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Abstract 
Indexing and retrieval from remote sensing image databases relies on the extraction of 
appropriate information from the data about the entity of interest (e.g. land cover type) and on 
the robustness of this extraction to nuisance variables. Other entities in an image may be 
strongly correlated with the entity of interest and their properties can therefore be used to 
characterize this entity. The road network contained in an image is one example. The 
properties of road networks vary considerably from one geographical environment to another, 
and they can therefore be used to classify and retrieve such environments. In this paper, we 
define several such environments, and classify them with the aid of geometrical and 
topological features computed from the road networks occurring in them. The relative failure 
of network extraction methods in certain types of urban area obliges us to segment such areas 
and to add a second set of geometrical and topological features computed from the 
segmentations. To validate the approach, feature selection and SVM linear kernel 
classification are performed on the feature set arising from a diverse image database. 
(Extended paper from the International Symposium CompIMAGE – Coimbra, Portugal, 20-21 October 2006.) 
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1. INTRODUCTION 
 
The retrieval of images from large remote sensing image databases relies on the ability to 
extract appropriate information from the data, and on the robustness of this extraction [1]. 
Most queries do not concern, for example, imaging modality, but rather information that is 
invariant to imaging modality, for instance the land cover type of a region. Illumination is 
another example of such a nuisance parameter. Despite all the work that has been done on 
classifying geographical environments using, for example, the texture properties of images of 
those environments, image-based query characterizations are still far from invariant to 
changes in such nuisance parameters, and they thus fail to be robust when dealing with a large 
variety of images acquired under different conditions. Query characterizations based on 
semantic entities detected in the scene, however, are invariant to such nuisance parameters, 
and thus inferences based on such entities can be used to retrieve images in a robust way. 
Road networks extracted from an image provide one example: their topological and 
geometrical properties vary considerably from one geographical environment to another, from 
urban USA to urban Europe, from urban to rural. A set of geometrical and topological 
features computed from an extracted road network can therefore in principle be used to 
characterize images or parts of images as belonging to different geographical environments. 
This differs from much previous work, for example [2, 3], in that the aim is not to identify the 
same network in different images, or in a map and an image, and produce a detailed 
correspondence, but rather to use more general road network properties to characterize other 
properties of an image, in this case, its geographical environment. 
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      This paper reports the results of a series of studies testing this idea. A preliminary study 
(described briefly in [4]) looked at the classification of a small image database into two 
classes (‘Urban’ and ‘Rural’, shown in Fig. 1) using a small set of topological and 
geometrical road network features and kernel k-means. The study indicated that the idea had 
potential, and so a further study went on to examine the classification of a much larger 
database into five classes (‘Urban USA’, ‘Urban Europe’, ‘Mountains’, ‘Villages’, ‘Fields’, 
shown in Fig. 4), using a larger set of road network features. The road network extraction 
methods often failed to extract the finely structured road networks in small urban areas, with 
the consequence that the features computed from road networks poorly classify images 
containing such areas. In order to obtain useful information from these parts of the images and 
improve the classification, a new set of features based on segmented urban areas was 
introduced, and combined with the existing road network features. Further study examined 
classification performance with this augmented feature set. In order to reduce the 
dimensionality of the feature space, a suitable feature selection scheme was used, which, in 
combination with SVM linear kernel classification [5] on the combined set of features from 
road networks and urban areas, gave promising results for the classification of the different 
geographical environments contained in a diverse image database. 
      In section 2, we describe the four network extraction methods considered, two of which 
were used in the preliminary study, and two in the follow-up studies. We also describe the 
road network representation into which we convert the outputs of these methods before 
computing the features. In section 3, we describe the road network features that were used in 
the preliminary study and present the results of this study. In section 4, we describe the 
expanded set of road network features introduced to classify the larger database into a more 
refined set of classes. In section 5, we describe the features computed from segmented urban 
areas. In section 6, we describe the results of a number of classification experiments using 
feature selection with our augmented feature set, and the SVM linear classifier that was used 
to perform classification. In section 7, we conclude. 

 
2. NETWORK EXTRACTION AND REPRESENTATION 
 
In order to compute topological and geometrical features of the network, we first need to 
extract the road network from an image, and then convert the output to an appropriate 
representation. This representation should be independent of the output of the extraction 
algorithm, since we do not want to be committed to any single such method.  

In the preliminary studies reported in [4] we considered two network extraction methods 
[6, 7]. The method of [6] is based on ‘higher-order active contours’. Higher-order active 
contours are a generalization of standard active contours that use long-range interactions 
between contour points to include non-trivial prior information about region shape, in this 
case that the region should be network-like, that is composed of arms with roughly parallel 
sides meeting at junctions. The output of this method is a distance function defining the 
region corresponding to the road network.  
 

