum
distributions of higher-ordered fractional resonances (see
Fig. 3).

We observe that for larger values of s (where (0=1/s), the
cumulant evolution tends to the large-w thermal limit behav-
ior more readily, i.e., for smaller values of w. We have in-
vestigated this quantitatively by determining the asymptotic
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FIG. 8. (Color online) The asymptote gradient by of ((5*))!3.
Parameters are N'=10 000, T=T; (€=2), ¢,=0.87, Q=0 (X), Q
=1/2 (+), 2=1/4 (O), Q=1/8 (O), and Q=1/16 (A). The dashed
lines are shown to guide the eyes. The horizontal solid lines corre-
spond to the thermal asymptote gradients of Eqs. (46) and (47). The
vertical dotted lines correspond to Eq. (40).

dependence of the fourth-order cumulant. This was done by
fitting a particular number of asymptotic points using a least-
squares method according to ((p*))!*=bn+c. The most ap-
propriate asymptote, with b=b,, was identified by choosing
the number of asymptotic points such that the standard error
in the gradient b was minimized.

In Fig. 8 we show the optimum asymptote gradient b, as
the width w of the Gaussian distribution is varied. We find
that as w increases, the asymptote gradient saturates to its
thermal limit value by, For integer and half-integer values of
Q, by, can be determined from Egs. (46) and (47) to be by,
=(¢y/4) P (RK)*? and by,=(p3/8)*(hK)*?, respectively, as
indicated by the solid horizontal lines in Fig. 8.

As previously indicated, the asymptote gradient saturates
to the thermal value by, more readily for higher-order frac-
tional resonances, i.e., for larger values of s (where Q=1/s).
This saturation occurs when the atomic momentum distribu-
tion initially spans a single fractional resonance feature in 3,
as described in Sec. IV B. Quantitatively, the thermalization
width wy, is defined by Eq. (40), and as indicated by the
vertical dotted lines in Fig. 8, it accurately predicts the tem-
perature at which the fractional resonant dynamics saturates
in the thermal limit.

V. DISCUSSION AND CONCLUSIONS

We have presented a detailed theoretical investigation into
fractional quantum resonances in the atom-optical &-kicked
accelerator. Fractional resonances occur for particular ratio-
nal values of the scaled effective gravitational acceleration ()
and are characterized at zero temperature by expansion of the
atom cloud in quasiperiodic bursts. We have considered the
effect of the initial atom cloud temperature on fractional
quantum resonant dynamics and have shown that the kick
number at which the system dynamics clearly deviate from
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the zero-temperature case is identical for all fractional reso-
nances and is inversely proportional to the initial atomic mo-
mentum width of the cloud. However, higher-order fractional
resonances are more sensitive to thermal effects and the dy-
namics saturates to the thermal limit behavior at lower tem-
peratures.

The observed resonant features are sensitively dependent
on the difference between the local gravitational acceleration
and the applied walking-wave acceleration. The latter can be
controlled via the phases of the two counterpropagating laser
beams that make up the walking wave. As calibration of the
phase difference to between parts per million and parts per
billion is in principle possible [62], there may be a potential
application in the sensitive atom-optical determination of the
local gravitational acceleration [9,62—64]. For a pulsing pe-
riodicity equal to the Talbot time, one would, for example,
observe resonant behavior when the local gravitational accel-
eration is exactly canceled by the acceleration of the walking
wave.

Typically in cold atom experiments the initial atomic mo-
mentum width is on the order of w~0.04 for Bose-
condensed rubidium [25] and w ~ 0.008 for Bose-condensed
cesium [65]. At these temperatures the experimental obser-
vation of fractional resonances is accessible.
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APPENDIX A: FACTORIZATION OF THE FREE-
EVOLUTION OPERATOR

To factorize the free-evolution component of the Floquet
operator (9) into position-dependent and momentum-
dependent parts, we first consider a general operator of the
form

O(7) = exp(prp?* + o7p + n)exp(y7o). (A1)

Taking the partial derivative of O with respect to 7 gives

90(7) = [eprﬁ2+mz/3+,7f” ,yer—(pTﬁzﬂrrzﬁH;q—")
aT
+(pp? + 20 +39)]0(7). (A2)
Using the general operator identity [66],
1A n A A A 1 ~ 4
e’Be*=B+[A,B]+ E[A,[A,B]] 4o (A3)

(truncated to the first two terms, as all further terms are
zero), we find that

22 3 (a2 N
PP +oPpenT Ye (p1p*+op+nT)

=y —ihyQRpmp + o).
(A4)

Hence, Eq. (A2) simplifies to
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90(7)
JaT

=[pp*+21(a— ifipy)p + ¥ + P(3n—ihay]O(7).

