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Miraculous Success? Inconsistency and Untruth in 

Kirchhoff’s Diffraction Theory
1
 

Juha Saatsi and Peter Vickers 
 
 
 

Kirchhoff’s diffraction theory is introduced as a new case study in the realism debate. The theory 

is extremely successful despite being both inconsistent and not even approximately true. Some 

habitual realist proclamations simply cannot be maintained in the face of Kirchhoff’s theory, as the 

realist is forced to acknowledge that theoretical success can in some circumstances be explained 

in terms other than truth. The idiosyncrasy (or otherwise) of Kirchhoff’s case is considered. 

 

The sole virtue of Kirchhoff’s theory of diffraction lies in its 

correct predictions and not in its false assumptions.  

(Andrews 1947, 784) 

 

1. Introduction. Scientific realists seek to establish a link between theoretical truth and 

predictive success, suitably understood. Different realist strands can be discerned by 

asking how theoretical truth on the one hand, and predictive success, on the other, are 

to be understood. What sort of link holds between the two? This paper introduces a new 

case-study pertinent to the above questions: we adduce some facets of Gustav 

Kirchhoff’s diffraction theory that call for a more nuanced treatment of the central 

connection between predictive success and truth. 

                                            
1
 Paper published (2011) in the British Journal for the Philosophy of Science 62(1), pp.29-46. 
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Much realist ink has been spilt over the anti-realist challenge regarding the high level 

of predictive success of (what appear to be) grossly false theories. Ether theories of light 

have played a justifiably central role in the debate: their predictive triumphs are prima 

facie rather surprising by realist lights. We believe that realists got the upper-hand in this 

dispute some time ago; in the ensuing discussion the devil has been purely in the detail. 

For example, it has become apparent that surprisingly subtle manoeuvrings are required 

to properly draw out the correspondence that holds between Fresnel’s theorising and our 

current understanding of light, and there are still open questions about the most 

appropriate level of realist commitment in some other cases. But all this is relatively 

minor tinkering and disagreement within the realist camp, as most realists agree that 

there is a sense in which Fresnel’s success can be fully accounted for in terms of what 

Fresnel actually got right (by the present lights). Whichever streak of “selective realism” 

one prefers, arguably our best current theory says the very same things about the world 

in those relevant respects that are explanatory of the past theory’s success in the realist 

sense.2 For example—just to illustrate by mentioning one option—one might argue that 

the ether scenario on which Fresnel’s success is built instantiates exactly the same 

critical (higher-level) properties as the corresponding Maxwellian scenario (Saatsi 2005). 

Although we cannot take at face value Fresnel’s description of this scenario, ether and 

all, we can nevertheless take seriously the equations employed in his derivation. For 

those very same equations, minimally interpreted, describe the relevant properties of the 

electromagnetic field. 

                                            
2
 Selective realism comes in many variants: structural realism (Worrall 1989), semi-realism 

(Chakravartty 1998), divide-et-impera (Psillos 1999), eclectic realism (Saatsi 2005). The whole 

stratagem has been accused of relying too much on hindsight (e.g. Stanford 2006). Although we 

believe that this accusation can be rebutted (cf. Saatsi forthcoming), we shall not tackle this 

contentious issue here.  
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Regardless of which brand of selective realism one settles on, the case-study 

introduced here is problematic since it doesn’t fit the required mould. The fact that 

Gustav Kirchhoff (1824–1887), like Fresnel, was operating in the ether paradigm is not 

problematic per se. By employing the ether-wave conception of light Kirchhoff (1882) 

derived a celebrated equation in the scalar diffraction theory of optics, describing the 

behaviour of light with remarkable accuracy. The predictive accuracy achieved is prima 

facie amazing for two reasons: it turns out that Kirchhoff’s derivation turns on crucial 

assumptions regarding the amplitude of light waves that (i) differ considerably from the 

actual situation (as described by Maxwell’s equations, for example) in various respects, 

and (ii) as a matter of fact are inconsistent. The selective realist cannot explain this 

success by pointing out the fact that ‘ether’ in Kirchhoff’s theorising referred to an idle 

metaphysical posit that didn’t play a role in the actual derivation. The problem simply is 

that there is no appropriate correspondence between Kirchhoff’s theory and our best 

current understanding of diffraction at the level of success-fuelling properties, “structure”, 

or whatever the selective realist might attempt to capitalise on. 

Kirchhoff’s feat has not gone unnoticed in the physics literature; quite the contrary—

physicists and mathematicians have carefully analysed Kirchhoff’s theory in order to 

understand what makes it tick. Examining the theory more closely yields an 

understanding of its success, but the case is fundamentally different from many other 

successful ether theories: the selective realist is led intolerably astray if she optimistically 

commits to those premises of Kirchhoff’s derivation that are responsible for its success. 