 
 
Figure 1: Images categorized in two different classes. 
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      The method of [7] models the line network as an object process, where the objects are 
interacting line segments. The output is a set of line segments of varying lengths, orientations, 
and positions. This output is converted to the output of [6] by performing dilation and then a 
distance function computation on the resulting binary image. 
      In subsequent studies, we considered the two network extraction methods reported in [8, 9]. 
The output of the method described in [8] is a binary image, which after a distance function 
computation can serve directly as an input to our method. The output of the method described 
in [9] is a list of multiply aligned segments. In order to have a suitable input for our method, 
we convert the output of this method into a binary image, and use some image processing 
techniques to obtain single connected segments. We then compute a distance function. 
      The distance function resulting from these methods is converted to a graph representation 
of the road network for feature computation purposes. The graph itself captures the network 
topology, while the network geometry is encoded by decorating vertices and edges with 
geometrical information. The conversion is performed by computing the shock locus of the 
distance function using the method of [10, 11], extended to deal with multiple, multiply-
connected, components. The method identifies shock points by examining the limiting 
behaviour of the average outward flux of the distance function as the region enclosing the 
shock point shrinks to zero. A threshold on this flux yields an approximation to the shock 
locus. The graph is then constructed by taking triple (or, exceptionally, higher degree) points 
and end points as vertices, corresponding to junctions and termini, while the edges are 
composed of all other points, and correspond to road segments between junctions and termini. 
      Fig. 2 shows an example of the representation graph. The road network (top right) is first 
extracted from the input image (top left). The methods cited above are then used to generate 
the shock locus (bottom left), which is then converted to the graph representation (bottom 
right). The vertices and edges are decorated with geometrical quantities computed from the 
shock locus. The features are then computed from the graph and its decorations.  

a) b)   
  

c)  d)  
 
Figure 2: An example of a graph representation (a: original image © CNES;  

  b: extracted road network; c: shock locus of road network; d: graph representation). 
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3. PRELIMINARY STUDY 
 
The preliminary study uses a database of 52 images, and attempts to classify them into two 
classes, ‘Urban’ and ‘Rural’, using five topological and geometrical road network features. 
These features, along with the definitions and notations used for quantities involved in their 
definition, are described in Table I (the features are marked in bold). They fall into three 
groups: two measures of ‘density’, two measures of ‘curviness’, and one measure of 
‘homogeneity’. We now describe these features. 

The two measures of density are defined as follows. Let v be a vertex and e be an edge. 
Let le be the length of the road segment corresponding to e, and let de be the length of e, that is 
the Euclidean distance between its two vertices. Let mv = ∑ > 2:

1
ve

be the number of edges at a 
vertex. Then NJ =  is the number of junction vertices. Let ∑ >2:

1
vmv

Ω  be the area of the image 

in pixels. We define the ‘junction density’ to be JN
~

 = . This is intuitively a useful 
measure to separate urban and rural areas: we expect urban areas to have a higher value of 

JN1−Ω

JN
~

 than rural areas. Similarly, we define the ‘length density’ to be  = . Again, we 

expect urban areas to have a higher value of  than rural areas. Note than one can have a 

high value of  and a low value of 

~
L ∑−Ω

e el
1

~
L

~
L JN

~
 if junctions are complex and the road segments are 

‘space-filling’. 
 

Table I: First set of road network features and other quantities involved in their definition. 
 

Notation Description 
m Number of edges in graph 

Area of image  Ω
a Quadrant label 

Length of road segment corresponding to edge e le
m Number of edges at vertex  ∑ > 2:

1
ve

v

Number of junction vertices ∑N  
>2:

1
vmvJ

Junction density  JN1−Ω
JN

~
 

∑−Ω
e el

1Length density  ~
L  
d Euclidean distance between vertices in an edge e

Ratio of lengths lp e/dee
var(p) ∑∑ −− −

e ee e pmpm 2121 )(Ratio of lengths variance  
k ∫−

e ee skdsl )(1Average curvature  e

var(k) ∑∑ −− −
e ee e kmkm 2121 )(Average curvature variance  

∑ >∈ 2: vmav vmM Number of junction edges per quadrant  J,a

~
M Density of junction edges per quadrant  aJa M ,

1−Ω
J,a

Variance of density of junction edges ~
Mvar( J)

