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Abstract

We show that a generic perturbation of the doubly-graded Khovanov-
Rozansky knot homology gives rise to a lower-bound on the slice genus
of a knot. We prove a theorem about obtainable presentations of sur-
faces embedded in 4-space, which we use to simplify significantly our
algebraic computations.

1 Introduction

1.1 sl(2) Khovanov homology

Given the data of an oriented link diagram D, one can compute the HOM-
FLY polynomial P (D) (a polynomial over Z in the variables a±1 and b±1)
using the local skein relation in Figure 1 (up to an arbitrary choice for the
HOMFLY polynomial P (U) of the unknot U).

This polynomial is invariant under the oriented Reidemeister moves and
hence defines an invariant of oriented links. If we specialize for n ≥ 2 by
defining

Pn(q) = P (a = qn, b = q + q−1),

aP ( ) − a−1P ( ) = bP ( )

Figure 1: HOMFLY skein relation.
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we obtain the sl(n) quantum polynomial of the link given by the diagram D.
We will be using the normalization Pn(U) = (qn − q−n)/(q − q−1). The
polynomial P2(q) is known as the Jones polynomial.

In [6], Khovanov associated to a link diagramD a bigraded chain complex
CKhi,j2 (D) with differential

d : CKhi,j2 (D) → CKhi+1,j
2 (D)

(i is called the homological grading, j is called the quantum grading). To
diagrams D and D′ differing by a single Reidemeister move, Khovanov gave
a quantum-degree 0 chain homotopy equivalence between CKh2(D) and
CKh2(D

′), thus showing that the homology groups HKhi,j2 (D) are knot
invariants. Furthermore these homology groups provide a categorification of
the Jones polynomial P2(D), by which is meant

P2(q) =
∑

i,j

(−1)iqjdim(HKhi,j2 ).

A powerful facet of the HKh2 theory was conjectured by Khovanov (and
later proved by Jacobsson [3]), namely that the homology theory should be
functorial for link cobordisms up to sign. More explicitly, suppose we start
with a smooth embedding of a surface Σ with boundary

Σ →֒ [0, 1] × R
3,

∂Σ = (L0 →֒ {0} × R
3)
∐

(L1 →֒ {1} × R
3),

otherwise known as a link or knot cobordism Σ : L0 → L1 between the
links L0 and L1. Choose link diagrams D0, D1 of the links L0, L1. Next we
take a representation of the surface Σ as a product of elementary cobordisms.
Elementary cobordisms consist of before-and-after link diagrams where we
have made one local change in the before diagram to get to the after di-
agram. The local changes that we are allowed to make consist of each of
the Reidemeister moves and the Morse moves which correspond to adding
a handle to the surface as shown in Figure 2.

To diagrams D and D′ differing by one elementary cobordism Khovanov
associated a chain map CKh2(D) → CKh2(D

′), inducing a map on homol-
ogy. For the Reidemeister moves, these maps are just the chain homotopy
equivalences referred to earlier. For the 0-handle and 2-handle moves these
maps are graded of quantum-degree +1 and for the 1-handle move it is
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0-handle

1-handle

2-handle

Figure 2: Morse moves for link cobordism. The 0-handle move adds a cap to
the surface, creating a new unknotted component disjoint from the rest of
the link diagram; the 2-handle move adds a cup removing such a component;
the 1-handle move adds a saddle between two arcs of the link diagram.

graded of degree −1. By composing the maps corresponding to these ele-
mentary cobordisms we get a map graded of quantum-degree χ(Σ)

HKh2(Σ) : HKhi,j2 (L0) → HKh
i,j+χ(Σ)
2 (L1).

This map (up to multiplication by −1) is an invariant of Σ, as the notation
suggests. In other words, whichever decomposition of Σ into elementary
cobordisms is chosen, the induced map HKh(Σ) stays the same up to sign.

1.2 Perturbed sl(2) theory

In [9], Lee gives a description of a perturbation HKh′ of the Khovanov ho-
mology HKh2. This homology theory is no longer graded in the quantum
direction, but filtered: . . . ⊆ F j+1HKh′i ⊆ F jHKh′i ⊆ . . .. The homol-
ogy HKh′(L) has a particularly simple form: when we take the base ring
to be C it consists of 2l copies of C where l is the number of components
of the link L. Lee gives explicit chain representatives of these generators
defined from any diagram presentation of L. As a formal consequence of the
properties of filtered chain complexes, there is a spectral sequence with E2
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page HKhi,j2 converging to E∞ page HKh′i,j := F jHKh′i/F j+1HKh′i, the
associated graded vector space of HKh′ with respect to the filtration F .

Analysis of the behaviour of HKh′ under link cobordism was carried out
by Rasmussen [12]. In this remarkable paper, Rasmussen showed that the
quantum grading of Lee’s generators gives rise to a lower bound for the slice
genus of a knot. Let us digress to define the slice genus.

Given a knot K →֒ R
3, a classical knot invariant is the genus g ≥ 0 of

the knot. That is, the minimal genus of the surfaces-with-boundary Σ for
which there exists an embedding Σ →֒ R

3 with ∂Σ = K.
If we believe that manifolds with boundary should rightfully live within

other manifolds with boundary, we are motivated to make the following
definition.

Definition 1.1. Consider compact, orientable surfaces Σ smoothly embed-
ded in (−∞, 0]× R

3 with K = ∂Σ →֒ {0} × R
3. The minimal genus of such

surfaces we call the slice genus g∗(K) of the knot K.

By removing a neighbourhood of a point, such a surface provides a knot
cobordism between K and the unknot U . Rasmussen showed that the map
associated to any presentation (as a composition of elementary cobordisms)
of a connected knot cobordism Σ between two (1-component) knots K0 and
K1 preserves the generators of Lee’s homology HKh′. This map is filtered
of quantum-degree χ(Σ)

F jHKh′i(K0) → F j+χ(Σ)HKh′i(K1).

The Lee homology of the unknot is computable as HKh′0,1 = C and
HKh′0,−1 = C with no homology in any other bigrading. Hence as an
immediate corollary, 2g∗(K) is bounded below by one less than the highest
degree in which HKh′(K) is non-zero.

In general, to compute HKh′ directly is difficult, but it can be carried
out for positive knots (those knots that admit a diagram with only positive
crossings). In this case we get a tight bound on the slice genus since we can
explicitly construct a Seifert surface Σ of the same genus as our lower bound,
and then just push this surface into (−∞, 0] × R

3 to get a slice surface. In
particular we can apply this to torus knots Kp,q to get a combinatorial proof
of Milnor’s conjecture (see Corollary 1.3 for an exact statement) on the value
of g∗(Kp,q).
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1.3 sl(n) Khovanov-Rozansky homology

In [7], Khovanov and Rozansky describe bigraded homology theories HKhn
for n ≥ 3 which categorify the sl(n) polynomials Pn. Again, given a knot di-
agram D, Khovanov and Rozansky associate to it a chain complex CKhn(D)
(in a much more complicated way than for the case n = 2) with differentials

dn : CKhi,jn (D) → CKhi+1,j
n (D).

And also as before, if D and D′ differ by a Reidemeister move, they give a
chain homotopy equivalence (graded of quantum-degree 0) between CKhn(D)
and CKhn(D

′), thus showing that HKhi,jn (D) is an invariant of the knot
and not just the diagram D. This homology theory is also projectively
functorial for knot cobordisms.

Gornik [2] has carried out for HKhn a direct analogue of Lee’s work on
HKh2, describing a perturbation with filtered homology HKh′n, which can
be interpreted as the E∞ page of a spectral sequence with E2 page HKhn.
Given an l-component link diagram D, Gornik gives an explicit description
of the nl generators of HKh′n(D).

1.4 Statement of results

Our intention in this paper is to do for Gornik’s work [2] something of what
Rasmussen [12] did for that of Lee’s [9]. We start by generalizing Gornik’s
HKh′n to a theory that we denote HKhw, where w ∈ C[x] is a monic
polynomial of degree n+ 1 such that ∂xw = dw/dx is a product of distinct
linear factors. In this set up,

HKh′n = HKhxn+1+(n+1)βnx

for β ∈ C − {0}. The homology HKhw is filtered in the quantum direction

. . . ⊆ F jHKhiw ⊆ F j+1HKhiw ⊆ . . . .

Our procedure essentially starts by following that of [12]. For dia-
grams D, D′ differing by a Reidemeister move we wish to construct a map
F jHKhiw(D) → F jHKhiw(D′) which preserves our analogues of the gener-
ators in [2]. If D, D′ differ by a 0- or 2-handle attachment we wish to give
maps F jHKhiw(D) → F j−n+1HKhiw(D′) and if D, D′ differ by a 1-handle
we wish to give maps F jHKhiw(D) → F j+n−1HKhiw. We aim to do this
so that we can compute that any representation of a connected knot cobor-
dism Σ : D → D′ as a product of elementary knot cobordisms preserves the
generators of HKhw(D).

5



Due to the complexity of the Reidemeister III move, we do not quite
fulfill all of our wishes. However a topological argument (Theorem 1.6), by
which we only have to consider certain products of elementary cobordisms,
is enough for us to get the desired analogue of the slice genus bound in [12].

We write HKhi,jw (D) = F jHKhiw/F
j−1HKhiw for the associated graded

vector space to the quantum filtration.
Our main theorem is

Theorem 1.2. Let D be a knot diagram of a knot K. If HKh0,j
w (D) 6= 0

and HKh0,j′
w (D) = 0 for all j′ > j then

(n− 1)(2g∗(K) − 1) ≥ −j.

As a corollary we obtain another proof of Milnor’s conjecture on the slice
genus of torus knots.

Corollary 1.3. The slice genus (see Definition 1.1) g∗(Kp,q) of a (p, q)-
torus knot agrees with the genus g(Kp,q) of the knot and is given by the
formula:

g∗(Kp,q) = (p− 1)(q − 1)/2.

The topological result which allows us to avoid the algebraic complexity
of Reidemeister move III, is best stated as a “normal form” theorem for
closed surfaces. In [5] , Kawauchi, Shibuya, and Suzuki propose the fol-
lowing definition of a normal form for presentations of closed surfaces in
4-space. They then show analytically that any surface has such a normal
form presentation.

