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We consider a network of parallel service stations each modeled as a single-server
queue. Each station serves its own dedicated customers as well as generic customers
who are routed from a central controller. We suppose that the cost incurred by a
customer is an increasing function of her time spent in the system. In a significant
advance on most previous work, we do not require waiting costs to be convex, still
less linear. With the objective of minimizing the long-run average waiting cost, we
develop two heuristic routing policies, one of which is based on dynamic program-
ming policy improvement and the other on Lagrangian relaxation. In developing the
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latter policy, we show that each station is “indexable” under mild conditions for cus-
tomers’ waiting costs and also prove some structural results on the admission control
problem that naturally arises as a result of the Lagrangian relaxation. We then test
the performance of our heuristics in an extensive numerical study and show that the
Lagrangian heuristic demonstrates a strong level of performance in a range of traffic
conditions. In particular, it clearly outperforms both a greedy heuristic, which is a
standard proposal in complex routing problems, and a recent proposal from the heavy
traffic literature.

1. INTRODUCTION

This article is concerned with the dynamic routing of incoming customers to one
of several parallel service stations, each of which has its own queue with an infi-
nite buffer space. Our model develops those found most frequently in the literature
in two key respects, both of which are critical for applications. First, in our setups
there are two customer types that inhabit the system: dedicated and generic. Ded-
icated customers must be served at a designated station and routing decisions only
concern the remaining generic traffic, which we will assume can be served at any
station. Plainly, such a dichotomizing of the traffic is important in settings where
specialist skills are required on occasion and are expensive to provide. Note that
stations are not necessarily separated geographically since customers requiring dif-
ferent skills will naturally form separate queues. Examples include call centers [7]
and emergency response systems [31]. Such models are also relevant to dynamic rout-
ing within a grid environment [1] and to load balancing in broadcast communication
networks [37].

Both customer types incur costs that depend on the time spent waiting in the
system. Our objective is to develop routing policies that will minimize the long-run
average total cost or that will come close to doing so. This brings us to the second
key feature of our model, namely that we will impose only very minor conditions on
the structure for waiting costs. Most previous work that has considered the dynamic
service and routing control of queuing systems has imposed requirements that waiting
costs be linear in the time spent in system. In some exceptions, this has been general-
ized to an assumption that costs be convex nondecreasing (see, e.g., [14,34,40,45]).Van
Mieghem [45] discussed the limited appeal of linear waiting costs, but we would argue
that an assumption of convexity might also be unrealistic in many settings. Convex
waiting costs are unable to take an adequate account of such commonplace features
as delivery time/service-level guarantees (see, e.g., [10,20,24]) or in an emergency
response setting of the absolute imperative of treating patients with critical trauma
injuries quickly (the “golden hour” rule; see, e.g., [35]).

State-dependent routing problems have received much attention in the literature.
The only general settings in which it has proved possible to elucidate simple structure
for optimal policies are those involving homogeneous stations. Here, “Shortest Delay
Routing” (SDR) has been shown to be optimal under a range of conditions. See,
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for example, Weber [47], Winston [52], Johri [23], Hordijk and Koole [21], Menich
and Serfozo [33], Sparaggis, Towsley, and Cassandras [39], Towsley, Sparaggis, and
Cassandras [44], and Koole, Sparaggis, and Towsley [26]. However,Whitt [49] showed
that SDR might not be optimal even for very simple cases. See Foschini and Salz [12],
Houck [22], Wein [48], Laws [30], Kelly and Laws [25], Foley and McDonald [11],
Teh andWard [41], and Tezcan [42] for more on the performance of SDR and analytical
results for SDR under various asymptotic regimes. Recently, there also appeared a
significant amount of work on routing problems in which customers wait in a single
line and are routed to one of the servers as servers become available. The majority
of this work is motivated by the routing problem in call centers. See, for example,
Van Mieghem [45], Gans and Zhou [13], Harrison and Zeevi [19], Mandelbaum and
Stolyar [32], Armony and Maglaras [4,5], Wallace and Whitt [46], Armony [3], and
Bassamboo, Harrison, and Zeevi [6].

In a recent study, Stolyar [40] considered a similar routing problem in which
customers are routed to one of the multiple parallel stations as they arrive to the
system. Stolyar’s model is more general than ours in that customers belong to different
classes and service rates depend on both the customer’s class identity and the station
serving the customer. However, the author imposed some restrictive conditions on the
waiting cost structures. More specifically, he assumed that the waiting cost function
for each queue is continuous, strictly increasing, and convex. Stolyar proved that a
routing policy, which he calls the MinDrift rule, is asymptotically optimal in the heavy
traffic regime under a complete resource pooling condition. In Section 6, we test the
performance of the MinDrift rule along with the performance of our heuristics under
various traffic regimes and two different waiting cost functions.

For complex routing problems that do not assume station homogeneity, full char-
acterization of optimal policies based, for example, on direct application of dynamic
programming (DP) methodology is unrealistic. The focus for such systems has mostly
been on the development of effective routing heuristics, many of which are based on
calibrations of the constituent service stations that utilize queue length information.
A simple and standard proposal is to route each generic customer in an individually
optimal way to whichever station has the smallest expected cost for that individual. In
Section 6, this is referred to as the greedy heuristic (GH). Two approaches to heuristic
development which have proved effective are those based on DP policy improve-
ment (see, e.g., Krishnan and Ott [29], Krishnan [27,28], Whittle [50], Sassen, Tijms,
and Nobel [38], Ansell, Glazebrook, and Kirkbride [1], Bhulai and Koole [9], and
Bhulai [8]) and on Lagrangian relaxations (see, for example, Niño-Mora [34] and
Whittle [50,51]). The second of these has appeared highly promising, but its effective
deployment has been severely inhibited by a prior requirement to establish a structural
property which Whittle [51] called indexability. While this property appears natural,
it is little understood and is often extremely difficult to prove. There is a developing
literature centered around this very issue in a range of application areas of which rout-
ing is but one (see, e.g., Glazebrook, Niño-Mora, and Ansell [17], Ansell, Glazebrook,
Niño-Mora, and O’Keeffe [2], Glazebrook, Mitchell, andAnsell [16], and Glazebrook,
Kirkbride, and Ouenniche [15]).
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A major research achievement of this article is the demonstration that we do indeed
have indexability in our very general setting for both costs and traffic. In particular,
we are able to show that the cost convexity assumptions of previous work are not
needed for the parallel service system considered in this article. Indexability is proved
in Section 4 and the structure of the resulting routing heuristics is established. To
provide a strong comparator for these Lagrangian heuristics, routing policies based
on DP policy improvement are developed in Section 3. In Section 5, the precise
nature of the station calibrations that our routing heuristics utilize is developed for
some nonstandard but practically important cost structures and Section 6 contains
the results of an extensive investigation into heuristic performance. Finally, Section 7
provides our concluding remarks and directions for future research.

