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Abstract

We begin by proving that the class of problems accepted by the program schemes of NPS
is exactly the class of problems defined by the sentences of transitive closure logic (program
schemes of NPS are obtained by generalizing basic non-deterministic while-programs whose
tests within while instructions are quantifier-free first-order formulae). We then show that
our program schemes form a proper infinite hierarchy within NPS whose analogy in transitive
closure logic is a proper infinite hierarchy, the union of which is full transitive closure logic but
for which every level of the hierarchy has associated with it a first-order definable problem not
in that level. We then proceed to add a stack to our program schemes, so obtaining the class
of program schemes NPSS, and characterize the class of problems accepted by the program
schemes of NPSS as the class of problems defined by the sentences of path system logic.
We show that there is a proper infinite hierarchy within NPSS, with an analogous hierarchy
within path system logic (again, such that every level of the hierarchy has associated with
it a first-order definable problem not in that level). Like the hierarchies in transitive closure
logic and NPS, the hierarchies in path system logic and NPSS are all proper even when
we consider only problems invelving undirected trees or problems involving out-trees. One
aspect of our analysis that we believe to be particularly interesting is that we do not use
Ehrenfeucht-Fraissé games for our inexpressibility results, as is usually the case in finite
model theory, but we simply consider computations of program schemes on certain finite
structures.
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1 Introduction

There is a strong relationship between finite model theory and computational com-
plexity theory, the outstanding conduit probably being Fagin’s Theorem [15] which
equates the complexity class NP, the class of problems solvable in non-deterministic
polynomial-time, with Y1, the class of problems definable by the sentences of ex-
istential second-order logic. This beautiful and succinct result lies at the root of
the tree that has since grown linking finite model theory and computational com-
plexity, and there is a plethora of results detailing logical characterizations of nu-
merous different complexity classes ranging from AC,, the class of problems ac-
cepted by constant-depth polynomial-size Boolean circuits, to PSPACE, the class
of problems solvable in deterministic polynomial-space, and beyond (the references
[1, 4, 12, 20, 28, 29, 33, 37, 41, 42, 44, 45, 49| include a selection of such characteri-
zations).

It is all very well logically capturing complexity classes; but what can one do with
these characterizations? For on the face of it, they simply provide translations of
(hard) complexity theoretic questions into finite model theory. However, this logical
approach to complexity theory is important for a number of reasons, including the
following. First, finite model theory provides tools for proving logical inexpressibility
results, and a logical inexpressibility result can often be translated into a complexity-
theoretic lower bound result. For example, if we could show that the complement
of, say, the 3-Colourability Problem (which consists of all those undirected graphs
whose vertices can be coloured red, white or blue such that no vertex is joined to
another vertex of the same colour), an NP-complete problem, could not be defined
by a sentence of .1 then, by Fagin’s Theorem, NP would be different from its com-
plementary class co-INP; and consequently NP would be different from P, the class
of problems solvable in deterministic polynomial-time (whether NP is the same as
co-NP or P are widely regarded as two of the most important and difficult open
problems in computer science). Moreover, these tools from finite model theory are
not usually available in the complexity-theoretic setting. Second, a logical character-
ization of a complexity class usually yields new parameters, such as the number of
quantifiers or the number of variables in a defining formula. One can restrict these
parameters and hope to gain some insight into the actual characterization. Again,
the parameters arising are usually not available in the complexity-theoretic setting.
Examples of tools from finite model theory are the numerous variants of the well-
known Ehrenfeucht-Fraissé game, first shown by Barwise [5] and Immerman [27] to
characterize definability in bounded variable infinitary logic (and developed using
earlier results of Ehrenfeucht [14] and Fraissé [17]); and an example of a new logical
parameter is the arity of the quantified second-order relation symbols in a sentence of
¥1. As a matter of fact, combining a variant of the usual Ehrenfeucht-Fraissé game
with a consideration of the class of problems definable by the sentences of existential
second-order logic in which the quantified relation symbols are necessarily unary, that
is, the class of problems known as monadic NP, enabled Fagin to prove that monadic
NP is not closed under complementation [16]. Thus, whilst whether NP = co-NP
remains unresolved, we do know that monadic NP # monadic co-NP.

The complexity class NP can be regarded as a boundary point in the sense that
all logical characterizations of complexity classes contained in (but for which the



expectation is that they are different from) NP are not as satisfactory as that yielded
for NP from Fagin’s Theorem; for these characterizations only hold in the presence of
some built-in relation or relations (equivalently, on a specific class of finite structures)
such as a successor relation. For example, the characterization of P as the class of
problems definable by the sentences of least fixed point logic, due to Immerman [28]
and Vardi [49], no longer holds in the absence of a built-in successor relation. The same
can be said for many other logical characterizations of P such as alternating transitive
closure logic [29] or path system logic [46]. Similarly, Immerman’s characterization of
the complexity class NL, the class of problems solvable in non-deterministic logspace,
as the class of problems definable by the sentences of transitive closure logic [29] no
longer holds in the absence of a built-in successor relation.

Of course, whilst we may lose a complexity-theoretic characterization in the ab-
sence of built-in relations, this does provide additional motivation for the consider-
ation of the ‘pure’ logic (with any built-in relations removed) in the hope that the
loss of the complexity-theoretic link might make the logic more amenable to non-
expressibility results. One example of such a circumstance is Gradel and McColm’s
result [22] that there are problems definable in transitive closure logic which can not
be defined in deterministic transitive closure logic. In the presence of a built-in suc-
cessor relation, these two logics capture NL and L (the class of problems solvable in
deterministic logspace), respectively [29], and it is a longstanding open problem in
complexity theory as to whether L is equal to NL. However, the loss of a complexity-
theoretic link does not always make life easier: witness Abiteboul and Vianu’s result
[2] that least fixed point logic has the same expressibility as partial fixed point logic
(in the absence of any built-in relations) if, and only if, P equals PSPACE (in the
presence of a built-in successor relation, least fixed point logic captures P [28, 49] and
partial fixed point logic captures PSPACE [1]).

It is the inexpressibility results within transitive closure logic (without a built-
in successor relation) due to Grédel [21] and Gridel and McColm [22] that provide
some motivation for the research presented here. In [21], it is shown that an infinite
(proper) hierarchy of logics, obtained by interleaving applications of the TC operator
and applications of the universal quantifier, exists within (the positive fragment of)
transitive closure logic. In [22], a powerful result is proven linking (in)expressibility
in certain fragments of transitive closure logic and bounded variable infinitary logic,
one corollary of which is that there is an infinite (proper) hierarchy within transitive
closure logic obtained by interleaving applications of the transitive closure operator
and negation. Gradel and McColm also solve a problem first posed by Immerman [29]
and show that there are problems in transitive closure logic which are not definable
in the positive fragment of transitive closure logic. All these inexpressibility results
are proven by playing Ehrenfeucht-Fraissé games specifically designed for transitive
closure logic and bounded variable infinitary logic (the whole issue of the existence
of Ehrenfeucht-Fraissé games to capture definability in a variety of logics has been
considered in [34]). This is not unusual as almost all inexpressibility results in finite
model theory have been obtained by playing games of one sort or another, usually
variants of Ehrenfeucht-Fraissé games.

Having provided some (albeit spartan) background as to the results from finite
model theory which motivate us and the tools which have been used to establish
them, let us change tack slightly. We have seen how logics have been developed so as



to capture complexity classes: let us now adopt a somewhat different approach and
instead of developing logic to tie in with complexity theory, let us work with a model
of computation that is amenable to logical analysis yet is closer to the general notion
of a program than a logical formula is. That is, we work with program schemes.
Program schemes were extensively studied in the seventies (for example, see [6, 8,
18, 40]), without much regard being paid to an analysis of resources, before a closer
complexity analysis was undertaken in, mainly, the eighties (for example, see [24,
32, 47]). There are connections between program schemes and logics of programs,
especially dynamic logic [11, 35]|. Program schemes have since been further developed
to work on finite structures [43], mindful of advances in finite model theory, and it is
with a generalization of a specific class of these program schemes that we begin our
studies with here.

We begin by defining an infinite hierarchy of program schemes, NPS, whose first
level is a class of non-deterministic while-programs where the tests within while in-
structions are quantifier-free first-order formulae (such program schemes originate in
[43]). The next level consists of the closure of these program schemes under univer-
sal quantification; the subsequent level consists of non-deterministic while-programs
where the tests within while instructions are program schemes from the preceding
level; and so on. We show that, in fact, the class of problems accepted by program
schemes from the hierarchy is nothing more than the class of problems definable
by the sentences of transitive closure logic; and so our seemingly disparate threads,
those of definability in logics such as transitive closure logic and solvability by pro-
gram schemes, begin to tie together. Whilst this first result is nothing startling (and
indeed can easily be established), we then go on to show that our hierarchy of pro-
gram schemes is proper by, essentially, considering program scheme computations on
appropriately constructed structures. So it is that we re-create hierarchy results in
transitive closure logic similar to those of Gridel [21].

In fact, a result of Gradel and McColm in [22] can be used to obtain our hier-
archy results; but only up to a point. Their result only yields hierarchies over a
fixed signature when this signature contains 3 binary relation symbols and 2 constant
symbols. We prove that these hierarchies remain proper even when we only consider
problems involving undirected trees or problems involving out-trees. As well as ob-
taining refined and more precise hierarchy results, in comparison with those obtained
by applying Griadel and McColm’s result, what is important in our exposition is that
our results are all established not using (variants of the usual) Ehrenfeucht-Fraissé
games but by simply considering appropriate computations in program schemes. We
believe our presentation to be much more straight-forward, concrete and clear than
those in [21] and [22] (although, to be fair, there is more to these two papers than we
have mentioned here). For, as exponents of the art well know, it is often difficult to
develop winning strategies in even the basic Ehrenfeucht-Fraissé game, never mind in
(generalized) Ehrenfeucht-Fralssé games adapted to, for example, transitive closure
logic. Consequently, our proofs have a significant pedagogic advantage.

However, where we gain some real advantage is in our adoption of a high-level
programming formalism as our model, as such a stance enables us to extend our pro-
gram schemes with a high-level programming construct, the stack (a simple extension
using arrays was considered in [43] but only in the presence of a built-in successor
relation). Such an extension would not have been available had we remained within



transitive closure logic (not without ‘behaving unnaturally’ which we would never
have been tempted to do). We show that extending the program schemes of NPS
with a stack in a natural fashion, to obtain the class of program schemes NPSS, is a
real extension in the sense that there are (P-complete) problems accepted by program
schemes of NPSS which are not accepted by any program scheme of NPS. Moreover,
we show that the class of problems accepted by the program schemes of NPSS has an
equivalent formulation as path system logic (first studied in [46], in the presence of
a built-in successor relation). We go on to show that there are proper infinite hier-
archies within NPSS and path system logic mirroring the infinite hierarchies within
NPS and transitive closure logic established earlier; and which, again, remain proper
even when we only consider problems involving undirected trees or problems involving
out-trees. The same comments can also be made about our hierarchies in NPSS and
path system logic as were made about the hierarchies in NPS and transitive closure
logic, with regard to the applicability of Griadel and McColm’s result from [22]| (see
above). However, again crucially, we establish our results by considering the compu-
tations of program schemes on appropriate structures, and without any mention of
Ehrenfeucht-Fraissé games.

We have compared our computational approach with Ehrenfeucht-Fraissé games
above, as (variants of) such games are the most commonly used means for estab-
lishing inexpressibility results in finite model theory (of course, other kinds of games
have also been played in model theory: see, for example, [25]). However, an approach
not dissimilar to our own has previously been undertaken. In [38], McColm devel-
ops games for least fixed point logic by considering a sentence (of least fixed point
logic) as a program (or, as he puts it, a rulebook) so that winning strategies in the
game correspond to particular structures satisfying the sentence (and vice versa, in
an Ehrenfeucht-Fraissé style). McColm uses these games to exhibit a proper infi-
nite hierarchy within least fixed point logic, obtained by bounding the number of
quantifier alternations. McColm’s methodology sits somewhere between our ‘purely
computational’ approach and the usual Ehrenfeucht-Fraissé style approach in that
programs (similar to our program schemes) appear within his methodology but his
techniques are still game-theoretic in nature and involve a characterization theorem
relating winning strategies in games and satisfiability of sentences. It would be in-
teresting to examine a more precise combination of McColm’s methodology and our
own.

We have one important further remark to make. The lack of a ‘bona fide’ logic
capturing any complexity class contained within NP, and especially P, has sparked
much research (see [39]). Here, by ‘bona fide’ we mean that the logic should have a
recursive syntax (again, see [39]). Our motivation for considering the class of problems
accepted by the program schemes of NPS and NPSS is not to try and derive some
‘logical’ characterization of P or to extend the class of problems within P captured
by a bona fide logic. We are interested in the classes of program schemes NPS and
NPSS as resource-bounded models of computation in their own right. Of course,
our interest has been further stimulated given the results in this paper establishing a
relationship between these classes of program schemes and logics previously studied
in finite model theory.

This paper is organised as follows. In the next section, Section 2, we give def-
initions of the fundamental concepts and logics from finite model theory pertinent



to this paper (a general reference is [13] within which the reader will find explicit
definitions of concepts which, although mentioned here, are not absolutely essential
to our account). In Section 3, we introduce our class of program schemes NPS and
tie together NPS and transitive closure logic. In Section 4, we detail the general
construction used to build the structures from which we obtain our inexpressibility
results, with these basic inexpressibilty results proven in Section 5. Also in Section 5,
we apply our inexpressibility results to the program schemes of NPS and other logics
to yield a number of hierarchy results. In Section 6, we explain how a stack can be
added to our program schemes to yield the class of program schemes NPSS, and we
characterize NPSS as path system logic. In Section 7, after highlighting Gradel and
McColm’s main result from [22] and how it can be applied (see above), we obtain
proper hierarchies in NPSS and path system logic. Finally, in Section 8, we present
our conclusions and some directions for further research.