Definition 1.4. Normal form for a closed surface in 4-space.
Given a smooth embedding of the genus g surface i : Σg →֒ R

4, then a
normal form for i is a height function h : R

4 → R which restricts to a Morse
function f = h ◦ i on the surface Σg with the following properties:

1. The index 0 critical points of f are contained in f−1(3).

2. The index 2 critical points of f are contained in f−1(−3).

3. The index 1 critical points of f are contained in f−1({2, 1,−1,−2}).
In terms of handles, f−1({2,−1}) contains only fusion 1-handles (han-
dles connecting two link components), f−1({1,−2}) contains only fis-
sion 1-handles (handles splitting one link component into two).
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4. f−1(1.5) and f−1(−1.5) are connected and f−1(0) has g + 1 compo-
nents.

Theorem 1.5. (See [5]) For every smooth embedding of a surface Σg →֒ R
4,

there exists a height function with the properties given in Definition 1.4.

In terms of elementary cobordisms, an index i critical point corresponds
to the addition of an i-handle, so Theorem 1.5 contains information about
achievable orderings of handle additions. It also gives an achievable order-
ing on fusion 1-handles (handles joining two components into one) versus
fission 1-handles (handles splitting one component into two). Theorem 1.6,
on the other hand, contains information about achievable orderings of Rei-
demeister moves in a presentation of an embedded surface as a sequence
of elementary cobordisms. We use Theorem 1.5 to achieve the 1-handle
orderings of Theorem 1.6.

Theorem 1.6. Suppose Σg : L0 → L1 is a connected genus g knot cobordism
between the two links L0 and L1. Suppose further that Di is a diagram of Li
for i = 0, 1. Puncturing Σg k times gives a cobordism Σg : L0 → L1 where
L1 is the link composed of the disjoint union of L1 with the k-component
unlink.

For some k there exists a presentation of Σg as a sequence of elementary
cobordisms in which the elementary cobordisms come in the following order:

1. The presentation begins with the diagram D0.

2. Then all the 0-handles of the presentation.

3. Then a sequence of Reidemeister I and II moves, each of which in-
creases the number of crossings.

4. Then a sequence of fusion 1-handles, ending in a 1-component knot
diagram.

5. Then g fission 1-handles.

6. Then g fusion 1-handles.

7. Then a sequence of Reidemeister I and II moves and fission 1-handles
ending in a diagram D1 of L1, which is the disjoint union (as an
immersed 1-manifold in R

2) of D1, 0-crossing diagrams of the unknot,
and diagrams as in Figure 36.
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In the final stages of the preparation of this paper a preprint by Wu
[13] appeared on the arXiv, which contains, among other results, a proof of
Theorem 1.2. The approaches of the two papers are distinguished in part
by our paper’s use of the topological result Theorem 1.6.

1.5 Overview of this paper

Section 2 contains definitions and theorems whose statements echo those
to be found in [2] and [7] but adapted to our choice of potential. One
purpose of the section is to show that the results of [2] hold for more general
choices of potential than those considered in that paper. As a consequence
of the results in this section it will follow that for D a diagram of an l-
component link, HKhw(D) consists of nl copies of C. We give explicit
chain representatives of these nl generators of the homology. When l = 1,
HKhw(D) is supported in homological degree 0.

Although conventional practice dictates that one should deal with invari-
ance under Reidemeister moves before other considerations, issues of logical
dependence encourage us to postpone this until Section 4.

Section 3 deals with Morse moves for knot cobordisms as in Figure 2.
To link diagrams D, D′ differing by a Morse move we associate an isomor-
phism HKhw(D) → HKhw(D′), induced by a chain map CKhw(D) →
CKhw(D′), that is filtered of quantum degree 1 − n in the case of the 0-
handle and 2-handle Morse moves and of degree n − 1 in the case of the
1-handle Morse move. We see that the maps we define have good properties
in terms of preserving the generators defined in Section 2.

Section 4 is also computational. The purpose of this section is to show
that for link diagrams D and D′ differing by a Reidemeister move I or II
there is a map HKhw(D) → HKhw(D′), filtered of quantum-degree 0 and
induced by a chain map CKhw(D) → CKhw(D′), that preserves the gen-
erators of HKhw(D). If we could show this also for Reidemeister move III,
a consequence would be that the graded groups associated to the quantum
filtration HKhi,jw (D) = F jHKhiw/F

j−1HKhiw would be invariants of the
link represented by the diagram D.

Section 5 contains the proof of Theorem 1.6. Section 6 shows how Theo-
rem 1.6 and the computations of Sections 3 and 4 give us Theorem 1.2 and
hence another proof of Milnor’s conjecture Corollary 1.3.
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1

1

0

0

Figure 3: This diagram explains how to form resolutions and how to asso-
ciate each one with a vertex of the cube [0, 1]n. Note that all but one of the
resolutions will have one or more thick edges.
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2 Construction of perturbed sl(n) Khovanov-Rozansky

homology

In this section we construct and find chain representatives for a basis of
HKhw(D).

2.1 The Khovanov cube

Here we outline the construction of HKhw. This is similar to the construc-
tion of the original Khovanov-Rozansky homology HKhn. Indeed, replacing
any occurence of the word “filtered” by the word “graded” in this Subsection
will give an outline of the construction of HKhn.

To defineHKhw of an oriented link diagram D with m crossings we start
by forming the 2m possible resolutions of D and decorating each vertex of
the cube [0, 1]m with one of these resolutions. We form the resolutions as
shown in Figure 3.
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+1−1

Figure 4: These are the signs associated to each crossing of a diagram D.
The total signed number of crossings is called the writhe W (D).

Choosing an (arbitrary) ordering of the crossings allows us to associate
each resolution Γ of D with one of the corners of the cube. For a corner v call
the associated resolution Γv. In Subsection 2.4 we shall see how to associate
to Γv a filtered vector space H(Γv). We shall often refer to the filtration as
the quantum filtration.

If two corners of the cube v, v′ are connected by an edge e then we see
that their associated resolutions Γv and Γ′

v′ differ only in the resolution of
a single crossing of D. Suppose that v is at the 0-coordinate of the edge
and v′ is at the 1-coordinate of the edge. In the following subsections we
shall define a map Φe : H(Γv) → H(Γv′) of quantum filtered degree 1. If e1,
e2, e3, e4 are edges bounding a face of the cube then Φe1Φe2 = Φe3Φe4 if the
edges are ordered so the composition makes sense.

For a vertex v write the sum of its coordinates as s(v) (this will be an
integer between 0 andm). We writeW for the writhe of the knot diagramD:
the signed number of crossings of D as in Figure 4. We define the chain
groups of a chain complex by

Ck =
∑

s(v)=k+(1/2)(n+W )

H(Γv){(n− 1)W − k},

where by {−} we mean a shift in the quantum filtration.
The differentials of the chain complex are defined by

dk =
∑

±Φe : Ck → Ck+1

where the sum is taken over all edges for which it makes sense. The ±
signs are chosen so that each face of the cube has exactly 1 or 3 of its edges
decorated with a minus sign; the commutivity of the maps associated to
the edges of any face will then ensure that dk+1dk = 0. The shift in the
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quantum filtrations of the H(Γv)’s ensures that the differentials are filtered
of degree 0.

Taking homology we obtain a vector space graded in the homological
direction and filtered in the quantum direction. This is our perturbed ho-
mology theory F jHKhiw(D).

2.2 Introduction to matrix factorizations

The definition of the sl(n) Khovanov homology, standard or perturbed,
makes use of the notion of a matrix factorization. Here we first define un-
graded matrix factorizations, in the next Subsection we see how to associate
filtered matrix factorizations to trivalent graphs.

A polynomial p(x) ∈ C[x1, ..., xn] = R may not admit a non-trivial
factorization into polynomials. However if M0 = M1 is a free module over R
then we may be able to find R-module maps f0, f1

M0 f0
→M1 f1

→M0

such that f0f1 = f1f0 = p(x). Thus we would have factored p(x) into a
product of R-module maps: this is called a matrix factorization of p(x).

If M and M̃ are both matrix factorizations of p(x) ∈ C[x1, ..., xn] = R
then a map of matrix factorizations G : M → M̃ is a pair of R-module maps

G0 : M0 → M̃0, G1 : M1 → M̃1

satisfying f̃0G0 = G1f0 and f̃1G1 = G0f1. Note that this echoes the defini-
tion of a map of chain complexes. Similarly, considering a matrix factoriza-
tion as being something akin to a 2-periodic chain complex, we can define
the notion of a tensor product:

Suppose M and M̃ are matrix factorizations of p(x), q(x) ∈ R respec-
tively. Then we define the matrix factorization M ⊗ M̃ of p(x) + q(x) by
(M⊗M̃)0 = (M0⊗M̃0)⊕(M1⊗M̃1), (M⊗M̃)1 = (M1⊗M̃0)⊕(M0⊗M̃1)
with maps

(

f0 g̃1
−g̃0 f1

)

: (M ⊗ M̃)0 → (M ⊗ M̃)1,

(

f1 −g̃1
g̃0 f0

)

: (M ⊗ M̃)1 → (M ⊗ M̃)0.

Since matrix factorizations have the look of 2-periodic complexes (but
with d2 now being a polynomial, not necessarily zero), we can define the
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Figure 5: An example of a trivalent graph. The circles show where two edges
do not intersect or give rise to an overcrossing or undercrossing.

obvious notions of homotopic maps of matrix factorizations and homotopy
equivalent matrix factorizations. We will be working in the category of
matrix factorizations and homotopy classes of maps.

2.3 Trivalent graphs

Khovanov and Rozansky [7] describe a way of associating a matrix factor-
ization to any finite trivalent graph with thick edges and labelled boundary
components. An example of what we mean by a trivalent graph with thick
edges is given in Figure 5, here we have indicated the boundary as a dot-
ted circle which shall hereafter be omitted from our diagrams of trivalent
graphs.

Note that the thin edges are oriented and at a thick edge the orientations
of the incident thin edges look like Figure 6. Each trivalent vertex has one
thick edge and two thin edges incident to it. Only thin edges are allowed to
end on the boundary of the graph. We allow closed thin loops.

Also note that we have included what appear to be crossings (which are
circled) of thin edges. But a trivalent graph need not come with an embed-
ding into R

2 or even R
3, and we are thinking of these thin edges as neither

intersecting nor as giving rise to an “overcrossing” or an “undercrossing”.

