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Abstract 

The Matrix (M) protein of Respiratory Syncytial Virus, the prototype viral member of the 

Pneumovirinae (family Paramyxoviridae, order Mononegavirales), has been crystallized and the 

structure determined to a resolution of 1.6 Å. The structure comprises two compact β-rich 

domains connected by a relatively unstructured linker region. Due to the high degree of side 

chain order in the structure, an extensive contiguous area of positive surface charge covering 

approximately 600 Å2 can be resolved. This unusually large patch of positive surface potential 

spans both domains and the linker and provides a mechanism for driving the interaction of the 

protein with a negatively-charged membrane surface or other virion components such as the 

nucleocapsid. This is complemented by regions of high hydrophobicity and a striking planar 

arrangement of tyrosine residues encircling the C-terminal domain. Comparison of the RSV M 

sequence with other members of the Pneumovirinae shows that regions of divergence 

correspond to surface exposed loops in the M structure, with the majority of viral species-

specific differences occurring in the N-terminal domain. 
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Introduction 

 Respiratory Syncytial Virus (RSV) is the prototype member of the Pneumovirinae, a 

subfamily of the Paramyxoviridae (order Mononegavirales). Morphologically the extracellular 

virion consists of a lipid bilayer envelope within which are embedded three glycoproteins, two of 

which (F and G) are important in cell attachment and viral entry into target cells; the third, the 

SH protein, contributes to pathology in the host (1). Internally, virions contain helical 

nucleocapsids that consist of N protein tightly bound to the negative-sense non-segmented 

genomic RNA. The nucleocapsid in turn is associated with components of the viral RNA-

dependent RNA polymerase (L, P, M2-1 and M2-2 proteins) forming the holo-nucleocapsid (2-

4). Between the holo-nucleocapsid and the outer envelope is a layer of matrix (M) protein which 

is associated peripherally with the membrane (5). The other family members of the 

Mononegavirales (Rhabdoviridae, Filoviridae and Bornaviridae) all subscribe to this basic 

arrangement of the virion, although the overall morphology can vary between the families; for 

example Paramyxoviridae virions are pleiomorphic whilst the Rhabdoviridae have a regular 

bullet shape structure and the Filoviridae have a more filamentous shape.  

 Extracellular RSV virions form by a budding process that occurs at the plasma 

membrane within specialized lipid domains (5, 6) and M appears to drive the final assembly 

process, which is the incorporation of the holo-nucleocapsid and initiation of the budding 

process (7, 8). Prior to budding there is a co-ordinated assembly of viral components and it is 

evident that the glycoproteins and M proteins are important determinants of the location on the 

plasma membrane at which the virus buds (9). It is also possible that the interaction between M 

proteins and the glycoproteins, possibly mediated with the cytoplasmic tails, are important in the 

budding process. Genome silencing to prevent transcription and replication by the viral 

polymerase prior to incorporation of the holo-nucleocapsid in the nascent virion is a related 

function of the M protein. M proteins are also implicated in host cell transcriptional cut-off (10) 

possibly via a direct interaction with RNA (11). 
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 A number of matrix proteins are known to bind membranes or lipid vesicles in vitro, most 

likely though a combination of hydrophobic and electrostatic interactions (12-14). Expression of 

certain matrix proteins in eukaryotic cells in the absence of other viral proteins can induce 

formation of Virus-Like Particles (VLPs). The efficiency of VLP generation can be increased if 

the matrix protein is co-expressed with a viral glycoprotein (15-18). Matrix proteins share a 

tendency to oligomerize, a feature likely to be important in the self-assembly and budding 

processes (19). In tissue culture RSV induces formation of long slender projections from the 

surface of the cell known as viral filaments. It was found that removal of the lipid membrane 

from viral filaments left an M containing sheath (5); work has shown that the formation of such 

projections can be stopped by actin polymerization inhibitors, suggesting a role for actin, 

although immuno-staining for actin within these structures has not been able to demonstrate its 

presence (RPY unpublished observations). It is possible then, that M oligomerization and self-

assembly is the driving force behind the formation of viral filaments.  

 In this paper we report the structure of the full-length RSV M protein solved at a 

resolution of 1.6 Å and discuss the implications of this structure for the function of the protein. 