2 Preliminaries

Throughout, a signature ¢ is a tuple (Ry,...,R,,C1,...,C.), where each R; is a
relation symbol, of arity a,;, and each C; is a constant symbol: in the case that o
consists only of relation symbols, we say that o is relational. If ¢ and ¢’ are two
signatures having no symbol with the same name then o Uc’ consists of the signature
whose symbols are those of ¢ in union with those of ¢'. First-order logic over some
signature o, FO(o), consists of those formulae built from atomic formulae over o using
A, V, 1, Vand 3; and FO = U{FO(o) : o is some signature}.

A finite structure A over the signature o, or o-structure, consists of a finite uni-
verse or domain |A| together with a relation R; of arity a; for every relation symbol
R; of o, and a constant C; € |.A| for every constant symbol C; (by an abuse of no-
tation, we do not distinguish between constants or relations and constant or relation
symbols). A finite structure A whose domain consists of n distinct elements has size
n, and we denote the size of A by |.A| also (this does not cause confusion). We only
ever consider structures of size at least 2, and the class of all finite structures over the
signature o of size at least 2 is denoted STRUCT (o). A problem over some signature
o consists of a subset of STRUCT(¢) which is closed under isomorphism; that is,
if A is in the problem then so is every isomorphic copy of A. Throughout, all our
structures will be finite. If A and B are two structures over the same signature ¢ such
that |.A| C |B| and such that the restriction of B to |.A| is isomorphic to A (and so,
for one thing, every constant of B is in |.A]) then we write A C B.

We are now in a position to consider the class of problems defined by the sentences
of FO: we denote this class of problems by FO also, and do likewise for other logics.
It is widely acknowledged that as a means for defining problems, first-order logic
leaves a lot to be desired especially when we have in mind developing a relationship
between computational complexity and logical definability (see, for example, [13]).
Consequently, we now give one way of increasing the expressibility of FO: augmenting
FO with (uniform or vectorized sequences of) Lindstrém quantifiers. There are, of
course, other ways to increase the expressibility of FO: we have already mentioned
second-order logic, least fixed point logic and bounded variable infinitary logic. Whilst
we shall (briefly) meet bounded variable infinitary logic later, we concentrate here on
how we extend FO using Lindstrém quantifiers (and refer the reader to [13] for details



regarding the other logics).
Define the signature co = (£, C, D), where E is a binary relation symbol and
C' and D are constant symbols, and define the problem TC as

TC = {A € STRUCT (0244 ) : the digraph with vertex set |A| and edge
set given by the relation F contains a path from vertex C to
vertex D}.

Corresponding to the problem TC is an operator of the same name; more precisely,
an infinite uniform, or vectorized, sequence of Lindstrom quantifiers (whilst we do
not define here explicitly what a Lindstrém quantifier is, we hope that the essence
of Lindstrom quantifiers is gleaned from what follows: again, see [13]). The logic
(XTC)*[FO], or transitive closure logic, is the closure of FO under the usual first-
order connectives and quantifiers, and also the operator TC, with TC applied as
follows.

Given a formula o(x,y) € (£TC)*[FO], where the variables of the k-tuples x and
y, for some k, are all distinct and free in ¢, the formula ® defined as TC[Ax, y¢|(u,v),
where u and v are k-tuples of (not necessarily distinct) constant symbols and vari-
ables, is also a formula of (XTC)*[FO], with the free variables of ® being those
variables in u and v, as well as the free variables of ¢ different from those in the tu-
ples x and y. If ® is a sentence then it is interpreted in a structure A € STRUCT (o),
where ¢ is the underlying signature, as follows. We build a digraph with vertex set
|A|F and edge set

{(a,b) € |A]* x |A|* : ¢(a,b) holds in A},

and say that A = @ if, and only if, there is a path in this digraph from vertex u to
vertex v (the semantics can easily be extended to arbitrary formulae of (£TC)*[FO|:
see, for example, [13] for a more detailed semantic definition).

We occasionally focus on some fragments of (XTC)*[FO].

e TC*|FO] consists of all those formulae where applications of TC do not appear
within the scope of a negation sign.

e (LTC)![FO] consists of all those formulae where at most i applications of TC
may be nested.

e TC[FO] consists of all those formulae where applications of T'C do not appear
within the scope of a negation sign and where at most i applications of TC may
be nested.

We reiterate that TC is essentially an infinite sequence of Lindstrém quantifiers {TCy }
where TCy is the corresponding quantifier which binds 2k free variables in the for-
mula to which it is applied. In a celebrated result, Immerman [29, 30| captured the
complexity class NL by the logic (£TC)*[FOJ, but only in the presence of a built-in
successor relation (more later), thus obtaining as a corollary that NL = co-NL.
One can augment FO with an operator (or operators) such as TC corresponding
to any problem (or problems) and examine the class of problems so captured. A
variety of such logics have been formed and many well-known complexity classes



subsequently captured (see, for example, the presentation and references in [46]). Of
particular interest to us in this paper is the logic formed by extending FO using an
operator corresponding to the problem PS defined below.

A path system is a set of vertices and a set of rules of the form (x,y) — z, where z,
y and z are vertices, together with a distinguished source vertex and a distinguished
sink vertex. The set of accessible vertices is built by initially assuming the source
vertex to be accessible and then continually applying the rules until the current set of
accessible vertices can be made no bigger, via: ‘if the vertices & and ¢ have been shown
to be accessible and (z,y) — z then z is accessible’ (z and y need not be distinct). Let
o311 = (R,C, D), where R is a relation symbol of arity 3 and C' and D are constant
symbols. Any o34 -structure can clearly be considered as a path system with C' the
source and D the sink and where the rules are given by {(x,y) — z : R(z,y, z) holds}.
Define

PS ={A € STRUCT(0344) : the path system with vertex set given by
|A| and accessibility rules given by the relation R is such that

the vertex D is accessible from the vertex C'}.

The problem PS has long been known to be complete for P via logspace reductions
[10], and in [46] the logic (+PS)*[FO], in the presence of a built-in successor relation,
was shown to capture P.

3 Program Schemes

In this section we introduce our notion of a program scheme.

Definition 1 A program scheme p € NPS(1) involves a finite set {z1,z2,..., 2k} of
variables, for some k > 1, and is over a signature o. It consists of a finite sequence
of instructions where each instruction, apart from the first and the last, is one of the
following:

e an assignment instruction of the form ‘z; := y’, where ¢ € {1,2,...,k} and
where y is either a variable from {z1,z2,...,2%}, a constant symbol of o or
one of the special constant symbols 0 and maz which do not appear in any
signature;

e a guess instruction of the form ‘GUESS z,’, where i € {1,2,...,k}; or

o a while instruction of the form ‘WHILE ¢ DO aj;as;...;a4 OD’, where £ is
a quantifier-free formula of FO(o U {0, max}) whose free variables are from
{z1,Z2,...,2} and where each of aq,qs,...,q, is another instruction of one
of the three forms given here (note that there may be nested while instructions).

The first instruction of p is ‘INPUT(z1,22,...,2;)" and the last instruction is
‘OUTPUT(xy,x2,...,21)’, for some [ where 1 <[ < k. The variables z1,z9,..., 7
are the input-output variables of p, the variables x;11,x112,...,2 are the free vari-
ables of p and, further, any free variable of p never appears on the left-hand side



of an assignment instruction nor in a guess instruction. Essentially, free variables
appear in p as if they were constant symbols. (As we soon see, other types of pro-
gram scheme might have bound variables: however, no program scheme of NPS(1)
has bound variables.)

A program scheme p € NPS(1) over o with s free variables, say, takes a o-structure
A and s additional values from |.4|, one for each free variable of p, as input; that is,
an expansion .4’ of A by adjoining s additional constants. The program scheme p
computes on A’ in the obvious way except that:

¢ execution of the instruction ‘GUESS z,’ non-deterministically assigns an element
of |A| to the variable z;;

e the constants 0 and max are interpreted as two arbitrary but distinct elements

of |A]; and
e initially, every input-output variable is assumed to have the value 0.

Note that throughout a computation of p, the value of any free variable does not
change. The expansion A’ of the structure A is accepted by p, and we write A" = p,
if, and only if, there exists a computation of p on this expansion such that the output-
instruction is reached with all input-output variables having the value mazx.

We want the sets of structures accepted by our program schemes to be problems,
i.e., closed under isomorphisms, and so we only ever consider program schemes p
(including those defined in Definition 1 and in future) where a structure is accepted
by p when 0 and max are given two distinct values from the universe of the structure
if, and only if, it is accepted no matter which pair of distinct values is chosen for 0
and maz. Let us reiterate: when we say that p is a program scheme of, for example,
NPS(1) we mean that p accepts a problem and the acceptance of any input structure
does not depend upon the pair of distinct values we give to 0 and mazx.

Compare the above stipulation with the usual situation in logic. It is generally
accepted that the syntax of any logic should be recursive; that is, the set of well-formed
formulae should be recursive (see [39]). Analogously, we might expect that a class of
program schemes should be recursively enumerable. Trakhtenbrot’s Theorem ([48]:
see also [13, Theorem 6.2.1]) tells us that it is undecidable as to whether an arbitrary
first-order sentence holds in every (appropriate) finite structure. It is conceivable that
(but, as far as we know, unknown) whether a program scheme satisfies our criterion
(above, regarding 0 and maz) is undecidable too. Hence, if we follow the accepted
practice in logic then we may have some difliculties with whether our class of program
schemes is ‘bona fide’ or not. However, we could easily circumvent this (possibly non-
existent) difficulty by, for example, insisting that our input-output variables are of a
different, Boolean type, only taking the values ‘true’ or ‘false’, and use these variables
to signal acceptance or rejection (we do not go into details). Consequently, we leave
the definition of our program schemes as it stands (safe in the knowledge that we
could force it to conform to standard practice if required). We return to 0 and max
later when they appear in logics in an analogous fashion.

Remark 2 (a) We can easily build the usual ‘if” and ‘if-then-else’ instructions using
while instructions (see, for example, [43]).



(b) Our program schemes (including those defined above and in future) may be
such that certain computations do not terminate.

Example 3 Let the program scheme p € NPS(1) over o2y be defined as follows.

1. INPUT([L’l,ZL’Q)

2. x = C

3.  WHILE z; # D DO

4. GUESS xo

5. WHILE —FE(x1,22) DO
6. GUESS 2z, OD

7. x1 := X9 0D

8. 1 = max

9. To = MaAT

10. OUTPUT(ZL’l,ZL’Q)

(We present program schemes in an indented style to aid readability.) Then p does
indeed accept a problem, and the problem accepted by p is TC.

Example 4 The signature 029 = (P, N), where P and N are binary relation symbols.
We think of a 09 o-structure of size n as a conjunction of clauses of Boolean literals

as follows. For convenience, rename the elements of the domain as 0,1,...,n — 1.
There are n clauses Cy, C4,...,Cp_1 (some of which might be empty) and there are
n Boolean variables Xy, X1,...,X,_1. The literal X; is in clause C; if, and only if,

P(i,7) holds, and the literal —X; is in clause C; if, and only if, N (4, ) holds. Empty
clauses are satisfiable by definition. The problem SAT is defined as

{A € STRUCT(o2,2) : the set of clauses A is satisfiable}.
In [31], the following result was proven.

Proposition 5 Let C be some set of clauses, over the set of Boolean variables B,
containing 0 or 2 distinct literals. Let G be the digraph whose vertex set is the set of
literals over B and whose edge set is

{(I,~1") : there is a clause {I VI'} in C where [ and I’ are literals}

(——l is identified with 7). Then the set of clauses C is not satisfiable if, and only if,
there is a path in the digraph G from ! to -/ and also one from —[ to [, for some literal
l.

Consider the following program scheme p € NPS(1) over o2 o when we only allow
inputs A where A is such that every clause has 0 or 2 distinct literals. Then p accepts
those structures of this type that are not satisfiable.

INPUT(x1, Z2, 3, T4, L5, T6)

GUESS i

(z2,73) := (0,21)

WHILE —(z9 = maz Azs =z7) DO
GUESS 14,25

G e
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6. GUESS x4

7. IF (x2 # 24 Vs #25) A{((x2 = 0A P(x3,26)) V (x2 = max A N(zs,zs))
A{(xq4 =0 A P(xs,26)) V (24 = max A N(xs5,24)) THEN

8. T3 = I

9. IF x4 =0 THEN

10. x9 := max ELSE

11. zo:=0 FI OD

12.  (z2,z3) := (maz, z1)
13. WHILE ﬁ(ng =0A T = 1’1) DO

14. GUESS x4, 75

15. GUESS x4

16. IF (x2 # 24 Vs #25) A{((x2 = 0A P(x3,26)) V (x2 = max A N(zs,zs))
A((xa =0 A P(xs,26)) V (£2a = max A N(xs,26)) THEN

17. T3 = Ts

18. IF x4 =0 THEN

19. x9 := max ELSE

20. x9:=0 FI 0D

21, (z1,x9,%3,%4,T5,T6) 1= (Maz, max, max, max, max, max)

22.  OUTPUT(z1, o, T3, T4, L5, L)

(The shorthand used above should be obvious.) Essentially, we guess a Boolean literal
X,,, the first while loop checks to see whether there is a path in G from X, to =X,
and the second while loop checks to see whether there is a path in G from - X, to
X, (where G is the digraph as in Proposition 5). The current vertex in G, a literal,
is encoded as (z2,x3) where if 29 = 0 then the literal is X, and if zo = max then
the literal is =X, .