2. MODEL DESCRIPTION

We consider N ≥ 2 parallel service stations, each modeled as a single-server queue.
For each queue n, service times of customers are independent and exponentially
distributed with a finite mean 1/μn. Each queue n has its own “dedicated” customers
that arrive according to a Poisson process with rate ηn. These dedicated customers
cannot be routed to any other station. There are also “generic” customers who arrive
as a Poisson stream with rate λ and who can be served at any station. The routing
decisions concern these customers only. Our analysis will still go through if the system
controller can also choose to reject generic customers by paying a fixed charge per
rejected customer. However, to keep the presentation simpler, we assume that each
arriving customer should be admitted to the system. The routing decision for a generic
customer is made upon her arrival and this decision is irreversible. We assume that each
queue operates under a first-come–first served (FCFS) discipline; hence, no distinction
is made between the dedicated customers and generic customers once admitted to the
system. We introduce the parameters

θn = λ + ηn, βn = θn/μn, αn = ηn/μn,

and we assume that αn < 1 for all n and λ + ∑N
n=1 ηn <

∑N
n=1 μn so that there exist

routing policies under which the system is stable.
Each customer incurs a nonnegative cost that is a function of the time the customer

spends in the system. Write ξnk for n ∈ {1, 2, . . . , N} and k ∈ {1, 2, . . .} for the total
system time for the kth customer admitted to queue n. Also, let Cn(·) denote the cost
function for queue n; that is, Cn(t) is the cost incurred by a customer who is given
service in station n and whose total system time is t. Our objective is to minimize the
expected long-run average total cost for this system, which can be written as

lim sup
t→∞

E

[∑N
n=1

∑Zn(t)
k=1 Cn(ξnk)

]
t

,
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where Zn(t) is the total number of customers who have joined station n by time t. Note
that since the above expression uses a convention that the total waiting cost for each
customer is incurred as soon as the customer joins, the numerator is in fact an upper
bound on the total expected costs accumulated by time t. However, for any policy
under which the number in system remains finite almost surely, for any given t, the
difference between this upper bound and the actual value of the accumulated costs
will be finite with probability 1 so that as time t converges to infinity, the difference
between the actual cost rate and its upper bound converges to zero.

Let cn(i) denote the expected cost that will be incurred by a customer who joins
queue n when there are i customers already waiting (including the customer in service)
at station n. If we deem that (expected) costs are incurred as the customers join,
this problem can be formulated as a semi-Markov decision process. Decision epochs
are the times when generic customers arrive and the system state can be described
by an N-dimensional vector x = (x1, x2, . . . , xN ), where xn denotes the number of
customers waiting in station n (including the customer in service). The action space is
A = {a1, a2, . . . , aN }, where an is the action of sending a customer to queue n. Once
the problem is formulated, then it can, in principle, be solved to arbitrary accuracy by
applying a (finite) truncation of the state space followed by deployment of standard DP
methodologies. However, such an approach is computationally intractable for systems
of realistic size. It is natural that interest should focus on the development of effective
heuristics for routing. This is the subject of the following two sections.

3. HEURISTIC 1: SINGLE-STEP POLICY IMPROVEMENT METHOD

We develop the single-step policy improvement heuristic by applying a single step
of the policy improvement algorithm to an optimal static Bernoulli routing policy. A
static Bernoulli routing policy simply routes each incoming customer to queue n with
some probability pn independently of other customers and the system state. We will
develop the heuristic in two stages. First, we will determine an optimal static Bernoulli
routing policy. This will then be followed by a single DP policy improvement step.

3.1. An Optimal Static Policy

A static routing policy routes each incoming generic customer to one of the service
stations according to some probability distribution p = ( p1, p2, . . . , pN ) indepen-
dently of other customers and the system state, where pn ≥ 0 for n = 1, 2, . . . , N
and

∑N
n=1 pn = 1. Let the set P be defined as

P =
{

p : pn ≥ 0, ηn + λpn < μn, 1 ≤ n ≤ N , and
N∑

n=1

pn = 1

}
.

We have P �= ∅ since we assume that λ + ∑
n ηn <

∑
n μn.
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Under any static policy p ∈ P, each service station n is an independent M/M/1
queue with arrival rate �n = ηn + λpn and service rate μn. Then, using standard
results, the expected long-run average cost TC(p), can be written as

TC( p) =
N∑

n=1

(ηn + λpn)

∞∑
i=0

cn(i)(1 − ρn)ρ
i
n, (1)

where ρn = (ηn + λpn)/μn.
In order to proceed, we need the following assumption:

ASSUMPTION 3.1: There exists a p ∈ P such that
∑N

n=1

∑∞
i=0 cn(i)ρ i

n < ∞, where
ρn = (ηn + λpn)/μn.

Assumption 3.1 is certainly satisfied if the cn(·)’s are all polynomially bounded.
It is easy to see that as p converges to one of the boundary points of P, TC(p)

diverges. Furthermore, underAssumption 3.1, there exists a static routing policy p ∈ P

such that TC(p) is finite. These show that a minimizer for TC(p) is contained in
P. Hence, we can define an optimal static routing policy as any vector p∗ ∈ P that
minimizes (1); that is,

p∗ ∈ { p̄ ∈ P : TC( p̄) ≤ TC( p) ∀p ∈ P}. (2)

3.2. Policy Improvement Step

We now apply a policy improvement step to an optimal static policy. Using the
approach of Section 3.6 of Tijms [43], it can be easily shown that the policy improve-
ment step yields an index policy. To see that, we first define 
(x, an) to be the difference
in total expected costs that would be caused by sending the first incoming customer
to queue n and then following an optimal static policy rather than using an optimal
static policy throughout when the system is in state x. Since each queue operates
independently under a static policy, this difference can be expressed as


(x, an) =
N∑

k=1

p∗
k [Dn(xn) − Dk(xk)]

= Dn(xn) −
N∑

k=1

p∗
kDk(xk), (3)

where Dn(i) denotes the additional long-run cost of admitting an extra customer to
queue n operating under the optimal static routing policy when i customers are already
present. In (3), the summation term does not depend on the action an taken. Therefore,
the action an that minimizes 
(x, an) can simply be found by choosing n to minimize
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Dn(xn). In other words, the policy improvement step gives us an index policy that
routes an arriving generic customer to queue n∗ such that

Dn∗(xn∗) = min
n∈{1,2,...,N}{Dn(xn)}

when the system state is x = (x1, x2, . . . , xN ).
In order to describe the policy, we require an expression for Dn(·). It will simplify

matters if we now focus on a single station and drop the identifier n. Let � = η + λp∗
denote the total arrival rate to this station (the total arrival rate of dedicated and generic
customers assigned to this queue under the optimal static policy). Define μ to be the
service rate, ρ = �/μ to be the traffic intensity, where ρ < 1, and c(i) to be the
expected cost for a customer who sees i customers upon arrival.

Utilizing standard arguments that exploit the fact that the system regenerates upon
every return to the empty state, it can be shown that

D(i) = c(i) + (Ki+1 − gTi+1) − (Ki − gTi) for i ≥ 0, (4)

where Ki is the expected total cost incurred until the first time there is no customer
in the system starting with i customers, Ti is the expected time until the first time the
station is empty starting with i customers, and g is the long-run average cost for the
queue under the static policy. Note that K0 = 0 and T0 = 0.

To make sense of (4), note that Ki − gTi is the relative cost (or bias) of starting the
queue with i customers rather than none. Hence, the difference between the last two
terms in (4) is simply the difference in total expected long-run costs between starting
the queue with i + 1 rather than i customers. However, this difference ignores the
cost to be incurred by the customer to be admitted. Adding the expected cost for that
customer, c(i), to this difference gives us the additional cost of admitting one more
customer, which is D(i). Now, we can rewrite (4) as follows:

D(i) = c(i) + Ki+1 − Ki + g(Ti − Ti+1) for i ≥ 0. (5)

To find an expression for Ki, we first note that

Ki = �

� + μ
(c(i) + Ki+1) + μ

� + μ
Ki−1 for i ≥ 1.