Results and Discussion 

Structure of the RSV matrix protein (M) 

 The RSV M protein was purified using nickel affinity chromatography . During the cloning 

process a methionine to arginine change occurred and we refer to the resultant form of M as 

M254R. The crystal structure of M254R was solved using MIRAS techniques to a resolution of 1.6 

Å, representing the first example of an intact matrix protein from the Mononegavirales. Despite 

evidence for higher order oligomers (see supplementary information Figure S1) such as dimers, 

tetramers and hexamers, in solution the crystallized form is monomeric. Crystallographic data 

are presented in supplementary Table S1. The overall fold consists of two clear domains 

connected by a 13-residue linker region. The N-terminal domain comprises residues 1 to 126 

whilst the C-terminal domain consists of residues 140 to 255 (Figure 1 a, b). Only residues 99 

and 100 could not be assigned a clear location within the electron density. The N-terminal 
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domain consists of a twisted β-sandwich comprised of two β-sheets, one of three and one of 

four strands, positioned almost perpendicular to each other. The overall topology of this domain 

is of a curved horse-shoe like arrangement with β-sheet 1 forming the concave, inner face 

flanked by loop regions and β-sheet 2 forming the convex, outer face. The C-terminal domain 

consists of a flattened β-barrel comprising two three-stranded anti-parallel β-sheets. The 

regions linking the sheets between strands 2 and 3 and strands 5 and 6 are largely helical in 

nature (Figure 1 b). There is no evidence for any complexed metal ions or for a potential zinc 

finger motif. The 254R substitution in the protein lies at the very end of the C-terminal domain in 

an area largely devoid of secondary structure and is therefore unlikely to have a significant 

effect on the protein structure or function. 

 The linker region is largely lacking in secondary structure features with the exception of a 

short helical region. The presence of this linker is consistent with structures obtained for 

fragments of the Ebola virus (EBOV) VP40 and Vesicular Stomatitis Virus (VSV) M proteins, 

and from capsid proteins of retroviral origin that fulfil similar in vivo roles (20-24) and its 

unstructured nature suggests that the N- and C-terminal domains may be able to occupy 

different orientations, relative to each other, than that observed in the crystal. The two domains 

are only loosely associated, with the major interactions between them being hydrophobic in 

nature, supported by a small number of water-mediated hydrogen bonds. We have observed 

that, in common with EBOV VP40, proteolysis of RSV M254R occurs in solution and results in the 

dissociation of the N- and C-terminal domains, the weak interdomain interactions being 

insufficient to hold them together. We have mapped the cleavage site of M254R by limited mass 

spectrometry to the linker region between amino acids Thr136 and Leu137 (data not shown). 

These weak interdomain interactions further suggest that the protein may exist in alternative 

quaternary structures in solution and that the interdomain packing observed in the crystal may 

be metastable, driven mainly by sequestering of the hydrophobic residues, which form the major 

part of the interface, away from the bulk solvent. Flexibility of this type has been speculated as 

being important for the matrix protein of the influenza virus as well as for EBOV VP40 and VSV 
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M and is thought to be necessary to accommodate the different functions of the matrix protein 

throughout the viral life cycle. 

Structure comparison 

 The tertiary structure of M254R is globally similar to that of the Ebola VP40 protein (24), 

showing the same overall fold with a Z score of 6.6 and a rmsd of 3.7 Å. Searches of the PDB 

for structurally homologous proteins to M254R using the programs DALI, VAST and SSM (25-27) 

yield no further significantly similar structures. Performing the same searches using the N- and 

C-terminal domains independently demonstrates that, in addition to being closely related to 

each other, the N-terminal domain shows slight similarities to parts of two DNA topoisomerases 

from E. coli. These similarities are restricted to the shape of the β-sheets in domain 2 of the 

DNA binding proteins and are unlikely to be relevant to the function of the N-terminal domain.  

 Structural information on matrix proteins is scarce partly due to the intrinsic difficulty of 

working with these hydrophobic proteins that are prone to self aggregation. Only two matrix 

proteins from the Mononegavirales have been subjected to high resolution structure 

determination. For both published structures, a proteolytically resistant core was crystallized as 

opposed to the full length structure. Separate overlay of the N- and C-terminal domains of M254R 

with those of Ebola VP40, (Figure 2), allows the difference in angle between the domains in the 

two proteins to be accounted for, and shows the similarities in the protein core of each domain. 

