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Abstract The biopharmaceuticals market is cur-

rently outperforming the pharmaceuticals market and

is now valued at US$ 48 billion with an average

annual growth of 19%. Behind this success is a 100-

fold increase in productivities of eukaryotic expres-

sion systems. However, the productivity per cell has

remained unchanged for more than 10 years. The

engineering of the ER-resident protein folding

machinery is discussed together with an overview

of signal transduction pathways activated by heterol-

ogous protein overexpression to increase cell specific

productivities.
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Introduction

The demand for therapeutic proteins, i.e. monoclonal

antibodies, has been forecast to exceed production

capacities (Werner 2004). Moderate increases in

product titers and yields are expected to result in

significant savings in capital investment and con-

sumer costs (Werner 2004). Over the last decade

product titers have increased from *20 mg l–1 to

2 g l–1 (Werner 2004; Wurm 2004). These improve-

ments are largely attributable to increases in viable

cell densities. However, cell specific productivities

remained nearly constant during this time (Wurm

2004).

To improve cell specific productivities the bottle-

neck for heterologous protein secretion has to be

identified and resolved. In expression systems

exploiting multiple gene copies or strong promoters

the amount of secreted heterologous protein does not

increase proportionally with gene copy number

(Schröder 2007), messenger ribonucleic acid

(mRNA) (Schröder et al. 1999), or even the intracel-

lular amount of the heterologous protein (Schröder

and Friedl 1997). In these cells, the protein accumu-

lates in intracellular aggregates (Schröder and

Kaufman 2005), associates with the molecular chap-

erone heavy chain-binding protein (BiP)/glucose-

regulated protein of 78 kDa (GRP78)/karyogamy 2

protein (Kar2p) (Schröder and Kaufman 2005), and

induces dilation of the endoplasmic reticulum (ER)

(Dorner et al. 1989; Gennaro et al. 1991). Therefore,

exit of the correctly folded polypeptide chain from

the ER is the rate-limiting step for heterologous

protein secretion. I will discuss strategies to improve

cell specific productivities by engineering protein

folding in the ER and signal transduction pathways

activated by overexpression of heterologous proteins.
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Protein folding in the ER

The ER-resident protein folding machinery has four

components: (1) Molecular chaperones assisting

other proteins to fold, (2) enzymes such as protein

disulfide isomerases (PDIs) and cis-trans peptidyl

prolyl isomerases (PPIs), (3) a degradation machin-

ery, and (4) signal transduction pathways that co-

ordinate protein folding demand with capacity. At

least three hierarchically organized chaperone sys-

tems operate in the ER, the heat shock protein of

70 kDa (HSP70) chaperones BiP and luminal HSP

seventy 1 protein (Lhs1p)/chaperone in the ER 1

protein/Ssi1p/GRP170/oxygen-regulated protein of

150 kDa (ORP150), the HSP90 chaperone GRP94/

adenotin/endoplasmin/tumor rejection antigen glyco-

protein of 96 kDa (gp96)/ER protein of 99 kDa/

HSP108/Ca2+-binding protein 4/protein kinase of

80 kDa, and the lectin chaperones calnexin/p88,

calreticulin/Ca2+-binding protein of 63 kDa (CAB-

63)/calregulin/Ca2+-regulated protein of 55 kDa

(CRP55)/high affinity Ca2+-binding protein (HA-

CBP), and calmegin/calnexin-t (Fig. 1). BiP works

on completely unfolded polypeptide chains and

translocates nascent polypeptide chains into the ER,

whereas GRP94 and the lectin chaperones work on

partially folded substrates.

BiP consists of an N-terminal ATPase domain and

a C-terminal substrate binding domain. BiP cycles

through rounds of adenosine triphosphate (ATP)

hydrolysis and adenosine diphosphate (ADP) ATP

exchange (Fig. 1), which makes BiP a chaperone

foldase (Winter and Jakob 2004). At least six DnaJ or

HSP40 co-chaperones stimulate the ATPase activity

of BiP and two growth after phage induction E

(GrpE) co-chaperones the ADP ATP exchange reac-

tion. In the ADP-bound form BiP has high affinity for

unfolded substrates. Substrates bound to BiP are

conformationally locked. ADP ATP exchange

decreases the affinity of BiP for unfolded substrates.