It is impossible to view Kirchhoff’s theory as approximately true in any reasonable sense, 

even if the derivation is construed in contemporary realist terms that ignore the 

assumption that the ether is the bearer of light waves. 

Kirchhoff’s case demonstrates how it is possible to derive highly accurate predictions 

from misguided and even inconsistent premises. This undermines a certain (implausibly) 
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strong form of realism, which we outline in the next section under the label “Naïve 

Optimism”. Thereafter in §3 we introduce Kirchhoff’s theory, before we highlight the 

specific details of the theory which act to undermine naïve optimism in §4. In §5 we 

consider the wider consequences for realism, and in particular for less naïve forms of 

realism. Any such form of realism must allow that sometimes the best explanation of 

success is not in terms of truth. We will argue that this need not entail the demise of 

realism, as long as Kirchhoff’s case can be viewed as having idiosyncratic features that 

do not generalise across the rest of science. §6 is the conclusion. 

 

2. The Naïve Optimist. Part of the debate between realists and anti-realists turns on 

how best to explain the success of a particular theory. Realists adhere to their intuition 

about the low likelihood (‘miracle’) of a (duly) successful theory that is not even 

approximately true. There are difficult questions to be answered about how the relevant 

likelihood should be conceived (Magnus and Callender 2004, Psillos 2006). We do not 

wish to engage in this debate here. Rather, we are concerned with the more specific 

question whether the realist should expect every instance of novel success to be 

explained by the truth content of the key theoretical assumptions. Let’s call those who 

answer this question in the affirmative naïve optimists.  

It is not clear why any realist would a priori deny the possibility of some actual 

predictive successes being explainable in terms other than truth. After all, the possibility 

of there being some such successes is not inconsistent with the realist credo that the 

best explanation of the success of science on the whole is that theories latch onto 

unobservable reality by and large. Although it is difficult to make this precise in 

probabilistic terms, the general thought is clear enough: there is no clear motivation for 

any realist to insist a priori on a connection between success and truth that allows no 

leeway whatsoever. Most realists, we believe, would concur. 
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Nevertheless, the Naïve Optimist position is not a complete strawman. For example, 

Leplin’s classic characterisation of realism included the clause ‘The (approximate) truth 

of a scientific theory is the only possible explanation of its predictive success’ (1984, 1, 

our emphasis). And Psillos and Ladyman carry this spirit on by effectively talking about 

the possibility of a counter-example to the realist's no-miracles argument: 

 

[A]t least some past theories which pass both realist tests of maturity and 

success are nevertheless considered false. […] If these theories are 

false, despite their being distinctly successful and mature, then the 

intended explanatory connection between empirical success and 

truthlikeness is still undermined.  (Psillos 1999, 108) 

 

Even if there are only one or two [problematic] cases, the realist's claim 

that approximate truth explains empirical success will no longer serve to 

establish realism. This is because, where a theory is empirically 

successful, but is not approximately true, we will need some other 

explanation. If this will do for some theories then it ought to do for all, and 

then we do not need the realist's preferred explanation that such theories 

are true. (Ladyman 2002, 244) 

 

Surely matters are not so clear-cut, however. It is quite conceivable that we might be 

able to explain the success of some particular theory T1 in such a way that we would not 

expect that kind of explanation to generally apply across the board. Understanding 

Kirchhoff’s success from the present-day perspective will provide an example of such 

explanation, and exploring this case will allow us to elaborate on this preliminary, purely 

conceptual point. 
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In order to be more precise, let us characterise the Naïve Optimist position as 

adhering to the following assumption: 

 

(NO) Any significant novel predictive success is explainable by the truth content of the 

assumptions (equations, models, structure, etc.) which play an essential role in 

the derivation yielding that success. 