Remark 2.1. These trivalent graphs should be thought of as the sl(n) ana-
logues of Kauffman’s smoothings of a knot diagram giving rise to the state
sum model of the Jones polynomial [4]. Given a knot diagram D of a knot
K, the sl(n) quantum polynomial Pn(K) can be expressed as a signed sum
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Figure 6: The neighbourhood of a thick edge.

of polynomials Pn(Γ) where Γ ranges over all resolutions of D, normalized
by the writhe of D. Murakami, Ohtsuki, and Yamada [10] studied these
polynomials Pn(Γ) and gave a complete set of relations for computing them.

To associate a matrix factorization to such a trivalent graph will first
involve choosing a potential : a polynomial w(x) ∈ C[x] of degree n + 1.
Khovanov’s and Rozansky’s original theory took w = xn+1 and Gornik used
the perturbation w = xn+1 + (n+ 1)βnx for β ∈ C− 0. In the course of this
paper we use a general polynomial w of degree n+1, satisfying the condition
that ∂xw = dw/dx factors as a product of distinct linear factors.

Every variable xi that appears in the polynomial rings used to define
matrix factorizations is taken to have quantum degree 2 (we often use the
word quantum so as to distinguish from homological). We will be using
filtered matrix factorizations, which means each module M is filtered . . . ⊆
F iM ⊆ F i+1M ⊆ . . .. The filtration on M (which will always be a free
module over R) shall be induced by the grading on R with possibly an overall
shift. To denote a shift of quantum degree d in the filtration grading of a
module M we use the notation M{d}. The two differentials in the matrix
factorization should have filtered degree n+ 1 (note multiplication by w(x)
is filtered of degree 2(n + 1)). Maps of matrix factorizations, unless stated
otherwise, are of filtered degree 0, homotopies are of filtered degree −(n+1).

We define two fundamental factorizations: that of an oriented thin line
segment (Figure 7) and that of a neighbourhood of a thick edge (Fig-
ure 8). Then we can obtain the factorization C(Γ) coming from any trivalent
graph Γ by tensoring together these fundamental factorizations, identifying
boundary variables where we have joined the fundamental factorizations.

Definition 2.2. The fundamental factorization in Figure 7 is the factoriza-
tion of w(x1) − w(x2) over R = C[x1, x2] given by

13



x1

x2

Figure 7: An oriented line segment with labelled boundary points.

x1 x2

x3 x4

Figure 8: A thick edge with labelled boundary points.

M0 πx1x2−→ M1 x1−x2−→ M0

where M0 = R and M1 = R{1−n} are rank 1 modules over R and πx1x2
=

(w(x1) − w(x2))/(x1 − x2). Remember the pair of curly brackets denotes a
grading shift so that each of our differentials is of filtered degree n+ 1.

We now define the factorization in Figure 8 over the ringR = C[x1, x2, x3, x4].
This is a factorization of the polynomial w(x1) + w(x2) − w(x3) − w(x4).

Consider the unique polynomial p in two variables such that p(x +
y, xy) = w(x) + w(y).

Then

w(x1) + w(x2) − w(x3) − w(x4)

= p(x1 + x2, x1x2) − p(x3 + x4, x3x4)

= p(x1 + x2, x1x2) − p(x3 + x4, x1x2) + p(x3 + x4, x1x2) − p(x3 + x4, x3x4)

= (x1 + x2 − x3 − x4)u1 + (x1x2 − x3x4)u2

for some polynomials u1, u2.
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Definition 2.3. The second fundamental factorization is the tensor product
over R of the two factorizations

R{−1}
u1−→ R{−n}

x1+x2−x3−x4−→ R{−1},

R
u2−→ R{3 − n}

x1x2−x3x4−→ R.

Note that the differentials of the resulting factorization have filtered de-
gree n+ 1.

Hence the factorization C(Γ) (a tensor product of fundamental factor-
izations), associated to a general trivalent graph Γ, also has differentials of
filtered degree n+1. Let R(Γ) = Q[Xe|e ∈ edge endpoints], then the graph Γ
defines a matrix factorization C(Γ) over R(Γ)

M0 d0
−→M1 d1

−→M0

where M0 and M1 are free modules over R(Γ) and

d1d0 = d0d1 =
∑

edge endpoints e
pointing out of Γ

w(Xe) −
∑

edge endpoints e
pointing into Γ

w(Xe). (1)

2.4 The generators of HKhw(D)

We have required of our potential w that ∂xw is a product of distinct linear
factors. This condition is the main ingredient in many of the results in [2],
the proofs of which carry across very easily to our potential. We shall content
ourselves, most often, with stating these results as they apply in our case
without proof, but in a few cases we shall give a proof where things are
more difficult for our potential than for that of Gornik’s or where we feel it
is important for the rest of the paper to understand the proof.

Assume now that Γ is a closed trivalent graph so that C(Γ) (the matrix
factorization associated to Γ) is actually a 2-periodic complex (see Equa-
tion 1), call the homology of this 2-complex H(Γ). Since C(Γ) is filtered,
H(Γ) is also filtered . . . ⊆ F iH(Γ) ⊆ F i+1H(Γ) ⊆ . . .. Let R(Γ) be the
polynomial ring over C generated by variables Xe as e runs over the thin
edges of Γ (note: not just the thin edges with boundary as in the previous
section). Certainly the homology H(Γ) is a module over R(Γ), but in fact it
is also a module over the ring R̄(Γ) obtained from R(Γ) by quotienting out
any polynomial in the Xe’s appearing in the definition of the fundamental
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factorizations making up C(Γ), (since these polynomials define 0-homotopic
endomorphisms of C(Γ)).

Proposition 2.4. (See [2] Proposition 2.4) The algebra R̄(Γ) is generated
by elements Xe (by abuse of notation Xe means the image of Xe ∈ R(Γ) in
R̄(Γ)) where e runs over the thin edges of Γ, and each Xe satisfies

∂xw(Xe) = 0.

Definition 2.5. Writing Σn for the roots of ∂xw, a state φ of Γ is an
assignment

φ : e(Γ) → Σn

of elements of Σn to the thin edges e(Γ) of Γ.

Proposition 2.6. (See [2] Proposition 2.5) Given a state φ, define Qφ ∈
R̄(Γ) by

Qφ =
∏

e∈e(Γ)





∏

α∈Σn\φ(e)

1

φ(e) − α





1

n+ 1

∂xw(Xe)

Xe − φ(e)
,

where ∂xw(Xe)/(Xe − φ(e)) is the result of substituting Xe for x in the
polynomial ∂xw(x)/(x − φ(e)).

Then we have

Qφ1
Qφ2

=

{

Qφ1
, φ1 = φ2

0, φ1 6= φ2

∑

φ

Qφ = 1.

Proof. It suffices to check that the relations hold in the ring

⊗

e∈e(Γ)

C[Xe]/∂xw(Xe)

since R̄(Γ) is a quotient of this ring.

Given an embedding of Γ into R
2 we can define the notion of admissability

of states. In the construction of the Khovanov-Rozansky homology of a knot,
we start with a diagram of the knot and all Γ’s appearing in the construction
will come with an embedding into R

2 induced by the knot diagram.
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λ1

λ1 λ1

λ1λ2 λ2

λ2λ2

λ1, λ2 ∈ Σn

λ1 6= λ2

Type I Type II

Figure 9: Type I and II admissable states. Each thin edge is decorated with
an element of Σn, subject to satisfying the conditions shown at each thick
edge.

Definition 2.7. A state φ is called admissable if the assignment φ : Σn →
e(Γ) looks like either of the possibilities in Figure 9 in a neighbourhood of
each thick edge. We call the set of all states S′(Γ) and the set of admissable
states S(Γ).

In the following theorem we refer to the polynomial Pn(Γ) of a trivalent
graph Γ. For the purposes of this paper, Remark 2.1 is sufficient information
for the reader. For further information we refer readers to [7, 10].

Theorem 2.8. (See [2] Theorem 3) For non-admissable states φ we have

Qφ = 0.

For admissable states φ we have

0 6= CQφ = R̄(Γ)Qφ and so dimCR̄(Γ)Qφ = 1.

We have a decomposition as a C-algebra

R̄(Γ) = ⊕φ∈S(Γ)CQφ

and

dimCR̄(Γ) = Pn(Γ)|q=1.
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Proposition 2.9. Let k ∈ Z. Let Khk(Γ) be the quantum degree k piece of
the classical sl(n) Khovanov-Rozansky homology of the graph Γ. Then there
is an isomorphism of vector spaces

Φ : Khk(Γ) → FkH(Γ)/Fk−1H(Γ).

Corollary 2.10. Since the graded dimension of Kh(Γ) is just Pn(Γ) (the
sl(n) polynomial of Γ), the filtered dimension of H(Γ) is Pn(Γ). The number
of admissable states is Pn(Γ)(1) so that the dimension of H(Γ) as a complex
vector space agrees with the number of admissable states.

Here since the translation of Gornik’s proof is not completely straight-
forward, we give some details.

Proof. (of Proposition 2.9) Khovanov and Rozansky have shown that the
classical 2-periodic complex CKh(Γ) has cohomology only in one of the
two homological gradings. Suppose without loss of generality that it lies in
grading 1.

CKh(Γ) looks like

CKh0(Γ)
d0−→ CKh1(Γ)

d1−→ CKh0(Γ)

where d0 and d1 are graded of degree n + 1. The perturbed 2-periodic
complex C(Γ) looks like

C0(Γ)
d′0−→ C1(Γ)

d′1−→ C0(Γ)

where d′0 and d′1 are filtered of degree n+ 1. In fact we can decompose d′i as

d′i = d0
i + d1

i + d2
i + . . .

where dji is graded of degree n + 1 − 2j and d0
i = di for i = 1, 2. To define

the Φ mentioned in the Proposition we give first a lift of Φ

φ : (ker d1)
k → FkH(Γ)/Fk−1H(Γ)

φ : α 7→ α+ α1 + α2 + . . .

where (ker d1)
k is the kth graded piece of ker d1, and αi has degree k − 2i.