Substrate binding stimulates the ATPase activity of

BiP. Thus, protein folding requires ATP (Dorner and

Kaufman 1990). BiP and Lhs1p coordinate their

activities. Lhs1p is a nucleotide exchange factor for

BiP, and BiP stimulates the ATPase activity of Lhs1p

(Steel et al. 2004).

Cytosolic HSP90 chaperones are ATP-consuming

chaperone foldases (Fig. 1) regulated by several co-

chaperones that affect its ATPase activity, load

substrates onto HSP90 chaperones, assist in protein

folding, and target substrates to degradation pathways

(Strudwick and Schröder 2007). GRP94 co-chaper-

ones have not been identified, but other ER luminal

chaperones found in complexes with GRP94 may be

GRP94 co-chaperones. The KM value of GRP94 for

ATP is *100 lM and its intrinsic ATPase activity is

barely detectable. These data indicate that GRP94

may be a chaperone holdase, a chaperone that binds

to unfolded proteins, but does not cycle through ATP

hydrolysis cycles. A drop of adenine nucleoside

concentrations in stress situations may activate

GRP94 (Rosser et al. 2004).

The lectin chaperones share an N-terminal globu-

lar oligosaccharide-binding domain and a C-terminal

extended hairpin loop, the P domain, which provides

the chaperone function (Strudwick and Schröder

2007). Calnexin and calmegin are transmembrane

proteins. Calreticulin is a soluble protein. Most

proteins entering the ER are glycosylated by addition

of the oligosaccharide Glc3Man9GlcNAc2 (Glc = D-

glucose, Man = D-mannose, GlcNAc = N-Acetyl-2-

D-glucosamine). a-Glucosidases I and II rapidly
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remove the two terminal D-glucose residues. Calnexin

and calreticulin bind to this monoglucosylated oligo-

saccharide. Removal of the third D-glucose moiety by

a-glucosidase II releases the protein from calnexin/

calreticulin. Reglucosylation of unfolded proteins by

uridine diphosphate (UDP)-glucose:glycoprotein glu-

cosyl transferase (UGGT) triggers repeated

interactions with calnexin/calreticulin (Fig. 1). This

reglucosylation reaction consumes UDP-glucose.

Therefore, the calnexin chaperones are chaperone

foldases. The Saccharomyces cerevisiae genome

encodes a calnexin homolog, but no homolog for

UGGT, suggesting that the lectin chaperones may

also function as holdases. Demannosylation of N-

linked oligosaccharides trigger export of proteins to

the Golgi complex or their targeting for retrotrans-

location into the cytosol and proteasomal degradation

(Lederkremer and Glickman 2005; Ruddock and

Molinari 2006).

An expanding family of PDIs catalyzes the

formation and isomerization of disulfide bonds.

Disulfide bond formation requires the regeneration

of oxidized PDI catalyzed by the flavin adenine

dinucleotide (FAD)-dependent oxidases ER oxidation

1 protein (Ero1p)/ERO1-La, ERO1-Lb and essential

for respiration and viability 2 protein (Erv2p)

(Fig. 2). The final electron acceptor is molecular

oxygen. Oxidative protein folding accounts for

*25% of all reactive oxygen species (ROS) formed

in a cell (Tu and Weissman 2004) and is increased by

ER stress (Haynes et al. 2004). Disulfide bond

isomerization is independent of the Ero1p oxidases.

Reduced glutathione provides reducing equivalents to

remove incorrectly formed disulfide bonds. PDI has

chaperone holdase activity that is independent of its

protein disulfide isomerase activity (Wilkinson and

Gilbert 2004) and redox-regulated foldase activity

(Tsai et al. 2001).