 

Different realists have different ideas about how to best capture the essential truth 

content that can explain success in a 'non-miraculous' way. Naive optimism is clearly 

compatible with any realist position with respect to this separate issue. We can talk 

about a derivation being (explanatorily) approximately true, using the term 

'approximately true' broadly so as to include structural realism, say, which would only 

commit to truths about structure as the essential explanatory truth content.3 

There are some respects in which (NO) certainly isn’t naïve, but captures a relatively 

careful realist position. To begin with, such a realist is only willing to make her inference 

when there is evidence of novel predictive success, rather than mere explanatory 

success, or mere ad hoc accommodation of data, say. Furthermore, such a realist is 

focusing on the derivations that generate successes, rather than simply “theories”. The 

reason for this is twofold. First of all, the realist needs to recognise that a general 

theoretical framework often has excess baggage that in closer analysis plays no 

                                            
3
  There are two informal senses to ‘approximate truth’ in the literature. First of all, we can talk 

about theories being approximately true in the (broad) sense that can incorporate the various 

selective realist manoeuvres (Saatsi, 2005). Secondly, we can talk about various individual 

assumptions of a theory being approximately true in the (narrow) sense that pertains to the 

numerical values of various quantitative properties, say. 
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essential part in generating a predictive success of interest.4 Secondly, the realist needs 

to recognise that it can be very difficult to say what a theory is, and what its role is in 

generating a success—as opposed to a set of specific modelling assumptions, say, that 

drive a derivation. It is better to focus directly on the derivation of a successful prediction 

and on the assumptions that go into that derivation; after all, the realist needs to explain 

how the outcome of that derivation does not indispensably depend on radically false 

assumptions about the world. Given such provisos, there is no need to avoid using the 

word ‘theory’, understood broadly as a set of assumptions about the world, required by a 

derivation, such that these assumptions are purportedly true about the system in 

question (and hence excluding manifest idealisations).5 

Although (NO) captures a careful realist position in some respects, the position is 

nevertheless naïve in the supposition that novel predictive success could not possibly be 

born of a derivation based on radically false assumptions. All derivations of novel 

predictive success are lumped together, without allowing that distinctions might need to 

be drawn between different cases. Included is the implicit assumption that we can infer 

approximate truth from predictive success without taking into account any particular 

features of the theory in question. That is, the connection between success and truth is 

not qualified by the domain of theorising in question, by the mathematics used in the 

derivation, by the nature of the system under theorising, or by anything of that ilk that 

might conceivably power success-production under some particular circumstances. 

Hence, according to Ladyman, for example, one can undermine the realist’s gambit by 

                                            
4
 For example, only by studying the actual derivation of Fresnel’s equations will one find that, 

surprisingly, the wave aspect of the ether-wave theory of light played no essential role in the 

derivation. (Cf. Saatsi 2005) 

5
 We will use ‘Kirchhoff’s theory’ and ‘Kirchhoff’s derivation’ (including the assumptions required 

for it) interchangeably, as is customary in the physics literature. 
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producing a single counterexample to the success-to-truth inference, with no regard to 

the potential idiosyncrasies of such an example.  

 

The case study that follows forces the Naïve Optimist to abandon her realism—unless 

she is willing to be less naïve, of course. We will argue that attending to the details of 

this case should lead the realist to qualify the connection between success and truth. 

 

3. Kirchhoff’s Theory. The naïve optimist’s position is to be tested in the face of 

Kirchhoff’s diffraction theory. Kirchhoff’s derivation of the Fresnel–Kirchhoff diffraction 

formula for the amplitude of light waves, 



U(P)6 

 

 dSsnrn
rs

srikiA
PU

A
),cos(),cos(

))(exp(

2
)( 


 

       (1) 

 

is relatively simple, yet mathematically rich in interesting ways (see Figure 1). 

Connection with observations is made by calculating from (1) the intensity of light as the 

amplitude squared (



I  U(P)
2
). This predicts how light originating from a point 

source
0

P , and passing through a small aperture in a flat, thin screen, will give rise to 

some intensity



I  at a point P  on the other side of the screen. 

There is an essential bit of purely mathematical background to Kirchhoff’s success. 

Kirchhoff, a leading figure in the study of Green’s functions in connection with the wave 

equation, employed Green’s theorem and the time-independent (i.e. Helmholtz) wave 

equation to prove the central Helmholtz–Kirchhoff integral theorem: 

 

                                            
6
 We follow Born & Wolf 1999, chapter 8. 
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Figure 1. Kirchhoff’s method of determining diffraction at an aperture. Obviously P0 is the source 

of the light, and P is the point beyond the screen at which we want to know the light intensity. In 

addition Q is a point in the aperture whose contribution we are considering at a given time, r is the 

distance from P0 to Q, s is the distance from Q to P. An imaginary surface of integration S is 

comprised of A (the aperture), B (part of the screen), and C (part of a circle of radius R which has 

P at its centre). n is a normal to the aperture, (n, r) is the angle between this normal and the line 

joining P0 to Q, and (n, s) is the angle between this normal and the line joining Q to P. (Figure 

taken from Born and Wolf 1999, p.421.) 

 

This formula expresses the scalar amplitude U  at a point P  in terms of the values of U  

and nU   on any closed surface of integration S  drawn around P .7 This allows one to 

calculate the wave amplitude at a given point as a boundary value problem.  