∑∑ −
a

J,a
a

J,a MM 2
~2~

))4/1((  )4/1(  
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∫−

e ee skdsl )(1     The two measures of curviness are defined as follows. Let p = le e/de, and ke = , 
i.e. the absolute curvature per unit length of the road segment corresponding to e. Although it 
may seem natural to characterize the network using the average values per edge of these 
quantities, in practice we have found that more useful features are obtained by using their 
variances. We thus define the ‘ratio of lengths variance’ to be the variance of pe over edges, 
var(p), and the ‘average curvature variance’ to be the variance of ke over edges, var(k). Note 
that it is quite possible to have a large value of p  for an edge while having a small value of ke e  
if the road segment is composed of long straight segments, and vice-versa, if the road 
‘wiggles’ rapidly around the straight line joining the two vertices in the edge. We expect rural 
areas to have high values of one of these two quantities, while urban areas will probably have 
low values, although this is less obvious than for the density measures. 
      To measure network homogeneity, we divide each image into four quadrants, labeled a. 
Subscript a indicates quantities evaluated for quadrant a rather than the whole image.  
      Let MJ,a = be the number of edges emanating from junctions in quadrant a. 
This is very nearly twice the number of edges in a, but it is convenient to restrict ourselves to 

junctions to avoid spurious termini at the boundary of the image. Let 

∑ >∈ 2: vmav vm

~
M J,a =  be the 

density of such edges in quadrant a. Then we define the ‘network inhomogeneity’ to be the 

variance of 

aJa M ,
1−Ω

~
M

~
M  over quadrants, var(J,a J). 

      All the images in the database have the same size and resolution, so the dependence of the 
above quantities with changes of size and resolution need not occupy us here. Note, however, 
that there are limits to naïve scaling arguments: the network extracted from a lower resolution 
image may lack certain roads contained in the network extracted from a higher resolution 
image because they are less than one pixel wide. This effectively limits the range of the 
resolutions that we can consider simultaneously. Within this range, invariance to image 
resolution is easily accomplished by converting quantities in pixel units to physical units 
using the image resolution. 
      The features having been computed for the database, kernel k-means was used to perform 
a classification into ‘Urban’ and ‘Rural’. We use kernel k-means since the feature sets are not 
linearly separable. A Gaussian kernel was used with σ = 0.5. The clustering result, shown in 
Table II, shows that the two classes can be well partitioned using the above five features: 25 
and 19 images from ‘Urban’ and ‘Rural’ classes respectively were correctly classified, while 
1 and 7 images from ‘Urban’ and ‘Rural’ classes respectively were incorrectly classified. 

 
Table II: Kernel k-means clustering result with σ = 0.5. 

 
 Urban Rural

Class 1 1 19 
Class 2 25 7 

 
4. IMAGE DATABASE WITH REFINED CLASSES AND FEATURES 

 
To move beyond this simple example, a larger image database was collected, and a more 
refined set of classes defined. The new database has 355 SPOT5, 5 m resolution images. 
Some examples are shown in Fig. 4. The aim is to classify them into five classes, shown in 
Fig. 3: two urban classes, ‘Urban USA’ and ‘Urban Europe’, and three rural classes, 
‘Mountains’, ‘Villages’, and ‘Fields’. 
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Figure 3: Images categorized into five different classes. 
 

   

  
 
Figure 4: An example of 2 urban and 3 rural classes © CNES. 
 
4.1  New road network features  
 
To help in the more complex classification problem, and also to provide input for the feature 
selection procedure to be used later, we define some extra road network extraction features, 
described in Table III. The addition of these extra features brings the total number of road 
network features to 15. These features can be categorized into six groups: five measures of 
‘density’, four measures of ‘curviness’, two measures of ‘homogeneity’, one measure of 
‘length’, two measures of ‘distribution’ and one measure of ‘entropy’. We will now define the 
new features.  

∑ >2: vmv vmLet mv = ∑ be the number of edges at a vertex. Then E
> 2:

1
ve

J =  is the number 
of junction edges. Let Ω  be the area of the image in pixels. Similarly to the definition of 

‘junction density’, we define the ‘density of junction edges’ as = . LikeJE
~

JN
~

JE1−Ω , this is 
intuitively a useful measure to separate urban and rural areas: we expect urban areas to have a 

higher value of JE
~

 than rural areas. We also compute the network area  as the number of 
pixels corresponding to the network from the extracted binary image, and define the ‘area 

density’  = . As can be seen in Fig. 2, many junction points may be clustered around 
a small area in the network. To obtain a local characterization of the junction density, we 

define a measure called ‘junction density in a circular region’, = . This 

LΩ

~
A LΩΩ−1

~

,rjN ∑ >Ω∈

−Ω
2:

1
,

,
1

vrj mvrj
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is the density of junction points falling in a circular region rj ,Ω  of radius r centered at 
junction point j. We then compute the maximum of these junction densities over all junction 

points, maxj{ }. A high value indicates that junction points are clustered close to many 
other junction points, which is a prominent measure of urban network structure. Rural areas 
will have a lower value of this feature, indicating the sparse structure of road junctions. 