Slowly folding proteins or folded incompetent

proteins have to be removed from chaperone cycles

to prevent them from poisoning the protein folding

machinery. This is achieved by targeting these

proteins for retrotranslocation into the cytosol and

degradation by the proteasome in a process called ER

associated protein degradation (ERAD) (Yoshida

2007) (Fig. 3). Proteins destined for ERAD are

recognized by BiP, PDI, and lectin sensors such as

ER-degradation enhancing a-mannosidase-like pro-

teins 1–3 (EDEM1–3)/homologous to mannosidase I

1 protein (Htm1p)/mannosidase-like 1 protein

(Mnl1p) and osteosarcoma-9 (OS-9)/yeast OS-9

homolog protein (Yos9p) (Gauss et al. 2006a). The

lectin sensor EDEM extracts unfolded proteins from

the calnexin cycle. ERAD substrates are then
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retrotranslocated into the cytosol via the secretory 61

(SEC61) channel or a channel formed by derlin

proteins, ubiquitinated by action of ubiquitin-conju-

gating enzymes (E2 enzymes) and ubiquitin ligases

(E3 enzymes), deglycosylated, and degraded by the

proteasome. Redundancy exists in the ubiquitination

machinery involved in ERAD. In yeast and mamma-

lian cells at least three distinct E2�E3 complexes are

present in the ER membrane. The substrate specific-

ities of these complexes, as well as their substrate

selection rules are poorly understood. In yeast, the E3

ligase Hrd1p co-operates with Hrd3p and Yos9p to

select its substrates (Gauss et al. 2006b). Another

selection criterion is the time an unfolded protein

spends in foldase cycles. In the calnexin cycle,

demannosylation of N-linked oligosaccharides gen-

erates glycostructures recognized by lectins such as

EDEM1–3. Association of cytosolic HSP70s with the

nucleotide exchange factor B cell leukemia/lym-

phoma 2 (Bcl-2) associated athanogene protein 1

(BAG-1) (Alberti et al. 2003) and of cytosolic

HSP90s with the ubiquitin ligase carboxyl terminus

of heat shock cognate protein of 70 kDa (HSC70)

interacting protein (CHIP) (Höhfeld et al. 2001)

targets proteins for proteasomal degradation. Associ-

ation of the DnaJ co-chaperone 58 kDa inhibitor of

double-stranded RNA activated protein kinase (PKR,

p58IPK) with HSP70 chaperones at the translocation

pore targets proteins, whose translocation into the ER

is stalled, for proteasomal degradation (Oyadomari

et al. 2006). If similar targeting mechanisms for

proteins folding slowly in the BiP foldase cycle exist,

is currently unknown.

Engineering of chaperone machineries

Engineering of chaperone holdases should be

straightforward. Holdases hold onto an unfolded

protein and act in an equimolar ratio to the unfolded

substrate, but are unable to support folding reactions.

Holdases may provide a buffer capacity to prevent

aggregation of unfolded proteins. Co-overexpression

of chaperone foldases may be beneficial to overex-

pression of holdases (Smith et al. 2004; Zhang et al.

2006b). Overexpression data for calnexin/calreticulin

and PDI are most easily explained by assuming that

this buffer capacity is increased. Calnexin or calret-

iculin overexpression generally improved

heterologous protein secretion (Chung et al. 2004;

Conesa et al. 2002; Kato et al. 2005). Overexpression

of one cycle constituent should not increase cycle

capacity, if this constituent is not limiting, and if

constituent levels are not co-regulated. The hypoth-

esis that calnexin or calreticulin are limiting for the

calnexin cycle seems unlikely, because of the high

abundance of these proteins. Alternatively, overex-

pression of calnexin or calreticulin may inactivate

lectins such as EDEM (Molinari et al. 2003; Oda

et al. 2003), which target unfolded proteins for

ERAD. Further, elevated calnexin or calreticulin

levels not supported by concomitant increases in

activities of other calnexin cycle components, may

convert these surplus amounts of calnexin and

calnexin into holdases or inactive chaperones.

PDI overexpression increased secretion of some,

but not all, heterologous proteins (Butz et al. 2003;

Damasceno et al. 2006; Inan et al. 2006; Kato et al.

2005; Mohan et al. 2007; Schröder 2007; Zhang et al.

2006b). PDI overexpression provides increased
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holdase activity in the ER. For example, overexpres-

sion of catalytically inactive PDI improved

heterologous protein secretion (Hayano et al. 1995).

PDI overexpression also improved secretion of het-

erologous proteins containing no disulfide bonds

(Powers and Robinson 2007; Smith et al. 2004; Vad

et al. 2005). Substrate selectivity of PDI may explain

why PDI overexpression failed to increase heterolo-

gous protein secretion in some studies (Butz et al.