We define each αi inductively. We wish to define each αi so that
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k
∑

l=0

di1(α
j−i) = 0 ∀j. (2)

Writing α = α0 gives us the root case. Suppose that we know (2) for
k ≤ K; we wish to define αK+1 so that we have (2) for k ≤ K + 1.

If we can show that the following holds:

d0
0

(

K
∑

i=0

di+1
1 (αK−i)

)

= 0 (3)

then we will be done since we know that ker d0
0 = imd0

1 so we can find an
αK+1 satisfying

d0
1(−α

K+1) =

K
∑

i=0

di+1
1 (αK−i).

Now,

d0
0

(

K
∑

i=0

di+1
1 (αK−i)

)

=

K
∑

i=0

d0
0d
i+1
1 (αK−i) = −

K
∑

i

i
∑

j=0

dj+1
0 di−j1 (αK−i)

= −

K
∑

j=0

K
∑

i=j

dj+1
0 di−j1 (αK−i) = −

K
∑

j=0

dj+1
0

K−j
∑

i=0

di1(α
(K−j)−i) = 0.

It is easy to check that the map φ so defined gives a well-defined isomor-
phism Φ.

Proposition 2.11.

H(Γ) =
⊕

φ∈S(Γ)

QφH(Γ)

dimCQφH(Γ) = 1

Proof. For dimensional reasons, it is enough to show that for any φ ∈ S(Γ)
we can find a non-zero element of QφH(Γ). Such a non-zero element is
described explicitly below.
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λ1

λ1

λ1

λ2

λ2

λ2

Figure 10: The rule for forming a new graph Γ′ when starting with a type I
decoration φ of Γ.

λ1

λ1

λ1λ2

λ2

λ2

Figure 11: The rule for forming a new graph Γ′ when starting with a type II
decoration φ of Γ.
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x1 x2

x3 x4

Figure 12: The graph Γ1, to which is associated the fundamental matrix
factorization C(Γ1), as defined in Subsection 2.4.

Given φ ∈ S(Γ) form a new graph Γ′, with each component decorated
with an element λ ∈ Σ by following the local rule in Figures 10 and 11 at
all thick edges. We remind the reader that a trivalent graph describing a
matrix need not come with an embedding into R

2. The circled crossings
in Γ′ should not be thought of as undercrossings or overcrossings but just
as the two strands not intersecting.

The state φ gives a corresponding state φ′ of Γ′. Now since Γ′ is a
union of circles, H(Γ′) = R(Γ′) naturally so we can pick unambiguously a
Qφ′ ∈ H(Γ).

We apply χ0 and η0 repeatedly to H(Γ′) until we arrive in H(Γ). (χ0

is defined in the remainder of this section and η0 is defined in Appendix
7.2). We recycle old notation that we will not use again and define Qφ
to be the image of Qφ′ under these map. Gornik shows that this element
is non-zero. In fact, applying the obvious combination of χ1 and η1 maps
repeatedly to H(Γ) takes Qφ back to a non-zero multiple of Qφ′ ∈ H(Γ′),
and hence Qφ 6= 0.

To define HKhw(D) for a link diagram D we have to give two maps of
matrix factorizations

χ0 : C(Γ0) → C(Γ1) χ1 : C(Γ1) → C(Γ0).

From these maps we build up the differentials in the chain complex of
matrix factorization CKhw(D). Given a knot diagram D, the Khovanov
cube with closed trivalent graphs (giving matrix factorizations of 0 i.e. 2-
periodic complexes) at the vertices and maps of matrix factorizations on
each edge is given by taking the tensor product of
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x1 x2

x3 x4

Figure 13: The graph Γ0, to which is associated the fundamental matrix
factorization C(Γ0), as defined in Subsection 2.4.

0 → C(Γ0){1 − n}
χ0
→ C(Γ1){−n} → 0

for every positive crossing (the left of Figure 4) and

0 → C(Γ1){n}
χ1
→ C(Γ0){n − 1} → 0

for every negative crossing (the right of Figure 4). This definition clearly
agrees with that of Subsection 1.5.

We give an explicit description (R is the ring C[x1, x2, x3, x4]). The
factorization C(Γ0) is

(

R
R{2 − 2n}

)

P0−→

(

R{1 − n}
R{1 − n}

)

P1−→

(

R
R{2 − 2n}

)

P0 =

(

π13 x2 − x4

π24 x3 − x1

)

P1 =

(

x1 − x3 x2 − x4

π24 −π13

)

and C(Γ1) is the factorization

(

R{−1}
R{3 − 2n}

)

Q0
−→

(

R{−n}
R{2 − n}

)

Q1
−→

(

R{−1}
R{3 − 2n}

)

Q0 =

(

u1 x1x2 − x3x4

u2 x4 + x3 − x1 − x2

)

Q1 =

(

x1 + x2 − x3 − x4 x1x2 − x3x4

u2 −u1

)

where u1 and u2 are the polynomials given in Definition 2.3.
The map χ0 : C(Γ0) → C(Γ1) is defined by the pair of maps:
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U0 =

(

x3 − x2 0
a 1

)

U1 =

(

x3 −x2

−1 1

)

,

where a = (u1 + x3u2 − π24)/(x1 − x3).
The map χ1 : C(Γ1) → C(Γ0) is defined by the pair of maps:

V0 =

(

1 0
−a x3 − x2

)

V1 =

(

1 x2

1 x3

)

.

Note that χ0χ1 and χ1χ0 are both homotopic to multiplication by x2−x3

(we can just take the zero homotopies in both cases).

Proposition 2.12. (See [2]) The homology groups HKhw(D) of an l-
component link diagram D for our potential w, have total dimension

dimC ⊕i,jHKh
i,j
w (D) = nl.

There is a canonical basis of generators, one generator for each assign-
ment

ψ : components(D) → Σn.

Each such ψ defines in an obvious way a type II admissable state of a
resolution Γψ. The generator corresponding to ψ lives in the chain group
summand H(Γψ), and comes from the state ψ as described in the proof of
Proposition 2.11.

It is these generators that will play the same roles in this paper as Lee’s
generators [9] played in Rasmussen’s slice genus result [12].

3 Morse moves

A link cobordism can be written as a finite sequence of link diagrams, where
successive diagrams differ either by a Reidemeister move or a Morse move.
The Morse moves correspond to adding 0-, 1-, and 2-handles.

In this section we will assign to each Morse move a filtered chain map
between the complexes of the diagrams that it connects. Then we shall
compute what each Morse move does to the canonical generators of the
homology of a link diagram.
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3.1 0-handle move

A 0-handle move is the creation of a simple loop as in Figure 2.
The 2-periodic complex associated to a circle is

A〈1〉 = (0 → A→ 0)

where A = (C[x]/∂xw(x)){1 − n} (the curly brackets indicate a shift in the
quantum filtration).

The unit map i : C → A has filtered degree 1 − n.

Definition 3.1. To the 0-handle move above we associate the map of com-
plexes

1 ⊗ i : CKhw(D) → CKhw(D ⊔ S1).

The canonical generators of the cohomology of A〈1〉 are the chain ele-
ments

qβ =
1

n+ 1





∏

α∈Σn\β

1

β − α





∂xw(x)

x− β
,

and they satisfy

1 =
∑

β∈Σn

qβ.

So our map 1 ⊗ i takes a canonical generator g ∈ CKhw(D) to the sum
of canonical generators

∑

β∈Σn
g ⊗ qβ.

3.2 2-handle move

A 2-handle move is the removal of a simple closed loop as in Figure 2.
The trace map ǫ : A→ C is defined by

ǫ(xi) =

{

1, i = n− 1
0, i < n− 1

Definition 3.2. To the 2-handle move above we associate the map of com-
plexes

1 ⊗ ǫ : CKhw(D ⊔ S1) → CKhw(D)

and this has filtered degree 1 − n.
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1-handle

x1
x1 x2

x2

x3x3 x4x4

Γ0 Γ1

Figure 14: 1-handle addition. The boundary points have been labelled with
variables which generate the ring R.

Since the coefficient of xn−1 in qβ is just
∏

α∈Σn\β
1

β−α our map takes a

canonical generator g ⊗ qβ ∈ CKhw(D ⊔ S1) to





∏

α∈Σn\β

1

β − α



 g.

3.3 1-handle move

The 1-handle move is the addition of a saddle as in Figure 14.
Here C(Γ0) is the factorization

(

R
R{2 − 2n}

)

P0−→

(

R{1 − n}
R{1 − n}

)

P1−→

(

R
R{2 − 2n}

)

P0 =

(

π14 −(x3 − x2)
π23 x1 − x4

)

P1 =

(

x1 − x4 x3 − x2

−π23 π14

)

.

And C(Γ1)〈1〉 is the factorization

(

R{1 − n}
R{1 − n}

)

Q0
−→

(

R
R{2 − 2n}

)

Q1
−→

(

R{1 − n}
R{1 − n}

)

Q0 =

(

x1 − x2 x3 − x4

−π34 π12

)

Q1 =

(

π12 −(x3 − x4)
π34 x1 − x2

)

.

Ignoring the grading shift, the filtered C[x1, x2, x3, x4]-module of filtered
matrix factorization maps C(Γ0) → C(Γ1)〈1〉 is isomorphic to the quotient
C[x1, x2, x3, x4]/(x1 = x2 = x3 = x4, ∂xw(x1) = 0).
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Definition 3.3. To the 1-handle move of Figure 14 we associate the map
of complexes F : CKhw(Γ0) → CKhw(Γ1)〈1〉 given by the pair of matrices:

F0 =

(

e123 −1
−e134 −1

)

F1 =

(

−1 1
e123 e134

)

,

where

eijk =
πik − πjk
xi − xj

.

The map F is filtered of degree n− 1.

Suppose we have two link diagrams D1 and D2 (of links L1 L2) such
that D2 is obtained from D1 by the addition of a 1-handle. We will compute
the map induced by F

HKhw(D1) → HKhw(D2)

in terms of the generators of HKhw(D1) and HKhw(D2) that were con-
structed in Subsection 2.4.

Recall that for each choice of assignment φ : {components of L1} → Σn

we got a corresponding resolution Γφ ofD1 and a state φ : e(Γφ) → Σn giving
us an element Qφ ∈ H(Γφ) ⊆ CKhw(D1) which is a chain representative of
one of the basis elements of HKhw(D1).