(A5)

Choosing ¢ and # such that terms proportional to 7 and 7
vanish, i.e., o=ifipy and subsequently n=-%’py>/3, Eq.
(A5) reduces to

30(7)
aT

= (pp + +¥2)O(). (A6)

Noting from Eq. (A1) that 0(0)=1, Eq. (A6) can be inte-
grated to give

O(7) = exp(p7p® + y72). (A7)

Hence,

exp(p7p” + y72) = exp(p7p” + ihpyTp — h*py'713)

X exp(y7z). (A8)

Setting p=—i/2M#, y=—iMa/h, and 7=T yields the factor-
ized form of the free-evolution component of the Floquet
operator, as used in Eq. (11).

APPENDIX B: H,,, FOR RATIONAL Q

For particular values of (), Hamiltonian (18) has a peri-
odicity in addition to the & kicks. This arises due to the
()-dependent phase of the standing-wave pulses, which is
identical for a given remainder of n%(2/2. In the case where
Q=r/s, this occurs whenever n%r/s mod 2 takes the same
value.

First we consider the case where sr is even. At the sth
kick, i.e., where n=s, we have that n%r/s mod 2=sr mod 2
=0 and the phase of the standing-wave pulse is identical to
the phase taken for n=0. For n=s+n’,

r r r
(s+n")*-mod 2= (2sn’ +n'*)-mod 2 =n'*-mod 2,
S S N

(B1)

and in the frame where the cloud of atoms is (on average)
stationary, there is an exact s periodicity to the time depen-
dence of the spatial phase of the standing-wave pulses.

Similarly, if sr is odd, at the 2sth kick, n?r/s mod 2
=4sr mod 2=0. For n=2s+n’,

(2s+n’)zrmod 2=n’2Zmod 2, (B2)
s s

and there is a 2s periodicity to the spatial phase of the
standing-wave pulses.

A unified expression for the temperal period ny of the
phase of the standing-wave pulses (valid for even and odd
sr) is given by ny=s(1+sr mod 2).

APPENDIX C: EVALUATING v FOR HALF-INTEGER Q

To determine the time evolution of a momentum eigen-
state requires knowledge of the complex amplitudes (21).
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Therefore, we must calculate v of Eq. (22). For half-integer
values of Q, i.e., Q=r,/2,
n-1

Y .2 V)
Vn,f(rz/z,,B) =je 2111Yel7Tn rZ/ZE eZl]Ye imj r2/2.
J=0

(CD

For even values of j, exp(—imj’r,/2)=1, and for odd values
of j, exp(=imj’ry/2)=exp(—imr,/2). For an even number of
kicks n=2n', Eq. (Cl) can be rewritten as two sums, each
with the same number of elements, i.e.,

n'-1

. Y -
Vn:Zn’,{’(r2/2»,8) — ie—4tn'Y82nTn’ r2|: E e4lj|Y

J1=0

n' -1
+ g imr22 2 eZi(2j2+1)Y] . (C2)
J2=0

Simplifying, we find that

n'-1

Vn=2n’,€(r2/2’ ﬁ) = ie_4in’Y[1 + ei(ZY—ﬂ'r2/2)] E €4in.
J=0

(C3)

Evaluating the geometric sum, and simplifying further, yields

Dy (a2, B) = 2ie Y@+

sin(2n'Y)
Xcos(Y — mry/d)—————. (C4
cos(Y — mry/4) Sin(2Y) (C4)
Resubstituting for n=2n" gives
sin(nY
V. o(ro/2, B) = 2ie™ DY D+ m2/4] cog(Y — a7, 4) EZY;
(C5)

which applies for even n only.