2003; Damasceno et al. 2006; Mohan et al. 2007;

Schröder 2007). If this is the case, co-expression of

an alternative holdase, i.e. GRP94, may yield more

consistent results for different heterologous proteins.

Alternatively, increased rates of disulfide bond for-

mation or isomerization in PDI overexpressing cells

may explain increased heterologous protein secretion.

As an enzyme, PDI should function at substochio-

metric ratios to its substrates. In disulfide bond

formation, regeneration of oxidized PDI may become

rate-limiting in PDI overexpressing cells. PDI is an

abundant ER protein, making it unlikely that its

overexpression can significantly augment its catalytic

activities.

Engineering of foldases seems more difficult,

because of the complex regulation of these chaper-

ones (see above). BiP overexpression increased

heterologous protein secretion for about half of the

heterologous proteins studied (Chung et al. 2004;

Damasceno et al. 2006; Dorner et al. 1992; Hsu and

Betenbaugh 1997; Kim et al. 2003; Schröder 2007;

Smith and Robinson 2002; Zhang et al. 2006b), but

can also have negative effects (Dorner et al. 1992;

Schröder 2007). In cells overexpressing BiP one of its

co-chaperones, Lhs1p, or ER luminal ATP may

become limiting, converting BiP into a holdase or

inactive chaperone. This may target proteins towards

ERAD, stall translocation, convert Lhs1p into a

holdase or inhibit Lhs1p. Increased BiP activity may

stall the GRP94 and/or calnexin–calreticulin chaper-

one machineries, because of the hierarchy of ER

luminal chaperone systems. This again may target

heterologous proteins for ERAD. BiP overexpression

attenuates the unfolded protein response (UPR, see

below). Thus, BiP levels in WT and BiP overexpress-

ing cells expressing a heterologous protein may not

be dramatically different. Further, BiP overexpress-

ing cells may experience an imbalance in their

chaperone machineries, because the UPR co-ordi-

nates expression of several chaperones. Moreover, if

overexpression of BiP shifts the folding bottleneck to

the GRP94 and calnexin chaperone systems, upreg-

ulation of these chaperone systems by the UPR may

be blunted, because of suppression of UPR activation

by elevated BiP levels.

Unfolded protein response (UPR)

ER stress is the perturbation of the balance between the

folding capacity and the folding demand imposed on

the ER. To restore ER homeostasis, the UPR activates

expression of chaperone, PDI, PPI, and ERAD genes,

attenuates transcription of genes encoding secretory

proteins and general translation, induces phospholipid

synthesis, and induces an inflammatory response.

Apoptosis is induced if these actions fail to restore

ER homeostasis or in response to prolonged ER stress

(Schröder and Kaufman 2005).

The ER membrane of higher eukaryotes harbors at

least three classes of transmembrane proteins acti-

vated by ER stress, basic leucine zipper (bZIP)

transcription factors synthesized as type II transmem-

brane proteins, of which the best characterized are

activating transcription factor 6a (ATF6a) and

ATF6b/cyclic adenosine monophosphate response

element binding protein (CREB)-related protein

(CREB-RP)/G13, the protein kinase eukaryotic trans-

lation initiation factor 2a (eIF2a) kinase 3

(EIF2AK3)/pancreatic eIF2a kinase (PEK)/PKR-like

ER kinase (PERK), and the protein kinase-endoribo-

nucleases ER to nucleus signaling 1a (ERN1a)/

inositol-requiring 1a (IRE1a) and IRE1b (Fig. 4).

Several ATF6 paralogs, CREB3, CREB4, CREB-H,

box B binding factor 2 (BBF2), and old astrocyte

specifically induced substance (OASIS) have recently

been described. In unstressed cells, these stress

sensors are bound to BiP and kept in an inactive

state. Upon ER stress, BiP is released coinciding with

their activation. Whether BiP release is triggered by

sequestration by unfolded proteins, conformational

changes in the ER luminal domains, or reactivation of

the BiP ATPase cycle is currently being debated

(Kimata et al. 2004; Shen et al. 2005). ER stress also

alters interactions of pro- and antiapoptotic Bcl-2

proteins at the ER membrane. These proteins regulate

ER luminal Ca2+ homeostasis, ER morphology, ER

stress signaling, and apoptosis induced in response to

ER stress (Hetz 2007).
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BiP release from ATF6 induces translocation of

ATF6 to the Golgi complex where its bZIP tran-

scription factor domain is proteolytically released

from the Golgi membrane by site 1 and 2 proteases

(S1P and S2P) (Fig. 4). This cytosolic fragment

translocates to the nucleus and induces expression of

chaperone genes (Strudwick and Schröder 2007). The

functions of the ATF6 paralogs in the ER stress

response is less well understood. OASIS contributes

to activation of the BiP gene (Kondo et al. 2005), and

ATF6�CREB-H heterodimers activate inflammatory

genes (Zhang et al. 2006a).