To construct Qφ we followed the recipe which converts the resolution Γφ
into a disjoint union of circles Γ′

φ and pushes forward an element (again de-
termined by φ) of H(Γ′

φ) to H(Γφ) via repeated use of η0. Since F commutes
with η0, it is enough for us to determine the map induced by F acting on
the homology of disjoint circles.

There are thus two possibilities: either the 1-handle move joins two
components of the link as in Figure 15 or it splits a single component into
two as in Figure 16.

3.3.1 First case

Performing the endpoint indentifications in Figure 15, we have

C(Γ′
0) =

(

R
R{2 − 2n}

)

P ′
0−→

(

R{1 − n}
R{1 − n}

)

P ′
1−→

(

R
R{2 − 2n}

)

P ′
0 =

(

∂xw(x1) 0
∂xw(x2) 0

)

P ′
1 =

(

0 0
−∂xw(x2) ∂xw(x1)

)
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1-handle

Γ′
0 Γ′

1

Figure 15: 1-handle addition, the first case where two components are joined
into one.

where R = C[x1, x2] thought of as an infinite dimensional C-module. And

C(Γ′
1)〈1〉 =

(

R{1 − n}
R{1 − n}

)

Q′
0−→

(

R
R{2 − 2n}

)

Q′
1−→

(

R{1 − n}
R{1 − n}

)

Q′
0 =

(

(x1 − x2) −(x1 − x2)
−π12 π12

)

Q′
1 =

(

π12 (x1 − x2)
π12 (x1 − x2)

)

.

The induced map F ′ is given by

F ′
0 =

(

e′ −1
−f ′ −1

)

F ′
1 =

(

−1 1
e′ f ′

)

,

where

e′ =
π12 − ∂xw(x2)

x1 − x2
f ′ =

∂xw(x1) − π12

x1 − x2
.

We observe that H(Γ′
0) = ker(P ′

0)/im(P ′
1). The canonical generators

indexed by pairs of roots α, β ∈ Σn have representatives in the 0th chain
group of C(Γ0):

(

0
q1αq

2
β

)

∈

(

R
R{2 − 2n}

)

.

Also, H(Γ′
1〈1〉) = ker(Q′

0)/im(Q′
1), and the canonical generators in-

dexed by roots α ∈ Σn have representatives in the 0th chain group of C(Γ1):

(

q1α
q1α

)

∈

(

R{1 − n}
R{1 − n}

)
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Γ′′
0 Γ′′

1

1-handle

Figure 16: 1-handle addition, second case where one component is split into
two.

where

qiα =
1

n+ 1





∏

β∈Σn\α

1

α− β





∂xw(xi)

xi − α
for i = 1, 2.

Now H(Γ′
1〈1〉) is isomorphic to C[x1, x2]/(x1 = x2, ∂xw(x1) = 0), and in

this module

q1αq
2
β =

{

0, α 6= β
q1α, α = β

.

So it is easy to see what Ψ′ does to the generators of H(Γ′
0):

(

e′ −1
−f ′ −1

)(

0
q1αq

2
β

)

=

(

−q1αq
2
β

−q1αq
2
β

)

=

(

−q1α
−q1α

)

or

(

0
0

)

depending as α = β or α 6= β.

3.3.2 Second case

Under the identifications in Figure 16, we have
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C(Γ′′
0) =

(

R
R{2 − 2n}

)

P ′′
0−→

(

R{1 − n}
R{1 − n}

)

P ′′
1−→

(

R
R{2 − 2n}

)

P ′′
0 =

(

π13 −(x3 − x1)
π13 x1 − x3

)

P ′′
1 =

(

x1 − x3 x3 − x1

−π13 π13

)

where R = C[x1, x3].

C(Γ′′
1)〈1〉 =

(

R{1 − n}
R{1 − n}

)

Q′′
0−→

(

R
R{2 − 2n}

)

Q′′
1−→

(

R{1 − n}
R{1 − n}

)

Q′′
0 =

(

0 0
−∂xw(x3) ∂xw(x1)

)

Q′′
1 =

(

∂xw(x1) 0
∂xw(x3) 0

)

.

The induced map F ′′ is given by

F ′′
0 =

(

e′′ −1
−f ′′ −1

)

F ′′
1 =

(

−1 1
e′′ f ′′

)

where

e′′ =
∂xw(x1) − π13

x1 − x3
f ′′ =

π13 − ∂xw(x3)

x1 − x3
.

We observe that H(Γ′′
0) = ker(P ′′

1 )/im(P ′′
0 ). The canonical generators

indexed by roots α ∈ Σn have representatives in the 0th chain group of
C(Γ′′

0)

(

q1α
q1α

)

∈

(

R{1 − n}
R{1 − n}

)

.

Also H(Γ′′
1〈1〉) = ker(Q′′

1)/im(Q′′
0), and the canonical generators indexed

by roots α, β ∈ Σn have representatives in the 0th chain group of C(Γ′′
1)〈1〉

(

0
q1αq

3
β

)

∈

(

R
R{2 − 2n}

)

,

where

qiα =
1

n+ 1





∏

β∈Σn\α

1

α− β





∂xw(xi)

xi − α
for i = 1, 3.
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Now H(Γ′′
1〈1〉) is isomorphic to C[x1, x3]/(∂xw(x1), ∂xw(x3)) and in this

module

(

∂xw(x1) − ∂xw(x3)

x1 − x3

)(

∂xw(x1)

x1 − α

)

=

(

∂xw(x1)

x1 − α

)(

∂xw(x3)

x3 − α

)

,

since

∂xw(x1) − ∂xw(x3)

x1 − x3
−
∂xw(x3)

x3 − α

has a factor of (x1 − α).
And so it is easy to see what F ′′ does to the generators:

(

−1 1
e′′ f ′′

)(

q1α
q1α

)

=

(

0
(e′′ + f ′′)q1α

)

=

(

0
∂xw(x1)−∂xw(x3)

x1−x3
q1α

)

=





∏

β∈Σn\α

(α− β)





(

0
q1αq

3
α

)

.

and this a non-zero multiple of the canonical generator

(

0
q1αq

3
α

)

∈

(

R
R{2 − 2n}

)

,

in H(Γ′′
1〈1〉).

4 Reidemeister moves I and II

In this section we prove invariance of HKhw(D) under changing the (closed)
link diagram D by an oriented Reidemeister I or II move.

The diagrams on either side of an oriented Reidemeister move each give
a chain complex of matrix factorizations. We wish to define two chain maps
(one in each direction) between these two chain complexes. Each chain map
shall be quantum-graded of degree 0. These chain maps will then induce de-
gree 0 chain maps on the chain complexes associated to closed link diagrams
differing locally by the oriented Reidemester move. We have a description of
chain representatives for the generators of the homology HKhw of each link
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diagram and we show that the maps preserve the generators up to multipli-
cation by a non-zero number. Since the chain maps were of degree 0 this
tells us that the graded vector space associated to the quantum filtration
of HKhw is invariant under changing the input diagram by the Reidemeister
move.

Every matrix in this section describes a map between free modules over
polynomial rings. Each of these modules, as per the definition of CKhw,
is possibly subject to a shift in quantum filtration. In what follows, we
suppress mention of these shifts. For those readers wishing to check the
validity of the following computations, this omission should not encumber
them with any great difficulties, while explicitly describing the shifts would
thicken somewhat our exposition. In this section we write ∂iw for ∂xw(xi).

4.1 Reidemeister move I

There are two variants of Reidemeister move I, which can be seen in Fig-
ures 17 and 20. We shall first tackle the invariance of HKhw under Rei-
demeister move I.1 by explicit algebraic computation. The invariance of
HKhw under Reidemeister move I.2 proceeds by a topological argument:
we decompose the move as a sequence of other elementary cobordisms for
which we have already made algebraic computations.

4.1.1 Reidemeister move I.1

The first case of the Reidemeister I move is shown in Figure 17. Either side
of the move corresponds to a chain complex of matrix factorizations. Our
first task is to define chain maps of degree 0 between the left chain complex
and the right complex. Then we wish to see that these chain maps induce
maps on the homologies of two closed link diagrams, differing locally by
Reidemeister move I.1, which preserve the generators of the homology.

The set-up is shown in Figure 18. The chain complex C from the left of
Figure 17 is above, and the chain complex C ′ from the right is below. To
give the two chain maps C → C ′ and C ′ → C we need to define the maps
of matrix factorizations f : M → N and g : N → M . First we shall write
down the three factorizations M , N , and P .

Let R = C[x2, x3] and S = C[x1, x2, x3] considered as a module over R.
The factorizations M , N , and P are

M : R{1 − n}
x2−x3→ R

π23→ R{1 − n}
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Figure 17: Reidemeister move I.1.

N :

(

S{2 − 2n}
S{2 − 2n}

)

A0
−→

(

S{1 − n}
S{3 − 3n}

)

A1
−→

(

S{2 − 2n}
S{2 − 2n}

)

A0 =

(

0 x2 − x3

−π23 ∂1w

)

A1 =

(

∂1w −(x2 − x3)
π23 0

)

P :

(

S{−2n}
S{2 − 2n}

)

B0
−→

(

S{−1 − n}
S{3 − 3n}

)

B1
−→

(

S{−2n}
S{2 − 2n}

)

B0 =

(

x2 − x3 x1(x2 − x3)
−u2 u1

)

B1 =

(

u1 −x1(x2 − x3)
u2 x2 − x3

)

where

π23 =
w(x2) − w(x3)

x2 − x3
, ∂1w = w′(x1),

u1 =
p(x1 + x2, x1x2) − p(x1 + x3, x1x2)

x2 − x3
,

u2 =
p(x1 + x3, x1x2) − p(x1 + x3, x1x3)

x1(x2 − x3)
.

As usual, p denotes the unique two-variable polynomial such that p(x +
y, xy) = w(x) + w(y).