Despite the clear close relation between the folds of the two proteins, the topological 

arrangement of the two differs. The N-terminal domain of RSV M254R contains a mixed 4-

stranded and one anti-parallel three-stranded β-sheet as opposed to the two three-stranded 

sheets found in VP40. A similar comparison of M254R and VSV M could not be performed, 

emphasising the structural, but not functional, diversity of the two matrix proteins. 

Electrostatic surface of the RSV Matrix protein 

 In order to fulfil its structural role, RSV M must be able to form protein-protein and 

protein-lipid interactions. Consequently, one would expect to observe surface areas with 

significant hydrophobic patches, as well as positively charged regions that would favor protein-
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membrane association. Examination of the surface of M reveals an extensive positively charged 

area, of ca. 600 Å2, extending across both N- and C-terminal domains encompassing, and 

including, a significant contribution from the linker (Figure 1 c). As the binding of M to cell 

membranes is thought to be mediated largely by electrostatic contacts (12, 28) this region 

provides a mechanism by which the protein is able to associate with negatively charged host 

membranes. Comparison of the electrostatic surface of M254 with VP40 is hampered by the fact 

that in the latter the linker region is not modelled. It does appear, however, that a significant 

positively charged patch is a feature present on all matrix proteins for which there is structural 

information available, including retroviral homologues. Looking at the rest of M254R, there is a 

distinctive negatively charged lobe on the N-terminal domain and a positively charged pocket on 

the C-terminal domain, which are potential sites for directing interactions with binding partners. 

Work on the isolated N-terminal domain of Ebola matrix protein, VP40 (29), indicates that this 

domain has the capacity to oligomerize in the presence of nucleic acids, pointing to a more 

prominent role for this domain in RNP association, with the C-terminal domain interacting 

predominantly with the membrane. The precise role of each domain in the full length proteins 

(RSV M and EBOV VP40) has yet to be determined, although the extent of the positively-

charged surface of RSV M indicates that functional surfaces have the potential to extend across 

the domain boundary and the linker to some degree.  

Comparison of structures in solution and in crystal  

 In order to determine if the crystal structure was also that of the protein in solution, we 

performed a CD analysis of the protein. Data collected included wavelengths down to 190 nm, 

which significantly increases confidence in the interpretation of CD derived structural 

information for comparison with crystallographic data (29). Evaluation of CD (Figure 3 and Table 

1, see supplementary information for more details of CD spectrum deconvolution) and X-

crystallographic data indicate that the secondary structure content of M254R in solution is lower 

than that observed in the crystalline state. This implies that assembly of the protein is 

associated with significant unfavorable entropic contribution from protein folding, in common 
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with the binding of disordered proteins to their counterparts (30-33). Such proteins achieve a 

favorable binding free energy through large enthalpic contributions from intramolecular 

electrostatic interactions to offset negative entropic contributions from protein folding. In order 

for this to be achieved, the number of contacts between the protein and its binding partners are 

numerous. In the case of M, analogy with disordered proteins would suggest that the contact 

area for protein-protein and protein-membrane interactions is similarly large. This is consistent 

with the observed distribution of aromatic and positively charged residues in the protein, 

particularly with regard to the large patch of positive electrostatic potential described above. 

Intrinsic disorder has been proposed as a mechanism by which viral proteins are able to form 

multiple binding interactions with different partners, thereby expanding protein functionality 

without a concomitant increase in the size of the genome. RSV M fits this description having 

multiple interactions; such as with itself, the nucleocapsid, the viral glycoproteins, such as the F 

protein, via their cytoplasmic tails and with the host cell and viral membranes. All of these are 

essential for the assembly and budding of a virion particle and could contribute to stabilizing the 

structure. 

Comparison with other Pneumovirinae Matrix proteins 

 Analysis of sequence alignments of a number of pneumovirus and metapneumovirus M 

proteins with M254R reveals that the majority of significant amino acid sequence diversity (Q-

scores of 20 and above) can be mapped to external loop and edge regions of the β-sheets and 

to the linker region (Figure 4 a, b, see supplementary Figure S5 for alignments). An alignment of 

the more closely related bovine and ovine RSV M proteins with human RSV M proteins 

demonstrates that the major variations in amino acid sequence are mostly found in regions at 

each end of the horseshoe structure, with the remainder occurring in the linker and the ends of 

the helix that lies on the outer surface of the N-terminal domain. Inclusion of the more distantly 

related metapneumoviral M proteins in the alignment, such as those from human and avian 

metapneumoviruses, produces a similar pattern for the C-terminal domain; however, the 