~

,rjN

 
Table III: New quantities and features used for five-way classification. 

 

Notation Description 

∑ >2: vmv vmE Number of junction edges . J

Density of junction edges . JE1−ΩE
~

 J

L Network length . ∑e el

Network area density . LΩΩ−1~
A  

∑−
e epm 1mean(p) Ratio of lengths mean . 

∑−
e ekm 1mean(k) Average curvature mean . 

~
M Mean density of junction edges . ∑a

J,aM   )4/1(
~

mean( J) 
 iDE , Proportion of junctions with mv = i. 

var( ) ∑∑ −
i iDvi iDv EmEm 2

,
2

, )))max(/1(())max(/1(iDE , Variance of edge distribution .

∑i iDv Em ,))max(/1( .mean( ) iDE , Mean of edge distribution  

rΩ  Area of a circular region of radius r. 

∑ >Ω∈

−Ω
2:

1
,

,
1

vrj mvrj
~

,rjN Junction density in a circular region .  

maxj{ } 
~

,rjN Maximum of junction densities maxj{ }. 
~

,rjN

 jβ Vector of angles between segments at junction j. 
 βH Entropy of histogram of road segment angles with bin size . o30

 

      The network area density, , is computed from the binary image as the number of pixels 
corresponding to the road network divided by image area. This measure is useful in 
classification as its value is high for urban networks as compared to rural networks. The 
network length, L, is computed from the graph as the total length of road segments. This 
feature, like the network area density feature, is useful in characterizing urban and rural 
network structure. 

~
A

      In order to distinguish between the two urban classes (USA and Europe), the entropy of 
the histogram of road segment angles at junctions, Hβ, where βj is the vector of angles 
between road segments at junction j, is a good measure. As is evident from the physical 
characteristics of these road network structures, roads in the USA tend to be parallel and to 
cross each other orthogonally, forming T-junctions or crossroads, junctions, whereas 
European roads tend to wiggle, and meet or cross each other at roundabouts. Then it seems 
natural that Hβ ≤ 2 bits are necessary to encode information about road segments at a junction 
for road networks in the USA, whereas for road networks in Europe, Hβ ≥ 2 bits are 
necessary.  
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      The same measure can also be used to distinguish between Mountains and Fields, while 
the ‘density’ features distinguish rural networks from urban networks. 
      A ‘distribution’ measure of edges at a vertex provides us with information as to how the 
edges at a vertex are distributed in the network. Let  be the proportion of junction points 
with i edges at them. We use mean( ) and var( ) as features. The variance of the edge 
distribution is lower in the case of networks in urban areas as opposed to rural, and it is lower 
also in the case of networks in the USA as opposed to in Europe. 

iDE ,

iDE , iDE ,

~
M      We also use mean(p), mean(k), and mean( J), defined in Table III, in addition to the 

five features defined in Table I. 
 
5. EXTRACTION AND CHARACTERIZATION OF URBAN REGIONS 
 
Classification experiments show that the above features are not sufficient for images that 
contain a significant proportion of small urban areas. This is because the extraction methods 
frequently fail to extract the dense road network structures in these areas. Some example 
images are shown in Fig. 5. In order to circumvent this problem and to extract useful 
information from these parts of the images, we instead segment the urban area itself, and then 
compute some geometrical features of the resulting region. These features will be combined 
with the road network features described above for classification purposes. 
      We use a sequence of morphological operators to segment the urban areas from the image. 
A difference is computed between a morphologically closed and opened image. This 
difference gives prominence to textured regions, like urban areas. Then an alternated 
sequential filter aggregates neighboring components and eliminates small isolated 
components. We compute two geometrical features from these regions as shown in Table IV. 
Let Ω and Ω  be the area of the image and the area of the extracted regions respectively and Γr r 

be the perimeter of the extracted regions. We define two descriptors, = ΩA
..
R -1 Ωr, the 

extracted region density and Cf -1 2
A = Ω  Γr r , the extracted region compactness factor. These 

two measures help us to distinguish the Villages class from the rest of the classes, because 

