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INVARIANT BAYESIAN ESTIMATION ON MANIFOLDS

By IAN H. JERMYN
INRIA

A frequent and well-founded criticism of the maximum a posteriori
(MAP) and minimum mean squared error (MMSE) estimates of a continuous
parametery taking values in a differentiable manifold is that they are
not invariant to arbitrary “reparameterizations” bf This paper clarifies
the issues surrounding this problem, by pointing out the difference between
coordinate invariance, which is a sine qua non for a mathematically well-
defined problem, and diffeomorphism invariance, which is a substantial
issue, and then provides a solution. We first show that the presence of a
metric structure orl” can be used to define coordinate-invariant MAP and
MMSE estimates, and we argue that this is the natural way to proceed.
We then discuss the choice of a metric structurelorBy imposing an
invariance criterion natural within a Bayesian framework, we show that this
choice is essentially unique. It does not necessarily correspond to a choice
of coordinates. In cases of complete prior ignorance, when Jeffreys’ prior
is used, the invariant MAP estimate reduces to the maximum likelihood
estimate. The invariant MAP estimate coincides with the minimum message
length (MML) estimate, but no discretization or approximation is used in its
derivation.

1. Introduction. Statistical estimation is a very old field, but despite that
many questions remain unanswered and debates about the best way to proceed are
plentiful. From a probabilistic point of view, all the information about a quantity
of interest taking values in a spafeis contained in a probability measure bn
If it is deemed necessary to single out a particular pgiatI” for some purpose,
aloss functionL:T"' x I' — R: (y, y’) ~ L(y, y’) is defined describing the cost
inherent in taking the true value of the quantity tojbevhen it is in facty’. The
mean value of the loss as a functionjoftan be computed using the probability
measure, whereupon one can, for example, choose thatjpaeiiit that minimizes
the mean loss as one’s estimate of the true valye of

In some cases, especially those closely linked to a specific application, the loss
function will be fully dictated by circumstance. In this case, the invariance issues
discussed in this paper do not arise. However, in many other cases, and for the
purposes of theoretical analysis, estimates are needed in the absence of any clear
knowledge of what the real loss is. Indeed, there may not be a “real loss.” In these
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cases, generic loss functions are required, and indeed are currently widely used, in
both theory and practice. These generic loss functions should satisfy two criteria:
they must be well-defined, and they must not introduce implicit bias that is not
present in the models. The latter is best expressed by saying that in the absence
of prior knowledge about the loss function, the loss function should not introduce
prior knowledge about the parameters to be estimated. This is an application of the
principle that if two people have the same knowledge, then they should make the
same inferences.

In the case thal’ is a differentiable manifold, difficulties arise. Two popular
choices of generic loss function are the negative of a delta function and the squared
difference of coordinates, leading to maximum a posteriori (MAP) and minimum
mean squared error (MMSE) estimates, respectively. In order for these quantities
to be well defined, two things are necessary: an underlying measure in order
to define the delta function loss, and a distance function in order to define the
squared error. The existence of these quantities is normally ignored, or equivalently
they are assumed to take on particular forms. The resulting loss functions are not
coordinate-invariant, and hence are ill-defined in general coordinate systems, thus
violating the first criterion. This lack of coordinate invariance leads to the paradox
that two people with the same knowledge can construct different estimates simply
by choosing to use different coordinate systems, for example, polar rather than
rectangular. Even if the definitions are made coordinate-invariant, and hence well-
defined, the resulting loss functions still violate the second criterion in general.
The estimates are not invariant to diffeomorphisms, which “mix up” the points
of I' (“reparametrizations”), and therefore necessarily introduce extra information
about these points.

The purpose of this paper is to correct the above situation. We define compatible,
coordinate-invariant MAP and MMSE estimates by introducing a Riemannian
metric onI", and argue that this is the natural way to achieve such invariance.
This satisfies the first criterion. The introduction of a metric raises the question
of how to choose this extra structure, and we argue that in the case of Bayesian
estimation, imposing the second criterion renders the choice of metric unique.

The main results of the paper as regards Bayesian estimation are the following:

(&) The metric o™ should be the pullback by the model function of the natural
metric on every measure space.

(b) Invariant MAP estimates should be defined using the density of the posterior
measure with respect to the measure derived from this metric.

(c) Invariant MMSE estimates should be defined by using, in place of the squared
error, the squared geodesic distance based on this metric.

(d) In conditions of “complete ignorance,” that is, conditions in which the prior
probability measure is Jeffreys’ prior, MAP estimates always reduce to
maximum likelihood (ML) estimates, in contrast to much Bayesian argument
and practice.
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(e) The invariant MAP estimate coincides with the MML estimate described
by Wallace and Freeman (1987), except that no discretizatibni®fequired
and no approximations are made.

The rest of the paper is structured thus. In Section 2 we discuss the failure
of invariance for MAP estimation on manifolds and its causes. In Section 3 we
describe how both this problem, and the related failure of invariance for MMSE
estimates, can be solved by endowing the manifold with a metric structure, and
we argue that this is the natural solution to the problem. In Section 4 we discuss
the choice of metric structure, and use a simple invariance argument to render this
choice unique. In Section 5 we discuss the conclusions of the report and related
work.

The material on the differential geometry of measure spaces and its connection
to Jeffreys’ prior may be known to geometrically minded statisticians. We include
it here for completeness, and to emphasize its coordinate-invariant nature.

2. The problem. To illustrate the problem, we examine the maximization
of a probability density function (p.d.f.) on a manifold of dimensianLet the
manifold bel’, a pointinI” being denotegr. We are given a probability measugpe
onI", which we may view as the posterior in an MAP estimation task, although
this is not important at this stage. We are also given two systems of coordinates
onl',6:T - R™ and¢:T" — R™. (We ignore questions of topology that might
require us to use more than one coordinate patch; the issue is not central to the
discussion here.)