Rearranging terms, we obtain

ki+1 = ρ−1ki − c(i),

where ki = Ki − Ki−1. Using this relationship recursively, we get

ki = k1 − ∑i−1
j=1 c( j)ρ j

ρ i−1
for i ≥ 2. (6)

Note that k1 = K1 − K0 = K1. Hence, to give an explicit expression for ki, it remains
to determine K1.
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In order to derive K1, consider the M/M/1 queue under study. This queue evolves
in cycles [i.e., independent and identically distributed (i.i.d.) renewal intervals], which
start when a customer arrives to an empty system. Each cycle consists of a busy period
(there are customers in the system and the server is working) followed by an idle period
(no customers in the system and therefore the server is idle). Let γm denote the total
cost incurred over cycle m. Clearly, γm is i.i.d. for all m. Let � = E[γ1].

Recall that g is the long-run average cost for this system. Then using the renewal
reward theorem and the fact that expected length of a busy period is 1/(μ − �) (see,
e.g., [18, Sect. 2.11]), we can show the following:

� = g

�(1 − ρ)
.

Then

K1 = � − c(0)

since K1 does not include expected costs for the customer initially in the system.
Then, using (6) and the fact that g = �

∑∞
j=0 c( j)(1 − ρ)ρ j, after a few algebraic

manipulations, we can establish that

ki =
∑∞

j=i c( j)ρ j

ρ i−1
for i ≥ 1. (7)

Finally, since Ti+1 − Ti is equal to the expected length of a “busy period,” we
have Ti+1 − Ti = 1/(μ − �). Then, using (7), we deduce that

D(i) = c(i) + ki+1 − g
1

μ − �
=

∞∑
j=0

(c( j + i) − ρc( j))ρ j (8)

for i ≥ 0. {An alternative way of obtaining (8) from (4) is by solving for the relative
values Ki − gTi directly, utilizing the form of solution to classes of second-order
difference equations given as Corollary 3.3 in Bhulai [8].}

Thus, we have proved the following theorem.

THEOREM 3.1 (Policy Improvement Heuristic): The heuristic dynamic routing policy
that is developed by applying a policy improvement step to an optimal static policy
p∗ = ( p∗

1, p∗
2, . . . , p∗

N ) operates as follows: Upon arrival of a generic customer, if the
system state is x = (x1, x2, . . . , xn), then route the customer to any station n∗ for which

Dn∗(xn∗) = min
k∈{1,2,...,N}

{Dk(xk)},

where

Dk(xk) =
∞∑

j=0

(ck( j + xk) − ρkck( j))ρ j
k (9)

and ρk = (ηk + λp∗
k)/μk.
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The index function (9) is insightful. To see that, we can use (7) and (8) to rewrite
(9) as

Dk(xk) = ck(xk) + 1

μk − �k

(
�k

ρ
xk+1
k

∞∑
i=xk+1

ck(i)ρ
i
k(1 − ρk)

− �k

∞∑
i=0

ck(i)ρ
i
k(1 − ρk)

)
. (10)

The first term on the right-hand side of (10), ck(xk), is the expected cost for a customer
who will be sent to station k and might be interpreted as the internal cost for the
customer. However, the customer also incurs costs for the other incoming customers
who will be routed to the same station and the second term of (10) takes this cost into
account. The term 1/(μk − �k) is the expected length of a “busy period” caused by the
customer under the optimal static policy. In other words, it is the expected time until
the first occasion for which the number of customers in the station is xk again. The first
term in the parentheses in (10) is the long-run average cost for the station when the
average is taken over the times when there are more than xk customers in the station
under the optimal static policy, whereas the second term in the parentheses is simply
the long-run average cost for station k. Their difference can be interpreted as the per
unit time cost of keeping the queue above level xk . Multiplying this difference by the
expected length of a busy period, we find the total cost that the admitted customer
imposes on the system. Hence, in a sense, the expression that follows ck(xk) in (10)
is the external cost of admitting the customer to station k.

4. HEURISTIC 2: LAGRANGIAN RELAXATION METHOD

In order to describe the development of an alternative collection of routing heuristics,
we first reexpress the optimization problem of interest as

Copt = min
u∈U

N∑
n=1

C̃n(u), (11)

where U is the class of stationary policies for routing generic arrivals and C̃n(u) is the
time-average cost rate incurred at station n under control u ∈ U .

We now follow Whittle’s [51] approach to the analysis of the intractable class
of restless bandit problems by relaxing the problem in such a way that the (hard)
constraint that each generic arrival be routed to exactly one station is replaced by the
(softer) constraint that generic arrivals be routed to one station on average. Expressed
differently, the class of policies is expanded to those that route each incoming generic
customer to any number of service stations, subject to an overall admission rate of
λ. Think of this unusual construction as follows: Routing of a generic arrival to a
station means that the number of generic customers there is increased by one. Under
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our expanded stationary policy class, denoted by U ′, a generic arrival may result in an
increase by one in the generic customer numbers at any number of stations (from 1 to
N) or that the arrival can simply be ignored, leaving the system state unchanged. This
construction allows us, for example, to admit multiple copies of generic arrivals when
the system is close to empty and to forbid entry to such arrivals when queue lengths
are large. Within U ′ we will enforce the constraint that the time-average number of
stations to which generic arrivals are routed is one.

We write Ãn(u) for the time-average generic admission rate at station n under
policy u and R̃n(u) = λ − Ãn(u) for the corresponding rejection rate and express the
relaxation of (11) by

C̄opt = min
u∈U ′

N∑
n=1

C̃n(u), (12)

where the minimization in (12) is over those u ∈ U ′ satisfying

N∑
n=1

R̃n(u) = (N − 1)λ. (13)

We also follow Whittle [51] in further relaxing the problem by adopting a Lagrangian
approach to the incorporation of the constraint (13) into the objective. We thus obtain
a Lagrangian relaxation of (11) expressed by

Ĉ(W) = min
u∈U ′

N∑
n=1

{C̃n(u) + WR̃n(u)} − W(N − 1)λ. (14)

In (14), W is a Lagrange multiplier that has an economic interpretation as a charge
for rejecting a single generic customer. Plainly, we have

Ĉ(W) ≤ C̄opt ≤ Copt for all W ∈ R.

We now observe that the nature of the policy class U ′ and the objective together
imply that (14) admits a stationwise decomposition, expressed by

Ĉ(W) =
N∑

n=1

Ĉn(W) − W(N − 1)λ,

where

Ĉn(W) = min
u∈Un

{C̃n(u) + WR̃n(u)}, 1 ≤ n ≤ N . (15)

The optimization problem in (15) relates to station n alone, with Un the class of
stationary policies for determining whether to admit (action a) or reject (action r)
each generic arrival, the goal of optimization being the minimization of an aggregate
customer waiting cost (C̃n(u)) and rejection charges (WR̃n(u)). Call this station n
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problem Pn(W). The following condition adapts Whittle’s notion of indexability to
the current problem. It guarantees that the admission control problem Pn(W) has a
solution which is index based. To express the condition simply we require the notation
an(u) for the set of states (queue lengths) in which the policy u ∈ Un admits a generic
arrival.