BiP release from PERK triggers oligomerization

and activation of the protein kinase domain of PERK.

PERK phosphorylates the bZIP transcription factor

nuclear factor erythroid 2 (NF-E2) related factor 2

(NRF2) and eIF2a (Strudwick and Schröder 2007)

(Fig. 4). NRF2 phosphorylation induces its translo-

cation to the nucleus, where a NRF2�ATF4

heterodimer activates transcription of antioxidant

response genes (Harding et al. 2003) to counteract

ROS formation by repeated folding attempts of

nascent polypeptide chains in ER stressed cells.

eIF2a phosphorylation attenuates general translation

and decreases the influx of nascent unfolded poly-

peptide chains into the ER. It also clears short-lived

proteins from the cell, i.e. D-type cyclins, resulting in

cell cycle arrest in G1 phase, and of inhibitors of

nuclear factor jB (NF-jB) (IjB), activating the pro-

inflammatory transcription factor NF-jB. eIF2a
phosphorylation also induces preferential translation

of capped mRNAs containing several short upstream

open reading frames (uORFs) and cap-independent

translation of mRNA via internal ribosomal entry

sites (IRES). Currently, the only known mRNA

whose translation is stimulated by ER stress is the

mRNA encoding the bZIP transcription factor ATF4.

ATF4 induces expression of CCAAT enhancer bind-

ing protein (C/EBP) homologous protein (CHOP)/

CHOP-10/growth arrest and DNA damage-inducible

gene 153 (GADD153). CHOP represses transcription

of anti-apoptotic BCL-2 (McCullough et al. 2001)

and induces expression of pro-apoptotic tribbles-

related protein 3 (TRB3) (Ohoka et al. 2005). Trans-

lational attenuation by PERK is transient and

countered by several eIF2a phosphatases. The regu-

latory subunit of protein phosphatase 1 (PP1),

GADD34, is induced late in ER stress by ATF4,

and targets PP1 to eIF2a.

Upon BiP release, IRE1 autophosphorylates in trans

and activates its endoribonuclease domain (Strudwick

and Schröder 2007). Activated IRE1 cleaves exon-

intron junctions in the mRNAs encoding the bZIP

transcription factors homologous to ATF/CREB1

protein (Hac1p) in yeast, HACA in filamentous fungi,

and X box-binding protein 1 (XBP-1)/hepatocarcino-

genesis-related transcription factor (HTF)/tax-

responsive element binding protein 5 (TREB5) in

metazoans (Fig. 4). In yeast, the HAC1 exons are

ligated by transfer RNA ligase. Both transcription

factors activate expression of genes encoding ER-

resident molecular chaperones, protein foldases, and

genes encoding proteins involved in ERAD. Hac1p and

XBP-1 also stimulate phospholipid biosynthesis.
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Spliced Hac1p represses genes under control of the

transcriptional regulator unscheduled meiosis 6 pro-

tein (Ume6p), including the early meiotic genes and a

large array of genes involved in carbon and nitrogen

metabolism. This function of spliced Hac1p may

explain the slow growth phenotype of yeast cells

overexpressing Ire1p or spliced Hac1p (Mori et al.