The class of program schemes NPS(1) can be regarded as a very basic class of non-
deterministic program schemes based on while loops. An important point to note is
that whereas the usual existential quantifier is catered for via the guess instruction
(intuitively speaking), there is no such analogous modelling of the universal quanti-
fier. Consequently, we extend these basic program schemes by introducing universal
quantification in the following manner.

Definition 6 Let o be some signature. For some m > 1, let the program scheme
p € NPS(2m — 1) be over the signature ¢ and involve the variables z1,zo,...,z.
Suppose that the variables x1, x2,...,x; are the input-output variables of p, that the
variables z; 1, Z1y9,..., 215 are the free variables and that the remaining variables
are the bound variables. Let x;,,%;,,...,%;, be free variables of p, for some p such
that 1 < p <s. Then

VZ’Z‘lVZ’h PN in,,p

is a program scheme of NPS(2m), which we denote by p’, with no input-output
variables, with free variables those of {zi11, %142, .., Zi4s} \ {@is Ty, ..., 24, } and
with the remaining variables of {z1,x2,..., 2t} as its bound variables.

A program scheme such as p’ takes expansions A’ of o-structures A by adjoining
s — p constants as input (one for each free variable), and p’ accepts such an expansion
A’ if, and only if, for every expansion A" of A" by p additional constants (one for
each variable z;,), A" |= p.
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Definition 7 Let o be some signature. A program scheme p’ € NPS(2m — 1), for
some m > 2, over the signature ¢ and involving the variables of {z1,z2,...,zx}, is
formed exactly as are the program schemes of NPS(1), with the input-output and
free variables defined accordingly, except that the test in some while instruction is
a program scheme p € NPS(2m — 2) whose free and bound variables are all from
{z1,22,...,7} (note that p has no input-output variables). However, there are
further stipulations:

e all free variables in any test p € NPS(2m — 2) in any while instruction are
input-output or free variables of p/;

e the bound variables of p consist of all bound variables of any test p € NPS(2m—
2) in any while instruction (and no bound variable is ever an input-output or
free variable of p); and

e this accounts for all variables of {x1,z2,...,z;}.

Of course, any free variable of p’ never appears on the left-hand side of an assignment
instruction or in a guess instruction.

A program scheme p' € NPS(2m — 1) takes expansions A’ of o-structures A by
adjoining s constants as input, where s is the number of free variables, and computes
on A’ in the obvious way except that when some while instruction is encountered,
the test, which is a program scheme p € NPS(2m — 2), is evaluated according to the
expansion of A’ by the current values of any relevant input-output variables of p’
(which may be free in p).

Remark 8 A simple analysis yields that we can build the usual ‘if’ and ‘if-then-else’
instructions in the program schemes of NPS(m), for all odd m > 1. Indeed, henceforth
we assume that these instructions are at our disposal.

Example 9 Let ¢ = (E,U), where E is a binary relation symbol and U is a unary
relation symbol. A o-structure can be envisaged as a digraph, whose edge relation is
given by FE, with a specified set of vertices, given by U, called roots. The following
program scheme p’ € NPS(3) accepts the problem consisting of those rooted digraphs
for which at least one of the roots is such that there are paths from the root to every
other vertex.

1 INPUT(z:)

2 GUESS i

3. WHILE —U(z) DO
4. GUESS z1 0D

5. IF Vzop(x1,2z2) THEN
) x1 := max ELSE
7 x1:=0 FI

8. OUTPUT(z;)

where the program scheme p € NPS(1) is defined as

1. INPUT(ZL’g, 1’4)
2. Tz = I

12



WHILE z3 # 2 DO
GUESS x4
IF E(x3,24) THEN
T3 = T4 FI 0D
(z3,24) := (max, max)
OUTPUT(ZL’g, 1’4)

0 NS G Rw

(The input-output variables of p are z3 and x4, the free variables are z; and z5 and
there are no bound variables. The input-output variable of p’ is x1, there are no free
variables and the bound variables are zo, 3 and x4.)

In order to facilitate our understanding of program schemes and their computa-
tions, we shall henceforth abuse Definition 1 as follows. Whereas, in Definition 1, we
talked of an instruction of the form ‘WHILE ¢ DO a3; a2;. .. ; ag OD’, throughout the
rest of this paper we shall think of such an instruction as a sequence of instructions,
the first of which is an evaluation of ¢, the second of which is ¢ (or possible a sequence
of instructions corresponding to ¢ if o is of the form ‘“WHILE ... DO ... OD’), the
third of which is ag, and so on. That is, we shall think of every program scheme as
being written in the (programming language) style of the preceding examples, with
computations defined accordingly (another abuse is that we sometimes group assign-
ments together to form one instruction, as in instruction 7 of the program scheme
p in Example 9). Thus, in future when we say ‘instruction’ we mean assignments,
guesses and the evaluation of tests (where the test itself might possibly involve an-
other program scheme), and we label these instructions as we have done in previous
examples. In consequence, we envisage computations of program schemes of NPS(1)
as being sequences of tuples consisting of: (a) values of the input-output variables;
and (b) an integer denoting the label of the next instruction to be executed. We shall
expand upon this point later.

As the reader might have guessed, there is a close relationship between our classes
of program schemes and transitive closure logic.

Definition 10 Define:

o +TC(1) to be the set of formulae of the form
TCx, y¥l(u,v),

where 1) is quantifier-free first-order and where u and v are tuples of constant
symbols or variables;

e tTC(m+1), for odd m > 1, to be the universal closure of TC(m), i.e., the set
of formulae of the form Vz; ...Vzi1), where ¢ is a formula of TC(m); and

e +TC(m + 1), for even m > 2, to be the set of formulae of the form

TCP‘Xv Y(¢1 v jd)Q)](u? V)7

where 11,12 € £TC(m) and where u and v are tuples of constant symbols or
variables (not necessarily distinct).
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Note that in order to form (non-trivial) sentences in £TC(m), for m odd, and so
consider £ TC(m) as a class of (non-trivial) problems, we need at least two distinct
constant symbols. Consequently, when we talk about £2TC(m), we assume that there
are always two (distinct) built-in constants available, 0 and mazx, and we only consider
sentences ¢ of 2 TC(m) for which the following is true: for any (appropriate) structure
A, A = ¢ with 0 and maz given distinct values if, and only if, A = ¢ no matter
which pair of distinct values are taken for 0 and mazx. That is, we proceed as we did
for 0 and max in our program schemes.

An alternative would be to only consider signatures containing the constant sym-
bols 0 and maz and structures for which 0 and maz are interpreted differently, as
is done in [13, 21, 22], for example. However, we prefer to work with built-in con-
stant symbols for two reasons. First, it may be the case that the natural encoding
of a problem (involving, for example, graphs) as a set of structures does not involve
any constant symbols. We feel that including constant symbols in a signature unnec-
essarily and treating the corresponding constants in a structure as essential to the
problem instance is unsatisfactory (see Garey and Johnson’s discussion on reason-
able complexity-theoretic encoding schemes in [19]). Second, including 0 and maz as
built-in constant symbols is in keeping with how one generally introduces an ordering
into structures in descriptive complexity theory: see, for example, [13, Section 6.5]
where a built-in successor relation is introduced into a logic in the same way that our
built-in constants have been introduced (the phraseology in [13] is actually that or-
dered representations of structures are considered but this amounts to the same thing
as saying that there is a built-in successor relation available). However, be this as it
may, the results in [13, 21, 22] and in this paper hold whether we assume the existence
of built-in constants or we only work with signatures containing the constant symbols
0 and maz (and where these symbols are always interpreted differently).

A simple induction (similar to those in [43], for example) yields the following result
in which we identify, as we do throughout, a class of program schemes (resp. a logic)
with the problems accepted by the program schemes (resp. defined by the sentences
of the logic). We write NPS = U{NPS(m) : m > 1}.

Theorem 11 In the presence of two built-in constants, NPS(m) = £TC(m), for
every m > 1: consequently,
NPS = (£TC)*[FO].

Note that NPS = (£TC)*[FO] even in the absence of two built-in constants in
transitive closure logic as we can ‘build two distinct constants’ by existential quan-
tification.

In the presence of a built-in successor relation and two built-in constants, 0 and
mazx, denoting the minimum and the maximum with respect to the successor relation,
i.e., a binary relation {(ao, a1), (a1, 02), ..., (@n—2,a,—1)} in astructure of size n where
all the a;’s are distinct and ag = 0 and a,,_, = max, it is well-known that everything
collapses; and that this collapse is to NL.

Theorem 12 [29, 30, 43| In the presence of a built-in successor relation,

NPS = NPS(1) = (£TC)*[FO] = TC![FO] = NL.
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4 Constructing suitable structures

We now detail a general construction which yields structures suitable for proving hier-
archy results in classes of program schemes and logics. This construction is essentially
a generalization of that in [21] (a similar construction is also given in [13]), which in
turn is derived from a construction in [7].

Let o be some relational signature containing the unary relation symbol Uy and
let A° C B° be o-structures such that

{u € | A" : Up(u) holds in A} = [{u ¢ |B°| : Up(x) holds in B°}| = 1.

Fix m > 1 and let Uy,Us,,...,U,, be unary relation symbols not in ¢. If there is
a binary relation symbol E in ¢ then define the signature ¢™ = o U {Uq,...,Un};
otherwise define the signature c™ = c U{E,Uy,..., Uy}

For any k > 1, the o'-structure .A,lC is built from A° and B? as follows.

e Take k + 1 copies of BY and 1 copy of A" (all copies are disjoint) and introduce
a new element v; hence, the size of the universe of A} is [ A% + (k +1)|B% + 1.

e For any relation symbol R of o \ {E}, the relation R of A} is the union of the
relations R of the copies of A% and B°.

o The relation Uy of A; is {v}.

e The relation E of A} is the union of the relations E of the copies of A® and B°,
in union with {(v,u), (u,v) : Ui (v) and Up(u) hold in A}}.

The ol-structure Bi is built as is AL except that the copy of A° is replaced with
another copy of BY. The structures A; and B} can be visualized as in Fig. 1. Note
that A; C B; via a natural embedding 7 (indeed, there are numerous such natural
embeddings).

element of U,
<«—— edgesof E _—>

.
4

\ € elements of Uy >

4

copy of & copy of Vi copy of # copy of # copy of # copy of #
«— i+l —> «— [+l —>

Figure 1. The structures A} and Bj.
For £ > 1 and m > 2 even, the o™-structure B}* is built as follows.

e Take k + 1 copies of .,42"71 and 1 copy of B;"fl (all copies are disjoint) and
introduce a new element v; and so the size of the universe of Bf* is |B,ZL_1| +
(k+ AT + 1.

e For any relation symbol R of o™ 1\ {E}, the relation R of B is the union of
the relations R of the copies of AZ“I and BZL*I.
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o The relation U, of B} is {v}.

o The relation I/ of B is the union of the relations I of the copies of AZ“I and
B!, in union with {(v,u), (u,v) : Un(v) and U, 1(u) hold in BI*}.

The o™-structure A7" is built as is BY* except that the copy of B,’C"*l is replaced with

another copy of AZL_l. The structures A}* and B} can be visualized similarly to those

in Figs. 2 and 3 (where A} and B}, for m odd, are depicted). Note that A}* C B}

via a natural embedding 7 (again, there are numerous such natural embeddings).
For k£ > 1 and m > 3 odd, the c™-structure A7" is built as follows.

e Take k + 1 copies of B;"fl and 1 copy of .AZ“I (all copies are disjoint) and
introduce a new element v; and so the size of the universe of A} is |A2n_1| +
(k+ 1B '+ 1.

e For any relation symbol R of 0™ 1\ {E}, the relation R of A7 is the union of
the relations R of the copies of Af* ' and By .

o The relation Uy, of A} is {v}.

e The relation E of A}J* is the union of the relations E of the copies of .AZ“I and
B!, in union with {(v,u), (u,v) : Un(v) and Uy,—1(x) hold in A}.

The o"-structure B* is built as is A}* except that the copy of AZFI is replaced with
another copy of BZ“I. The structures A7 and BJ* can be visualized as in Figs. 2 and
3. Note that A}* C B* via a natural embedding 7.

elements of:

U, layer m
Uy layer m-1
layer m-2
< layer |
< layerO

the only place where 47" and B{" differ

Figure 2. The structure A7* when m is odd.

5 Some hierarchy results

We can now use the structures constructed in the previous section to obtain some
hierarchy results in our class of program schemes NPS, and also in some related
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logics. For notational convenience, throughout the statement of Theorem 13 and its
proof, by A and BY we really mean A" and BY, respectively.

elements of:
Un

< layerm

layer m-1

<« layer m-2

< layer |

<« layer0

the only place where 47 and 87 differ

Figure 3. The structure B}* when m is odd.