Expressed in terms of the first set of coordinafiesand the corresponding
measured™0(y) on T', we find Q = Qy(6(y))d™0(y), where Qq(0(y)) is a
function. We now separate the functighy from the measure and find the argument
of its maximum valu@max € R™, giving an estimate of, 75 =61 (0max)-

We may choose to expre€sin another coordinate systeg; I' — R™. Using
the measure defined by this coordinate system, we find@hat Qs (¢(y)) x
d"¢(y). If we now follow the same procedure as before, and find the argument of
the maximum value 00, ¢max, We find another estimatg, = ¢ (Pmax).

The problem is the following. Suppose that the two coordinate systems
are related by a functionr:R™ — R™, so thatd(y) = a(¢(y)). In this
case, the measures with respect to the two coordinate systems are related
by d"0(y) = J[al(¢(y))d"¢(y), where J[a](¢(y)) is the Jacobian of the
coordinate transformation. This in turn means that the funct@nsand Q, are
related byQy (¢ (v)) = Qo (O (y) I [al(@ (O (1))

The consequence is that the estimates obtained by maximijrand Q, are
different, due to the presence of the Jacobian factor. Apparently our estimate of
depends upon the choice of coordinates, or in effect upon the whim of the person
making the estimate. This may seem surprising: one thinks of the question “What is
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the most probable point iN?” and, by analogy with the discrete case, one expects
an invariant answer.

The difference between the continuous and the discrete cases means, however,
that the question being asked in the continuous case is not the previously cited
one at all, but a slightly more complicated version. Given a coordinate sygtem,
the question being asked is, “What is the infinitesimal volume elemiehtdz)
in I (wheredz is an infinitesimal coordinate volume R™) that is most likely
to contain the true point if'?” (We use the notatiory ~1 both for the inverse
ofamapf:A— B, f~1:B — A, and for the pullbackf—1:28 — 24:B >
Y ~{a € A: f(a) € Y}. Context serves to distinguish the two usages.) Using a
different coordinate systeng on the other hand, the question is “What is the
infinitesimal volume element—1(dz) that is most likely to contain the true point
in ['?” In generalp—1(dz) # ¢~ 1(dz). Itis then clear that different answers are to
be expected using different coordinate systems, because the question being asked
is different in each case.

A simple example of the above is provided by a Gaussian measure in two
dimensions with zero mean and covariance the identity. This measure can be
expressed in rectangular or in polar coordinates:

Pr(x) =dxdy 77 Y= — grae 77 e .

In the first case, the maximum density procedure leads=toy = 0, while in the
second it leads td = 1/+/2 and an indeterminate value ér In this simple case,

one can see the error clearly, but in more complex or less intuitive cases the same
phenomenon arises and passes unnoticed.

From a measure-theoretic point of view, what is happening is clear. The
functions Q¢ and Qg are probability density functions. Any p.d.f. is defined
with respect to an underlying measure. The Radon—Nikodym derivative of the
probability measure with respect to the underlying measure then gives the p.d.f.
In the scenario just described, two different underlying measures are being used:
d"™0(y) andd™ ¢ (y). To expect them to yield the same results is unreasonable.

If one concentrates on the underlying measure, then there is no problem. In
terms of 9, the underlying measure "9 (y), while in terms of¢, the same
underlying measure id[a](¢(y))d"¢(y). Integration of either of these over
a fixed subset of” will produce the same result: they are the same measure.
Using this fixed measure, the problem disappears: in termys die p.d.f. with
respect to the underlying measureQs (a(¢(y))) = Qg(0(y)). The maxima of
Qo (a(¢(y))) with respect top agree completely with those a4 (6(y)) with
respect ta, in the sense thalmax = o (Pmax), Which implies that) =1 (Gmay) =
1 (¢pmax- The points inl" that we find are the same. The problem is that, given
an arbitrary coordinate system, we do not know which choice of coordinate is
“correct,” and hence what the estimate should be. By effectively focusing on
measures oiR™, the coordinate space, rather than on underlying measurEs on
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the problem is created. How then to define, in a coordinate-invariant way, an
underlying measure with respect to which to take the Radon—Nikodym derivative?

A similar situation arises with respect to MMSE estimates, which also lack
invariance under general changes of coordinates. It is equally true that the mean
itself has no coordinate-invariant meaning, and for the same reasons. In calculating
both the error and the mean, one is faced with adding or subtracting certain
values. If these operations are performed on the coordinate values in a particular
coordinate system, they will change with a change of coordinates. Equally, one
cannot add or subtract pointsioidirectly; such operations are not defined unkéss
possesses an algebraic structure of some kind, for example, is a vector space.

In practice, what is crucial to the MMSE estimate is the notion of a distance
between two points iT. If a global Euclidean coordinate system exists, this
is given by the squared error, but in general this is not the case. If we wish to
consider MMSE estimates in general coordinate systems, we must be able to define
distances in a coordinate-invariant manner.

3. Coordinate-invariant estimates. If one wishes to discuss measures and
distances using an arbitrary set of coordinates, one must express the mathematics
in a way that allows for this eventuality. Not to do so means that symbols
such asd™@ are not defined. The natural way to express both geometric and
measure-theoretic information about manifolds in a way that is manifestly free of
coordinates, but that nevertheless allows the derivation of an expression in terms
of an arbitrary coordinate system with the greatest of ease, is the language of
forms. Readers not familiar with this language may wish to look at the Appendix,
where we provide a brief introduction to forms and their uses, or at the book by
Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick (1977).

We are interested in probability measures. These can be integrated over
m-chains, for example, the whole manifold, and as such are:-forms. In
addition, they must be positive and normalized, so that they are probability
m-forms. The answer to the first of the questions at the end of the last section
is then: define amn-form, since these are, by definition, coordinate-invariant.
The answer to the second question would seem to be: define a distance function.
In practice, the following considerations push us strongly in one direction: the
introduction of a Riemannian metric on the manifdld

First, the introduction of a metric allows us simultaneously to answer both of
the questions posed at the end of the last section. Starting from the metric, we can
derive anm-form and use this as the underlying measure. We can also define a
distance function, as the geodesic distance between two points.

Second, if we are to introduce notions both of “volume” (via an underlying
measure) and of “length” (via a distance function), it is sensible that these notions
be compatible. Otherwise there is no reason to believe that the resulting estimates
will bear any relation to one another. The use of a metric to define both the
underlying measure and the distance function ensures that maps that preserve
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lengths preserve volumes also, or, even more intuitively, that the volume of a small
cube is given by the product of the lengths of its sides.