                                            

7
 Here s  is the distance from P  to the surface of integration, and n  denotes differentiation 

along the inward normal to S  (cf. Born & Wolf 1999, 417–419). 
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For the diffraction problem at hand this is not very useful by itself, of course, since 

the values of U  and nU   are not known behind the screen. The Helmhotz–Kirchhoff 

theorem can be usefully applied to a variety of special cases, however. Our central point 

of interest, Kirchhoff’s diffraction theory, applies the mathematical theorem to the 

scenario depicted in figure 1, with a point-source 
0

P  sending out a monochromatic 

spherical wave. The closed surface of integration S  is chosen to comprise (a) the 

aperture A , (b) the non-illuminated side of the screen B , and (c) a portion C  of a large 

sphere of radius R , centred at P  (cf. figure 1). At the heart of Kirchhoff’s theory are the 

following three assumptions about the system: 

 

(A1) The field at the aperture A  is as if the screen did not exist; i.e. the screen 

does not perturb waves at the aperture.  

(A2) The field and its normal derivative vanish immediately behind the screen, i.e. 

a. 0U  on B 

b. 0 nU  on B. 

(A3) The contribution of the integral around C  vanishes as R  (‘Sommerfeld 

radiation condition’). 

 

As one can readily see from the form of equation (2), it follows immediately from these 

assumptions that the only contribution to the integral comes from the field at the aperture 

A . Assuming furthermore that the point source 
0

P  emits a spherical field 
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one straightforwardly derives the Fresnel–Kirchhoff diffraction formula (1). This formula 

is supremely accurate in predicting diffraction effects.8 It is still widely used in practice 

and discussed in the optics literature (Cf. e.g. Mielenz 2002, Li 2005, Bruce 2007). 

What should the naïve optimist’s attitude be in the face of Kirchhoff’s novel predictive 

success? The assumptions (A1)-(A3) above are absolutely vital to Kirchhoff’s derivation 

(they are certainly ‘working posits’) and they are also quite plausible intuitively speaking 

if one thinks of light as waves in the ether. The realist happily infers from all this that the 

key assumptions behind Kirchhoff’s derivation are most probably at least approximately 

true. In other words, Kirchhoff’s assumptions (A1), (A2) and (A3) at least closely 

approximate the actual wave-amplitudes at the aperture and behind the opaque screen. 

For wouldn’t it be quite ‘miraculous’ if Kirchhoff’s assumptions were not even nearly 

true? The Naïve Optimist, in particular, is willing to stick her realist neck out as she 

proclaims that the approximate truth of (A1)–(A3) is the only explanation of Kirchhoff’s 

success that is consistent with realism. Were that really the case, realism would 

presently flop. 

 

4. Inconsistency and Untruth in Kirchhoff’s Theory. Like any non-fundamental 

theory, Kirchhoff’s incorporates various levels of approximation and idealisation, well 

documented in the literature. For example, as a scalar diffraction theory it ignores the 

vectorial nature of the electromagnetic field to begin with. But our claim that the theory is 

not even approximately true is not based on such small-scale idealisations. These are 

uninteresting compared with the ways in which the assumptions (A1) and (A2)—

                                            

8
 In typical circumstances, that is: the aperture needs to be several wave lengths in width, and the 

inspection-point P   and the source-point 
0

P  need to be several wave lengths from the aperture, 

for example. 
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collectively known as Kirchhoff’s boundary conditions—misrepresent the behaviour of 

light. One would expect these not to be literally true, of course, on the basis that the 

edges of the aperture, however thin, are bound to perturb the field to some degree.9 

Such minor simplifications are unproblematic and insignificant, however, relative to the 

startling fact that Kirchhoff’s boundary conditions are (a) inconsistent altogether, and (b) 

wide of the mark regarding how light actually behaves at the aperture. 

Thus two puzzles present themselves: the ‘inconsistency puzzle’ and the ‘error-

tolerance puzzle’. It will turn out that only the latter presents a genuine challenge for the 

realist, but we will give a reasonably detailed account of the inconsistency of Kirchhoff’s 

assumptions since it is widely discussed in the optics literature, intrinsically interesting, 

and naturally leads to the puzzle about error-tolerance, as we will now see. 