DEFINITION 4.1 (Station Indexability): Station n is indexable if there exists a family
of optimal policies for {Pn(W), W ∈ R

+} given by {un,W , W ∈ R
+} such that we have

the following:

(i) an(un,0) = ∅;

(ii) an(un,W ) is increasing in W;

(iii) ∀i ∈ N, ∃W ∈ R
+ such that i ∈ an(un,W ).

The resulting station index W̃n : N → R
+ is given by

W̃n(i) = inf
W∈R+

{W ; i ∈ an(un,W )}. (16)

The key requirement in Definition 4.1 is part (ii), which requires that as the
rejection charge W increases so does the set of queue lengths in which it is optimal
to admit a generic arrival. This seems natural. The index W̃n(i) may then be thought
of as a fair charge for rejecting a customer at station n when the queue length is i.
Further, if all stations are indexable, it follows that there exists an optimal policy for
the Lagrangian relaxation in (14), which, in system state x = (x1, x2, . . . , xN ), will
admit an incoming generic job to each station n whose index W̃n(xn) is no greater than
the prevailing charge W . It is natural to follow Whittle [51] in proposing as a heuristic
for the original problem the policy that routes all incoming generic customers to any
station for which this fair charge is the smallest. Formally, when a generic customer
arrives, if the system state is x = (x1, x2, . . . , xN ), then the customer should be routed
to any station n∗ for which

W̃n∗(xn∗) = min
n=1,2,...,N

W̃n(xn). (17)

We will now proceed to show that, under very mild conditions, the stations are
indeed indexable in our model. We will also obtain each station’s index in closed
form. We now focus exclusively on station n and the corresponding optimization
problem Pn(W), W ∈ R

+. It will ease notation if, until further notice, we drop the
station identifier n from the notation and refer to P(W), W ∈ R

+. In order to deploy
the ideas and objects described in Definition 4.1 we need to describe solutions to
the P(W), W ∈ R

+. To do that, we develop the sequence {W(i), i ∈ N} of reals and
the corresponding sequence {u(i), i ∈ N} of monotone admission control policies as
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follows:

W(i) =
i∑

j=0

β j

{
α(1 − α)

∞∑
k=i+1

c(k)αk−i−1 + c(i)(1 − α) − c( j)β

}
+ c(i)β i+1,

i ∈ N, (18)

and

u(i) chooses r ⇐⇒ queue length at arrival epoch ≥ i, i ∈ N. (19)

It will facilitate the analysis if we make the following technical assumption:

ASSUMPTION 4.1: The sequence of expected costs {c(i), i ∈ N} is nondecreasing such
that we have the following:

(i) c(i) → ∞, i → ∞;

(ii)
∑∞

i=0 c(i)αi < ∞.

Lemma 4.1 is a straightforward consequence of Assumption 4.1.

LEMMA 4.1: {W(i), i ∈ N} is an increasing sequence of positive reals such that
W(i) → ∞, i → ∞.

The following key result describes optimal policies for P(W) for all W ≥ 0. We extend
(18) by adopting the notational convention W(−1) = 0. The proof of Theorem 4.1
will utilize the two following lemmas.

THEOREM 4.1: Policy u(i) is optimal for P(W) for W ∈ [W(i − 1), W(i)), i ∈ N.

Fix W ∈ [W(i − 1), W(i)) for some i ∈ N and choose M ∈ N with M ≥ i + 1. We
develop a finite state approximation to P(W) by requiring that generic customers be
rejected at queue lengths M and above. Let P(W , M) be the optimization problem
that seeks an optimal control under this constraint. We will establish Theorem 4.1 by
demonstrating that u(i) is optimal for P(W , M), W ∈ [W(i − 1), W(i)), M ≥ i + 1,
and then considering the limit M → ∞.

Since the control u(i) operates identically whether applied to P(W) or to P(W , M),
for i ≤ M − 1, we may write g(i) unambiguously for the long-run average cost rate
and w(i, j) for the bias in state j under the operation of policy u(i), M − 1 ≥ j ≥ 0.
In order to formally define the bias, for fixed T ∈ R

+ define Cu(i)( j, T) to be the total
expected cost incurred by arrivals during the time period [0, T ] as the station evolves
from initial queue length j under policy u(i). Then the bias in state j under the operation
of policy u(i) is given by

w(i, j) = lim
T→∞{Cu(i)( j, T) − Cu(i)(0, T)}

and is guaranteed to be finite by the ergodicity of the system.
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LEMMA 4.2: Control u(i) is optimal for P(W , M), i ≤ M − 1 if

c( j) + w(i, j + 1) − w(i, j) ≤ W , 0 ≤ j ≤ i − 1

and c( j) + w(i, j + 1) − w(i, j) ≥ W , M − 1 ≥ j ≥ i.
(20)

PROOF: Under action a (accept generic customers) in state j ≥ 1, possible state tran-
sitions are to j + 1 and j − 1 with rates θ and μ, respectively. The corresponding rates
under action r are η and μ. There are no service completions in state 0. Adopting
a uniformization with common transition rate θ + μ, we develop the average cost
optimality equations for P(W , M) as

g∗ + (θ + μ)w∗( j) = min{θc( j) + θw∗( j + 1) + μI( j ≥ 1)w∗( j − 1)

+ μI( j = 0)w∗(0); ηc( j) + W(θ − η) + ηw∗( j + 1)

+ (θ − η)w∗( j) + μI( j ≥ 1)w∗( j − 1) + μI( j = 0)w∗(0)}
for 0 ≤ j ≤ M − 1, (21)

where g∗ is the optimal long-run average cost, w∗( j) is the bias under an optimal policy
for initial state j, and the indicator function I(A) = 1 if A is true and 0 otherwise.

Moreover, any stationary policy that takes actions to minimize the right-hand side
of (21) for all 0 ≤ j ≤ M − 1 will be average cost optimal. Hence, policy u(i) will be
optimal for P(W , M) if, for j ≤ i − 1,

θc( j) + θw(i, j + 1) + μI( j ≥ 1)w(i, j − 1) + μI( j = 0)w(i, 0)

≤ ηc( j) + W(θ − η) + ηw(i, j + 1) + (θ − η)w(i, j) + μI( j ≥ 1)w(i, j − 1)

+ μI( j = 0)w(i, 0), (22)

with the reverse inequality for M − 1 ≥ j ≥ i. The requirements in (20) follow simply.
This concludes the proof. �

In order to utilize Lemma 4.2, we need the biases w(i, j), 0 ≤ j ≤ M − 1. As
in the calculations in the paragraphs containing (4) and (5) in Section 3, we deploy
an argument based on the fact that the queue length process under u(i) regenerates
whenever the queue empties to assert that

w(i, j) = K(i, j) − g(i)T(i, j), 0 ≤ j ≤ M − 1. (23)

In (23), K(i, j) is the total expected cost incurred (waiting costs and rejection charges)
as the queue empties (for the first time) under policy u(i) from an initial position in
which j customers are present, and T(i, j) is the corresponding expected time. From
(23), it is easy to see that w(i, 0) = 0. Evaluations of these quantities are given in
Lemma 4.3.
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LEMMA 4.3:

(i) For i ∈ Z
+, we have the following:

(a) T(i, j) = ∑j−1
k=0{(1 − β i−1−k)(μ − θ)−1 + β i−1−k(μ − η)−1},

0 ≤ j ≤ i − 1;

(b) T(i, j) = T(i, i − 1) + ( j − i + 1)(μ − η)−1, i ≤ j ≤ M − 1;

(c) K(i, j) = ∑j−1
k=0{W(θ − η)β i−k(θ(1 − α))−1 + ∑i−1

l=k+1 c(l)β l−j

+ ∑∞
l=i c(l)β i−kαl−iηθ−1}, 0 ≤ j ≤ i − 1;

(d) K(i, j) = K(i, i − 1) + ∑j−i
k=0{W(θ − η)(μ − η)−1

+ ∑∞
l=k c(l + i)αl+1−k}, i ≤ j ≤ M − 1;

(e) g(i) = K(i, 1){θ−1 + T(i, 1)}−1.