The final consideration is intuition in practice. Manifolds with a measure but no
metric are strange objects. They do not correspond to our intuition of a surface or
volume at all. The space of volume-preserving diffeomorphisms is much larger
than the space of isometries, and allows severe distortions. An example is the
mixing of two incompressible immiscible fluids. The initial “drop of oil in water”
may end up smoothly distorted into dramatically different shapes. The parameter
spaces that we consider intuitively possess “metric-like” properties, even if these
are not well defined. For a one-dimensioial for example, the numbers that
represent different parameter values indicate something more than the topological,
although a precise interpretation may not be available. If we wish to be able to
describe these geometric properties of the manifold as well as its measure-theoretic
properties, a metric is necessary. In addition, it is quite hard to write down an
expression for a measure on a manifold without implicitly assuming a metric.
In practice, this means that metrics appear, albeit disguised, in the expressions
for many probability measures. Gaussian measures are one example, where an
inner product is used to define the exponent. An inner product on a vector space is
equivalent to a constant metric, which allows identification of each tangent space
with the vector space itself. In many other cases, the assumption of a Euclidean
metric is made manifest by the appearance of an orthogonal inner product.

What then is a Riemannian metric and how does it define a measure? A metric
h is the assignment, to each pomptof I', of an inner product on the tangent
spaceT, I at y. This is detailed in the Appendix, where it is further explained
how the existence of a metric allows us to map functions:torms using the
Hodge star. Given a functiorf on I', we can thus create an-form, that is,

a measurey, f. The choice of functiory is dictated by compatibility between the
measure-theoretic and geometric aspects of the manifold. By chogdimdpell,
the function identically equal to 1, the resultimgform is preserved by isometries;
in other words, maps that preserve length preserve volume also.

Being a form, the quantity, = »p1 is invariantly defined. This is clear first
because no coordinate system was used in its construction, but it can also be
verified in detail. As described in the Appendix, the expression for this form in
the coordinate basis of coordinates

Up = nl = |h[3/2 d™6,

where|h|y is the determinant of the metric components indh&ordinate basis,

and d™6 is the coordinate basis element for the spacenefbrms. To see the
invariance of this measure explicitly, note that a change of coordindatesoduces

a factor of J[a](¢ (y)) from d™6, while the transformation of the determinant

of the metric matrix elements from one basis to another introduces a factor of
Jlal(¢(y))~L. Thus, expressed in any coordinate system, the form of the measure
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is identical:|h|, “d™0 = |h|¢ d™¢. To stress the point once again: the measure
d™6(y) has no coordinate-invariant meaning. If we try to express a measure in a
general coordinate system in this way, we literally do not know what we are talking
about.

3.1. Maximum density estimates. Given a probabilityn-form Q, and another
positivem-form U, one defines the p.d.f. @ with respect tdJ by division:

(3.1) 0= %

This is the equivalent of the Radon—Nikodym derivative in the language of forms.
What now becomes of maximum density estimation? We simply have ttgise
in (3.1). If we choose a patrticular coordinate sys#@nso thatQ = Q¢ d™6 and

Unh = |h|§/2d’”9, then we have
~1/2

(3.2) 0 = Ihl, 7" Qe.

The left-hand side of this equation is invariant to changes in coordinates. These will
produce equal Jacobian factors in both the numerator and the denominator of (3.2),
which will thus cancel out. Note also that this p.d.f. does not result simply from a
choice of coordinates. Although it may be possible to find a system of coordinates
in which the determinant of the metric is constant, this is misleading in two ways.
First, what is really happening is that a metric is being chosen. The naive approach
really means choosing a metric whose determinant is constant in the coordinate
system you already have, which is not a coordinate-invariant procedure. Second, in
more than one dimension, although the determinant of the metric may be constant,
it may not be possible to find a system of coordinates in which the metric itself is
constant. This would imply that the manifold is flat, a statement that is coordinate-
invariant and may not be true.

3.1.1. Expression in terms of a delta function loss. Usually the maximum
density estimate is regarded as derived from the use of a particular loss function,
3(0(y),0(y")) on I'. Given a probabilitym-form expressed in terms of,
Q(0)d™0, this leads to the familiar recipg = 6~ 1(argmax Q4(0)), in
apparent contradiction to the previous discussion. From this point of view, there is
no need to define a p.d.f. at all, since we were merely integrating with respect to
the probability measure. What is going on?

The answer of course involves the same concepts as above. The guantity
8(0(y),0(y")) is not invariantly defined, since the measure against which to
integrate it has not been given. In our context, the delta function (in fact there
are effectivelym of them) is best viewed as the identity map fraviT", the space
of p-forms onT, to itself. As such, it is go-form at its first argument (a point
in T') and an(m — p)-form at its second argument (another pointlih It can
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thus be integrated againstpaform to produce anothes-form. Whenp = 0, we
recover the usual delta function that evaluates a function at its first argument. In our
case, however, we wish to integrate the delta function againstfamm, and thus
p = m. The delta function is thus an-form at its first argument and a O-form, or
function, at its second argument. The result of integrating it against the posterior
measure is thus am-form, and to create a function that we can maximize, we
need to use the Hodge star. This again introduces the factbre_(ﬁfz that we see
in (3.2) and that is implicit in (3.1).

An alternative point of view is to consider the delta function as a map from
APT to A~P)T, making it an(m — p)-form at its first argument and p-form
at its second argument. In order to integrate this agaipst@am, we can use the
inner product onA? described in (A.2) of the Appendix. In our case, this point
of view makes the delta function a 0-form (function) at its first argument and an
m-form at its second. The result of the integration is thus a function as required
for maximization, but now we find that the use of the inner product has already
introduced the factor olfnlg_l/z, thus giving the same result as in the other two
methods.

There is thus no conflict between these different ways of speaking.

3.2. MMSE estimates. Suppose we are given a distance function. That is, we
are given a symmetric map:I" x I' — R, obeying the triangle inequality and
such thati(y, y) = 0. Given a point/, we define the function

dy(y)=d(y.y".