Theorem 13 Let o be some relational signature containing the unary relation sym-
bol Uy and let A? and B° be o-structures such that:

o A% C B° and
o [{uc |A° : Up(u) holds in AY}| = [{u € |B°| : Uy(u) holds in B}| = 1.
Fixm>1,k>1andr >0, and:

m-+r

e let p € NPS(m) be over the signature o and involve k variables, s of which

are free; and

o let .,ZlZL‘H and lglzn‘” be expansions of the o™ -structures A}**" and By**" by
adjoining s constants (one for each free variable of p) so that:

- .,len” C BZLH via a natural embedding 7 which embeds the left-most copy
of A7*~" on layer m — 1 of A" into the left-most copy of By*~' on layer
m — 1 of Bt (see Figs. 2 and 3); but

~ none of the adjoined constants lie in the left-most copy of A"~ on layer
m —1 of A7+ nor in the left-most copy of By* ! on layer m — 1 of By**".

Then ~ ~
AP | pif, and only if, BPt = p.

Proof In the following proof, it is probably beneficial to visualize a variable of some
program scheme taking a value from the domain of some structure as the placing of a
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pebble, corresponding to the variable, on the domain element in question. Throughout
the proof we adopt the nomenclature of the statement of the theorem.

We begin with two lemmas. In both of these lemmas, we think of the computa-
tions of the program scheme p € NPSS(m), for m odd (on some input structure),
so that tests in while instructions (which may themselves be program schemes of
NPSS(m — 1)) are simply evaluated as either true or false. That is, we only consider
such computations at the ‘top level’ and think of the computations as consisting of se-
quences of tuples of values of the input-output variables of p, together with some flow
control, i.e., the number of the instruction about to be executed. Statements such as
‘no input-output variable of p ever takes a value from the left-most copy of .AZL*Q on
layer m — 2 of AZLH’ are intended to apply to this ‘top-level’ view of computations.

Lemma 14 If m > 3 is odd and .,ZlZL‘H = p then there is an accepting computation
of p on At such that:

e 0 and max are taken as elements u and v such that Up (v) and Upyr—1(v)
hold in A7, with v in the right-most copy of AP ! or BP"™! on layer
m-+r—1 offlzn”;

e no input-output variable of p ever takes a value from the left-most copy of .AZL*Q
on layer m — 2 of A7

Proof We shall simulate an accepting computation of p on fl;g"” with an accepting
computation satisfying the statement of the lemma. Choose 0 and max as in the
statement of the lemma, and denote the expansion of .,ZlZH'T with the constants 0 and
maz as (A7, 0, mazx) (and similarly for other tuples of values).

As stated prior to this lemma: p is essentially considered as a program scheme
of NPSS(1) where tests in while instructions are simply evaluated as true or false;
and computations are considered as sequences of tuples of values of the input-output
variables, together with some flow control. Suppose that our original computation
is the sequence {(«a;, I;)}5_;, where each «, is a tuple of values for the input-output
variables and each I; is the instruction about to be executed: so, oy = (0,0,...,0) and
I = 2 (to denote the second instruction). What we do is to construct a new sequence
{(B:, I;) }5_, so that this sequence corresponds to a proper computation of p on fl;g"”
and so that the two structures obtained as expansions of (.,le"”, 0, maz) by adjoining
constants corresponding to the values of «; and §; are isomorphic. Moreover, we shall
ensure that no value of any 3; comes from the left-most copy of .AZ“Q on layer m — 2
of AmHT.

k

Our construction of 3; proceeds by induction (the base case is when «; = (0,0, ...,
0) = f1). Suppose that (A;C"”,O,max,ozi) is isomorphic to (A;C"”,O,max,ﬁi) via
the isomorphism #;. If instruction I; is an assignment or a test evaluation then we
are done (because whether any test is true or false is invariant under isomorphism,
and none of the s adjoined constants, as in the statement of the main theorem, lie
in the left-most copy of A7 on layer m — 1 of AP*"). If instruction I; is a guess
instruction then there are two possibilities: the ‘natural simulating guess’, according
to 6;, is not in the lefi-most copy of .AZ“? on layer m — 2 of AZLH, or it is. In the
first case, we are done. Alternatively, we can make our guess in a ‘free copy’ of .AZL_2,
i.e., a copy in which no variable currently has a value, from amongst the k + 1 copies
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of A7*"? on layer m — 2 of A7""" adjacent to the left-most copy (at least one of these

k + 1 copies is ‘free’). Of course, the resulting structures (A;Cn+7",0,maa:,ozi+1) and

AT 0, mazx, Bi+1) are no longer isomorphic via 6; but we can always ensure that
k +

they remain isomorphic via another isomorphism 6, 1. The result follows.

Lemma 15 If m > 1 is odd and [;’LYH'T = p then there is an accepting computation
of p on Bt such that:

e 0 and max are taken as elements u and v such that Uy, 1-(u) and Uy yr—1(v)
hold in BZ”FTL with v in the right-most copy of AP or B! on layer
m+r—1 ofBZL'”;

e if m = 1 then no input-output variable of p ever takes a value from the left-most
copy of B° on layer 0 of B]**"; and

e if m > 3 then no input-output variable of p ever takes a value from the left-most
copy of BZL*I on layer m — 1 of B*t".

Proof Follows immediately if we argue as we did in the proof of Lemma 14.

We now proceed by induction on m.

Base Case Fix m = 1.

Suppose that .,ZlH'T E p. Let 0 and maz be elements u and v such that Uyq,(u)
and U,(v) hold in A,*", with v in the right-most copy of A} or Bf on layer r of
AHT As .AHT - BHT via 7, we can mirror an accepting computation of p on AHT
in a computation of p on BHT (with 0 and max in the computation of p on BHT
taken as the images of 0 and max in the computation of p on AHT under 7) until
we encounter a test evaluation. Let A, and B,*" be the expansions of .AH'T and
Bi“, respectively, by adjoining additional constants whose values are the values of
the input-output variables of p in the two computations. As we have been following =
in our computation of p on B,t", AT C B,T" via 7. As any test is a quantifier-free
first-order formula ¢, either ¢ is true in both AH’” and BHT or ¢ is false in both
AHT and BHT Thus, the ﬂow of control in both computatlons of p is identical. By

B,lc‘” as dictated by 7 and arguing as above, we

continuing the computation of p in
obtain that B, |= p.

Conversely, suppose that B,ﬁ“ E p. By Lemma 15, we can assume that in the
accepting computation of p on Zé,i”: 0 and max are taken as elements u and v such
that Uyy,(1) and U,(v) hold in B, with v in the right-most copy of A% or B} on
layer r of B,ljr; and no input-output variable ever takes a value from the left-most
copy of B on layer 0 of Zé,lg‘”. Given this fact, we can clearly mirror our accepting
computation of p on [;’,i“ in a computation of p on .,lelg“ until we encounter a test
evaluation for which the test is a quantifier-free first-order formula ¢. Let A,lfr and
B, ™" be the expansions of .Al‘” and Zé,i‘”, respectively, by adjoining constants whose
values are the values of the input-output variables of p immediately prior to the test
evaluation encountered in both computations. Clearly, AHT - BHT via 7, and so
either ¢ is true in both A*" and BL1" or ¢ is false in both .AH'T and B}, Hence,

as above, AL = p
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Induction Step (a) The result holds for all m' such that m’ < m, where m > 3 is odd
and for all r > 0.
Suppose that A7'*" |= p. By Lemma 14, we can assume that in the accepting com-

putation of p on fl;"”: 0 and max are taken as elements u and v such that Uy,4(u)
and Uyyqp—1(v) hold in A7*", with v in the right-most copy of APt or Bptr—1
on layer m+r — 1 of AZL‘”; and no input-output variable ever takes a value from the
left-most copy of .AZ“Q on layer m — 2 of leLH. As AZLH C [;’ZLH via T, we can
mirror our accepting computation of p on AZLH in a computation of p on 3,2”” by
using 7 until we encounter a test evaluation for which the test is a program scheme
p’ € NPS(m — 1). Note that this program scheme p’ might have additional free vari-
ables to the free variables of p. Let A7 and BJ*™" be the expansions of A7""" and
[;’Z”M, respectively, by adjoining constants whose values are the values of the addi-
tional free variables of p’ immediately prior to the test evaluation encountered in both
computations. As our computation of p on BZLH has been proceeding according to 7,
we have that: A)**" C BJ**" via a natural embedding 7 which embeds the left-most
copy of AP*~? on layer m — 2 of A7 into the left-most copy of By*~? on layer m — 2
of g;n”; but where no constants lie in the left-most copy of A7~ 2 on layer m — 2
of fl;"” nor in the left-most copy of BZL*Q on layer m — 2 of [;’,T“. Hence, by the
induction hypothesis (with m + r rewritten as (m — 1) + (r + 1)), A7 = o' if, and
only if, B"™" |= p/. Thus, either the test evaluation is true in both computations
of p or false in both computations of p. Clearly, by continuing in this manner, the
computation of p on Bi**" is accepting.

Conversely, suppose that 32”” E p. By Lemma 15, we can assume that in the
accepting computation of p on lézn”: 0 and maz are taken as elements v and v
such that Up,qr(u) and Upqr—1(v) hold in ékm+7”, with v in the right-most copy of
AZL‘”_l or Bkm‘H_I on layer m +r — 1 of ékm+7”; and no input-output variable ever
takes a value from the left-most copy of By* ! on layer m — 1 of Bi**". Given this
fact, we can clearly mirror our accepting computation of p on BZLH in a computation
of p on lel‘H until we encounter a test evaluation for which the test is a program
scheme p' € NPS(m—1). Let A7™" and B**" be the expansions of A7"™" and B*t",
respectively, by adjoining constants whose values are the values of the free variables
of ¢/ immediately prior to the test evaluation encountered in both computations.
Clearly: .,ZlZL‘H - [;’ZH'T via a natural embedding = which embeds the left-most copy
of .AZ“Q on layer m — 2 of AZL” into the left-most copy of B,T*Q on layer m — 2
of BY™™; but where no constants lie in the left-most copy of Ay 2 on layer m — 2
of A7"*" nor in the left-most copy of B*~2 on layer m — 2 of Bj**". Hence, by the
induction hypothesis (with m + r rewritten as (m — 1) + (r + 1)), A" = ¢/ if, and
only if, B{"t" |= p’. Consequently, as above, AZL” E p.

Induction Step (b) The result holds for all m’ such that m’ < m where m > 2 is even,
and for all r > 0.

The program scheme p is of the form Vz,Vz, ... Va,p', for some p and for some
p' € NPS(m—1). Suppose that A7 |= VaiVas ... Vayp'. Let BY*™ be an expansion
of BZLH by adjoining p additional constants. We may assume that none of these
additional p constants lie in the left-most copy of B,T_Z on layer m — 2 of [)_’L”M (the
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program scheme only involves k variables and so there will always be a ‘free copy’ of
B2 on layer m — 2 of B{*'™ which we may assume to be the left-most one). Let
.,len” be the expansion of fl;"” with p additional constants such that AZL” - BZHT
via m. Note that no constant lies in the left-most copy of .AZ“? on layer m — 2 of
ATFT. As above, by the induction hypothesis, A7 |= o if, and only if, B*™" = p'.
Thus, BV |= Vo Vg . .. Vi,p'.

Conversely, suppose that Bi*'" |= Va,Vas ... Va,p'. Let A7 be an expansion
of .,ZlZH'T by adjoining p additional constants. We may assume that none of these
additional p constants lie in the left-most copy of AJ*~" on layer m — 1 of A7*1". Let
BZLH be the expansion of [;’ZLH with p additional constants such that AZL” - BZHT
via 7. Note that no constant lies in the left-most copy of B;"fl on layer m — 1 of
B**". As above, by the induction hypothesis, A7**" |= o' if, and only if, Bt = p'.
Thus, AP | Vo, Vas ... Va0

The result follows.

It is appropriate that we make a few remarks about the proof of Theorem 13. We
give the proof in considerable detail for two reasons. First, our proof is for classes
of program schemes as opposed to logics and is very different in nature to those in
[13, 21] and [22] where the essential tools are Ehrenfeucht-Fraissé games for transitive
closure logic and bounded variable infinitary logic, respectively. As we soon see,
hierarchy results similar to those from [13, 21, 22] follow as easy corollaries from our
results. We make no mention whatsoever of any sort of games: we merely consider
computations in program schemes. Second, we shall require our detailed proof later
when we consider extended classes of program schemes.

Theorem 13 is the mechanism by which we tie the structures A} and B}* together;
the following proposition is used to pull them apart.

Proposition 16 Let A" and B® be (E, Uy)-structures, where E is a binary relation
symbol and Uy is a unary relation symbol, such that:

o |A% =1 and |BY = 2;

e the unique element of A" is in Uy and one of the two elements of BY is in Up;
and

o £=1{(y,2),(2,9)} in B%, where y and z are the two distinct elements.
For every m > 1, there exists a first-order sentence ¥, of the form
VI 13Tm_2...dx1Vredyy, if m is odd,

and
AT 1VTm_2 ... dx1Vzedyy, if m is even,

where 9 is quantifier-free first-order, such that for every k > 1,

By = Y, and A = U,y
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Proof In the following, ‘x is an E-neighbour of y’ means that both E(z,y) and
E(y,z) hold.

Let m > 1 be odd. Consider the following first-order sentence ¥,,, defined as:
“For every z,,_1 € Up,_1, there exists an FE-neighbour x,, o € U,,_2 of x,,_1 such
that for every FE-neighbour x,, 35 € U,,_3 of x,, o, there exists ... such that for every
E-neighbour x¢ € Uy of 1, there exists an E-neighbour y of ¢ that is not in U7.”