(ii) For the case i = 0, we have the following:
(a) T(0, j) = j(μ − η)−1, 0 ≤ j ≤ M − 1;

(b) K(0, j) = jW(θ − η)(μ − η)−1 + ∑ j
k=1

∑∞
l=k c(l)αl−k+1,

0 ≤ j ≤ M − 1;

(c) g(0) = K(0, 1){η−1 + T(0, 1)}−1.

PROOF: Choose i and j such that M − 1 ≥ j ≥ i. Under policy u(i), the time taken for
the queue length to drop from j to j − 1 (for the first time) is stochastically identical to
a busy period of an M/M/1 queue with arrival and service rates η and μ, respectively.
It follows that

T(i, j) − T(i, j − 1) = (μ − η)−1, i ≤ j ≤ M − 1, (24)

and Lemma 4.3(i)(b) follows simply. Further, if i − 1 ≥ j ≥ 1, then by conditioning
on the time of the first transition after time 0, we infer that

(θ + μ)T(i, j) = 1 + θT(i, j + 1) + μT(i, j − 1), 1 ≤ j ≤ i − 1. (25)

Combining (25) with (24) and the fact that T(i, 0) = 0 yields Lemma 4.3(i)(a) simply.
Now, choose i and j such that M − 1 ≥ j ≥ i and consider the system evolving

from state j at time 0 under u(i), but where service is abandoned whenever the queue
length drops to j − 1. Hence, whenever the system enters j − 1, it remains there for an
exponentially distributed time with mean 1/η before returning to state j. An argument
based on the fact that the system regenerates upon every entry into j yields the formula

{K(i, j) − K(i, j − 1) + W(θ − η)η−1 + c( j − 1)}/{(μ − η)−1 + η−1} (26)

for the overall cost rate for the system. However, computation of the steady state
distribution of the system state yields

W(θ − η) +
∞∑

k=j−1

ηc(k)αk+1−j(1 − α) (27)
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as an alternative expression. Equating (26) and (27) yields

K(i, j) − K(i, j − 1) = W(θ − η)(μ − η)−1 +
∞∑

k=j

c(k)αk−j+1, i ≤ j ≤ M − 1,

(28)

from which Lemma 4.3(i)(d) is easily deduced. Lemma 4.3(i)(c) then follows via a
recursion that modifies (25) suitably.

Lemma 4.3(i)(e) is a trivial consequence of the fact that the system evolving
under u(i) regenerates upon every entry into state 1 and that the mean time between
successive entries is θ−1 + T(i, 1). This completes the proof of Lemma 4.3(i). Part
(ii) is dealt with similarly. �

With Lemmas 4.2 and 4.3 in place, we now proceed to the proof of Theorem 4.1.

PROOF OF THEOREM 4.1: Fix i ∈ Z
+. We will show that

c( j) + w(i, j + 1) − w(i, j) ≥ W , M − 1 ≥ j ≥ i, (29)

where W ∈ [W(i − 1), W(i)). Other cases (i ∈ Z
+, j ≤ i − 1, and i = 0) are dealt with

similarly.
First, note that from (23), condition (29) becomes

c( j) + K(i, j + 1) − K(i, j) − g(i){T(i, j + 1) − T(i, j)} ≥ W , M − 1 ≥ j ≥ i.

(30)

However, direct calculation based on (18) and Lemma 4.3 yields that, for any W ∈
[W(i − 1), W(i)), we have that

g(i) ≤ g( j), M − 1 ≥ j ≥ i. (31)

Hence, since T(i, j + 1) − T(i, j) ≥ 0, in order to establish (30) it will be enough to
show that

c( j) + K(i, j + 1) − K(i, j) − g( j){T(i, j + 1) − T(i, j)} ≥ W , M − 1 ≥ j ≥ i.
(32)

Utilizing Lemma 4.3(i) parts (b), (d), and (e), the requirement in (32) becomes

c( j) + W(θ − η)(μ − η)−1 +
∞∑

k=j+1

c(k)αk−j − (1 − β){W(θ − η)β j(1 − α)−1

+
j−1∑
k=0

c(k)βkθ +
∞∑

k=j

c(k)αk−jβ jη}{μ − η + β j(η − θ)}−1 ≥ W . (33)



“S0269964809000138jra” — 2009/2/9 — 18:36 — page 190 — #16

�

�

�

�

190 N.T. Argon et al.

Now, multiply inequality (33) through by the positive quantity

ϒ(θ , μ, j) =
{

{μ − η + β j(η − θ)}(μ − θ)−1, μ �= θ

1 + j(1 − α), μ = θ ,

to obtain the inequality

W( j) ≥ W (34)

from (18). However, inequality (34) is guaranteed by Lemma 4.1 and the fact that
W ∈ [W(i − 1), W(i)). Inequality (29) must then follow.

We conclude from Lemma 4.2 that u(i) is optimal for P(W , M) for every M ≥
i − 1. By consideration of the limit M → ∞, it is straightforward to deduce that u(i)
must be optimal for P(W). This concludes the proof. �

We now restore the station suffix n and require that Assumption 4.1 hold for each
station. Hence, for each n there is a corresponding sequence {Wn(i), i ∈ N} given by

Wn(i) =
i∑

j=0

β j
n

{
αn(1 − αn)

∞∑
k=i+1

cn(k)αk−i−1
n + cn(i)(1 − αn) − cn( j)βn

}
+ cn(i)β

i+1
n , i ∈ N. (35)

There is also a sequence {un(i), i ∈ N} of monotone admission control policies for
station n such that

un(i) chooses r ⇐⇒ queue length at station n at arrival epoch ≥ i, i ∈ N.

From Theorem 4.1, the policies {un,W , W ∈ R
+} defined by

un,W = un(i), W ∈ [W(i − 1), W(i)), i ∈ N,

are such that un,W is optimal for Pn(W), W ∈ R
+, 1 ≤ n ≤ N . Further, we deduce

from Lemma 4.1 that the requirements (i)–(iii) of Definition 4.1 are met, with Wn(i)
the resulting index for station n when the queue length is i. These conclusions are
summarized in Theorem 4.2.

THEOREM 4.2 (Indexability, Station Index): If station n satisfies Assumption 4.1, then
it is indexable with Wn(i), the index for queue length i.