 

4.1. The Inconsistency Puzzle. The inconsistency of Kirchhoff’s theory is much 

discussed in the earlier optics literature. The opening sentences of Heurtley (1973) 

capture the inconsistency puzzle: 

 

A problem of continuing interest in scalar diffraction theory is why the 

mathematically inconsistent theory of Kirchhoff predicts results that are in 

substantial agreement with experiment. (1003) 

 

The inconsistency manifests itself in various ways. Mathematically it is rooted in 

incorrectly over-determining the boundary conditions by fixing both U  and nU  , when 

fixing either would uniquely determine the solution of the elliptic wave equation (see e.g. 

                                            
9
 From the modern perspective this follows from the continuity conditions for Maxwell’s equations, 

but plausibility arguments can also be given in the elastic ether framework. 
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Barton 1989). Furthermore, it can be shown that fixing U  and nU   to vanish over a 

finite line segment entails 0U  across the whole plane (Sommerfeld 1954, 198). 

Another way to demonstrate the inconsistency is by using (1) to calculate U  and nU   

as the observation point P  approaches the screen or the aperture: the boundary values 

assumed in the derivation of (1) are not recovered at the boundary (as already noted by 

Poincaré 1892, 187). 

One possible way scientists have attempted to solve this ‘puzzle’ is to find a theory 

which is a close relative of Kirchhoff’s but which is consistent. Obvious candidates arise 

in the form of the so-called Rayleigh–Sommerfeld (RS) diffraction theories.10 These 

theories are consistent by virtue of adhering to a proper subset of Kirchhoff’s over-

specified boundary conditions: regarding the field behind the screen only either (ii a) or 

(ii b) is assumed to hold, but not both simultaneously. These two alternative sets of 

boundary conditions yield two different equations that correspond to the Fresnel–

Kirchhoff diffraction formula (1)—the RS diffraction integrals: 
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10

 In the optics literature it is customary to talk about the Rayleigh–Sommerfeld theory, which then 

has two solutions corresponding to two alternative boundary conditions. We prefer to speak of 

two RS theories, unified by a common mathematical framework, because one can identify two 

different (although partly overlapping) sets of physical assumptions. 
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Comparing these with the Fresnel–Kirchhoff diffraction formula at the limit r , 

s  shows that the field amplitude U  according to Kirchhoff’s theory is essentially 

equivalent to the two different predictions that come out from the consistent RS theories. 

For small angles of incidence and diffraction 1),(cos( rn , )1),cos( sn  we have 

 

UUU
II

RS

I

RS
 .11 

 

Since the assumptions made by these two theories are proper subsets of the 

assumptions of Kirchhoff’s theory, one might hope that one or another of them keeps 

what is right about Kirchhoff’s theory and does away with what is false. At first it might 

even be supposed that this situation follows the pattern identified by Norton (1987, 2000, 

2002), where the success of an inconsistent theory is seen to be due to it incorporating a 

consistent “sub-theory”. But as a matter of fact Kirchhoff’s derivation does not get off the 

ground without both assumptions (ii a) and (ii b). There is no clear sense in which the RS 

theories would constitute sub-theories of Kirchhoff’s theory; the RS theories only work by 

giving derivations fundamentally different to Kirchhoff’s. At any rate, it isn’t clear that the 

realist would be happy with turning to these two theories, since as a matter of 

experimental fact Kirchhoff’s theory outperforms both Rayleigh–Sommerfeld theories in 

many circumstances. That is, in many circumstances the inconsistent theory is more 

accurate than the theories which are in a sense its nearest consistent alternatives, 

although the two mutually incompatible alternatives each hold sway over certain ranges 

of parameter values (Totzeck 1990). 

                                            

11
 In fact, curiously enough, U  is an arithmetic average of the two RS theories: 

 UUU
II

RS

I

RS


2
1 . 
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It is no wonder that physicists have been puzzled by these fascinating facts about 

Kirchhoff’s theory and its relationship to RS-theories. However, nothing yet said need 

overly perturb the realist. Even if she can’t straightforwardly turn to either of the RS 

theories as representing consistently what makes Kirchhoff’s theory tick, no reason has 

yet been given why she can’t maintain that the assumptions (A1)-(A3) are each 

approximately true. But things do become more awkward for the realist in the face of 

another theory which is a somewhat more distant relative: the Marchand-Wolf (MW) 

theory. 

Marchand and Wolf (1966) show that Kirchhoff’s diffraction formula (1) can be 

derived—exactly—from a consistent set of assumptions. Kirchhoff’s boundary conditions 

are modified by introducing an effect due to the “scattering” of light off the edges of the 

aperture. This systematically changes the amplitude and its normal derivative both at the 

aperture and behind the screen, and renders them quite different from what Kirchhoff 

assumed. Instead of an undisturbed “flat” wave across the aperture one finds a number 

of peaks and troughs of intensity as one moves across it (see Marchand and Wolf 1966, 

1716, fig.3(b)). It turns out that Marchand and Wolf come close to matching what we find 

when we work directly with Maxwell’s equations (see figure 2, below). 