We can now define the coordinate-invariant form of the mean squared error, which
we will call the mean sguared distance, as

(3.3) Ly)= /F d,)2Q.

whereQ is as usual a probabilityz-form. In terms of a particular coordinate
systermy onT", one has

L©) = / d"0’ 056" d2(9. 0",
oM cRm

wheredy is the expression for the length in terms of the given coordinates.

Having defined the mean squared distah¢c&ve can now define the minimum
mean squared distance (MMSD) estimate as the set of minimizérgof

All that remains is to use the metric to define a distance function that we can
use in (3.3). Below we recap this material from differential geometry, phrasing it
in a manifestly coordinate-invariant way, and emphasizing the difference between
coordinate invariance and invariance to diffeomorphisms, which is a coordinate-
invariant and therefore content-full concept. We first define the notion of the length
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of a path, and then define the distance between two points as the length of a
minimum length path between them.

Let I be an interval of the real line, considered as a manifold (i.e., without
the structure of a field). Lepg and p; be the elements of its boundary. Let
7:1 — I' be an embedding of in T such thatr(pg) = y andz(p1) = y'.

To define the length of the path (i.e., its volume), we need a 1-formi, @r in

other words a measure, which we will then integrate duelNow, however, we
have an invariance criterion: we must ensure that the length we calculate depends
only on the image off in T, and not on the precise mapping of pointsiofo
points of". This amounts to saying that replacindy ¢, wheree is an arbitrary
boundary-preserving diffeomorphism, should not change the resulting length. Note
that unlike coordinate invariance dnwhich follows as soon as we integrate over
the coordinates, this condition is a substantive one. As argued in the Appendix,
the only way to ensure this is to construct a metric/doy pulling back a metric

from I', and then using this metric in the normal way to construct a 1-form. We
thus pull back the metrib on T to give a metrict*h on 1. We then use the Hodge
star of this metric to mapto a 1-form that can be integrated énin notation,

(3.4) () =/I*ﬂ*h]1.

To illustrate the ability to derive an expression in an arbitrary coordinate system
from the coordinate-invariant expression (3.4), we introduce a coordinate system
t:I — R on I with a corresponding coordinate basis given 9}(}?), and a

coordinate system on I" with a corresponding coordinate basis given-By(y).
In these bases, the (single) component of the pulled back metric can be found to
be

dm
(5. 5 = n(p)( <p>39,( (p)). 2 (p>@<n<p)>)

! dml
= hn’(p),ij ?(P)W(P),

whereh;; are the components of the metficin the 6 coordinate system. Thus
the result is simply the length of the tangent vector to the paih the metrich.
Rewriting (3.4) in terms of this expression, we find that

d i d Jj 1/2
’(”):fa dr( i - (>i()) ,

where we have abused notation by using the same symifot the map from/
toI" and its expression in terms of coordinates. The pairdR andb € R are the
coordinate values gbp and p1, respectively.

Given the length of a path, we can now define the distance between two points
as

d,(y)=d(y,y) = mln l(n)
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whereIl(y, y’) is the space of paths with endpointsand y’. This distance is
coordinate-invariant, and can be used in (3.3). For a general metric it is of course
hard to derive an analytic expression &br

In the case that the metric is Euclidednreduces to the mean squared error,
as it should. The resulting MMSD estimate is then the mean, that is, the MMSE
estimate, and is unique. In other cases, the MMSD estimate provides a generalized
mean, known as the “Karcher mean,” first introduced by Karcher (1977) as the
center of mass on a Riemannian manifold. It is a set of poinks ach of which
minimizes the mean squared distance to every other point Nibte that the set of
minimizers may contain more than one pointofThis does not present a problem
as such. It simply means that from the point of view of the mean squared distance
loss function these points are equivalent.

4. Bayesian estimation and the choice of metric. We have argued that in
order to define coordinate-invariant and consistent maximum density and MMSE
estimates, one should use a metric on the manifold/e now turn to the question
that we have been conspicuously avoiding. How is one to choose a mefrig on

Thus far, we have been dealing solely with a manifdldand a probability
measureQ on this manifold. In this abstract situation, it seems that the above
guestion has no good answer, which is unsurprising. We turn now, however, to the
case that is usually of interest: whénis a posterior probability measure derived
from a model function and a prior using Bayes’ theorem.

We introduce the data spack, We assume that this has sufficient structure
to allow the following constructions, and in practice it can be supposed to be
either a countable set or a manifold. Ginone can define the space of measures
M(X). The space of probability measureg,X), is a proper subset of the cone
of positive measures. This set has a complicated boundary even in the case where
X is countable; wherX is not countable, there are also measures with singular
components, which complicate things still further. We avoid these difficulties by
assuming that all measures with which we will deal lie in the interionofX)
and, where appropriate, are nonsingular.

We are free to choose coordinates.&1X) as on any manifold. One choice is
to describe measures aforms, in which case the spadéX) becomes the space
of probability n-forms. A model function is a map : " — M (X) associating to
each pointy € I' a (probability) measure ok. We will assume that this map is a
regular embedding, so that the imagdofith the differentiable structure induced
by A is a submanifold o8 (X).

4.1. Aninvariancecriterion. We now use this extra structure, which is present
in any real estimation problem, to argue for a unique choice of metri¢’.on
The argument rests on one simple idea: that all information about the parameters
not contained in the data be contained in the prior measure, or in other words,
that all information that distinguishes one pointloffrom another should come
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either from their correspondences with probability measureX ¢onondition 1)

or from the prior measure on (condition 2). It is the probability measures &n
alone that determine the relationship between the poiritsand the observations
represented by points i¥, and the way that these measures are parameterized
serves to determine the meaning of the pointFE iand not the other way around.
Any other information in addition to the data we have at hand should be described
by the prior. Any metric that we choose drshould respect this principle, and not
introduce any extra information about pointslinThis is the second criterion.

The fact that it is not the identity of individual points In that is important,
but merely their correspondence with probability measureX pmeans that it
is only the image of" in M(X) that counts. This image is invariant under the
replacement of\ by Ae, wheree :T" — T is a diffeomorphism. A model function
is thus an equivalence class of mgpss}. The conclusion from condition 1 is
thus that inference should be invariant under the replacemeftlyf Ae, where
invariant means that the image of the estimate by the model function is preserved.
This diffeomorphism invariance, although superficially similar to a change of
coordinates, is defined independently of any change of coordinates, and as such
is a substantive restriction.