APPENDIX D: MOMENTUM MOMENTS
FOR HALF-INTEGER Q

At finite temperature, the gth-order momentum moment is
given by Eq. (30). Inserting the matrix elements from Egq.
(21), using that w=¢,|v|, and returning to the atomic mo-
mentum notation p=7%K(k+ ), we find that

(P = f dp Y P W)Dp)EKj+p). (D)

J=—°

Here we consider only the second-order and fourth-order
momentum moments in detail. The second-order momentum
moment is given by

P*)n= f dp 2 T v)D(p)[(hK)?* + 20K jp + p?].

J=—°
(D2)
Using the Bessel function identities, X7 ..j277(7)=17/2,

2 2
3% L jP(9)=0, and S7_JX(n)=1 [49, 67], Eq. (D2) be-
comes
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2
PP, = f dpD(p)p2+(ﬁK)2%1 f dpD(p)|v]*. (D3)

The fourth-order momentum moment is given by

P = J dp 2 T (b v)D(p)[(hK)*j* + 4(hK)*f*p

Jj=—»

+6(hK)*j2p? + 40Kjp® + p*]. (D4)

Using the Bessel function identities above, as well as
37 T (m)=0 and 7477 (n)=37%"/8+77/2 [56], Eq.
(D4) becomes

2
Ph, = f P4D(p)dp+(ﬁK)4%1 f dpD(p)|v|*
+ (hK)*3 5 f dpD(p)p*|v?

43 d’fl 4

+ (hK) ? dpD(p)|v[*. (D5)

For half-integer values of (), the second-order momentum

moment evolution for a Gaussian distribution is given by Eq.

(D3) with v of Eq. (24). Using Egs. (E2) and (E10), we find
that

n/2-1

)
<P >n w4 ¢d ¢d E (n— zm)e—Bm w2 e2w? . (D6)
m=1

(hK)? '

In the limit w3 1/2427¢, the decaying terms become neg-
ligible, and we can write

B ;
(ffK)z =w?+ ?dn.

(D7)

Note that Egs. (D6) and (D7) only apply for even n.

The fourth-order momentum moment for a Gaussian dis-
tribution is given by Eq. (D5). Using Egs. (E3), (E10), (E14),
and (E19), we find that

A4
(<£K>)n4 =3w*+ (id + 3w2¢dn + ¢d n(n?+2)(3 - —Sv-rzwzfz)
n/2-1
+ 6¢§[W2 2 (n — 2m)(1 — 4772m2€2W2)e_8772m2€2w2
m=1

n/2-1

4
3¢ 2 { —nm®—m+ n(n +2)}

X [6 —8m2m2e2w? _ e—87r2(m + 1)2(52w2 _ 6—8772 m—1 2(’2w ]

3¢4n2|:
E 3

1
—nm?+ = (3n2—1)m+2(1—n2)]
8 m=n/2 3

3

X [66—8172m2€2W2 _ 6—8172(171 + 1)2€2w2 _ e—8772(m - 1)26’2w2] )
(D8)

In the limit w> 1/227¢ , We can write
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A4 p 4
0 _ 3wt + ﬁln + 3w n + %In(nz +35).

(HK)* 2 (D9)

Again, we emphasize that Egs. (D7) and (D9) only apply for
even n.
APPENDIX E: INTEGRALS OVER D(p)

1. Initial momentum moments

At finite temperature, the initial gth-order momentum mo-
ment is given by Eq. (D1) with »=0, i.e.,

BDo= f dpD(p)p?. (E1)

In the case where the atomic momenta are distributed ac-
cording to Gaussian (28), the initial second-order momentum
moment is

(P70 = (hK)*w?, (E2)
and the initial fourth-order momentum moment is

(p%0 = 3(RK)*W*. (E3)

2. Integrals involving v
a. Evaluating [dpD(p)|v|*

When () takes half-integer values, i.e., 1=r,/2 with r,
odd, v is given by Eq. (24) for even kick numbers n=2n".
Hence,

sin?(2n"Y)
J dpD(p)|v)* = 4J dpD(p)Wcosz(Y — Try/4).
(E4)
Using the expansion [56],
.0 n—-1
S 2 (0 m)cos(2m), (ES)
sin“(x) el
cos(4mY)=cos(4mmfp/hK), and
1 1 27¢
cos2<Y - ﬂ) =+ (- 1)“<’2—‘)’2sm< = p>, (E6)
4 2 2 hK