The eagle-eyed reader may spot that there has been a shift in the usual
Z/2-grading of the matrix factorizations N and P . This is due to the in-
troduction of an extra component in the oriented resolutions of the diagram
defining these factorizations. We shall not mention this kind of shift in the
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00

00

f g

χ0

M

N P

x1x1

x2

x2x2

x3
x3

x3

C =

C ′ =

Figure 18: Reidemeister move I.1 chain maps. The upper row is the chain
complex C of matrix factorizations corresponding to the left-hand side of
Figure 17, the lower row is the chain complex C ′ of matrix factorizations
corresponding to the right-hand side of Figure 17. M , N , and P are the ma-
trix factorizations corresponding to the thick-edged trivalent graphs shown.
To define chain maps between C and C ′, it is enough to give the maps of
matrix factorizations f and g and then to check that there is enough com-
mutativity to give chain maps. The label x1 shows where two arc endpoints
have been joined, and the endpoint labels identified.
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remainder of this paper where it occurs, but content ourselves most often
with giving the factorizations explicitly on which we are focussed.

The map χ0 is given by the pair of matrices

(

x1 −x2

−1 1

)

,

(

x1 − x2 0
−a 1

)

.

Finally, we are in a position to define the first of our chain maps, whose
only non-zero component is f : M → N .

The map of matrix factorizations f : M → N comes as the pair of
matrices

(

α
0

)

,

(

0
−α

)

where α = (p(x1 + x2, x1x2) − p(x1 + x2, x1x3))/(x1(x2 − x3)).

Lemma 4.1. The map f : M → N gives a degree-0 map of chain complexes
F : C ′ → C.

Proof. It is straightforward to check that f is a map of matrix factorizations,
and it is clearly filtered of degree 0. However, it is less straightforward to
check that f defines a map of chain complexes F ; to do so we need to see
that χ0f is homotopic to the zero map of chain complexes. The map χ0f is
given by the pair of matrices:

(

x1α
−α

)

,

(

0
−α

)

.

We define a homotopy H0 : M0 → P1 H1 : M1 → P0:

H0 =

(

−1
u2−α
x2−x3

)

H1 =

(

1
0

)

(a glance at the definitions of α and u2 assures us that the second entry
of H0 is a polynomial).

To see that H is a homotopy between χ0f : M → P and 0 : M → P we
need to compute that

(

x1α
−α

)

= H1(π23) +B1H0

(

0
−α

)

= H0(x2 − x3) +B0H1

which is left as an exercise.
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f̃ g̃

x1

x2

x2

Figure 19: This diagram shows the maps f̃ and g̃ induced by f and g
respectively. To check that the chain maps we have defined preserve chain
representatives of the generators of the homology HKhw of two closed link
diagrams differing by a Reidemeister I.1 move, we need to compute where f̃
and g̃ take certain generators of the homologies H of the upper two circles
and the lower circle.

We have now exhibited a degree 0 chain map F : C ′ → C. To complete
the proof of one direction of the Reidemeister I.1 move, it remains to check
that F preserves the generators of the homology of a closed link diagram.

Proposition 4.2. Write D, D′ for closed link diagrams which are the same
except as they differ locally as the left and right parts of Figure 17 respec-
tively. There is an obvious correspondence between decorations of compo-
nents of D and of D′ with elements of Σn. Then a standard basis element
of HKhw(D′) coming from a given decoration of the components of D′, gets
taken by F to (a non-zero multiple of) the basis element of HKhw(D) which
is obtained by the corresponding decoration of D.

Proof. Because of the way that the generators are defined (as the image of
various elements of the homology of some disjoint circles under η0 maps), it
is enough to check that the generators are preserved by the map f̃ that f
induces when x2 is identified with x3 as in Figure 19.

We write p = p(s, t) where s = x1 + x2 and t = x1x2. Looking above at
the definition of the polynomial α that appears in the entries of the matrix
f , we see that result of substituting x2 for x3 in α is
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α3→2 =
∂

∂t
p(s, t) =

∂

∂t
(w1 + w2)

=
∂x1

∂t
∂1w +

∂x2

∂t
∂2w

= (x2 − x1)
−1∂1w − (x2 − x1)

−1∂2w

= −
∂1w − ∂2w

x1 − x2

Taking homology of the graphs in Figure 19, f̃ becomes multiplication
by α3→2

f̃ = α3→2 : C[x2]/(∂2w) → C[x1, x2]/(∂1w, ∂2w).

A general basis element, as constructed in Section 2, of the homology of
the lower circle in Figure 19 is written (up to non-zero multiple) as ∂2w/(x2−
ψ) where ψ is a root of ∂w. Under f̃ this gets mapped to

α3→2
∂2w

x2 − ψ
= −

(

∂1w − ∂2w

x1 − x2

)(

∂2w

x2 − ψ

)

= −

(

∂1w

x1 − ψ

)(

∂2w

x2 − ψ

)

since

∂1w − ∂2w

x1 − x2
−

∂1w

x1 − ψ

has a factor of (x2 − ψ) and ∂2w = 0 in the image of f̃ .

Next we need to define the map of matrix factorizations g : N → M to
give us a degree-0 chain map G : C → C ′.

As a C[x2, x3]-module, C[x1, x2, x3] is isomorphic to the following direct
sum

C[x1, x2, x3] =

n−2
⊕

i=0

xi1C[x2, x3] ⊕
⊕

i≥0

xi−1
1 (∂1w − c)C[x2, x3],

where we have written c for the constant term in the polynomial ∂w. Let β
be the C[x2, x3]-module map
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β : C[x1, x2, x3] → C[x2, x3]

1, x1, x
2
1, . . . , x

n−2
1 7→ 0, xi−1

1 (∂1w − c) 7→ (x2 − x3)
i ∀i ≥ 0.

And let 11→2,3 be the map

11→2,3 : C[x1, x2, x3] → C[x2, x3]

xi1 7→ (x2 − x3)
i ∀i ≥ 0.

We define the map of matrix factorizations g by the pair of matrices

(

β 0
)

,
(

11→2,3 −β
)

.

Lemma 4.3. The map g : N →M gives a degree-0 map of chain complexes
G : C → C ′.

Proof. We can see that so long as g is a map of matrix factorizations of
degree-0, it will define a chain map G : C → C ′ since the only commut-
ing square that we need to worry about will be automatically 0 in both
directions. It is straightforward to check that g is a map of matrix factor-
izations.

Next, as we did for f̃ in the proof of Proposition 4.2, we need to compute
what the induced map g̃ does on the homologies of the closed-up graphs in
Figure 19.

Proposition 4.4. We use the same D and D′ as in Proposition 4.2. Then
a standard basis element of HKhw(D) coming from a given decoration of
the components of D gets taken by G to (a non-zero multiple of) the basis
element of HKhw(D′) which is obtained by the corresponding decoration
of D′.

Proof. Looking at the definition of β we see that g̃ will take

(

∂1w

x1 − ψ

)(

∂2w

x2 − ψ

)

∈ C[x1, x2]/(∂1w, ∂2w)

to

∂2w

x2 − ψ
∈ C[x2]/(∂2w).

37



Reidemeister
move I.1

0−handle or
2−handle

1−handle

Reidemeister
move II.2

Reidemeister
move I.2

Figure 20: Here we show how to decompose either direction of a Reidemeister
move I.2 as a sequence of other elementary cobordisms.

4.1.2 Reidemeister move I.2

Figure 20 decomposes the Reidemeister I.2 move into other elementary
cobordisms. From other parts of this paper it follows that this gives degree-
0 chain maps (by composition of chain maps corresponding to the elemen-
tary cobordisms used) between CKhw(D) and CKhw(D′) where D and D′

are closed link diagrams differing locally by the Reidemeister I.2 move. It
also follows that these chain maps will preserve generators of HKhw(D)
and HKhw(D) up to non-zero multiples.

4.2 Reidemeister move II

Since our link comes with an orientation, there are two cases to compute,
the first is in Figure 21. Either side of Figure 21 corresponds to a chain
complex of matrix factorizations. We shall define chain maps in both di-
rections between them and check that these induce chain maps between the
homologies HKHw of two closed link diagrams differing locally by the move
which preserve the generators of HKhw.
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Figure 21: Reidemeister move II.1.

4.2.1 Reidemeister move II.1

We start with a note about ordering of bases. The trivalent graphs in
Figure 12 and Figure 13 are associated to factorizations defined explicitly
in Section 2. We write either of these factorizations as

(

M00

M11

)

→

(

M10

M01

)

→

(

M00

M11

)

where each Mij is a free module of rank 1 over the ring C[x1, x2, x3, x4]. The
basis that we use for the tensor product of two of these factorizations, as
appears in the lower half of Figure 22 for example, is

























M0000

M0011

M0101

M0110

M1001

M1010

M1100

M1111

























→

























M0001

M0010

M0100

M1000

M1110

M1101

M1011

M0111

























→

























M0000

M0011

M0101

M0110

M1001

M1010

M1100

M1111

























where Mijkl = Mij ⊗ Mkl and Mij is a summand of the higher matrix
factorization, Mkl a summand of the lower.

Each Mijkl is C[x1, x2, x3, x4, x5, x6] considered as a module over the
ring C[x1, x2, x3, x4]. In what follows we have many 8×8 matrices. Each ma-
trix entry should be understood as a C[x1, x2, x3, x4]-module map Mijkl →
Mi′j′k′l′ . We will often abuse notation, for example x5 appearing as a matrix
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entry will mean the “multiply by x5” map, even though x5 technically lies
in the module and not the ring. Also, we suppress the notation C(Γ) to
stand for the matrix factorization associated to the trivalent graph Γ, and
instead just denote this factorization as Γ.

The complex of matrix factorizations C coming from the left-hand side
of Reidemeister move II.1 is in the lower half of Figure 22, and the complex
coming from the right-hand side is above it. In this diagram, as in the others
in this section, where a point would normally be labelled with a variable xi
we have suppressed the x and just labelled with i. The single-headed arrows
between the trivalent graphs are components of the chain differentials.

In Figure 22 there are also some double-headed arrows, each double-
headed arrow is two maps of matrix factorizations (one in either direction).
These maps define two chain maps C → C ′ and C ′ → C. It is our first
task in this section to define these maps of matrix factorizations so that we
indeed do have two chain maps.

We also aim to define these maps so that the induced chain maps be-
tween two complexes coming from closed link diagrams differing by a single
Reidemeister II.1 move preserve the generators of the homology HKhw.

Two of the double-headed arrows are automatically the zero map in both
directions. The double-headed arrow labelled id is homotopy equivalences
of matrix factorizations as described in Lemma 7.1 in the Appendix. For
the remaining double-headed arrow, we shall write down two explicit maps
of matrix factorizations A : N → Γ0 and B : Γ0 → N .