There are only two ways to achieve this aim. One is to pick a particular
representative of the equivalence class of maps and to define a metric on the
corresponding copy of. This metric can then be pulled back to other members
of the equivalence class using the map#lthough this will satisfy condition 1,
the selection of a particular member of the equivalence class to be endowed with
a particular metric implies that we already know something about the poifits in
independently of their correspondence with probability measurés @therwise,
how could we know to which points @f to assign which values of the metric? This
is exactly the type of information that should be included in the prior, and thus the
procedure described in this paragraph violates condition 2.

The second approach is to pull back a metric franiX) to each equivalent
copy of I using Ae. [Since an embedding is a full rank immersion, the pulled
back metric will be a proper Riemannian structure Ionf M (X) is a proper
Riemannian manifold.] Such a metric automatically satisfies the consistency
conditions introduced by the mapshetween members of the equivalence class:
Ae*g = e*A*g, whereg is a metric onM (X), and thus our results will depend
solely on the image of* in M(X). In addition, we were not required to pick
a particular member of the class a priori, since each member of the equivalence
class gets its own consistent metric induced by its own model function. Thus both
condition 1 and condition 2 are satisfied.

We are thus in a position to define a metric and underlyinfprm onT" that
satisfies the invariance criterion stated at the beginning of this section by pulling
back a metric fromMm (X). We lack only one thing: a metric o (X) to pull back.
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4.2. Metricson M(X). The first thing we must do is to define what we mean
by the tangent space t#((X). Since we are using-forms as coordinates on
M(X), and since the space of signed measures is linear, it is easy to see that a
tangent vector taM (X) can be identified with an-form. If we restrict attention
to 4(X), this n-form must integrate to zero to preserve normalization. Then, at a
pointT € M(X), an inner product between two tangent vectgrandv, is given

by
V1V
g(vi, Vo) = / TiY2

where we have identified the abstract tangent vectorgith their expression
asn-forms. Note that the divisions are well defined becalise positive. The
justifications for this choice as the only reasonable metrid&X) are many, and

we do not reiterate them here. Interested readers can consult, for example, the book
by Amari (1985).

4.3. Pullback to I".  Using the embedding of I" in M(X), we can pull the
metric on.M (X) back toI". The definition of the pullback of the metric acting on
two tangent vectors andv in 7, I is as before

ha(u, v) = (A*Q)y (1, v) = Ga(y) (Ax W A (V)),

whereA, : T, I — Tx)M(X) is the tangent (derivative) map. This expression is
coordinate-invariant. If we wish to know the matrix elementfigf= A*g in the
basis determined by a system of coordinaggﬁ, onT, we must evaluath, on
these basis elements. The result is

10Ap 1 aAg
(—()’) ()/)) /
20! X Ag 00! Ag 907"
where we denote by the value of the model function at the poipt with
coordinate®. We thus find the known result that the components of the induced
metric form the Fisher information matrix.
As described in Section 3, the coordinate-invariant measuie isrthen given

by

Up = #n, 1= |haly2d™6.

4.4. MAP estimates.  MAP estimation is now simply a question of using (3.1)
with Q equal to the posterior measure from Bayes’ theorem lhedual toU , .

Note that the introduction of a prior probability prevents the estimate from
being invariant under replacement af by Ae. The solution to this problem is
the following. The prior probability is assigned to one member of the equivalence
class{A¢} based on knowledge of the parameters that is independent of current
data. It can then be pushed forward to other copiel osings~1. Note that this
violates condition 2 as it should, but that it does not violate condition 1.
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In cases of “complete ignorance” of the value jof Jeffreys’ prior is often
used as the prior probability measure. In this case, the prior measure and the
underlying measure cancel in the invariant MAP estimate, leaving only the model
function. In cases of “complete ignorance,” then MAP estimation reduces to
maximum likelihood estimationegardless of the nature of Jeffreys’ prior. (Note
that the posterior probability measure still contains Jeffreys’ prior; it is in the MAP
estimate itself that it disappears.)

Thus while traditional MAP estimates of the variance of a Gaussian measure,
for example, vary with the parameterization, the invariant MAP estimate will
produce the maximum likelihood result in every case. The data spate-iR”,
corresponding te independent experiments, and the model function is a Gaussian
family of product measures on, for the sake of argument with zero mean. The
parameter spack is isomorphic toR*: we use coordinates € R on this space,
whereo is the standard deviation. The model functitns then given by

(x,X)}
202 )’
where(-, -) denotes the Euclidean inner product&h. Derivation of the Fisher

information then shows that the inner product between tangent vactansl v
in T, T", where the poin has coordinate, is

Ay =d"x (2ma?)"/? eXp{ —

2
(4.1) hau, v) = Su%v,
o

where the superscript denotes the component with respect to the coordinate
basis%. The induced measure is thus proportionaldto/o, the well-known
Jeffreys’ prior. Let us now consider the parameterizatiog 0%, for « € N.
Jeffreys’ prior is equal talv/v for all « £ 0. The traditional MAP estimates
derived from these different parameterizations are

Dl — M
n—+uo
where we have raised the estimatevdb the power of 2« to make it equivalent
to an estimate of 2. The problem of lack of invariance comes sharply into focus
in this example. Which estimate ofis to be used?
On the other hand, the invariant MAP estimate is

n X, X
v2/cx — ( )

n
for all «.

4.5. MMSD estimates. In Section 3.2 we defined a coordinate-invariant
version of the mean squared error estimate, which we called the MMSD estimate.
Having defined a metric ofi above, we can now use it to calculate distancds,in
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and hence to define the MMSD estimate. In general, this is a difficult task that
is not tractable analytically, although approximations may be available. In simple
examples, however, one can compute the distance funétipny’) analytically.

We give an example in Section 4.5.1.

4.5.1. MMSD estimate of variance. Consider the same example as above, of
the estimation of the variance of a zero mean Gaussian measure.