Marchand and Wolf suggest that their theory explains the success of Kirchhoff’s 

theory in the face of its inconsistency: 

 

In the present paper we show that the inconsistency in Kirchhoff’s 

diffraction theory is only apparent (Marchand and Wolf 1966, 1713). 

 

And this attitude is found throughout the literature; for example Stamnes (1986) 

writes, 
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The consistency of the Kirchhoff diffraction theory was first demonstrated 

by Marchand and Wolf (1966). (27) 

 

Prima facie, these remarks are rather puzzling: the derivation of Kirchhoff’s formula 

makes essential use of boundary assumptions which are simply not recovered when the 

formula is evaluated at the boundary! But a more careful reading of the aforementioned 

authors indicates that the above claims can be put down to careless use of language 

and a different perspective on the inconsistency puzzle. These authors are happy to 

explain why Kirchhoff’s diffraction formula is so successful—namely, exactly the same 

formula springs from a consistent, well-motivated theory the assumptions of which may 

well represent the reality quite accurately. The realist, on the other hand, wants to 

explain why Kirchhoff’s theory is so successful and, if anything, MW theory presents a 

challenge for the realist by demonstrating how underdetermination can be realised in 

actual science. We have here two theories which make radically different assumptions 

about how light behaves in the aperture, but both of which can be used to derive the 

same diffraction formula! 

It should be made clear that the MW theory is strikingly different from the Kirchhoff 

theory. Marchand and Wolf’s assumptions about the scattering effects are nothing like 

Kirchhoff’s boundary assumptions (A1) and (A2). Thus the realist is faced with two quite 

different theories which are both equally successful. From that success she cannot 

possibly infer that the relevant assumptions in both theories are approximately true, 

because the respective sets of assumptions are simply too different. Furthermore, 

Marchand and Wolf’s assumptions about the scattering wave are independently 
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motivated by the contemporary understanding of diffraction, so they cannot be dismissed 

simply as post hoc.12 

Our best contemporary theory favours the MW boundary conditions over Kirchhoff’s, 

revealing (A1) and (A2) not to be even approximately true, and thus challenging the 

realist. But note that this challenge has nothing to do with consistency per se. The issue 

is no longer how an inconsistent theory can generate such success, but how a theory 

with seriously false assumptions can generate such success. The gravity of this problem 

will become clearer in the next section. 

 

4.2. The Error-Tolerance Puzzle. The central challenge for the realist is that the 

success-generating assumptions of Kirchhoff’s theory are wide of the mark. Here we 

provide further evidence for this claim. Since Maxwell’s identification of light as an 

electromagnetic phenomenon, correctly described by Maxwell’s equations, we have had 

the wherewithal to study diffraction from the first principles by imposing the correct 

electromagnetic boundary conditions over the edges of an aperture.13 The most serious 

problem for the realist is the discrepancy between what Maxwell’s equations tell us, on 

the one hand, and Kirchhoff’s assumption (A1) that the presence of the screen does not 

affect the field at the aperture, on the other. 

Brooker (2001) illustrates this by a model of an infinitely long slit of width a  in a 

screen of zero thickness and infinite conductivity. For such a system it can be shown 

that the amplitude of the E -field across the aperture varies as a function of the state of 

                                            
12

 Marchand and Wolf draw on the work of Rubinowicz and others which started to attract serious 

attention from 1917 onwards. The assumption is made that diffraction is the combined effect of an 

incident wave and a scattered boundary wave (see Born and Wolf 1999, 499ff.). 

13
 It should be noted, however, that computational intractability in the present scenario prevented 

scientists from working directly with Maxwell’s equations until advances in computing in the later 

twentieth century. 
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polarisation, and that there is a major departure from Kirchhoff’s assumption (A1) for 

light so polarized that its E -field is oriented along the slit. In this case the amplitude has 

a significantly fluctuating sinusoidal shape instead of being “flat” as assumed by 

Kirchhoff (cf. Figure 2). 

So from the perspective of Maxwell’s equations some of Kirchhoff’s key assumptions 

are not even approximately true. At the same time, however, diffraction effects 

calculated directly from Maxwell’s equations coincide with almost perfect accuracy with 

Kirchhoff’s predictions, regardless of the state of polarisation!  

 

Figure 2. Comparison of Kirchhoff’s assumption of a “flat” amplitude function across an aperture 

of width a with the amplitude function derived from Maxwell’s equations. (Adapted from Brooker 

2001, 71). 