differences are much more pronounced in the N-terminal domain, with significant sequence 
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diversity occurring in the linker and in the regions adjacent to the linker. We hypothesize that 

these differences correlate with surface residues that mediate species-specific interactions, 

such as M with its cognitive nucleocapsid or viral glycoproteins. This is consistent with the 

involvement of loop regions at the end of each domain in protein-protein and/or protein-RNA 

interactions. Given that membrane interactions are unlikely to be sequence-specific and that 

protein activity is not transferred between species outside experimental conditions, this is 

consistent with the involvement of loop regions in protein-protein and/or protein-RNA 

interactions, particularly for the N-terminal domain, where sequence diversity is greatest 

A model for membrane binding 

 The large positively-charged area on the surface of RSV M, which spans both domains, 

is consistent with the role of this protein in membrane association. We hypothesize that it is 

likely that this patch will be the driving force for association with the negatively-charged lung 

membrane (34, 35). This would be consistent with biochemical observations of other M protein 

where electrostatic charge is the major component of the interaction between protein and 

membrane, at least in vitro. Association of the positively charged patch to the membrane, 

particularly at N- and C-terminal domain orientations other than those observed in the crystal 

structure, would leave a significant hydrophobic area on the protein exposed that may drive 

interactions with other viral components, or become buried at the protein-membrane interface. 

 Considering the C-terminal domain alone, while a significant proportion of the surface 

residues are hydrophobic (36) it is pertinent that this domain has a number of surface exposed 

arginine and lysine residues that are able to contribute to a favorable interaction with negatively-

charged membranes. Membrane binding by the C-terminal domain, driven largely by 

electrostatic interactions, with a contribution from hydrophobic residues, would leave the N-

terminus free to perform more species-specific functions, such as protein-protein interactions 

needed for virion assembly; this interpretation would be consistent with observations on EBOV 

VP40 (30). We also note that the C-terminal domain has a striking arrangement of tyrosine 

residues (Y163, Y197, Y215, Y229, Y236 and Y237) forming a planar distribution that encircles 
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the majority of the C-terminal domain (Figure 5 a, b) with a degree of overlap with the positively 

charged patch. Tyrosine, amongst other aromatic amino acids, has been demonstrated to occur 

with high probability in the interfacial region of membrane proteins (37-39) and in model 

systems has been shown to associate strongly with phospholipids (40). The functionality of the 

tyrosine residues has yet to be investigated but the motif is conserved within all RSV M 

proteins. The metapneumoviral M proteins do not have this motif, although in these proteins 

functionally equivalent residues replace the tyrosines. Mutagenesis studies based on the 

structure presented within this paper will further our understanding of the contribution of 

particular residues or features to the biological functionality of this protein. 

Conclusion 

The structure of the matrix protein of RSV has been solved by X-ray crystallography to a 

resolution of 1.6 Å. This is the first example of a full-length structure of a matrix protein from the 

viral order Mononegavirales. The high resolution and high degree of crystallographic order 

observed in the structure allow us to throw light on the mode of membrane binding and the 

mechanism by which this protein performs its varied and critical roles. Central to this is a 

significant area (~600 Å2) of positive electrostatic potential that forms an extended surface for 

interaction with the membrane, which carries a complementary negative potential. As this area 

spans both domains and the linker, the geometry of surface contacts made by the protein will 

depend on the relative positioning of the domains, should those contacts involve contributions 

from both domains.  

Experimental Procedures 

Methods Summary 

Protein expression purification and crystallization.  

A histidine tagged version of M254R was expressed in E. coli strain BL21 (CodonPlus). Cells 

were lyzed by sonication and M254R purified by nickel-affinity chromatography. After removal of 

insoluble material the protein was subjected to crystallization trials. Successful crystallization 
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was obtained in 70% Tacsimate, pH 7.0, later the conditions were optimized to 55-65% 

Tacsimate, pH 7.0. 

X-ray data collection 

Data from native, seleno-methionine derivatized and mercury soaked crystals were collected at 

the ESRF (native crystal) and SSRL (derivatized forms) facilities. The crystal statistics are 

presented in the supplementary material accompanying this article. The three dimensional 

figures presented were generated using Molscript (Figure 1a), PyMol (Figure 1b) and the 

topology diagram rendered in TopDraw (see supplementary information). 