From (4.1), the infinitesimal distane® between the points with coordinates
ando + do is given by

2n

ds® = — do?.
o

This is easily integrated to give the distance between two points with
coordinatesrg ando1 (assumers > op):

d(og, 01) = @In(ﬂ).
00

The MMSD estimate o# is therefore given by considering the following mean
loss under the posterior meas@dor o

0.¢]
L(o) = \/Zn/ do’ Q@' )(Ino —Ino’)2.
0
Differentiation with respect te- then shows that the minimum squared distance
estimate ob, 6, is given by
6 =expEglinal,
where Eql-] indicates expectation using the meas@eNote thatEq[Ino] #
In Eq[o] in general and that therefore the estimate is not simply the mearasf
would have been obtained by assuming a Euclidean metric.

The mean of I can be calculated in the case that the priobads taken to be
Jeffreys’ prior. It is given in terms of coordinates by

Eglinal=3[In(3(x,x)) — v (3n)].
wherey is the function

d
Y(z) = d—zlnl“(z)

andT is the Gamma functioli (z) = 5°dtt*"1e~. Thus

X, X) /2y m/2)
2 .
For largez, ¥ (z) = In(z), so that the estimate becomes

o=

(x,x)e—(l/Z)ln(n/Z): (x, )
2 no’

Ocl =
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the classical result. To the next ordef,(z) = In(z) — 2—12 This introduces
corrections to the classical result;
6 =Y @5y,

This formula is valid within about 10% down to= 1, at which point the invariant
result is bigger than the classical result by a factor.6f 1

4.5.2. General caseinonedimension. The form of the above estimate is quite
general in the one-dimensional case. Consider that we have derived the metric
on T, h. The distance between two points and y1 is then given according to
the general discussion in Section 3. In a general coordinate sy&tehis can be

written
) 1 dn  \A\Y2 0 1/2
d(y’”‘/to dt(h(n(z))(z(t)) ) —fg0 a6 hY2(9),

wherer (fp,1) = 0.1, 00,1 = 6 (y0,1) andh is the (single) component of the methic

in the 6 coordinate system. Note that there is no need for a minimization in one
dimension. All paths with the same endpoints belong to the same equivalence class
under the action of (boundary- and orientation-preserving) diffeomorphisrhs of
Now let H be the inverse derivative @f/2. The (signed) distance between the two
points is nowd (61, 6p) = H (61) — H (6p). Including this in (3.3), differentiating.

and equating to zero then gives the result that

H() = Eq[H],
and thus that
6 = H1Eg[H].

In more than one dimension, of course, the problem is a great deal more
complicated, since there is an infinity of equivalence classes, and the minimization
means solving a partial differential equation for the geodesics.

5. Discussion and related work. There is a significant amount of work on
the geometry of probability measure spaces from the point of view of classical
statistics; Murray and Rice (1993) and Kass and Vos (1997) provide recent
treatments. As interesting as this work is, it has focused on asymptotics and other
issues of importance to classical statistics, while the Bayesian approach using
prior and posterior probabilities and loss functions has largely been ignored. As
a consequence, it is not directly relevant to the problem posed in this paper. For
example, Murray and Rice (1993) assert that the Riemannian distance is not of
statistical significance, although they give no arguments, and that the mean in a
manifold cannot be calculated; all that is possible is an analysis of the way in which
the value of the mean, calculated in coordinates, changes with the coordinates. As
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we have seen, however, the Riemannian metric precisely allows the definition of a
natural, coordinate-invariant generalization of the mean.

The pulled back metric defined in Section 4.3 was first introduced by Rao
(1945), but it was the work of Amari (1985) that brought these ideas to prominence.
Amari (1985) introduced, in addition to the metric, a family of connections
on I', one of which was the metric connection compatible with the metric. The
nonmetric connections, however, cannot be used to define the structures necessary
for invariant Bayesian estimation as described here. Efron and Hinkley (1978) and
Barndorff-Nielsen (1987) introduce “observed” geometric structures, but again
these do not enable the definition of invariant estimates satisfying the two criteria
in this paper. For example, the observed Fisher information metric of Efron and
Hinkley (1978) is not a tensor, and thus violates the first criterion. In addition, it
requires the definition of an underlying measure on the data spaestimation
is not invariant to this choice. Critchley, Marriott and Salmon (1994) develop
“preferred point geometry” to try to ameliorate the lack of naturality they perceive
in previous geometric approaches to statistics. The “preferred point metric” they
define is, however, not invariant to diffeomorphisms, precisely because there is a
preferred point. It thus violates the second criterion.

There is, from a Bayesian point of view, a more general objection to the
asymmetric or preferred point structures (many of which also violate the triangle
inequality) used in much of the above work. This objection is essentially the same
as the original motivation for introducing them, which is the notion that there is
a “true distribution” that must be treated differently, and related problems, for
example, the worry that this distribution might not lie in the imageofThis
notion does not exist, and indeed does not make sense, in a Bayesian approach.
This can be seen by using, for example, a preferred point metric in the formula
for the posterior density, (3.1). The preferred point is undefined, yet if it is
taken to be the argument to the posterior density, seemingly the only reasonable
choice, then the “preferred point” vanishes and we are back to the Riemannian
metric described herein. Thus the raison d’étre of these more complex structures
disappears.

From another direction, Pennec (1999) develops some basic statistical tools for
Riemannian manifolds, and applies these ideas in various ways to problems in
computer vision. The approach is not Bayesian, however, and in particular the
choice of a metric and the relation with estimation problems, including the use
of the metric measure as an underlying measure for MAP estimation, are not
considered.