First we consider the chain map C → C ′. In Figure 23 we have isolated
the relevant part of Figure 22 and factored the map A : N → Γ0 into the
composition of two maps A = χ1 ◦ ψ. We have a chain map upwards if we
can define the map ψ : N → Γ1 so that Figure 23 is anti-commutative.

Using the basis conventions discussed earlier we define ψ to be

ψ0 = −Π ◦

(

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

)

ψ1 = −Π ◦

(

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

)

where Π is the map which on each module summand C[x1, x2, x3, x4, x5, x6]
looks like
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0
0

00

1
1

1

1

1

2
2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

6

6

6

6

N

Γ0

C =

C ′ =

id
A : N → Γ0

B : Γ0 → N

Figure 22: Reidemeister II.1 chain maps. The uppermost row is the chain
complex C ′ of matrix factorizations coming from the right-hand side of Fig-
ure 21. The rest of the diagram is the chain complex C of matrix fac-
torizations coming from the left-hand side of Figure 21. All of the chain
differentials go from left to right, and components of the differentials are
denoted by single-headed arrows. Each double-headed arrow represents two
maps of matrix factorizations, one in each direction. Some of these maps
are necessarily the 0 map since they end or originate at the 0 factorization.
The double-headed arrow labelled id is the identity map in the homotopy
category of matrix factorizations, and we define below the two maps com-
prising the final double-headed arrow, A : N → Γ0 and B : Γ0 → N . This
gives us chain maps C → C ′ and C ′ → C.

41



Γ0

Γ1

Γ1

N

id

id

χ1

χ1

ψ

Figure 23: Factoring A : N → Γ0. Here we isolate the only two components
of the upwards chain map C → C ′ which are possibly non-zero. One of
these we are defining to be the identity (labelled id), and the other we
decompose into two maps of matrix factorizations A = χ1 ◦ψ : N → Γ0. We
define ψ : N → Γ1 in the body of the text. We have included an extra Γ1

factorization and a homotopy equivalence between this and the leftmost
non-zero factorization of the complex C.
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1 2

3

33

3

44

44

5

66

6

f1, g1

f2, g2f5, g5

f6, g6

Figure 24: For the purposes of notation, we here show four thick-edged
trivalent graphs which differ only in the labels allocated to the endpoints.
We write the matrix factorization that each is associated to as the pair of
matrices f , g with subscripts as shown.

C[x1, x2, x3, x4, x5, x6] → C[x1, x2, x3, x4, x5, x6]/(x5 + x6 − x3 − x4, x5x6 − x3x4)

= C[x1, x2, x3, x4]1 ⊕ C[x1, x2, x3, x4]x5

→ C[x1, x2, x3, x4]

(the last map is projection onto the second module summand).

Lemma 4.5. Using this definition of ψ : N → Γ1, we have defined a chain
map C → C ′.

Proof. The map ψ is easily checked to be a map of matrix factorizations.
We want to see that we have defined a chain map by seeing that Figure 23
anti-commutes.

We compute the map in Figure 23 which runs from the leftmost Γ1

factorization to the Γ1 factorization which is the target of ψ (this is a com-
position of three maps of matrix factorizations). We will denote this map
by the pair of matrices

(

b01 b02

b03 b04

)

,

(

b11 b12

b13 b14

)

.

We write f : M0 → M1 and g : M1 → M0 with suitable subscripts to
stand for the matrix factorizations in Figure 24.
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Let

f15 = (f1 − f5)/(x1 − x5), g15 = (g1 − g5)/(x1 − x5),

f26 = (f2 − f6)/(x2 − x6), g26 = (g2 − g6)/(x2 − x6)

Then we have

(

b01 b02

b03 b04

)

= ψ0 ◦

























x5 − x2 0 0 0 0 0 0 0
0 x5 − x2 0 0 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 −x2 0 x5 0 0 0
0 0 0 −x2 0 x5 0 0

−a1 0 0 0 0 0 1 0
0 −a1 0 0 0 0 0 1

























◦

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

































idR2

f26

−g15 ◦ f26

f15








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1 12 2

5 56 6

χ0

Figure 25: For the purposes of notation, we show the endpoint variables of
the χ0 map mentioned in the text.

(

b11 b12

b13 b14

)

= ψ1 ◦

























x5 − x2 0 0 0 0 0 0 0
0 x5 − x2 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 −x2 x5 0 0 0 0
0 −a1 0 0 1 0 0 0

−a1 0 0 0 0 1 0 0
0 0 0 0 0 0 x5 −x2

0 0 0 0 0 0 −1 1

























◦

























0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

































g15
−f15 ◦ g26

g26
idR2









where a1 is the usual polynomial appearing in the χ0 map in Figure 25,
and idR2 stands for the identity map on R ⊕ R. In our previous notation
(with now x5 + x6 and x5x6 replacing x3 + x4 and x3x4 respectively in the
definitions of u1 and u2) we have

a1 =
u1 + x5u2 − π26

x1 − x5
= −

u1 + x2u2 − π15

x2 − x6
.

Multiplying out the matrices:
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(

b01 b02

b03 b04

)

= −Π ◦

(

x5 − x2 0 0 0 0 0 0 0
−a1 0 0 0 1 0 0 0

)









idR2

f26

−g15f26

f15









= −Π ◦

((

x5 − x2 0
−a1 0

)

−

(

0 0
1 0

)

g15f26

)

.

Let us write

f2 =

(

v12 x3x4 − x1x2

v22 x1 + x2 − x3 − x4

)

f6 =

(

v16 x3x4 − x1x2

v26 x1 + x2 − x3 − x4

)

so

f26 =

( v12−v16
x2−x6

−x1
v22−v26
x2−x6

1

)

.

Now the first row of g15 is

g15 =

(

1 x6

. .

)

so that we see immediately b01 = −1, b02 = 0, b04 = −1.
It remains to compute b03:

b03 = −Π
1

x2 − x6
[(u1 + x2u2 − π15) − (v12 − v16) − (x6(v22 − v26))]

= −Π

(

1

x2 − x6
(u1 + x2u2 − π15 − v12 + v16 − x2v22 + x6v26) + v22

)

= −Π

(

1

x2 − x6
(π15 + v16 + x6v26) + v22

)

(the last equality follows from the action of Π).
Now v22 certainly gets killed by Π and

−π15 + v16 + x6v26
x2 − x6

is a polynomial with no term involving x2 in the numerator and hence also
gets killed by Π. Thus we have shown that b03 = 0.
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Now we work on b11, b12, b13, b14:

(

b11 b12

b13 b14

)

= −Π ◦

(

x5 0 0 0 −x2 0 0 0
−1 0 0 0 1 0 0 0

)









g15
−f15g26
g26
idR2









= −Π ◦

((

x5 0
−1 0

)

g15 +

(

−x2 0
1 0

)

g26

)

We compute the first rows of g15 and g26:

g15 =

(

1 x6

. .

)

g26 =

(

1 x1

. .

)

.

Hence

(

b11 b12

b13 b14

)

= −Π ◦

(

x5 − x2 x5x6 − x1x2

−1 + 1 −x6 + x1

)

=

(

−1 0
0 −1

)

.

Now it is clear that Figure 23 anti-commutes, and hence we have defined
a chain map C → C ′.

Proposition 4.6. The chain map C → C ′ that we have defined preserves the
generators of the homology. Specifically, suppose we are given two (closed)
link diagrams D and D′ which differ locally as the right and left sides re-
spectively of Figure 22. Then a basis element of HKhw(D) coming from a
decoration of the the components of D with elements of Σn, gets taken by the
map HKHw(D) → HKhw(D′) induced by C → C ′ to a non-zero multiple of
the basis element of HKhw(D′) coming from the corresponding decoration
of D′.

Proof. The first step to define a basis element involves decorating the link
components with roots of ∂w. We then resolve the diagram by adding a
thick edge at each crossing where the roots disagree and adding the oriented
resolution at each crossing where the roots agree.

If the decoration of the two strands of the Reidemeister II move is by
the same root then we have nothing to show since the relevant component
of the chain map is homotopic to the identity.

Suppose now that we have a decoration φ in which the two strands
are decorated with different roots. We use the result Lemma 7.2 and refer
to Figure 26. Suppose that the strand of D on the left of Figure 21 is
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P

Γ0

N

id

χ0

χ0

χ1
A = χ1ψ

Figure 26: We use this diagram in our discussion of the preservation of
generators of HKhw under the Reidemeister II.1 move.

decorated by the root α1 ∈ Σn and the strand on the right is decorated by
the root α2 ∈ Σn.

Let Qφ,N ∈ H(∆N ) be the standard chain representative of the basis
element ofHKh(D) corresponding to the decoration φ. We write ∆N for the
resolution of D, determined by φ, that looks locally like N in Figure 26. To
prove the proposition we need to show that A(Qφ,N ) = Qφ,Γ0

up to non-zero
multiple where Qφ,Γ0

∈ H(∆Γ0
) represents the basis element of HKh(D′)

corresponding to the decoration φ. We write ∆Γ0
for the resolution of D,

determined by φ, that looks locally like Γ0 in Figure 26.
Recall that to produceQφ,N we start with a resolution ofD which has the

homology of a set of disjoint circles and then push forward a basis element
(specified by φ) of the homology of that resolution by η0 maps. Lemma 7.2
of Appendix 7.2 tells us that, at the site of the Reidemeister II.1 move,
pushing forward by two η0 maps gives us the same result, up to sign, as
pushing forward by two χ0 maps.

In other words, we can create Qφ,N by pushing forward the corresponding
basis element Qφ,P ∈ H(∆P ) of the homology of the diagram looking locally
like resolution P in Figure 26 by the two χ0 maps indicated. Since we have
shown that this is an anti-commutative diagram, the image of Qφ,N up to
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N

Γ0

Γ1

Γ1

Q

00

id

id

χ0

χ0

ψ′

Figure 27: Factoring the downwards chain map. As we did for the upwards
chain map, we isolate the only two possible components of the upwards chain
map C ′ → C which are possibly non-zero. One of these we are defining to
be the identity (labelled id), and the other we decompose into two maps of
matrix factorizations B = ψ′ ◦ χ0. We define ψ′ : Γ1 → N in the body of
the text.

sign in H(∆φ,Γ0
) under the chain map C → C ′ is the same up to sign as

idχ1χ0(Qφ,P ). Earlier, we saw that χ1χ0 is the same up to homotopy as the
map induced by multiplication by x6 − x3. So

χ1χ0(Qφ,P ) = (x6 − x3)Qφ,P = (α1 − α2)Qφ,P ∈ H(∆P )

and so the anti-commutativity of Figure 26 implies that our generator is
preserved up to non-zero multiple.