2000). Attenuation of metabolism by Hac1p in yeast

may substitute for attenuation of general translation by

PERK. XBP-1 activation is delayed compared to ATF6

and PERK activation (Yoshida et al. 2003), allowing

for an early folding only phase in the UPR followed by

a folding and degradation phase. In mammals, phos-

phorylated IRE1 sequesters tumor necrosis factor

receptor associated factor 2 (TRAF2) from pro-caspase

12, resulting in clustering and activation of this caspase

and initiation of apoptosis (Strudwick and Schröder

2007) (Fig. 4). TRAF2 recruits apoptosis signal-reg-

ulating kinase 1 (ASK1) and IjB kinase to IRE1. ASK1

activates the mitogen-activated protein (MAP) kinases

p38 and ju-nana (jun) N-terminal kinases (JNKs). p38

and JNKs phosphorylate and potentiate pro-apoptotic

transcription factors, i.e. CHOP and c-Jun, and phos-

phorylate and inhibit anti-apoptotic Bcl-2 and Bcl-xL

to induce apoptosis (Szegezdi et al. 2006). Inhibition

of JNK phosphatases by ROS formed in oxidative

protein folding also contributes to JNK activation

(Kamata et al. 2005). Association of the pro-apoptotic

Bcl-2 family proteins Bax and Bak with the cytosolic

portion of IRE1 is required for efferent IRE1 signaling,

i.e. XBP-1 mRNA splicing and JNK1 activation (Hetz

et al. 2006).

Engineering of the UPR

Engineering of the UPR holds promise to increase

concentrations of several chaperones in a functionally

meaningful ratio, thus preventing inadvertent con-

version of chaperone foldases into holdases, or even

inactivating chaperones because of lack of concom-

itant increases in co-chaperones and co-factors. The

UPR is as much a survival response as it is a response

to boost protein secretion. Clearly, some aspects of

the physiological UPR are not desirable in an

expression system, for example inhibition of general

translation by PERK, stimulation of ERAD and

apoptosis. Overexpression of spliced Hac1p or its

filamentous fungi homolog HACA increased

heterologous protein secretion in Saccharomyces

cerevisiae and Aspergillus niger (Valkonen et al.

2003a, b). In Chinese hamster ovary (CHO)-K1 cells

XBP-1 overexpression improved secretion of several

heterologous proteins (Ku et al. 2007; Tigges and

Fussenegger 2006). In yeast and filamentous fungi,

secretion of several heterologous proteins was not

improved or even decreased by overexpression of

Hac1p (Gasser et al. 2006; Rakestraw and Wittrup

2005; Valkonen et al. 2003a). One drawback of some

of these studies is that wild-type (WT) cells with a

functional UPR are compared to WT cells over-

expressing spliced Hac1p, which may explain why in

some cases only marginal differences between the

two cell types have been observed. The more

consistent effect of spliced XBP-1 overexpression

on protein secretion (Ku et al. 2007; Tigges and

Fussenegger 2006) may be caused by a preferential

activation of UPR signaling pathways that stimulate

cellular functions beneficial for heterologous protein

secretion, i.e. increased chaperone gene expression.

This increased ER-resident chaperone machinery

attenuates all UPR signaling, and most importantly,

those UPR signaling pathways likely to decrease

protein production, for example general translation

inhibition by PERK, stimulation of ERAD and of

apoptosis (Özcan et al. 2004).

Conclusions

Engineering of chaperone systems by overexpressing

a single component of the ER-resident protein folding

machinery has overall yielded mixed results. Our

basic understanding of protein folding in the ER is

still incomplete. Addressing these open questions

should underpin engineering approaches to improve

the performance of chaperone systems. A more

detailed understanding of chaperone function and

regulation should inform future work to improve

chaperone systems. Co-expression of different hold-

ases or targeting of heterologous or cytosolic

holdases to the ER may yield more consistent

improvements for different heterologous proteins.

The function of overexpressed chaperones may not be

the same as at their normal physiological concentra-

tions, because of the lack of a corresponding increase

in co-chaperones and co-factors. To improve foldase
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function, concomitant elevation of BiP, its co-chap-

erones, and ATP levels should be attempted.

Engineering of the UPR suggests that mimicking

an UPR by expression of its activated signaling

molecules does not consistently improve productiv-

ities. Dissection of UPR signaling activities may be

necessary to improve heterologous protein secretion.

To place engineering of the UPR on an informed

basis, we need to understand the UPR in more detail.

It is still not clear what the most upstream events in

activation of the UPR are, how UPR signaling

integrates into cellular signaling, and how the UPR

decides between a prosurvival and an apoptotic

response to ER stress. Cell engineering also needs

to address the potential problem that increased

oxidative protein folding may be inherently toxic to

cells, because of elevated cellular ROS levels.
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