Let m > 2 be even. Consider the following first-order sentence ¥,,, defined as:
“There exists x,,_1 € Up,_1 such that for every E-neighbour 2, o € Up,,_2 of 2,,_1,
there exists an E-neighbour x,,_3 € U,,_3 of z,,_5 such that for every ... such that
for every E-neighbour xy € Uy of x;, there exists an E-neighbour y of z¢ that is not
in Uy.”

Clearly, ¥y, is of the required form, and BJ* = ¥, and AP = ¥,,.

Let ¥ = Iy be the set of quantifier-free first-order formulae, and for each m > 1,
let ¥, (resp. II,,) be the set of first-order formulae of the form

dzq ... Jzke (vesp. Vi ... Vage),

where @ € I1,, 1 (resp. ¢ € %,,_1). We can now obtain our basic hierarchy theorem
for the class of program schemes NPS.

Corollary 17 For every m > 1, there is a problem in I, 1, if m is odd, and %, 1,
if m is even, which is not in NPS(m). Consequently,

NPS(1) C ... C NPS{m) C NPS(m+1) C ...

Proof Let A° and B° be the structures over the signature o = (E,Up) as in the
statement of Proposition 16. Fix m > 1 and let p € NPS(im) be over the signature
o™ and involve k variables, none of which are free. By Theorem 13, A E p if,
and only if, BJ* |= p. However, the problem €, defined by the sentence ¥, in the
statement of Proposition 16, which clearly can be accepted by some program scheme
of NPS(m + 1), is such that BY* € €1, and A & Q.

Note from the proof of Corollary 17 that the problem separating NPS(m) from
NPS(m+1) is over a signature determined by m. One might ask whether the hierarchy
in Corollary 17 remains strict when we restrict ourselves to problems over some specific
signature. In order to answer this question, let us focus on the proofs of Theorem 13
and Proposition 16, the essential results used to yield Corollary 17. The purpose of
the relations Up, Uy, ..., Uy, in the structures A}* and B is really just to add clarity
and they can actually be dispensed with. Certainly, the proof of Theorem 13 goes
through if we remove these relations from our structures. Now instantiate 4° and
B° as the graphs defined in Proposition 16. For every m > 1, we can easily build a
sentence of the same quantifier structure as the sentence ¥,,, of Proposition 16 (call
it ¥,, also) and which tells the structures A7* and B}* apart when AJ* and B}* are
regarded as undirected trees in which the element v for which U,,(v) formerly held
is a distinguished root. Note that the root v is the middle vertex on a path in both

7v and BJ* of length 2m 4+ 2; and, indeed, it is the middle vertex in every path of
length 2m 42 in both AJ* and B*. We can thus define the root v (without regarding
it as distinguished) in both A7* and B}* using either a purely existential first-order
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formula or a purely universal first-order formula (which is independent of k). By
‘attaching’ this universal or existential formula on to the front of our new sentence
.., if m is odd or even, respectively, we obtain a first-order sentence with the same
quantifier-alternation pattern as the sentence ¥, in Proposition 16, and with the
same properties. Also, by slightly amending the definition of the relation F in the
structures A7 and B}* in the previous section, we can also consider A} and B}* to
be out-trees, i.e., trees where every edge is directed away from the root, and arrive
at a similar conclusion. Hence, by arguing as in the proof of Corollary 17, we obtain
the following result.

Corollary 18 For every m > 1, there is a problem in I, 1, if m is odd, and %, 1,
if m is even, which is not in NPS(m). Consequently,

NPS(1) € ... C NPS(m) C NPS(m+1) C ...

Moreover, the above results hold even when we only consider problems involving
undirected trees or problems involving out-trees.

By a ‘problem involving undirected trees’ we mean that we restrict our domain
of allowable structures just to gs-structures where the relation E is symmetric and
where, when visualised as an undirected graph, these structures are of the form of a
tree; and we define our problems to be (isomorphism-closed) subclasses of this domain.
A ‘problem involving out-trees’ is defined similarly.

We can now use Theorem 13 and Proposition 16 to obtain some hierarchy results
concerning different logics, similar or identical to already established results from the
literature. There are also other immediate applications of Theorem 13 and Proposi-
tion 16: the results highlighted below merely serve to illustrate this fact. We reiterate
that the proofs of the corollaries below do not involve Ehrenfeucht-Fraissé games,
unlike the proofs of these results from the literature.

In [7], Chandra and Harel showed (amongst other things) that the classes of prob-
lems defined by restricting the quantifier prefixes of first-order sentences in prenex
normal form according to the number of alternations between universal and existen-
tial quantifiers form a proper hierarchy. This result is stated precisely below and its
proof follows identically to those of Corollaries 17 and 18.

Corollary 19 [7]
i Cll, C¥3C...,

even when we only consider problems involving undirected trees or problems involving
out-trees.

Definition 20 Define:
e TC(1) to be the set of formulae of the form
TCx, y¢(u, v),

where 1) is quantifier-free first-order and where u and v are tuples of constant
symbols or variables;
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o TC(m+1), for odd m > 1, to be the universal closure of TC(m), i.e., the set of
formulae of the form Vz; ... Vzgp, where ¢ is a formula of TC(m); and

e TC(m + 1), for even m > 2, to be the set of formulae of the form
TCx, y¢l(u, v),

where ¢ € TC(m) and where u and v are tuples of constant symbols or variables
(not necessarily distinct).

It is not difficult to show that TC(m) is closed under V and A, for each m > 1, and
that U{TC(m) : m > 1} = TC*|[FO|. (These fragments of transitive closure logic
are very similar to those of the same name defined in [21]. Where Gradel’s hierarchy
differs from ours is that Gradel’s base logic, which he called TC(0) but we call TC(1),
was defined as ours is except that ¥ was allowed to be any first-order formula and
not just a quantifier-free one.)

The proof of the following is immediate from Theorems 11 and 13 and Proposi-
tion 16.

Corollary 21 In the presence of two built-in constants, for every m > 1, there is a
problem in II,,.1, if m is odd, and X, 1, if m is even, which can not be defined by
any sentence of £TC(m). In particular,

TC(1) C...CTC(m) CTC(m+1)C...
... CUW{TC(m) : m > 1} = TC*[FO|

and

+TC(1) C ... C £TC(m) C £TC(m + 1) C ...
o CUWETC(m) : m > 1} = (£ TC)*[FO].

Moreover, the above results hold even when we only consider problems involving
undirected trees or problems involving out-trees.

Let us take a diversion from our main path for a moment. Obviously, the reason
that TC(m), for m > 1, is defined as it is, stems from the analogous definition
of £TC(m) given earlier; and the reason that £TC(m) is defined as it is, stems
from the alternative realisation of £TC(m) as NPS(m) (see Theorem 11). We could
have allowed the class of program schemes NPS(1) to have first-order tests in their
while instructions, and then built NPS(2), NPS(3), and so on, as before: the derived
fragments of transitive closure logic corresponding to these new classes would then be
identical to the fragments defined by Gradel in [21]. We could then have proven an
amended version of Theorem 13 with extra stipulations on the structures A° and B9
that they could not be distinguished by an appropriate first-order Ehrenfeucht-Fraissé
game; and used an amended version of Proposition 16 where A (resp. B%) is taken
to consist of an appropriately large cycle (resp. a disjoint pair of appropriately large
cycles) together with a disjoint vertex, the vertex of Uy, joined by an edge to every
vertex of the cycle (resp. cycles) (these are the graphs used in [21]). Consequently, we
can also obtain Gradel’s exact hierarchy result (in fact, from our earlier discussion, we
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can actually obtain Gradel’s hierarchy result even on the class of undirected graphs;
though not, of course, on the class of undirected trees).

Let us compare our hierarchy result with that of Gradel. Our hierarchy result is
more refined (and we believe more interesting) than Gridel’s for the following reason:
we provide infinite hierarchies within (+TC)*[FO| and TC*[FO] with the property
that given any level of either of the hierarchies, there are firsi-order definable problems
which are not in the given level, yet the union of all levels of the hierarchies gives
(£TC)*[FO] or TC*[FO], respectively. Also, in order for us to establish Gradel’s
hierarchy result, we would have had to play an Ehrenfeucht-Fraissé game (albeit a
first-order game and not a transitive closure game, as Gridel played) which is, in
some sense, against the spirit of this paper. So ends our diversion (although we shall
return to the possibility of establishing our hierarchy results using a result due to
Gradel and McColm [22] later).

Our consideration of classes of program schemes as opposed to logics obviates
the need to formalize and play games on structures: we simply mimic computation
traces, and this is pedagogically clearer than using Ehrenfeucht-Fraissé games. Also,
focussing on program schemes as opposed to transitive closure logic (and its associated
games) encourages us to develop other applications of our general approach, as we
show now and, more importantly, in the next section.

For any problem € and for any m > 1, let the fragments Q(m) and £Q(m) of the
logic (££2)*[FO] be defined analogously to TC(m) and £TC(m), respectively.

Let the problem CYC, over the signature o9, be defined as

{A € STRUCT(02) : the graph A is cyclic}.
Tt is easy to show that CYC € NPS(1).

Corollary 22 For each m > 1, there are problems in I, 11, if m is odd, and X,,41,
if m is even, which can not be defined by any sentence of £CYC(m). In particular,

CYC(1) C...c CYC(m) CCYC(m+1) C ...
... CU{CYC(m) : m > 1} = CYC*[FO]
and
+CYC(1) C ... C £CYC(m) C £CYC(m +1) C ...
. CUWHECYC(m) :m > 1} = (£CYC)*[FO].

Moreover, the above results hold even when we only consider problems involving
undirected trees or problems involving out-trees.

Proof Consider the sentence 3z6(z), where 6(z) € (XCYC)*[FO]. Define the for-
mula (x1, T2, T3, Y1, Y2, Y3) as

(1 =1y F Y1 =22 AN23=ys ANO(23)) V (T1 = T2 = Y1 # T3 = Y2)
V(z1 =22 = y3 # T3 = Y1 = ¥2).

When we interpret 9 in some appropriate structure A (of size at least 2), we obtain
a graph G whose vertex set is |A[|® and whose edge set is

{(u,v) € |A]® : ¥(u, V) or 1(v,u) holds in A}.
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Define V0 = Vo = {{w,v,w), (v, u, w), (v, u,v), (v,v,u) : w € |A]}, for distinct u
and v in |A|. These sets of vertices are disjoint. Then every edge of G has both its
endpoints in some V,, ,,; and so G has a cycle if, and only if, the subgraph of G induced
by the vertices of some V,, , has a cycle. But, all V,,,,’s are isomorphic and any V,, ,
has a cycle if, and only if, A | Jz6(z). Hence, for every m > 1, it is not difficult
to see that the sentence ¥, of Proposition 16 is logically equivalent to a sentence of
CYC(m + 1).

Clearly, CYC € NPS(1); and so every problem of 2CYC(m) is accepted by some
program scheme of NPS(m), for each m > 1. Thus, as a simple induction yields that
U{CYC(m) : m > 1} = CYC*[FO| and U{+CYC(m) : m > 1} = (£CYC)*[FO], the
result follows from Theorem 13 and Proposition 16.

Note that we used the fact that CYC is in NPS(1) to obtain Corollary 22. We
need not be so severe (although the resulting hierarchy results are not as satisfactory
as those just mentioned). Let ROOT be the problem detailed in Example 9; that
is, ROOT consists of all those structures over the signature ¢ = (E,U), where E
is a binary relation symbol and U is a unary relation symbol, such that when these
structures are considered as rooted digraphs (with the roots given by U), at least one
of the roots is such that there are paths from this root to every other vertex.

Corollary 23 In the presence of two built-in constants, for each even m > 1, there
are problems in %,,.1 which can not be defined by any sentence of £ROOT(m).
Hence, the hierarchies

ROOT(1) C ... € ROOT(m) C ROOT(m+1) C ...

and

LROOT(1) C ... € £ROOT(m) € +ROOT(m +1) C ...

do not collapse. Moreover, the above results hold even when we only consider problems
involving undirected trees or problems involving out-trees.

Proof Consider the formula Jz6(z), where § € (XROOT)*[FO]. Then Jzf(x) is
equivalent to the formula

ROOT([X(z1,z2)(z1 = 0Az2 = 0), (y1,42), (21, 22)((y31 =0 A2 = 0
ANz1 # 0V 29 # max)) V (y1 = max A B(y2) A z1 = 0 A 20 = max))],

where x7, T2, Y1, Y2, 21 and zo are new variables. Hence, for every m > 1, it is not
difficult to see that the sentence ¥, of Proposition 16 is logically equivalent to a
sentence of ROOT (m + 1).

By Example 9, the problem ROOT is accepted by some program scheme of
NPS(3). Thus, a simple induction yields that the problem accepted by a sentence
of £ROOT(m) can be accepted by a program scheme of NPS(2m), if m > 2 is even,
and NPS(2m + 1), if m > 1 is odd. Let m > 2 be even. By Theorem 13 and Propo-
sition 16, there are problems definable in ROOT(2m + 1) which are not definable in
+ROOT(m), and the result follows.

Let co-2SAT be the problem over o35 defined as all those o 2-structures such
that when considered as a collection of clauses, they form an unsatisfiable collection
in which every clause has 0 or 2 distinct literals.
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Corollary 24 For each even m > 1, there are problems in ¥,, 11 which can not be
defined by any sentence of £co-2SAT(m). Hence, the hierarchies

co-2SAT(1) C ... C co-2SAT(m) C co-2SAT(m +1) C ...

and

+c0-2SAT(1) C ... C £co-2SAT(m) C £co-2SAT(m +1) C ...

do not collapse. Moreover, the above results hold even when we only consider problems
involving undirected trees or problems involving out-trees.