 

This creates a genuine puzzle: as far as predictive accuracy is concerned, why does 

our wave-theoretic modelling of diffraction tolerate such significant errors with respect to 

the amplitude U  at the aperture? As Brooker remarks, 

 

Kirchhoff’s assumptions give a poor representation of the field in the 

plane of the slit, yet give a remarkably good approximation to the 

diffraction pattern. But—again we ask—why? (2003, 72) 
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With some ingenuity Brooker is able to provide an answer. Of all the possible ways in 

which Kirchhoff’s assumption (A1) differs from the truth (according to Maxwell’s 

equations), it just so happens that the difference has negligible effect. This has to do 

with the fact that as one moves across the aperture the difference between Kirchhoff’s 

assumption and the real amplitude is a close approximation to a sine wave with a period 

equal to the wavelength of the incident light. Brooker goes on to show that due to the 

nature of diffraction this particular error won’t show up in a final diffraction formula. Thus 

he concludes, 

 

[T]here are good reasons why we can get away with using Kirchhoff’s 

boundary conditions at a diffracting aperture. Nature has been unusually 

kind to us. (Ibid.) 

 

Of course Kirchhoff had no idea that an error of this kind would not show up in the 

final diffraction formula. If he were a realist, he would no doubt have taken the success 

of his derivation as strongly indicating that the difference between his boundary 

conditions and reality is negligible. But in fact the difference between his boundary 

conditions and reality is large, and the reason they can be used without engendering 

large error is something that was discovered only much later on. Note that it is not the 

case that Kirchhoff was playing with mathematics, trying many different ideas without 

any good physical reason, and that he hit upon a very successful formula by trial and 

error. This would perhaps be a natural way to explain why Kirchhoff’s “luck” was to be 

expected after all. But in fact he had a very plausible physical explanation behind the 

specific assumptions he made, an explanation which, in the end, turned out to be quite 

mistaken. This makes Kirchhoff’s success all the more remarkable. 
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5. Ramifications for Realism. How should the realist respond to Kirchhoff’s case? To 

begin with, it is clear that the Naïve Optimist must either renounce her realism, or 

become less optimistic about predictive success as an indicator of approximate truth. 

Kirchhoff’s theory functions as a “counter-example” par excellence against realism as 

construed by the Naïve Optimist, regardless of which of the contemporary selective 

realist positions she adopts. As a selective realist she may easily side-step the fact that 

Kirchhoff operated in the ether paradigm, and that Kirchhoff achieved success even 

though “ether” is a non-referring term. But such a realist cannot get around the fact that 

Kirchhoff‘s theory makes wildly wrong assumptions about the amplitude attributed to 

light waves at the aperture and behind the screen (regardless of what those waves are 

waves of). Even the structural realist---perhaps the most lightly committed breed of 

selective realism---can be challenged by Kirchhoff's theory. Given the nature of 

Kirchhoff’s wildly wrong assumptions there simply cannot be a natural structural 

correspondence between Kirchhoff's theory and Maxwell's theory, like the one we find in 

the Fresnel case. Neither is there a mathematical correspondence at some natural limit, 

like in the case of relativity and classical mechanics, say, that would allow the structural 

realist to explain Kirchhoff's success in a realist fashion. 

But what about less naïve forms of realism that wish to allow for such “exceptions 

which prove the rule”? How can they accommodate the above explanation of Kirchhoff’s 

success and yet retain their optimism for science in general? Let’s consider first the 

quick suggestion that the realist need not be bothered by this singular case-study, simply 

because this sort of underdetermination doesn’t occur with any significant frequency in 

science. One might assume that, given the vast literature on the realism debate, there 

cannot possibly be many other historical examples like Kirchhoff’s hiding in the 

woodwork. Hence, the suggestion is that perhaps in this case nature really has been 
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unusually kind to us, as Brooker puts it, and Kirchhoff’s success from falsity is just a one-

off. 

We are reluctant to make such an assumption, however. Philosophers of science 

operating in the realism debate have a tendency to write a great deal about a handful of 

case studies, leaving many stones of science unturned. So far philosophers have mainly 

focused on instances of radical theory-shift accompanied by ontological and referential 

change. It is worth stressing again that the ether aspect of Kirchhoff’s theorising does 

not play any role in our analysis. What matters is that Kirchhoff’s assumptions about the 

wave-amplitudes were so badly mistaken. To find examples of successful theories which 

are not even approximately true one does not need to look for cases of ontological and 

referential change. This increases dramatically the scope for finding potentially 

problematic cases. 