We conclude that when all stations satisfyAssumption 4.1, the heuristic described
in (17), with Wn replacing W̃n for all n, is a natural one for our routing problem. It
will be referred to as the Lagrangian relaxation heuristic (LRH) in the remainder of
the article.



“S0269964809000138jra” — 2009/2/9 — 18:36 — page 191 — #17

�

�

�

�

DELAY COSTS IN A MULTISERVER QUEUING SYSTEM 191

5. EXAMPLES

In this section, we assume certain structures for the waiting cost function Cn(·) and give
expressions for the routing indices developed in Sections 3 and 4. The first example
considers an increasing non-continuous and non-convex cost function while the second
example assumes an increasing, continuous, and strictly convex cost function. In
Section 6, we test the performance of our heuristics along with two other heuristics
from the literature under the cost structures assumed by these two examples.

5.1. Example 1: A Noncontinuous and Nonconvex Cost Function

In this example, we assume that a customer with a system time of t in station n will
incur a cost

Cn(t) = hnt + dnI(t ≥ τn) + ĥn(t − τn)
+, (36)

where (y)+ = max(0, y). Hence, for each time unit spent in the queue, the customer
will incur hn. Furthermore, should the customer spend more time in the system than
τn, then she will incur a one-time cost of dn and subsequently an additional cost of
ĥn for each additional time unit above τn. Such cost functions as in (36) are relevant
in many settings, including service systems, where customers are given delivery time
guarantees, and in emergency response settings, where there is typically a time window
(e.g., “golden hour rule”; see, e.g., [35]) for an acceptable level of response time for
critically injured patients.

For the cost function given in (36), it can be shown that

cn(i) = hn(i + 1)

μn
+dn

i∑
j=0

(μnτn)
j

j! e−μnτn + ĥn

i∑
j=0

(i + 1 − j)

(
1

μn

)
(μnτn)

j

j! e−μnτn .

Then it is easy to see that this cost function trivially satisfies Assumptions 3.1 and 4.1.
Moreover, after some tedious but straightforward algebraic manipulations, the policy
improvement index (8) can be shown to be

Dn(i) = hn(i + 1)

μn − �n
+ dne−μnτn

1 − ρn

⎛⎝e�nτn

(
1 − ρ i+1

n

ρ i
n

)
+

i∑
j=0

(μnτn)
j

j! − 1

ρ i
n

i∑
j=0

(�nτn)
j

j!

⎞⎠
+ ĥne−μnτn

(1 − ρn)2μn

⎛⎝e�nτn(1 − ρ i+1
n )

ρ i
n

+ (1 − ρn)(μnτn)
i+1

i!

+ ((1−ρn)(i − μnτn) + 1)

i∑
j=0

(μnτn)
j

j! − 1

ρ
j

n

i∑
j=0

(�nτn)
j

j!

⎞⎠.
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Similarly, the Lagrangian relaxation index (35) can be shown to have the form

Wn(i) = (1 − β i+1
n )(1 − αn)Rn(i)

(1 − βn)αi
n

− Sn(i − 1),

where

Rn(i) = hn

μn

(
(i + 1)αi

n − iαi+1

(1 − αn)2

)

+ dne−μnτn

1 − αn

⎛⎝eηnτn + αi
n

i−1∑
j=0

(μnτn)
j

j! −
i−1∑
j=0

(ηnτn)
j

j!

⎞⎠
+ ĥne−μnτn

μn(1 − αn)

⎛⎝αi
n(i + (1/(1 − αn)) − μnτn)

i−1∑
j=0

(μnτn)
j

j!

− 1

1 − αn

i−1∑
j=0

(ηnτn)
j

j! + (ηnτn)
i

(i − 1)! + eηnτn

1 − αn

⎞⎠
and

Sn(i) = hnβn

μn(1 − βn)2

(
1 − (i + 2)β i+1

n + (i + 1)β i+2
n

)
+ dne−μnτn

1 − βn

(
βn

i∑
j=0

(θnτn)
j

j! − β i+2
n

i∑
j=0

(μnτn)
j

j!
)

+ ĥnβne−μnτn

μn(1 − βn)2

⎛⎝ i∑
j=0

(θnτn)
j

j! + β i
n

(
(i + 1)β2

n − (i + 2)βn
) i−1∑

j=0

(μnτn)
j

j!

+ (θnτn)
i

i!
(
(i + 1)β2

n − (i + 2)βn
) ⎞⎠.

5.2. Example 2: A Continuous and Convex Cost Function

For this example, we consider a cost function with structural properties that are quite
different from those of the cost function of Example 1. To be more precise, we assume
that a customer with a system time of t in station n will incur a cost

Cn(t) = t2. (37)

Note that this cost function is continuous, strictly increasing, and convex. Hence, it
satisfies the conditions that are needed for asymptotic optimality of Stolyar’s MinDrift
rule [40].
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For this cost function, it can be easily shown that

cn(i) = (i + 1)(i + 2)

μ2
n

and, hence, Assumptions 3.1 and 4.1 are trivially satisfied. After some algebraic
manipulations, the policy improvement index (8) can be shown to be

Dn(i) = (i + 1)(i(1 − ρn) + 2)

μ2
n(1 − ρn)2

.

On the other hand, the Lagrangian relaxation index (35) can be shown to have the form

Wn(i) = (1 − β i+1
n )(1 − αn)

(1 − βn)

(
Tn(i)

αi
n

+ cn(i)

)
−

i−1∑
j=0

β j+1
n cn( j),

where

Tn(i) =
(i + 3)(i + 2)αi+1

n (1 − αn)
2 + 2αi+2

n

(
(i + 3) − (i + 2)αn

)
(1 − αn)3μ2

n

.

6. NUMERICAL RESULTS

This section reports our findings from a numerical study that we conducted to assess the
performance of the heuristics developed in Sections 3–5 and to observe the effects of
some system parameters on the performance of these heuristics. In our numerical study,
we consider a system with two service stations (N = 2) and assume cost functions in
the form of either (36) or (37). For such systems, it is possible to determine optimal
routing policies numerically by dynamic programming, thus permitting a complete
evaluation of the proposed heuristics.

Our preliminary numerical results suggested that the performance of the heuris-
tics clearly depended on the system load, (λ + η1 + η2)/(μ1 + μ2). Therefore, we
compared the performance of the heuristics under three different traffic levels:

(i) Light traffic: system load ranges from 0 to 0.6

(ii) Medium traffic: system load ranges from 0.6 to 0.8

(iii) Heavy traffic: system load ranges from 0.8 to 1.0

Under each setting, we generated scenarios by choosing η1, η2, and λ uniformly over
the interval [0, 1] and μ1 and μ2 over the interval [0, 1.5] and discarding the cases with
system loads that did not fall into the desired range. For each scenario, we computed
the performance of the optimal policy, the policy improvement heuristic (PIH), the
Lagrangian relaxation heuristic (LRH), the MinDrift heuristic (MDH), the greedy
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heuristic (GH), and the optimal static routing heuristic (SH). Sections 3–5 provide
detailed descriptions of how PIH and LRH work. We next explain the MDH, GH, and
SH policies.