Proof Consider the formula 3z6(x), where 8(x) € (£co-2SAT)*[FO|. Then 3z6(z)
is logically equivalent to the formula

co-2SAT[AM @1, y1), (T2, y2)(0(z1) A1 = yh = T2 = Ya),
(z1,1), (22,¥2)(0(z1) A 21 = 11 A 22 7# 32)],

where x1, 11, T2 and ys are new variables. Hence, for every m > 1, it is not diflicult
to see that the sentence ¥, of Proposition 16 is logically equivalent to a sentence of
co-2SAT(m + 1).

By Example 4, the problem co-2SAT is accepted by some program scheme of
NPS(3) (as checking to see that every clause has 0 or 2 distinct literals can be done
by a program scheme of NPS(3)). The result follows similarly to as in Corollary 23.

6 Extending program schemes with a stack

Clearly, many other hierarchies similar to those in Corollaries 21, 22 and 23 can be
obtained by proceeding as we did in the proofs of these corollaries; and it is well worth
attempting to establish necessary and sufficient conditions on problems, such as TC,
CYC and ROOT, for such hierarchies to exist. What is apparent is that if we are to
obtain logical hierarchies by proceeding in this way then a necessary condition on any
corresponding problem (such as TC, CYC or ROOT) is that it is in the complexity
class NL (by Theorem 12). One of the main contributions in this paper is a means
by which we can establish such logical hierarchies where the corresponding problem
is probably not in INL (following some widely accepted complexity-theoretic beliefs),
and it is here that we turn now.

So far, we have, essentially, replicated and refined some results from the literature
which had hitherto been proven using Ehrenfeucht-Fraissé games, and not by con-
sidering program scheme computations as we do here. Our shift in focus from logics
and games to program schemes and computations enables us to enhance our program
schemes by a means not available to us in the logical setting; namely, we can add a
stack to our program schemes.

Definition 25 For any m > 1, a program scheme of NPSS(m) is defined exactly as
was a program scheme of NPS(m) except that there are two additional instructions:

e 1z, := POP; and
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The new instructions provide access to a stack in the usual way. That is: when
the instruction ‘PUSH z;’ is encountered in some program scheme, the value of the
variable x; is placed on the top of the stack (so increasing the height of the stack by 1)
but so that x; retains its value; and when the instruction ‘z; := POP’ is encountered,
the value on the top of the stack is removed (so decreasing the height of the stack by
1) and the variable z; assumes this value. Note that there is no test to see whether
the stack is empty. However, extra clarification is in order.

Let p be a program scheme of NPSS(m), for some odd m > 1. A computation
on some input structure proceeds as usual, starting with an empty stack, until a test
evaluation is encountered (note that if ever an instruction ‘z; := POP’ is encountered
in some computation when the stack is empty then the computation ‘hangs’, i.e.,
does not terminate). The test involves a program scheme of NPSS(m — 1) of the form
VriVze ... Ya,p', for some program scheme p’ of NPSS(m — 2). Upon encountering
this test evaluation, the stack of p remains fixed until the truth or falsity of the test
has been established. In order to establish the truth or falsity of the test, as before we
consider computations of the program scheme p’, one for each possible valuation of the
variables z1, %2, ...2p. In each of these computations, p’ starts with an empty stack.
Hence, any computation of a program scheme has its own associated stack. Having
established whether the test evaluation results in true or false, the computation of p
resumes accordingly. Computations of program schemes of NPSS(m) for even m > 2
are defined similarly.

Remark 26 Even though we have no test to see whether a stack is empty or not, we
can always assume that an input is accepted by some program scheme of NPSS(m) if,
and only if, it is accepted such that on termination the stack is empty. We do this by
simulating our original program scheme, with another program scheme of NPSS(m),
as follows. We simulate a push in our original program scheme by pushing first 0
and then the element in question onto the stack in our simulating program scheme,
with a pop simulated by popping two elements from the stack. This allows us to have
a unique ‘bottom element’, the pair of elements max and maz, in our simulating
program scheme which we initially push onto the stack. If ever the simulation is such
that max and max are popped then:

e if the original program scheme has accepted at this point then we accept in our
simulation (with an empty stack); and

e if the original program scheme has not accepted at this point (and so is trying
to pop from an empty stack) then we reject in our simulation.

Also, if our original program scheme has accepted then in our simulation we pop
everything off the stack (that is, until we have popped the pair maz and maz) and
accept.

Example 27 Consider the following program scheme of NPSS(1) over the signature
O34+

1. INPUT(z1,Zq,%3,24,2s5)
2. PUSH C
3. PUSH C
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4 WHILE ;1 =0 DO

5. GUESS x9

6. xg := POP

7 x4 := POP

8. GUESS x5

9. IF x5 =0 THEN
10. PUSH x3 FI
11. GUESS x5

12. IF x5 =0 THEN
13. PUSH x4 FI
14. IF R(C,z3,22)V R(z3,C,z2) V R(C,z4,22) V R(x4,C, x2)

VR(z3,T4,22) V R(z4, 23, 22) V R(C,C,22) V R(x3, 23, 22)
VR(z4,24,22)V x9 = C THEN

15. GUESS x5

16. IF x5 =0 THEN

17. PUSH x5 FI

18. IF zo = D THEN

19. (21,72, 73,24,25) := (Max, mazx, maz, max,maz) FI FI 0D

20. OUTPUT($1,$2,$3,$4,JI5)

Suppose that the o3, -structure A is in PS; that is, the vertex D is accessible
from the vertex C. Let the vertices of {C = Cy,C1,...,C, = D} be accessible where
for every j > 1, C; can be shown to be accessible by applying a rule (C;,,C;,) — C;
where both j; and js are less than 7. Let the following be our induction hypothesis
IH(i), where i < a:

e for any two elements of {Cy, C1,...,C;}, there exists a computation of p on A
such that both these elements are on the stack at the same time and at this
time the flow of control in p is ready to execute the while instruction.

Trivially, TH(0) and TH(1) hold.

Suppose that IH(%) holds for some ¢ < a — 1, as does the rule (C},,C;,) — Ciyr,
where both j; and jo are at most i. By IH(7), there exists a computation of p on A,
call it comp(j1, j2), resulting in a configuration such that both C;, and C}, are on
the stack and the flow of control in p is at the while instruction. Clearly, there is an
extension of this computation comp(j1,j2) so that C;, and C;, are the top two items
of the stack and the flow of control is at the while instruction (simply perform some
more iterations of the while loop so that stack elements, apart from C;, and C},, are
‘thrown away’).

Consider the subsequent computation which:

2

e guesses the value Cj;; for 2 and then pushes Cj;; onto the stack, before
returning the flow of control to the while instruction;

e guesses the value C for zo and then pushes C onto the stack, before returning
the flow of control to the while instruction;

e guesses the value C for x5 and then pushes C onto the stack, before returning
the flow of control to the while instruction (so now the top two elements of the
stack are C); and

29



e repeats the computation comp(ji,j2), for any chosen j; and jo that are both
at most 1, before returning flow of control to the while instruction.

Note that C;y1, C;, and C;, are now all on the stack. Hence, TH(i + 1) now holds.

So, by induction, [H(7) holds for all i < a. In particular, IH(a — 1) holds, and
similar reasoning yields that there is a subsequent computation which pushes D onto
the stack before forcing the while loop to terminate and thus causing A to be accepted
by p.

Conversely, suppose that A is accepted by p. In order for a computation to be
accepting, the variable 25 must assume the value D and D must be yielded via a rule
of the form (z,y) — D where the elements = and y were previously (and might still
be) on the stack. But only accessible vertices of A are ever placed on the stack, and
so A € PS. Consequently, the problem PS is in NPSS(1).

Example 27 shows that PS € NPSS(1). In fact, there is an even closer relationship
between PS and the program schemes of NPSS(1), as we now demonstrate. But first,
we need to introduce some terminology. This terminology is strongly influenced by [9]
where it was shown that a non-deterministic pushdown automaton can be simulated
by a deterministic pushdown automaton, and the class of languages (i.e., sets of strings
over {0,1}) accepted by non-deterministic pushdown automata is P.

Definition 28 An instantaneous description (ID) of a k-variable program scheme
p € NPSS(1) on some input structure consists of the label of the instruction of p
about to be executed in the computation together with either a (k -+ 1)-tuple detailing
the values of the variables and the element on the top of the stack at that time or a
k-tuple detailing the values of the variables if the stack is empty. The values of an
ID are the values appearing in this tuple. If o and 3 are IDs then we write o =
to denote the facts that the instruction of p associated with « is identical to that
associated with 8 and that the values of « and § are identical (as tuples).

Note that an ID does not necessarily describe the whole of the stack at some point
in a computation of p on some input, just the top element, if it exists. Alternatively,
we refer to a description of: the instruction about to be executed; the values of the
variables; and the whole of the stack, at some point in a computation of p on this
input, as a configuration. We can regard an ID « as a configuration & by taking
the stack to consist solely of the stack element of the ID, if there is one; and we can
define ID of a configuration as the ID obtained from the configuration by ignoring
everything below the top element of the stack, if there is one.

When we talk about some computation of some program scheme of NPSS(1) on
some input structure A, we assume that the constant symbols 0 and mazx have been
fixed as some pair of distinct elements of |.A|.

Definition 29 Let (a1, /1) and (a2, f2) be two pairs of IDs of some program scheme
p € NPSS(1) on some input structure. Then (a1,01) and (aq, f2) yield the pair of
IDs (a3, f3) if a3 = as and one of the following holds:

(a) either a3 and (3 have the same stack element or neither has a stack element;
starting in configuration (1, it is possible for p to execute a push instruction
and thus be in a configuration whose ID is as; and starting in configuration s,
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it is possible for p to execute a pop instruction and thus be in a configuration
whose ID is the first & components of 33 (that is, minus fs’s stack element, if
it has one); or

(b) B1 = a and either 3y = (33 or starting in configuration /3, it is possible for p to
execute an instruction which is neither a push nor a pop instruction and thus
be in the configuration (s.

If a pair of IDs («, ) is eventually obtained by starting from a set I' of pairs of
IDs and continually applying the above yield rules then we say that («, 3) has been
obtained by applying the yield rules to I

Definition 30 Let («, ) be a pair of IDs of some program scheme p € NPSS(1) on
some input structure. Then (o, §) is realizable if:

e there is a (partial) computation of p on the input structure starting from the
configuration & and ending in the configuration 5 such that throughout this
computation, the initial bottom stack element (that is, the stack element of ),
if there is one, is never popped; and

¢ the ID « has a stack element if, and only if, the ID 3 has a stack element.

We can now prove our first property of accepting computations of program schemes
of NPSS(1). Again, we are strongly influenced by [9].

Proposition 31 Every realizable pair (o, 8) of IDs of some program scheme p of
NPSS(1) where the input structure is A can be obtained from the set of all pairs of
IDs of the form (v, ~) by applying the yield rules.

Proof Suppose that the pair of IDs («, /3) is realizable. Then there is a computation
of p on input A starting from the configuration & and ending in the configuration 5,
and so that this computation is as detailed in Definition 30. Let the length of this
computation be ¢; that is, £ is the number of instruction executions, or moves, to get
from the configuration & to the configuration 5. We shall prove by induction on ¢
that (c, B) is as stated in the proposition. Let I" denote the set of all pairs of IDs of
the form (v,7).

If t = 1 then as (a, ) is realizable, the move taking the configuration a to the
configuration (3 can not be via a pop or a push instruction. So, we have that (o, c)
and (a,a) yield (a, 3). Suppose that the result holds for all computations of length
t, and that there is a computation of length £ + 1 taking the configuration & to
the configuration ; moreover, suppose that this computation satisfies the conditions
of Definition 30. Denote this computation by @&,ci,co,...,c;, 3 (note that this is
a sequence of configurations, not IDs). There are two cases: the move taking the
configuration ¢; to 3 is via neither a pop nor a push instruction, or it is.

In the first case, the configuration ¢; is of the form %, for some ID +; and the pairs
of IDs (a,~) and (v, 3) are realizable. So, the induction hypothesis yields that (a, )
and (v, #) can be obtained from I" by applying the yield rules. As («,v) and (v, 3)
yield (a, ), we are done.

In the second case, the move taking the configuration ¢; to 3 must be via a pop
instruction; so, let a be the element at the top of the stack in the configuration c;.
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Let ¢ be such that: the element at the top of the stack of ¢; is a; the height of the
stack of ¢; is one more than the height of the stack of 3; the heights of the stacks of
Cit1,Cit2,---,C¢ are all at least the height of the stack of ¢;; and the height of the
stack of ¢;_1 is equal to the height of the stack of 3. That is, ¢; is where the element a
has been pushed onto the stack before it is popped off at ¢;. Clearly, such an ¢ exists
and 1 <4 <t Let v, v and v be the IDs obtained from the configurations ¢; 1,
¢; and ¢, respectively, by ignoring all elements of the stack except the top element,
if there is one. Both pairs of IDs («,v) and (v',~") are realizable, and so by the
induction hypothesis they can be obtained from I' by applying the yield rules. But
(a,7) and (v',~") yield («, 8), and so («, 3) can be obtained from I" by applying the
yield rules. The result follows by induction.

We can now use Proposition 31 to tie together the logic (£PS)*[FO] and the class
of program schemes U{NPSS(m) : m > 1}, which we denote by NPSS.

Theorem 32 In the presence of two built-in constant symbols, for each m > 1,
+£PS(m) = NPSS(m); and consequently (£PS)*[FFO] = NPSS (even in the absence of
the two built-in constants).