MML inference was developed by Wallace and Boulton (1968) and Wallace
and Freeman (1987). A discussion of its relationship with the standard Bayesian
approach and of its invariance properties can be found in the above papers and in
the paper by Oliver and Baxter (1995). The literature on MML inference frequently
cites the invariance of MML estimates as one reason to prefer them to MAP
estimates. The above analysis shows that this is not a special property of MML
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estimates, or a deep problem with MAP estimates. Indeed, the issue is not one of
MAP estimation per se. Lack of invariance is a consequence of not describing the
guantities of interest ir" in a coordinate-invariant, and hence meaningful, way.
To do this, one must recognize that a metric is lurking in the definition of both
MAP and MMSE estimates, and indeed in any useful discussidn, @nd that
making it explicit is a necessary condition for meaningful definitions in arbitrary
coordinate systems. Once done, the definition of coordinate-invariant estimates is
an immediate consequence of the geometry. Although (3.1) with the pulled back
metric as underlying measure is formally the same as that for MML estimates,
unlike MML methods, no discretization df is needed, and no approximations
are made. In fact, the above derivation throws light on the procedure used in
deriving MML estimates, which from this point of view appears to be a roundabout
way of defining an underlying measure by first discretizing the manifold and then
considering the volume of each cell.

The fact that we are discussing the geometry'odnd not a particular form
of estimate means that the analysis presented here is more general than MML,
however. By recognizing the necessity of an explicit metriclofor inference,
the way is open for the definition of coordinate-invariant loss functions of
many different types. Here we have given the example of a coordinate-invariant
MMSE estimate, the MMSD estimate, but whenever defining a loss function on a
parameter space, the issues described here must be taken into account.

5.1. Discussion of choice of metric. In Section 4 we came to the conclusion
that the only choice of metric that satisfies the two conditions mentioned at the
beginning of that section is the metric induced by pullback feei(X). To recap:
the metric and its associated underlying measure should not introduce information
about I'. Such information should be contained in one of two sources: the
correspondence between pointsioénd points ofM (X), and the prior measure.
The first leads to the idea that the metric on diffeomorphically related copies
of T should be related by pullback, while the second eliminates the possibility
of choosing a metric on one fixed copy Bfand then pulling it back to the other
copies, since this implies that we must be able to assign a value of the metric to
particular points il" a priori, which in turn implies that we must know something
about the identity of these points beyond the information contained in the prior.
Hence the result given.

Note that this argument is somewhat different from that normally used for
Jeffreys’ prior, or rather is a clarification and a refinement of that argument,
which essentially boils down to proving that this prior is invariant under
“reparameterizations.” First, the emphasis is on the metric as providimgth
geometry, and not on the measure, which is a derived quantity. Second, coordinate
invariance is not an issue: the abstract way in which the geometry is described
does not rely on a particular choice of coordinate system. Equation (3.1), for
example, is coordinate-invariant for any choice of metric. Instead the emphasis
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is on diffeomorphism invariance: our results should not depend on which copy
of I we use, since this merely “shuffles” the pointslofwithout changing their
correspondence with points @t (X).

The use of the underlying measure of the pulled back metric does not commit
us to using Jeffreys’ prior as a noninformative prior. Thus the large amount of
previous work [Bernardo (1979) and Kass and Wasserman (1996)] on the choice
of such priors, fascinating though it is, is not directly relevant to our discussion
here. Note in particular that the problems associated with Jeffreys’ prior do not
appear when we are talking about an underlying measure. Normalization is not
necessary since the underlying measure is not a probability measure. Second,
the procedure advocated here suggests that we should first eliminate nuisance
parameters using whatever prior information we possess, to obtain a likelihood
on the parameter of interest, and only then derive the metric by pullback. Thus
the various “paradoxes” associated with the noncommutativity of the derivation of
Jeffreys’ prior and marginalization do not arise.

Our argument for the metric and underlying measuré atoes not depend on
group-theoretic considerations. Nevertheless, the metric is compatible with these
considerations, as is Jeffreys’ prior, because of the following simple argument. Let
X be a manifold with metridi, and letY be embedded iX by f. Suppose we
have two group action8x : G x f(Y) — f(Y)andBy:G x Y — Y. Note that the
group action onX need only be defined for the image Bf it may, for example,
be induced by the group action @nitself. If we have

f
Yy — f(Y)
By (&) T T Bx(g)

Y — f(Y)
f

then, if G acts by isometries o, endowingY with the metric/*h ensures thaf
is an isometry also. Therefor€, must act by isometries on. If Y is G itself, this
ensures that the underlying measure induced by the mgthiés a Haar measure.
Finally, an information-theoretic intuition is interesting. In computing the
MAP estimate, it is equivalent to maximize the logarithm of (3.2). Naturally the
logarithm consists of the difference of two terms: the logarithm of the posterior
density and the logarithm of the underlying density. The role of the underlying
density is the following. The information that we possess should presumably be
that amount of information that we possess beyond “ignorance.” If our expression
for “ignorance” does not possess the value “zero” (i.e., the identity) in the algebra
in which we add and subtract information, then the information that we possess
beyond “ignorance” should be the difference between the algebraic element
representing our knowledge, and the algebraic element representing “ignorance.”
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In view of the “noninformative” nature of the underlying measure that we are
using, the MAP estimate can thus consistently be thought of as finding that point
in T' with maximum information.

This intuition, and the invariant nature of the underlying measure, suggest that
this measure should be the reference measure for the maximum entropy approach
to generating prior measures on manifolds. This is a subject for further research.

APPENDIX: FORMS

We provide a short introduction to the language of forms. A good reference is
the book by Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick (1977). Briefly,
differential forms are antisymmetric, multilinear functionals on products of vector
spaces. For manifolds they are defined pointwise on the tangent space at each point
and then required to satisfy smoothness properties. They also allow a beautiful
theory of integration on manifolds, and in this capacity they are thought of as
co-chains, linear functionals on the vector space of chains in a manifold. Their
advantages are great concision and uniformity of notation; independence of basis
or coordinates; manifest invariance to diffeomorphisms and other transformations;
and generality. In bringing together integration and geometry in one notation, they
are ideal for our discussion.

We are given a manifol@'. From here, we can define the tangent space at each
point, 7,,I", using a number of approaches. The result is intuitively clear, however,
so we will not go into detail. We can bring all the tangent spaces together in the
tangent bundle, TT. This is another manifold, each point of which can be thought
of as apair: apoing in I and a vector i), I". There is a canonical projection from
TT to T" supplied by forgetting the tangent vector. At each pginthe tangent
spaceT, I' has a dual spacd,’T", the space of linear maps frofy I to R. These
can be combined to form the co-tangent bundl&l". A vector field is a section
of the tangent bundle: a map frofto TT whose left inverse is the canonical
projection.