≈ 1 for urban classes and ≈ 0 for Mountains and Fields classes. A
..
R A

..
R

 
6. FEATURE SELECTION AND CLASSIFICATION 
 
The features described in the above sections were computed for a database of 355 SPOT5, 5 
m resolution images. These images were hand classified into the five classes described above 
representing various kinds of urban and rural landscapes. Classification was done with a five-
fold cross validation on the data set, with 80 % of data for training and the remaining 20 % for 
testing in each fold. 
      The results of SVM linear kernel classification of 355 images into 5 classes, using 30 
features, is shown in Table V (15 features each from the graphs from the two network 
extraction methods). This gives a mean error of 36.1 % with standard deviation of 8.49 %. As 
can be clearly seen in the confusion matrix, the Villages class is confused with the Fields class 
and also there is a slight confusion between the Urban USA and Urban Europe classes. These 
confusions arise because, as stated above, the road extraction methods fail to detect the fine 
and densely structured roads present in some images. Table VI shows the results of 
classification of the same set of images, this time with 32 features: 30 road network features 
plus the two features computed from the segmented urban areas. As can be seen, there is an 
improvement in the confusion matrix. The Villages class is less confused with the Fields class 
than before. The SVM linear kernel classification in this case gives us a mean error of 20.3 % 
with a standard deviation of 7.75 %. 
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Figure 5: Dense urban areas. Left: original images © CNES; right: detected urban areas. 

 
Table IV: Summary of features computed for urban areas. 

 
Notation Description 
Ω Area of image 
Ω Area of the extracted regions r
Γ Perimeter of extracted regions r

A

..
R Region area density Ω -1 Ω r

-1 2Region compactness factor Ω  ΓCf r rA

 
Table V: Confusion matrix of an SVM linear kernel classification of 355 images  

 into 5 classes with 30 features. 
 

 Class 1 Class 2 Class 3 Class 4 Class 5 
0.527 Villages 0.094 0.245 0.055 0.131 

0.805 Mountains 0.048 0.000 0.015 0.059 
Fields 0.218 0.000 0.593 0.063 0.129 

0.771 USA 0.065 0.020 0.046 0.144 
Europe 0.140 0.086 0.117 0.102 0.536 

 
Table VI: Confusion matrix of an SVM linear kernel classification of 355 images  

 into 5 classes with 32 features. 
 

 Class 1 Class 2 Class 3 Class 4 Class 5 
0.726 Villages 0.047 0.151 0.030 0.055 

0.876 Mountains 0.035 0.027 0.000 0.000 
Fields 0.142 0.018 0.822 0.018 0.025 

0.818 USA 0.035 0.000 0.000 0.137 
Europe 0.069 0.058 0.000 0.135 0.783 
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Table VII: Confusion matrix of an SVM linear kernel classification of 355 images  
into 5 classes with 15 features selected by FLD. 

 
 Class 1 Class 2 Class 3 Class 4 Class 5 

0.751 Villages 0.051 0.139 0.011 0.059 
0.896 Mountains 0.034 0.014 0.000 0.000 

Fields 0.074 0.015 0.826 0.012 0.000 
0.897 USA 0.028 0.000 0.000 0.189 

Europe 0.112 0.037 0.022 0.080 0.752 
 

Table VIII: Classification performance. 
 

Feature Dimension Selection Classification Error (%) 
30 No 36.1 ± 8.49 
32 No 20.3 ± 7.75 
32 Fisher 17.5 ± 3.81 

 
      With such a large number of features, and with some similarity between different features, 
it seems likely that there is some redundancy in the feature space. This redundancy can be 
reduced by feature selection. In the final classification experiment, we performed feature 
selection using a Fisher linear discriminant (FLD) analysis, followed by SVM linear kernel 
classification on the selected feature set. The results of classification are shown in Table VII. 
The SVM linear kernel classification on the 15 dimensional feature space selected by the FLD 
shows a mean error of 17.5% with a standard deviation of 3.81%. An overall classification 
performance summary is depicted in Table VIII, where classification error in % is given as 
"mean ± standard deviation" error. 
 
7. CONCLUSION 
 
The classification results reported above indicate that geometrical and topological features 
computed from road networks and urban areas can serve as robust characterizations of a 
number of geographical environments found in remote sensing images. Future work will 
involve a two-level hierarchical model with three top-level categories (‘Urban’, ‘Semi-Urban’ 
and ‘Non-Urban’), with several subcategories within each main category (‘Urban/USA’, 
‘Urban/Europe’, ‘Urban/Asia’; ‘Semi-Urban/Sparse Regions’, ‘Semi-Urban/Non-Sparse 
Regions’; ‘Non-Urban/Mountains’, ‘Non-Urban/Fields’), computing feature statistics, and 
experimenting with different classifiers to improve the classification and hence retrieval 
results. 
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