Proof First, it is easy to show that any problem in (£PS)*[FO] must be in £PS(m),
for some m > 1. By Example 27, the problem PS is in NPSS(1), and consequently
+£PS(m) C NPSS(m), for each m > 1.

Conversely, suppose that the problem 2 is accepted by some program scheme
p € NPSS(1) involving & variables. Let the structure A be accepted by p. By
Remark 26, we may assume that the accepting computation of p on A is such that
the final configuration has an empty stack. Hence, if o is the unique initial ID and
(o is the unique accepting ID then an input is accepted by p if, and only if, the pair
of IDs (ayg, fo) is realizable.

Any ID « of p on input A can be encoded by a tuple v(«) of length k4142, where
[ is the number of instructions in p. If the instruction of p associated with « is the ith,
say, then each of the first I components of the tuple v(a) are 0 except the 7th which
is max; the next k components of v(«a) consist of the values of the variables of «; and
the last 2 components encode the stack element, if there is one, or the fact that there
is no stack element. Hence, a pair of IDs (a, 8) can be encoded by the concatenation
(v(a),v(B)) of the two corresponding tuples. Also, there is clearly a quantifier-free
first-order formula which ascertains whether a 2(k + [ 4+ 2)-tuple encodes a pair of
IDs, and so there is a quantifier-free first-order formula which ascertains whether a
6(k + ! + 2)-tuple encodes three pairs of IDs (ay, £1), (a2, f2) and (ag, f3) such that
(a1, /1) and (a9, f2) yvield (as, 83). Hence, by Proposition 31, € can be defined by a
sentence of the form

PS|Ax,y,%,¢¥(x,y,2z)|(0, max),

where |x| = |y| = |z] = 2(k + 1+ 2), ¢ is quantifier-free first-order and 0 (resp. max)
is the constant symbol 0 (resp. max) repeated 2(k + [ + 2) times. Thus, in the
presence of two built-in constants, PS(1) = NPSS(1).

By proceeding by induction on m and using essentially the above construction, the
main result follows. We remark that when we proceed as above for a program scheme
of NPSS(3), say, and use the fact that PS(1) = NPSS(1), we may need to replace a pos-
itive Boolean combination, i.e., just involving V and A, of atomic and negated atomic
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formulae and formulae of the form (resp. —) VwiVws .. . VwpPS[Ax,y, z¢](u, v), with
one formula of this form. That this can always be done is straightforward. Finally,
by ‘building our built-in constants from within’, using existential quantification, we
obtain the final parenthetic extension.

So, the class of problems NPSS has an equivalent formulation as the extension of
first-order logic by the path system operator PS. It is known that in the presence of
a built-in successor relation, (£PS)*[FO] = P, and that any problem in P can be
described by a sentence of (£PS)*[FO] of the form

PS[Ax,y, zi(x,y,2)](0, max),

where 1 is quantifier-free first-order (involving the built-in successor relation) [46].
Consequently, we obtain the following result.

Theorem 33 In the presence of a built-in successor relation,
NPSS = NPSS(1) = (+PS)*[FO| = PS'[FO|] = P.

Theorem 33 provides strong evidence that the problem PS is not in transitive
closure logic, given Theorem 12 (or, equivalently, that PS is not in NPS, given The-
orem 11); but as yet, we have not established whether this is true or not. In fact,
it is the case that PS ¢ (£ TC)*[FO], and this fact can be established from existing
results. The class of problems definable by the sentences of existential fixed point logic
(that is, the fragment of LEP*[FO] defined by forbidding the universal quantifier and
only allowing — to negate atomic formulae) and the class of problems definable by the
sentences of the existential fragment (defined in the same way) of PS*[FO] are one
and the same [36]. Moreover, in the presence of two built-in constants, every problem
in the existential fragment of PS*[FO| can be defined by a sentence of the form

PS[Ax,y,z¢|(0, max),

where 1 is quantifier-free first order [23, 36]. Also, there are problems in existential
least fixed point logic that are not in transitive closure logic [23, 26] (in fact, problems
involving rooted undirected trees). Hence, the problem PS is not in transitive closure
logic. By Theorems 11 and 32, we obtain the following.

Theorem 34
(£TC)*[FO] = NPS € NPSS = (£PS)*[FO],

even when we only consider problems involving rooted undirected trees.

7 More hierarchy results

We now return to establishing a hierarchy theorem for the class of program schemes
NPSS, analogous to that in NPS. We can, in fact, obtain such a theorem using a
powerful existing result (obtained by playing games!) due to Gradel and McColm
[22]. However, their result does not yield a hierarchy result holding on undirected
trees or on out-trees: we need to consider computations in our program schemes of
NPSS, as we did before for NPS, to obtain such a refined result. But first, we give
Gradel and McColm’s result and show how it can be applied.
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Definition 35 Let w be a word over {34,V,T, N}, with € the empty word. Then:
e TC(e) consists of all quantifier-free first-order formulae;

e for Q € {3,V}, the class of formulae TC(Quw) C (£TC)*[FO] is the closure
under conjunctions and disjunctions of TC(w) U {(Qz;)p : ¢ € TC(w)};

e the class of formulae TC(Tw) C (XTC)*[FO] is the closure under conjunctions
and disjunctions of the class of formulae of the form TC[Ax,y®](u, v), where
¢ € TC(w); and

e the class of formulae TC(Nw) C (£TC)*[FO] is the closure under conjunctions
and disjunctions of the class of formulae of the form ~TC[Ax, y—¢](u, v), where
p € TC(w).

Clearly, UW{TC(w) : w € {3,V,T, N}*} = (xTC)*[FO].

For any w € {3,V,T,N}*, let @ be the word over {3,V,3*,V*} obtained by re-
placing T by 3* and N by V*. Such a word @ also denotes the set of words obtained
from @ by replacing any occurrence of 3* (resp. V*) with any word from {3}* (resp.
{V}*); that is, @ also denotes the set of words over {3,V} denoted by the ‘regular
expression’ w. For any w € {3,V}*, let @ be obtained from w by replacing every 3
with V and vice versa.

Definition 36 The logic L., is formed using the usual operations of first-order
logic except that conjunctions and disjunctions of arbitrary, not just finite, sets of
formulae are allowed. The fragment £ consists of all formulae of L, in which at
most k distinct variables appear; and bounded variable infinitary logic £, is defined
as {y € Lk :k>0}.

Definition 37 Every formula ¢ of bounded variable infinitary logic £  has a cer-
tain quantifier structure P(y) C {3,V}*, defined as follows:

e if ¢ is quantifier-free then P(y)) = {e};
o if 9 is of the form — then P(y) = {w:w € P(p)};

o if ¢ is of the form Jze then P(¢) = {Jw : w € P(y)}, and similarly when ¢ is
of the form Vze then P(y) = {Vw : w € P(p)}; and

e if ¢ is of the form V{p, : i € I'} or A{p, : i € I}, for some index set I, then
P(y) = U{P(pi) :i e I}

For each k > 1, a set P C {3,V}* yields the class of formulae £¥ _(P) defined as

{p e Lk . forevery w € P(¢) there exists a word w’ € P such that w

can be obtained by deleting some of the symbols of w'},

with £2(P) = {s € Lk, (P) : k > 0}. Let P; consist of all those strings of {3,V}* in
which there are exactly ¢ ¥V symbols. Then the set of infinitary formulae with bounded
number of universal quantifiers, £, (BU), is defined as {¢ € L% (F;) :i > 0}.

Now for Gréadel and McColm’s result.
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Theorem 38 [22]

(a) The problem consisting of all those structures over ooy for which the vertex
D is not reachable from the vertex C' via a path in the undirected graph whose
edge relation is given by E is not definable in £ (BU).

(b) Let w be obtained from a word of {3,V, T, N}* by continually replacing 37", T3
and TT by T, and VN, NV and NN by N until no more reductions can be
made, i.e., w is reduced; and let w’ € {3,V, 3*,v*}*. Then:

the class of problems TC(w) contains a formula ,, which is equivalent to
a formula of L& (w')

if, and only if,

every word in @ can be obtained from some word of w’ by deleting some
symbols.

Now we can apply Theorem 38. From above, the problem PS is in existential least
fixed point logic, which in turn is a fragment of existential bounded variable infinitary
logic (defined from £ as was existential least fixed point logic from LFP*[FO|: see
[23]). For m > 1, let wh, be a word over {3,V,3*,V*} denoting the set of words over
{3,V} consisting of at most m — 1 alternations of blocks of V and 3 and whose first
symbol is 3, if m is odd, and V if m is even. A simple induction yields that every
problem in £PS(m), for m > 1, can be defined by a sentence of £ (w/,). For each
m > 1, let w,;, be the string VAV . .. J of length m, if m is odd, and let w,,, be the string
Vavd. .. 3 of length m, if m is even. Theorem 38 yields that TC(wp, 1) € £L(wh,),
for any m > 1. But TC{wp11) € PS{m + 1), for m > 1, and so, by Theorem 32, we
obtain the following result.

Corollary 39 In the presence of two built-in constants,

NPSS(1) C ... C NPSS(m) C NPSS(m +1) C ...
... CU{NPSS(m): m > 1} = NPSS,

+PS(1) C ... Cc £PS(m) C £PS(m+1) C ...
.o CWH{EPS(m) : m > 1} = (£PS)*[FO]

and

PS(1)c...cPS(m)c PS(m+1)C...
... CU{PS(m):m > 1} = PS*|FO].

Moreover, for every m > 1, there is a problem of ¥,,.1, if m is even, and II,,, if m
is odd, in the (m + 1)th level of any of these hierarchies which is not definable in the
mth level.

We have two remarks, one negative, one positive. First, from [22], Corollary 39
holds when we consider problems over a fixed signature but only when this signature
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contains 3 binary relation symbols and 2 constant symbols: Theorem 38 can not be
used to show that Corollary 39 holds on graphs or digraphs. Second, Theorem 38
does clearly suffice to show that the hierarchy within path system logic obtained by
interleaving applications of the operator PS and negations is proper, and that the
problem co-PS is not definable in PS*[FO] (we leave these applications as exercises).

Given the drawback as regards Corollary 39, we now seek to improve it. Ideally,
we would like Theorem 13 to hold for the program schemes of NPSS. Let us look
at the proof of this theorem for program schemes of NPS(1) and see what happens
when we have a stack present. Adopting the nomenclature of Theorem 13, clearly
we still have that fl,ljr Ep= [§]1C+7" E p as we simply ‘mirror’ any computation
of p on fl,l;” by a computation of p on 5’,1;”. Suppose that Z’;’i“ E p. The crux
of the proof of Theorem 13 is that in an accepting computation of p on léllc” we
can ‘avoid’ the left-most copy of B on layer 0 of B,lg”; and so obtain an accepting
computation of p on .,Zl,ljr. The question is: ‘Can we do likewise in the presence
of a stack?”’. On the face of it, the answer is ‘no’. Simply proceeding as we do in
Theorem 13 might leave the two stacks (in the two different computations of p on
.,Zl,lfr and l’;’i“) consisting of different elements; and so we lose the property that
our two computations proceed in tandem, so to speak. However, whilst we can not
apply the proof of Theorem 13 exactly in the presence of a stack, we can use certain
properties of accepting computations of program schemes of NPSS(1) to achieve a
result very similar to Theorem 13.

Adopt the assumptions of the statement of Theorem 13 except assume p to be
in NPSS(m) and not NPS(m) and consider p on structures légfgig and Ag,;fz With
regard to Definitions 28, 29 and 30, note that they are only given for program schemes
of NPSS(1). However, we can define the notions in these definitions relative to a
program scheme p € NPSS(m), for any odd m > 1, simply by taking a ‘top-level’ view
of p (as we described immediately prior to Lemma 14). Consequently, Proposition 31
holds when p € NPSS(m), for any odd m > 1 (as the original proof works for the
general case).

Lemma 40 Set m > 3 to be odd and fix 0 and maz as the elements © and v of Ag,ﬁg

such that Uy, (u) holds, Uy, 1,—1(v) holds and v is in the right-most copy of .Ag,ﬁrg*l
or Bgr,ﬁg_l on layer m +71 — 1 of Ag,ﬁg Let (e, 3) be a realizable pair of IDs of p on

input Ag,;frg such that no value of a or 3 lies in the left-most copy of Ag,:r% on layer

m—2 of .,Zlg,ﬁrg Thf)n there is a computation of p on input Ag}:fz from configuration
a to configuration 3 such that throughout this computation:

e 10 input-output variable ever takes a value from the left-most copy of Ag,;jré on

layer m — 2 of Ag,ﬁg, and

e the height of the stack does not decrease.

Proof By Proposition 31, (¢, 8) can be obtained from the set I' of all pairs of IDs
of the form (,7) by applying the yield rules. Hence, we proceed by induction on the
number ¢ of yield rules applied to obtain (¢, ). Note that a simple induction yields
that any pair of IDs obtained from I' by applying the yield rules is realizable.

The base case of the induction is when ¢t = 1. There are two ways in which («, 3)
could have been obtained: via rule (a) or via rule (b) of Definition 29. If rule (a) was
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applied then there is a computation of length 2 from configuration & to configuration
3 which consists of a push followed by a pop. If rule (b) was applied then there is a
computation of length 1 from configuration & to configuration 3 where the move is
neither a pop nor a push. In either case, the computation is as required.

Suppose, as our induction hypothesis, that the result holds for all realizable pairs
of IDs that can be obtained from [" by applying less than ¢ yield rules. Let («, 3) be
a realizable pair of IDs that can be obtained from I' by applying ¢ yield rules. Again,
there are two ways in which («, 3) could have been obtained: via rule (a) or via rule
(b) of Definition 29.