We can also form product bundles, in which the “extra space” at eachpant
the product of copies of the tangent space; thus each poifihcan be thought
of as a pointy and an element @q®” 7,,I". Now at each point we can define higher
dual spacesl, T = ®” T, T is the space of multilinear functions ok”T,T.In
particular, we can restrict attention to the antisymmetric linear functions: those that
change sign under the interchange of any two arguments. These are antisymmetric
tensor products of the co-tangent space, denpted;’T". Their combination into
a bundle is denoted\” T*I". A section of A\ T*I" defines, for each point, an
element of \” T;T. Sections ofA\? T*I" are known agorms, andp is thedegree
of the form. We denote the space pfforms APT". Forms of degree andg can
be multiplied to give forms of degrege + ¢g. Because the product of co-tangent
spaces is antisymmetric, all forms of degree higher thathe dimensionality of
the manifold, are zero. O-forms are functionslon
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In order to express vectors and forms more easily, it is convenient to introduce
bases for the various spaces. This is easily done using a coordinate system
6. — R™. A basis forT,I' is then the set ofag—j(y). The dual basis foT;‘F

is then the set of#’ (y), which acts on the basis @i, T as

46 ) (505 0)) =5
Taking the collection of these bases all o¥erwe have bases for the spaces of
vector fields and 1-forms. Now we can form bases for the various power bundles.
For example, a basis for the space of 2-forms is given by théodep) A do/ (y),
where A denotes the antisymmetric product. We will denote the basis element
dét(y) n--- And6™(y) of the space ofi-forms (there is only one—if the indices
are not different, antisymmetry of the product means the result is zewy gy ).
The sign of this basis element (or in other words, the order of the factafg’of
that it contains) defines asrientation on the manifold, in the sense that a basis
for the tangent spaces, when acted upon by the form, will give either a positive
or negative result depending on its orientation in the traditional sense of right-
and left-handed coordinate systems. Given an orientation in this sense, a basis
for the tangent spaces is eithaiiented or not. Not all manifolds admit a global
orientation. We consider only orientable manifolds.

Given another manifold’, and a mapA : Y — I', we define thdangent map
or derivative map at a pointy € Y, A,:T,Y — Ta(,yI' as follows. A point
(y,u) e TY istakento(A(y), A.u) € TT, where, in terms of coordinatés onT’
and¢® onY, in whichu = u“%, we have

- AT D
Agu=(Agu) — =u*——,
90! AP 96!

where A’ = 9'(A). We also introduce the convention that repeated indices, one
up, one down, are summed over.

Using this map, we can define tpallback A*A of a formA € APT (or in fact
of any member of a power of a co-tangent space, whether antisymmetric or not) as

AA (v, ..) =Ang) (Asu, Ay, ...

Thus the action of a pulled back form on tangent vectors is defined by the action
of the original form on the tangent vectors pushed forward by the tangent map.
As well as antisymmetric products of co-tangent spaces, we can form symmetric
products. If at each point we form the space of symmetric, bilinear functions on
T,T' x T, T', which we will denote " v TT", we can again form a product bundle
T*T v T*T'. A metric h on T is a positive (semi-)definite section of this bundle:
to each pointy it assigns a positive (semi-)definite elementdf” v 77T, or in
other words, an inner product dh I
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In a particular coordinate basj%(y), the metric has components given by

0 0
By = hy<@<y>, @m).

The matrix elements of the metric at each painpossess a determinant, which
we will write |h|g (0 (y)).

Using the metrich, we can define a canonical isomorphism, taglge star *p,
betweenAPT" and A™~PT". We show here its action fgp = 0 and p = m only,
since that is all we will need. We choose coordinategnothing will depend on
this choice). Letf be a 0-form, and leA = A d™6 be arm-form (A is a function—
the component oA in the basis!™0). Then we have

xhf = hY2fdme,

(A.1)
*hA = |h| 7?4,

where we have suppressed arguments and reference to the coordinate system in the
definition of the determinant for clarity.

The Hodge star can be used to define an inner product on/achSincex, A
is an(m — p)-form if A is a p-form, the quantityA x, B for two p-forms is an
m-form, and can be integrated &h

(A.2) ((A,B)):fFA*h B.

We can definepositive m-forms as those whose action on oriented bases
produces a positive result. It is equivalent to say that their dual under the action
of the Hodge star is a positive function.phobability m-formis a positivern-form
whose integral over is equal to 1. We can divide-forms by positiven-forms.

For anm-form A and a positiver-form B, the value of% is that unique functiorf
such thatA = fB. This division is the analogue of the Radon—Nikodym derivative
for forms.

On anm-dimensional manifoldy:-forms can be integrated in the way that the
notation suggests. For anform A = Ad™6, we have that

/ A= A0)d™0,
Qcrl 6(2)

where we have used the same symbdbr the function and its expression in terms
of coordinates.
To integrate ap-form A over a p-dimensional submanifold embeddedIin

y 2 I", one first pulls the form back to the embedded manifold and then integrates:

/ A= / A*A.
A(Y) Y

These definitions highlight the second way of interpreting formsoashains.
A p-chain inT is (roughly speaking) a linear combination pfdimensional
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rectangles embedded in the manifold. The space of linear functions on the space
of p-chains (the co-chains) can be identified WART.
We will have cause to integrate a functigrover ap-dimensional submanifold

A o _ . .

Y — T" of I". This is slightly different from the case of integratingpeform. One
first pulls the function back t& and then uses a metric dnto convert the function
into a p-form that can be integrated ovEr

/Amf:/y*hA*f’

where by definition A* ) (y) = f(A(y)), andh is a metric ony.

However, since we are interested in the submanifoll mnd notY itself, we
are really considering an equivalence class of embeddifigs wheres:Y — Y
is a diffeomorphism, with the same image. The result of our integration should be
independent of the representative in this equivalence class, and this means that the
metric onY must vary with the representative. If no representative is distinguished,
the only way to achieve this invariance is to pull back a megranI" to Y, and
use this metric to define the Hodge star:

fA(Y) = /Y*A*gA*f'
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