Eq. (E4) becomes

n'-1
dmarl
fdpD(p)|V|2=2n’+42 (n' —m) dpD(p)cos( n;’i;{p)
m=1

2mlp
2(-1 €+(r2—1)/2J dpD : ( )
+2(=1) pD(p)sin Py

n'-1
X [n’ +2 E (n' - m)cos<4m7T€p>:| ,

m=1 hK
(E7)

where we have used the normalization of D(p) to evaluate
the first term. In the case where the atomic momenta are
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distributed according to Gaussian (28), the first integral on
the right-hand side of Eq. (E7) can be evaluated using

f dp cos()\p)e_"z/"‘2 = Vrae N, (E8)

The remaining integrals vanish due to the even parity of
D(p). Therefore, we find that

n'—1
f dpD(p)|v|*=2n" +4 > (' - m)e_8m2“2€2wz. (E9)

m=1
Substituting n=2n" yields
n/2—1
f dpD(p)|v)*=n+2 > (n- 2m)e‘8’"2”2€2w2, (E10)
m=1
where 7 is even.
b. Evaluating [dpD(p)p?|v|?
For Q=r,/2 and n=2n',
2sin2(2n’Y)

G2 (2Y) cos?(Y — ar,/4).

f dpD(p)p*|vf =4 f dpD(p)p
(E11)

Following the treatment in Appendix E 2 a and using Eq.
(E2) and the integral

1 2)\2
f p2 COS()\p)e_pZ/azdp = _\/7_Ta3<1 - a_>e_)\2a2/49
2 2
(E12)

we find that, for Gaussian D(p) [see Eq. (28)],
n'—1

fdpD(p)p2|V|2= (ﬁK)2w2|:2n’ +4> (n' -=m)

m=1

X(1- 4m2772€2w2)e_8"’2“2€2W2:| .

(E13)

Substituting n=2n" yields
n/2-1

fdpD(p)p2|V|2= (hK 2w2[n +2 > (n-2m)

m=1
X(1- 4m2772€2w2)e_8’"2”2€2w2] .
(E14)
c. Evaluating [dpD(p)|v|*
For Q=r,/2 and n=2n',

sin*(2n'Y)

S (2Y) cos*(Y — 7rr/4).

f dpD(p)|v[*=16 f dpD(p)
(E15)
Using the expansion [56],
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n—1

(2n2+1) + >, cos(2mx) {m3 —2nm?—m

m=1

sin*(nx)

n
sin*(x) 3

m 2n-2 m3
+ ?(an + l)] -> cos(2mx)[? —2nm?

m=n

1 2
+(4n2—§)m+?n(l —4n2)], (E16)
together with
3 1 4l
cos4<Y - ﬂ) =— - —cos( T p)
4 8 8 hK
+ 1(_ 1)€+(r2—1)/281n(W) ,
2 hK

(E17)

and following the treatment in Appendix E 2 a, we find that

2 22
f dpD(p)|v|* = gn’(Zn’2 +1)[3 - e8]

n'—1
2n’
+ 2 | mP-2nmE-m+ T(Zn’2+ 1)

m=1

X [66—87T2m2€2w2 _ e—87r2(m + l)2€2W2
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2n'-2

—872(m — 1)2¢2w? m’ )
—eomm v > e 2n'm

1 2n'
+ =120 = Dm+ (1 - 4n"?)

3 3
X[6e—8ﬂ2m2€2w2 _ e—SqTZ(m + 1)2€2W2
_ e—Swz(m - l)z(fzwz]. (EIS)

Substituting n=2n" then yields

1 2.2
f dpD(p)|v|* = gn(n2 +2)[3 - e 8T ]
n/2—1 1
+ {m3—nm2—m+ gn(n2+2)
m=1
X [66—8ﬂ2m2€2w2 _ e—SWZ(m + 1)2€2W2
_ 6—8772(171 - l)z(fzwz]
n-2 3
: 1
- > [m? —nm* + §(3n2— 1)m

m=n/2

+ g(l - nz):| [66—8ﬂ2m2€2w2 _ e_gﬂz(m + 1)2€2w2

2 2p2 2
_6—877 (m— 1)“0“w ]

(E19)
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