Suppose that (a1, £1) and (aq, B2) yield («, 8) by applying rule (a), where (a1, 51)
and (a9, f2) can be obtained from I' by applying less than ¢ yield rules. In order to
immediately apply the induction hypothesis, we need that no value of 5y, as or (>
lies in the left-most copy of .A:,,,C o on layer m — 2 of .Ag,ﬁg: however, this may not be
the case. Consider the number of different values from amongst the IDs a4, 1, as,
Bs and (. There are: at most k + 1 different values of a1; at most another £ different
values of ) (note that the stack elements of a; and 3y, if they exist, are identical);
every value of as has already been accounted for (as a value of $1); at most another
k different values of 32 (note that the stack elements of ay and o are identical); and
every value of 3 has already been accounted for (as a value of (). Hence, the set of
different values, V, say, from the IDs a1, 1, as, G2 and 3 has size at most 3k + 1.

If some of the values from V lie in the left-most copy of A% % 4o on layer m — 2 of

.,Zlg}:rg then let 6 be the automorphism of .,Zlg,;frg obtained:

e by mapping every element in the left-most copy of A3k 4o on layer m — 2 to its
corresponding element in a ‘free copy’ of .Ag,:ré on layer m — 2 from the 3k + 2
copies adjacent to the left-most copy, and vice versa; and

e by fixing every other element

(note that such a ‘free copy’ exists). If no value from V lies in the left-most copy of

AZ% on layer m — 2 of AJ;*7, then let 6 be the identity automorphism.

As (a1, 1) is realizable, there is a computation of p on input Ag,ﬁrg from configu-
ration & to configuration 3; such that throughout the computation, the stack height
does not decrease. By mirroring this computation using the automorphism ¢, the pair
of IDs (a1, 8(81)) is realizable (note that #(«1) = «1); and similarly, the pair of IDs
(0(a2),0(f32)) is realizable. Also, (a1,0(01)) and (6{(az2),0(32)) can be obtained from
I' by applying less than ¢ yield rules (simply use 6 to mirror the yield rules used to
obtain (a1, £1) and (ag, B2)). Finally, (a1,60(81)) and (8(a2),8(B2)) yield (o, B) (as
6(3) = B). Consequently, applying the induction hypothesis vields that there is a
computation of p on input A;’,ﬁg from configuration & to configuration 3 such that
throughout this computation: no input-output variable ever takes a value from the
left-most copy of -Ask 4o on layer m —2 of Ag’,ﬁg, and the height of the stack does not
decrease (note that all stack elements of the IDs a1, 1, ag, f2 and 3 are fixed by 8).

Suppose that (a1, £1) and (aq, 52) yield {(«, ) by applying rule (), where (a1, 51)
and (ag, 32) can be obtained from I' by applying less than ¢ yield rules. A simple
count yields that the set of different values from the IDs «a, (31, as, G2 and [ has size
at most 3k + 2. Proceeding similarly to above gives the result.
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Lemma 41 Set m > 1 to be odd and fix 0 and maz as the elements u and v of BT,

3k+3
such that Uy, (u) holds, Uy, 1,—1(v) holds and v is in the right-most copy of .Ag,ﬁrgfl
or Bgfgig_l on layer m+r —1 of légfgig Let (a, 8) be a realizable pair of IDs of p on

1nput Bg,ﬁg such that no value of a or 3 lies in the left-most copy of Bg’,:ré on layer

—1of Bg,ﬁg Then there is a computation of p on input g;’,ﬁg from configuration

& to configuration 5 such that throughout this computation:
e 1o input-output variable ever takes a value from the left-most copy of Bg};ré on
layer m — 1 of Bg’,ﬁg, and

e the height of the stack does not decrease.

Proof The result follows by proceeding similarly to the proof of Lemma 40. The
only additional remark to make is that we need Bgfgig in the statement of the lemma,

as opposed to B3k ‘1o, because the constant maz might interfere when m = 1.
Armed with Lemmas 40 and 41, we can obtain the following result.

Theorem 42 Let o be some relational signature containing the unary relation sym-
bol Uy and let A? and B° be o-structures such that:

o A% C B° and
o |{uc |A% : Up(u) holds in A"}| = [{u € |B°| : Up(u) holds in B'}| = 1.
Fixm>1,k>1andr >0, and:

e let p € NPSS(m) be over the signature ¢ and involve k variables, s of which
are free; and

o let A3k V5 and B3k 5 be expansions of the o ¥"-structures Ask 5 and Bg?:rg by

adjoining s constants (one for each free variable of p) so that:

m7

- .,Zlg}:r% C Bg’,ﬁg via a natural embedding © which embeds the left-most
copy of Ag,:ré on layer m — 1 of .,Zlg,ﬁrg into the left-most copy of Bg,:ré on
2MT

layer m — 1 of B3 s; but

— none of the adjoined constants lie in the left- most copy of Ask 43 on layer

—1of .Ag,ﬁg nor in the left-most copy of B3y 3 on layer m — 1 of Bg’,ﬁg

Then
g,?jr% E p if, and only if, Bg,ﬁrg Ep

Proof The proof of Theorem 13 goes through with Lemmas 40 and 41 playing the
roles of Lemmas 14 and 15. Our only additional comment is that, by Remark 26,
A;’,ﬁ% E pif, and only if, (ag, B) is realizable, where o and fy are the unique initial

m+r )

and accepting IDs, respectively (there is an analogous statement concerning lggk Ya)-

We can now obtain our basic hierarchy theorem for NPSS. The proof of this result
proceeds exactly as do those of Corollaries 17 and 18 except that we use Theorem 42
in place of Theorem 13.
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Corollary 43 If m > 2 is even then there are problems in II,,, which are not in
NPSS(m — 1), and if m > 3 is odd then there are problems in 3, which are not in
NPSS(m — 1). In particular,

NPSS(1) ... € NPSS(m) C NPSS(m+1) C ...

Moreover, the above results hold even when we only consider problems involving
undirected trees or problems involving out-trees.

Also, Theorem 32 and Corollary 43 vield the following result.

Corollary 44 In the presence of two built-in constants, if m > 2 is even then there
are problems in TI,, which are not in £PS(m — 1), and if m > 3 is odd then there are
problems in X, which are not in £PS(m — 1). In particular,

PS(1) C...CPS(m)CPS(m+1)C...
... CU{PS(m) :m > 1} = PS*[FO|

and

+PS(1) C ... C £PS(m) C £PS(m+1) C ...
... CU{EPS(m) : m > 1} = (£PS)*[FO]

Moreover, the above results hold even when we only consider problems involving
undirected trees or problems involving out-trees.

8 Conclusion

We begin our conclusion by returning to the question of whether there is a logic for
P, as mentioned in the Introduction. As we said there, our purpose in considering the
program schemes of NPS and NPSS here is not really to try and concoct some class of
program schemes (without built-in relations) to capture P or to increase the class of
problems captured in comparison with other previously proposed logical characteriza-
tions of P. It is to: first, examine the classes of problems NPS and NPSS as problem
classes in their own right, given that the two formalizations are, to our minds, quite
natural (recall Cook’s result [9] that non-deterministic pushdown automata recognize
exactly the polynomial-time recognizable languages over {0, 1}); and, second, to look
for equivalent, logical characterizations of NPS and NPSS, and apply these charac-
terizations to obtain new logical results. We feel we have been quite successful in this
regard, especially given that all our results have been obtained without recourse to
Ehrenfeucht-Fraissé games. However, we are also conscious of the fact that we should
investigate the relationship between NPSS and some other previously proposed logical
characterizations of P. We do that here, and show that there are problems in both
LFP'[FO] and ATC'[FO] (which are fragments of least fixed point logic and alter-
nating transitive closure logic, respectively [13]) which are not definable in NPSS. We
use the fact that LFP![FO] = ATC![FO] (see [13, Theorem 8.4.8]) and only exhibit a
problem from LFP'[FO] that is not in NPSS.
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Proposition 45 Adopt the nomenclature of Proposition 16. For every vertex z of
APt and B for which U;(x) holds, for i < m even, place a new vertex on the edge
joining x with the vertex y for which U;.1(y) holds. Now regard (these amended)
AP and B} simply as out-trees with edges directed away from the vertex z for which
U (z) formerly held (i.e., the reducts of the original structures to o2). Then there
are sentences ®, and ®, of LFP![FO(03)] such that for any & > 1,

A |E @, and B £ ®. when m is even

and

7 | @, and B} = ®, when m is odd.

Proof Define the following predicates:

e d%(z) to be Vy—E(z,y) (‘z has out-degree 0’);

e d%(z) to be Vy—E(y,z) (‘z has in-degree 0’); and

o dl(z) to be yY(E(z,y) AV2(E(x,z) = y = 2)) (‘z has out-degree 1°).
Let R be a new relation symbol of arity 1. If m > 2 is even then define ¢, as

do(z) v (Fy(ds(y) A E(y,x)) AVz(E(z,2) = R(2)))
Vo (=d (z) AVy(dg(y) = —E(y, 2)) AVy(E(z,y) = ~do(y))
AJz(E(z, 2) A R(2))
Vo (d)(x) AVy(E(z,y)

and if m > 1 is odd then define ¢, as

do(x) v (Jy(di(y) A E(y,z)) AVz(E(z, z) = R(2)))
Vo (=) (z) AVy(do(1)(y) = ~E(y,z)) AVy(E(z,y) = ~do(y))
A3z(E(x, z) A R(z)))
Vo (df(z) A Ty(E(z,y) A R(y)))-

)
= R(y)))

Essentially, the first lines of ¢, and ¢, set the leaves of the out-trees A}* and B}* to
be in the relation R and give the rules for adding a vertex x to R when z was formerly
a vertex for which U;(z) held, for some even i < m. The second lines give the rules
for adding a vertex x for which U;(z) held, for some odd i < m, to R and also the
rules for adding the ‘new’ vertices of A}* and B}* to R. Finally, the final lines give
the rules for adding the root to R.

If we define the sentences ¢, and ®, as

Va(d} (v) = LFP[Az, R, ¢e(2)](2))

and

Va(d; (v) = LEP[Az, R, o(2)](2)),

respectively, the result follows.

40



With regard to the discussion following Corollary 17, we could easily prove a simi-
lar result to Proposition 45 for undirected trees A}* and B;". By applying Theorems 32
and 42, the following is immediate.

Corollary 46
NPSS = (£PS)*[FO| C LFP[FO] = ATC'[FO],

even when we only consider problems involving undirected trees or problems involving
out-trees.

Let us draw to a close by pulling together the contributions in this paper. We have
developed an alternative to defining classes of problems using logic by considering
program schemes; which are, essentially, high-level models of computation taking
finite structures as their inputs. We have shown that the class of problems accepted
by the program schemes of NPS coincides with the class of problems definable by the
sentences of transitive closure logic, and we have used this identification to exhibit
proper infinite hierarchies within transitive closure logic. Importantly, we did this
without recourse to any sort of Ehrenfeucht-Fraissé games (the tools previously used
to establish many hierarchy results), and we simply considered computations of our
program schemes on specific finite structures.

Our consideration of computational devices, as opposed to logical formulae, en-
abled us to increase the power of the program schemes of NPS by adding in a stack;
an option not really available in the logical setting. We showed that the class of prob-
lems accepted by the program schemes of NPSS has an equivalent formulation as the
class of problems defined by the sentences of path system logic: this characterization
was not previously known. Furthermore, we established the (hitherto unknown) fact
that there are proper infinite hierarchies within path system logic. Again, our logical
hierarchy results for path system logic have been established without playing any sort
of Ehrenfeucht-Fraissé game. We feel that the general approach of equating classes
of problems accepted by appropriate computational devices with those defined by the
formulae of logics has a rosy future; and we hope that such characterizations will yield
new logical inexpressibility results, obtained by considering computations as opposed
to playing games.

Finally, we mention some directions for further research. We would like to consider
adding other high-level programming language constructs, such as an array or arrays,
to the program schemes of NPS and NPSS. It is to be hoped that doing so might
yield proper infinite hierarchies within a logic (£Q)*[FO| where Q is, for example, an
operator corresponding to a PSPACE-complete problem (the only result known in
this context regarding the expressive power of a logic formed by extending first-order
logic with an operator corresponding to a PSPACE-complete problems is a minor
inexpressibility result in [3]). We would also like to consider adding new constructs
to NPSS so as to increase computing power yet stay within P.

All of our hierarchy results hold over the signature oo. This leaves open the
status of these results when we restrict our signatures to only contain unary relation
symbols. Gridel and McColm [22] remark that over signatures containing only unary
relation symbols, all first-order formulae are logically equivalent to formulae in Ao,
i.e., 3o NII. This result may be of some help.
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We have shown how Gradel and McColm’s main result in [22] can be applied to
yield basic hierarchy results in NPS, transitive closure logic, NPSS and path system
logic, and we have also highlighted its deficiencies with regard to our approach. Nev-
ertheless, the result of Gradel and McColm’s is very powerful and it is worth pursuing
as to whether their result can be extended so that it can be applied to undirected
graphs or digraphs (recall, at present it can only be applied to signatures containing
3 binary relation symbols and 2 constant symbols).

Acknowledgement. We are indebted to two referees for their very careful readings
of draft versions of this paper which resulted in a number of errors being discovered
and a number of significant omissions from the general literature being included.
Their diligence and perseverence has improved this paper significantly.
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