The MDH, which is due to Stolyar [40], is an index heuristic similar to PIH and
LRH. It simply routes each incoming customer to station n for which the corresponding
index Mn(i) is the smallest when there are i customers at station n. For Example 1,
the MinDrift index (for station n when there are i customers) is given by

Mn(i) =
{

hn/μn, i/μn < τn

(hn + ĥn)/μn, i/μn ≥ τn,

whereas the MinDrift index for Example 2 is

Mn(i) = i/μ2
n.

Stolyar [40] proved that the MinDrift heuristic is asymptotically optimal under heavy
traffic for strictly convex and continuous waiting cost functions. Therefore, there is
no reason to expect that this rule will perform well for Example 1, for which the
cost function is neither continuous nor convex. However, both conditions are satisfied
in Example 2, and consequently, stronger performance of MDH is expected there,
especially so in heavy traffic instances.

The GH is the standard proposal for routing problems. It routes each incoming
generic customer to the queue for which the expected cost for that particular customer
is the smallest. (Note that GH is equivalent to SDR when cost parameters are the
same for all stations.) Finally, the optimal static routing heuristic is the optimal policy
among all static routing policies (see (2)) and is the input policy for the second stage
of PIH. Note that this heuristic is guaranteed to be inferior to the policy improvement
heuristic. However, we still report the performance of SH in order to quantify the
improvements gained by state-dependent policies over this static policy.

The remainder of this section is organized as follows. In Section 6.1, we compare
the performance of our heuristic policies LRH and PIH with the performances of
MDH, SH, and GH. In Section 6.2, we discuss the effects of two system parameters
on the performance of the heuristics under consideration.

6.1. Comparison of the Heuristic Policies

In this subsection, we compare the performance of the heuristics for Examples 1 and 2,
which are described in Sections 5.1 and 5.2, respectively.

6.1.1. Performance of the heuristics: Example 1. In this part of the
study, we assumed a cost function in the form of (36) with the choices h1 = h2 =
ĥ1 = ĥ2 = 1, d1 = d2 = 8, and τ1 = τ2 = 5. For each traffic setting, we randomly
generated 5000 scenarios, and under each scenario, for each heuristic, we computed



“S0269964809000138jra” — 2009/2/9 — 18:36 — page 195 — #21

�

�

�

�

DELAY COSTS IN A MULTISERVER QUEUING SYSTEM 195

the percentage deviation of the performance from that of the optimal policy and con-
structed a 99% confidence interval on the percentage deviation. For each heuristic, we
also determined the median, the lower and upper quartiles for the percentage devia-
tion of each policy from the optimal cost, and the number of occasions that heuristic
provided the smallest cost among all heuristics considered. We report our findings in
Tables 1, 2, and 3 under light, medium, and heavy traffic settings, respectively. Note
that the last columns in the tables add up to a value larger than 5000 due to ties among
heuristics.

Although LRH, PIH, and GH all perform reasonably well, the numerical results
presented in Tables 1–3 demonstrate the superior performance of LRH under each
traffic setting. The most important aspect of these tables is the clear evidence it provides
that LRH outperforms the standard proposal GH for the problems studied. One can

TABLE 1. Performance of the Heuristics for Example 1 Under Light Traffic

Lower Upper 99% C.I. Best
Heuristic Quartile Median Quartile for the Mean Heuristic in

LRH 0.000 0.000 0.011 0.034 ± 0.005 4030 scenarios
PIH 0.000 0.014 0.557 0.668 ± 0.053 1927 scenarios
MDH 0.420 8.747 42.754 31.108 ± 1.705 223 scenarios
GH 0.018 0.327 1.597 1.224 ± 0.070 932 scenarios
SH 0.369 5.338 23.877 13.761 ± 0.628 0 scenarios

Note: Numbers except those in the last column are for percentage deviation from the optimal.

TABLE 2. Performance of the Heuristics for Example 1 Under Medium Traffic

Lower Upper 99% C.I. Best
Heuristic Quartile Median Quartile for the Mean Heuristic in

LRH 0.015 0.086 0.315 0.603 ± 0.421 3543 scenarios
PIH 0.054 0.712 2.782 2.148 ± 0.693 1213 scenarios
MDH 3.513 22.638 64.147 43.790 ± 2.028 73 scenarios
GH 0.416 1.653 4.018 2.685 ± 0.108 555 scenarios
SH 3.669 25.618 50.253 28.816 ± 0.900 0 scenarios

Note: Numbers except those in the last column are for percentage deviation from the optimal.

TABLE 3. Performance of the Heuristics for Example 1 Under Heavy Traffic

Lower Upper 99% C.I. Best
Heuristic Quartile Median Quartile for the Mean Heuristic in

LRH 0.735 1.728 4.799 4.230 ± 0.418 3851 scenarios
PIH 2.433 6.130 9.912 7.880 ± 0.361 720 scenarios
MDH 5.695 14.040 32.616 25.603 ± 1.235 414 scenarios
GH 2.450 4.898 8.361 5.782 ± 0.150 528 scenarios
SH 13.885 29.998 43.946 29.514 ± 0.689 0 scenarios

Note: Numbers except those in the last column are for percentage deviation from the optimal.
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also observe from these tables that the performance of all heuristics except for MDH
deteriorates as the system load increases. Note, however, that the mean performance
of LRH is around 4.23% above optimal, with median 1.728% even under heavy traffic.
Also, comparison of the median and quartiles with the mean performance indicates
that the distribution of the performances are skewed to the right for all the heuristics.
The performance of MDH is clearly poor; however, this is not surprising since MDH
was developed under assumptions that are not satisfied for the cost function considered
for this example. One observation is that MDH seems to provide its best performance
under heavy traffic and its worst performance under medium traffic.

Although LRH clearly seems to be the best heuristic, comparison of PIH and GH
is more complicated. PIH seems to be the heuristic that is affected most by the increase
in the traffic. Its performance gets significantly worse as we move from medium traffic
to heavy traffic. Under heavy traffic, the mean performance of GH is better than that
of PIH. However, PIH is the best heuristic in more scenarios than is GH. At other
traffic levels, PIH outperforms GH in all aspects.

Finally, Tables 1–3 clearly show that state-dependent policies provide substantial
improvements over the “best” static policy, SH. However, these improvements obvi-
ously come at the expense of keeping the system state information at all times (or at
least observing the queues when routing the generic customers).

6.1.2. Performance of the heuristics: Example 2. In this subsection,
we assume that the waiting cost function is in the form of (37). Note that this cost
function satisfies all of the assumptions needed for the asymptotic optimality of MDH
(see Stolyar [40]) and, therefore, MDH is expected to perform well, at least under
heavy traffic.