Simply appealing to the apparent rarity of such cases also fails to directly respond to 

the challenge posed to the Naïve Optimist. Since Kirchhoff’s success can be explained 

in this way, why not assume that a similar explanation may be available (although it may 

remain unknown to us) for many, or most cases?14 The appropriate response to this 

challenge turns on the details of the present case-study. It is telling that scientists 

themselves have explored and gained an understanding of Kirchhoff’s success from a 

firmly realist stance. By studying the nature of waves and diffraction further they have 

                                            
14

 It seems that the realist can have some room for manoeuvre here, by accusing the challenger 

of having shifted the focus away from where it should be. That is, the realist can take her 

explanandum to be the success of science on the whole, and she may claim on various grounds 

that her explanans—“successful scientific theories are by and large approximately true”—still 

provides the best explanation of this explanandum, given our best understanding of science. 

Such a response would require much elaboration, of course, and some have worried that the 

whole debate is reduced to a fruitless disagreement about inaccessible statistical factors. 

(Magnus and Callender 2004). Although we remain unconvinced by this worry, here we want to 

focus on a different response. 



 22 

discovered that the world of waves just is such that it creates a certain limited 

underdetermination that turned out to be rather auspicious for a scientist operating with a 

set of assumptions much simpler than the reality. Due to the nature of diffraction there is 

an interesting many-to-one mapping, so to speak, from amplitude-distribution-at-the-

aperture to diffraction patterns. We have discovered that the world in this specific 

respect is very kind to a human scientist who works her way upwards from the simplest 

assumptions. 

However, the fact that we have such underdetermination in the case of Kirchhoff’s 

theory need not mean that it is to be found everywhere. There is nothing in this case to 

indicate that the world gives rise to similar underdeterminations in the physics involved in 

analysing Brownian motion in terms of the atomic nature of matter or in our best theories 

involved in making inferences about the genetic nature of inheritance, say. A realist can 

insist that, in the present case study, the nature of diffraction and the mathematics 

employed are idiosyncratically fecund to this kind of underdetermination. In other words, 

the historical lesson learnt from Kirchhoff need not be widely generalisable. It is 

admittedly a difficult question how exactly to spell out this idiosyncrasy in general terms, 

and further work is needed here. But it should not be implausible to anyone that given 

the enormous variation in the nature and methods of scientific theories across the whole 

spectrum of “successful science”, some domains of enquiry can be more prone to this 

kind of underdetermination than others. And, witnessing Kirchhoff’s case, there is every 

reason to expect that from a realist stance we can grasp the features of physics and 

mathematics that contribute to such differences. The Naïve Optimist goes wrong in 

simply assuming that there are no such differences between theories and domains of 

theorising, as one “counter-example” from whichever field can stand as a proxy for the 

whole edifice of successful science. 
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6. Conclusion. Kirchhoff’s theory is the strongest single historical example against 

realism yet, and certainly seems to undermine Naïve Optimism. It is also the first case 

which gives realists a concrete reason not to be naïve: up until now every case put 

forward (e.g. those on Laudan’s list) can be and has been handled in ways compatible 

with Naïve Optimism. Now the realist must accept that sometimes a novel predictive 

success is explainable in terms other than underlying truth. But quite what is meant by 

“sometimes” is an open question.  

Still, the anti-realist cannot simply claim that because we have one such case we 

should infer that such cases abound. This is an example particular to one field, and it is 

not at all clear that it gives cause for wide-spread pessimism about realism more 

generally.  The anti-realist may claim that Kirchhoff’s predictive success is just like any 

other success the realist views as indicative of underlying theoretical truth. And since 

Kirchhoff’s success is not explainable in realist terms—the argument continues—we 

should not expect other predictive successes to be thus explainable either. We have 

argued that the realist should try to resist this line of thought by showing how the field of 

theorising in question is idiosyncratic in relevant respects, so that Kirchhoff’s curious 

case remains isolated and doesn’t provide the anti-realist with grounds for projectable 

pessimism. Whether or not this response can be made precise enough to convince the 

opponent is an open question that calls for further research. Here we have merely 

argued for the prima facie plausibility of such a response. 

On the other hand, the anti-realist might make something of the fact that this new 

case makes manifest a type of underdetermination which has not been given much 

attention in the literature: namely the possibility of equally successful theories which are 

different qualitatively and quantitatively, but not ontologically or referentially. But whether 

we should expect the type of underdetermination in question to crop up elsewhere in 

science is not at all clear. Kirchhoff’s theory may be the start of a newly invigorated case 
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against the realist, but by itself it does very little damage to a realist who is not naïve, in 

our sense. 
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