Circular Dichroism Spectroscopy. Protein samples were dialysed against 5 mM phosphate 

buffer overnight at 4 °C. Far-UV CD spectra and the corresponding blanks were recorded in a 

cuvette of path length 0.2 cm using a Jasco J-810 Spectropolarimeter by averaging 8 

accumulations recorded at a rate of 10 nm/min, with a pitch of 0.5 nm, a bandwidth of 1 nm and 

a response time of 2 s. Near-UV spectra were recorded using a 1 cm cell, with a pitch 0.2 nm 

and a response time of 1 s. After subtraction of the appropriate blank, binominal smoothing was 

carried out within the Jasco Spectra Analysis program. Smoothed data were analyzed for 

protein secondary structure using the CDSSTR, SELCON3 and CONTIN/LL programs (41), 

accessed either via the Dichroweb service (42, 43) or the CDPro package. Both a general 

protein (SP43/dataset 4) and a membrane protein (SMP56/dataset 10) reference set  were used 

(41, 44). 

Full Methods are available in the online version of the paper at www.pnas.org. 
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Figure Legends 

 

Figure 1: Three-dimensional structure of the Respiratory Syncytial Virus M protein. The 

crystal structure of M254R  (resolution 1.6 Å) shows two domains composed largely of β-sheets. 

Statistical information for the X-ray data is provided in the supplementary information. a) 

Divergent (wall eyed) stereo view of M254R colored according to domain with the linker shown in 

cyan, the N-terminal domain in blue and the C-terminal domain in red. Residue R254 is shown 

in ball-and stick representation; b) A topology diagram of the protein. The linker between the N- 

and C-terminal domains is shown in magenta. Residues (numbers refer to Met as +1) in β-

sheets are represented by broad arrows and helices as cylinders. c) Electrostatic surface 

potential (calculated with APBS) for M254R, presented in a colour range from red to blue (-5 to +5 

kT/e); uncharged residues are uncolored. 

 

Figure 2: Comparison of the RSV M protein topology with that of Ebola VP40.  

The cartoons show an overlay of the β-sheet arrangements of M254R with EBOV VP40. A) 

shows RSV M protein N-terminal domain in blue and VP40 in yellow and B) shows M254R protein 

C-terminal domain in red and VP40 in cyan. The same images are presented in supplementary 

information; Figure S2, in stereoscopic views. 

 

Figure 3: CD spectrum of RSV M protein. Data sets of the far-UV (main box, 190 nm – 250 

nm) and near- UV (inset box, 270 nm - 320 nm, axes are the same as the main plot) spectra 

were collected as indicated in the methods section. The data were analyzed for secondary 

structure information using the CDSSTR, SELCON3 and CONTIN/LL programs. A more 

comprehensive data set on M254R structure in solution is provided in the supplementary 

information (Supplementary figures S3, S4 and supplementary tables S2 and S3) and see also 

Table 1. A comparison with X-ray data with calculated CD spectra indicates that the crystal is 

more ordered than the solution structure. 
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Figure 4: Distribution of residues over the surface of RSV M that display significant 

sequence diversity from related proteins. a) Residues with a Q score ≤ 20 after alignment of 

all 8 pneumovirus proteins to M254R are displayed in red (non-linker residues) or black (linker 

residues). The C-terminus is indicated by C; b) Residues with a Q score ≤ 20 or ≤ 50 after 

alignment of all RSV proteins are shown in red and blue respectively. The orientation of the 

structure is the same as part a). Alignments are presented in supplementary Figure S5 

 

Figure 5: Distribution of tyrosine residues in the C-terminal domain of the RSV M protein. 

The N-terminal domain of M254R has been omitted for clarity. The planar distribution of the 

residues (shown as stick and ball representations) on the surface of the M protein is readily 

apparent. The C-terminal residue is indicated by C; panels a) and b) show orthogonal views of 

this domain. 
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Table Legends 
 
Table 1: Comparison of the solution and crystallographic structure of the the RSV M 

protein. (A) Summary of the output resulting from analysis of the M254R structure using the 

Stride program. (B) Comparison of the CD and X–ray data.  The output from the Contin/LL 

program is presented as this gave the best fit between experimental and computed structures. 

See supplementary information for more details of the various programs used to fit the CD data 

to known structures. The CD spectrum shows that the solution structure is more disordered that 

that of the crystallized form, compare “strand” (23 versus 47 %) and “coil” (31 versus 12). 

 
 