For each traffic setting, we randomly generated 5000 scenarios and computed
the performance of each heuristic under each scenario. Tables 4, 5, and 6 present our
findings under light, medium, and heavy traffic, respectively. Similar to our results
for Example 1, LRH has the best performance among all of the heuristics considered
under this convex and continuous function. Except for MDH, the performance of
all the heuristics worsen as the traffic intensity increases. The effect of the traffic
load on MDH is not clear, since one would reach different conclusions depending on

TABLE 4. Performance of the Heuristics for Example 2 Under Light Traffic

Lower Upper 99% C.I. Best
Heuristic Quartile Median Quartile for the Mean Heuristic in

LRH 0.000 0.000 0.011 0.046 ± 0.007 4038 scenarios
PIH 0.000 0.017 0.706 0.915 ± 0.074 1821 scenarios
MDH 0.698 3.048 7.809 8.116 ± 0.874 192 scenarios
GH 0.028 0.505 2.260 1.700 ± 0.095 836 scenarios
SH 0.394 6.543 35.792 20.142 ± 0.943 0 scenarios

Note: Numbers except those in the last column are for percentage deviation from the optimal.
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TABLE 5. Performance of the Heuristics for Example 2 Under Medium Traffic

Lower Upper 99% C.I. Best
Heuristic Quartile Median Quartile for the Mean Heuristic in

LRH 0.017 0.130 0.442 0.339 ± 0.018 3660 scenarios
PIH 0.051 1.000 4.094 2.827 ± 0.284 1134 scenarios
MDH 1.770 4.503 8.599 6.408 ± 0.360 149 scenarios
GH 0.679 2.525 5.778 3.832 ± 0.145 472 scenarios
SH 3.735 39.943 83.889 47.099 ± 1.567 0 scenarios

Note: Numbers except those in the last column are for percentage deviation from the optimal.

TABLE 6. Performance of the Heuristics for Example 2 Under Heavy Traffic

Lower Upper 99% C.I. Best
Heuristic Quartile Median Quartile for the Mean Heuristic in

LRH 1.302 2.588 6.597 6.004 ± 0.328 2849 scenarios
PIH 3.315 9.248 15.469 18.871 ± 1.845 982 scenarios
MDH 2.634 5.388 10.173 7.276 ± 0.225 1193 scenarios
GH 4.016 7.131 11.053 7.951 ± 0.188 224 scenarios
SH 22.539 58.985 92.626 61.173 ± 1.759 0 scenarios

Note: Numbers except those in the last column are for percentage deviation from the optimal.

whether the mean and the confidence interval or median and the quartiles are chosen
to be the deciding performance measure. However, if compared with the performance
of all the other heuristics at all traffic levels, one can observe that, as expected, the
relative performance of MDH is the best when under heavy traffic. However, LRH
still seems to perform slightly better than MDH even under heavy traffic (as defined
in this article). PIH performs relatively well under light and medium traffic, but under
heavy traffic, its overall performance is poor. On the other hand, GH is not as good as
PIH under light and medium traffic, but its performance under heavy traffic is much
better than that of PIH on the average. However, even under heavy traffic, PIH is the
best heuristic in more scenarios than GH is. Finally, as in Example 1, the performance
of SH is clearly poor, demonstrating the superiority of state-dependent policies.

6.2. Effects of System Parameters on the Performance
of the Heuristics

In this subsection, we focus our attention on Example 1, assuming a cost function
in the form of (36) with parameter values set as in Section 6.1.1, and investigate the
effects of two system parameters on the performances of LRH, PIH, and GH, the three
best heuristics for this example.

• Effects of dedicated load heterogeneity: In the system under consideration,
each service station has its own dedicated customers and therefore has its
own capacity that can be allocated to the service of generic customers. If
these residual capacities for the two stations are close to each other, we say
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that the dedicated loads are homogeneous; otherwise we say that they are
heterogeneous. To observe the effects of the heterogeneity of the stations on
the performance of the heuristics, we first define a heterogeneity index, �, as

� =
∣∣∣∣1 − η1/μ1

η2/μ2

∣∣∣∣ .

After computing the heterogeneity index for each of the 5000 scenarios, we
ordered all scenarios according to this index from the smallest to the largest.
Then we computed the moving average (of order 2000) of the mean perfor-
mance across the 5000 scenarios (see Fig. 1 for plots of the moving averages).
In all cases, under each traffic setting, we observed a worsening performance
of the heuristics with an increase in �. Hence, the more balanced the system
load is across the two stations, the better is the average performance of all the
heuristics. However, the deterioration in performance is more significant for
GH, less so for LRH, and even less so for PIH. Furthermore, for LRH and
PIH, under heavy traffic, the average performance does not seem to change
drastically as we go from very low levels of heterogeneity to mid levels,

FIGURE 1. Moving average plots of percentage deviations of heuristics from the
optimal with respect to the number of scenarios that are ordered according to the
increasing heterogeneity index of dedicated load �.
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whereas the performance starts to deteriorate significantly as we go from mid
levels to high levels. On the other hand, the performance of GH worsens at a
seemingly constant level as we go from very low levels of heterogeneity to
very high levels.

• Effects of dedicated arrival rates: We have also studied the numerical results
to identify cases in which the heuristic algorithms performed poorly. We
observed that the dedicated arrival rates have an interesting effect on the
performance of the heuristics. To observe this effect, we ordered the scenarios
with respect to their total dedicated arrival rates, η1 + η2, and carried out an
analysis similar to that for the load heterogeneity (see Fig. 2).We observed that
the smaller the total dedicated arrival rate, the worse is the performance of the
LRH on the average. (Note, however, that LRH still has the best performance
among all the heuristics even over the region where its performance is poor.)
Its performance is significantly worse for very low levels of the dedicated
arrival rate. This is surprising since lower dedicated arrival rates indicate
low traffic intensity, which overall seems to have a positive impact on the
performance of all heuristics.

FIGURE 2. Moving average plots of percentage deviations of heuristics from the
optimal with respect to the number of scenarios that are ordered according to the
increasing total dedicated arrival rates η1 + η2.
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We observed a similar effect on the performance of PIH although the
effect does not seem to be as strong as for LRH. On the other hand, the effect
on GH seems to depend on the total traffic load on the system. Under medium
traffic, very low and very high levels of dedicated traffic rate have a positive
effect on the performance, whereas moderate levels yield worse performance
on the average. Under light and heavy traffic, the performance worsens as the
total dedicated arrival rate increases.

7. CONCLUSIONS

For realistically sized routing problems that can be modeled as Markov decision
problems, standard solution approaches based on direct application of stochastic DP
are not practical. The conventional proposal is to adopt a greedy heuristic (GH),
which is sometimes called an individually optimal policy for routing. In the context of
a general model for waiting costs that accommodates dedicated traffic at each station,
we developed two alternative heuristics, based respectively on DP policy improvement
(PIH) and Lagrangian relaxation (LRH). The theoretical challenge with regard to the
latter heuristic concerns the demonstration that station indexability is available at this
level of generality. A numerical study makes clear that LRH performs very closely
to the optimal policy and offers a considerable improvement over GH at all traffic
levels. It also performs better than the MinDrift heuristic (MDH), which is known to
be asymptotically optimal under certain conditions.

In this article, we considered scenarios in which the waiting cost for a customer
possibly depends on the server. Although there are various examples where this gen-
eralization is relevant (e.g., in the case of the routing problem that a manufacturer
faces in outsourcing warranty repairs to different vendors that charge different costs;
see [36]), an interesting extension would be to also allow waiting cost for a customer
to depend on the customer’s type: dedicated or generic. In fact, PIH as described in
this model can easily be extended accordingly. However, this is not the case for LRH
since establishing indexability appears to be a significant challenge when waiting costs
depend on the customer type. Another direction for future research would be to con-
sider multiple types of generic customers each differing in their waiting costs. Such a
generalization would be of particular interest to call centers that serve a heterogeneous
group of users and seek ways of providing a better service for their more “valuable”
customers. It would also be of interest in health care operations, for which patients have
significantly different waiting cost structures depending on their health conditions.
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