Now we shall consider the chain map C ′ → C. In Figure 27 we have
isolated the relevant part of the diagram and factored the map B : Γ0 → N
into the compositon of two maps B = ψ′ ◦χ0. The arrows marked id are the
identity in the homotopy category of matrix factorizations. We shall have a
chain map if we can give the map ψ′ so that the diagram anti-commutes.

Let F and G be the 2× 2 matrices of the factorization in Figure 8. The
entries of F andG are polynomials in x1+x2, x3+x4, x1x2, x3x4, and we shall
write F5+6 and G5+6 for the matrices obtained from F and G by replacing
x3 + x4 with x5 + x6 and F 56

5+6 and G56
5+6 for the matrices obtained from F

and G by replacing x3 + x4 and x3x4 with x5 + x6 and x5x6 respectively.
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Writing P (x+ y, xy) = w(x) + w(y) we define

u1(x, y, z) =
P (x, z) − P (y, z)

x− y
.

Using the basis-ordering conventions given at the start of this section we
define ψ′ to be

ψ′
0 = −

























1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1

































idR2

X1

X2

X3 +X4









ψ′
1 = −

























0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

































idR2

Y1

Y2

Y3 + Y4









where

X1 =
F − F5+6

x3 + x4 − x5 − x6
, X2 =

F5+6 − F 56
5+6

x3x4 − x5x6
,

X3 =
u1(x5 + x6, x3 + x4, x3x4) − u1(x5 + x6, x3 + x4, x5x6)

x3x4 − x5x6
idR2 ,

X4 =
G5+6 −G56

5+6

x3x4 − x5x6

F − F5+6

x3 + x4 − x5 − x6
,

Y1 =
G−G5+6

x3 + x4 − x5 − x6
, Y2 =

G5+6 −G56
5+6

x3x4 − x5x6
,

Y3 = −
u1(x5 + x6, x3 + x4, x3x4) − u1(x5 + x6, x3 + x4, x5x6)

x3x4 − x5x6
idR2 ,

Y4 =
F5+6 − F 56

5+6

x3x4 − x5x6

G−G5+6

x3 + x4 − x5 − x6
.
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Lemma 4.7. Using this definition of ψ′ : Γ1 → N , we have defined a chain
map C ′ → C.

Proof. It is a simple matter to check ψ′ is a well-defined map of matrix
factorizations. We now check that we have a chain map by seeing that
Figure 27 anti-commutes.

If we let Π be the map which on each module summand looks like

Π : C[x1, x2, x3, x4, x5, x6] → C[x1, x2, x3, x4, x5, x6]/(x5 − x3, x6 − x4)

= C[x1, x2, x3, x4],

then the components of the map in Figure 27 from the leftmost Γ1 to the
rightmost Γ1 are

Π ◦

(

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

)

























1 0 0 0 0 0 0 0
−a2 a3 0 0 0 0 0 0
0 0 x3 1 0 0 0 0
0 0 x6 1 0 0 0 0
0 0 0 0 x3 1 0 0
0 0 0 0 x6 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 −a2 a3

























◦

























−1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1

































idR2

X1

X2

X3 +X4









=

(

−1 0
0 −1

)

and
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Π ◦

(

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

)

























x3 1 0 0 0 0 0 0
x6 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 x6 0 0
0 0 0 0 1 x3 0 0
0 0 0 −a2 0 0 a3 0
0 0 −a2 0 0 0 0 a3

























◦

























0 0 0 0 −1 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

































idR2

Y1

Y2

Y3 + Y4









=

(

−1 0
0 −1

)

Hence we see, just as before, that we have indeed defined a chain map.

Proposition 4.8. The chain map C ′ → C that we have defined preserves the
generators of the homology. Specifically, using the notation of Lemma 4.6, a
basis element of HKhw(D′) gets taken by the map HKhw(D′) → HKhw(D)
induced by C ′ → C to a non-zero multiple of the corresponding basis element
of HKhw(D).

Proof. As in Proposition 4.6, the only case that is not immediate is that
when the roots of ∂w decorating the two strands of the Reidemeister move
are distinct. Let us suppose that we are given such a decoration φ where the
strand on the left of Figure 21 is decorated by the root α1 and the strand
on the right is decorated by the root α2.

We use the same ∆ notation as in Proposition 4.6. Let Qφ,Γ0
∈ H(∆Γ0

)
be the standard chain representative of the basis element of HKh(D′) cor-
responding to the resolution φ. To prove the proposition we need to show
that B(Qφ,Γ0

) = Qφ,N ∈ H(∆N ) where Qφ,N is the chain representative of
the basis element of HKh(D′) corresponding to the decoration φ.
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00

N

P

id

χ0

χ1

χ1

B = ψχ0

Γ0

Figure 28: We use this diagram in our discussion of the preservation of
generators of HKhw under the Reidemeister II.1 move.

The proof of Proposition 2.11 tells us that applying two η1 maps toH(∆N )
locally at N is an injective map, and gives us a recipe to construct a non-
zero multiple of the image of Qφ,N . Taken together with Lemma 7.2, we
see that χ1χ1 : H(∆N ) → H(∆P ) is injective and takes Qφ,N to a non-zero
multiple of Qφ,P . Now,

χ1χ0id(Qφ,Γ0
) = χ1χ0(Qφ,P ) = (x2 − x5)Qφ,P

= (α2 − α1)Qφ,P = Qφ,P

up to non-zero multiple. Hence the anti-commutativity of Figure 4.6 implies
that our generator is preserved up to non-zero multiple.

4.2.2 Reidemeister move II.2

Proposition 4.9. If D and D′ are two closed link diagrams differing locally
by the Reidemeister II.2 move (as shown in Figure 29), then there exist de-
gree 0 chain maps CKhw(D) → CKhw(D′) and CKhw(D′) → CKhw(D)
which preserve, up to non-zero multiple, chain representatives of the canon-
ical bases of HKhw(D) and HKhw(D′).

Proof. Figure 29 decomposes the Reidemeister II.2 move into other elemen-
tary cobordisms. It follows that this gives degree 0 chain maps (by com-
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0-handle1-handle 1-handle 2-handle

Reidemeister
II.2 move

Reidemeister
II.1 move

Figure 29: Decomposition of the Reidemeister II.2 move as a product of
three other elementary cobordisms. This enables us to avoid making similar
algebraic calculations for the Reidemeister II.2 move as we did for the II.1
move.

position of chain maps corresponding to the elementary cobordisms used)
between CKhw(D) and CKhw(D′) whereD and D′ are closed link diagrams
differing locally by the Reidemeister II.2 move. These chain maps preserve
generators of HKhw(D) and HKhw(D′) up to non-zero multiples.

5 Presentations of surfaces in 4-space

In this section we give a proof of Theorem 1.6, but before doing so we discuss
a way to visualize how a general link cobordism can be described by a finite
sequence of elementary cobordisms.

5.1 General remarks

Consider a link cobordism Σ : L0 → L1 between the two links L0 and L1.

i : Σ →֒ R
3 × [0, 1]

∂Σ = L0 ⊔ L1, Li →֒ R
3 × {i} for i = 0, 1.
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We give one of the coordinates of R
3 a label: R

3 = Rh ×R
2. By a small

perturbation of the embedding i, we can ensure both that the composition
of i with the projection collapsing Rh, f : Σ → R

2 × [0, 1] is generic, and
that the further composition with the projection to the interval Σ → [0, 1]
is a Morse function on Σ and also a Morse function when restricted to each
singular stratum of f : Σ → R

2 × [0, 1].
The dimension= 0 stratum consists of triple points and cusps of f , and

the dimension= 1 stratum also includes the double points of f . The singular
set of f is a singular compact 1-manifold with a finite number of boundary
points which occur either on the boundary of R

2 × [0, 1] or at cusps, and
with a finite number of singularities which are locally homeomorphic to the
subset xy(x− y) = 0 of the (x, y) plane, and occur at triple points.

If we think of [0, 1] as being a time coordinate t, then we have a finite
number of times t (say 0 < t1 < t2 < . . . < td < 1) at which

f(Σ) ∩ R
2 × {t} ⊂ R

2 × {t}

fails to be a link diagram (note that we can determine which branch of a
double point is the overcrossing and which the undercrossing, by looking at
their relative projections to the ‘height’ coordinate Rh). These are the times
at which there is either a point of the dimension= 0 stratum of f , a critical
point of the Morse function on the dimension= 1 stratum of f , or a critical
point of the Morse function on Σ (remember that both Morse functions are
just the projections to [0, 1]). If tj < s < t < tj+1 then we have

(f(Σ) ∩ R
2 × {s} ⊂ R

2 × {s}) = (f(Σ) ∩ R
2 × {t} ⊂ R

2 × {t})

diffeomorphically as link diagrams, by the stratified Morse theory version of
the usual Morse flow argument.

At each tj there is a singular link diagram f(Σ)∩R
2 ×{tj} ⊂ R

2 ×{tj},
corresponding to altering the diagram at time tj − ǫ to the diagram at tj + ǫ
for small ǫ > 0 by an elementary cobordism as follows:

• If the Morse function on Σ has a local maximum, this corresponds to
adding a 0-handle.

• If the Morse function on Σ has a local minimum, this corresponds to
adding a 2-handle.

• If the Morse function on Σ has a saddle point, this corresponds to
adding a 1-handle.
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• If the Morse function on the dimension= 1 stratum of f has a local
maximum or minimum, this corresponds to a Reidemeister II move.

• If there is a cusp, this corresponds to a Reidemeister I move.

• If there is a triple point of f , this corresponds to a Reidemeister III
move.

5.2 Delaying Reidemeister III

The main point of Theorem 1.6 is to delay the Reidemeister III moves in
a movie presentation of a knot cobordism to the end of the presentation
when they can take place within a ‘simple’ knot diagram. The Khovanov-
Rozansky homology of this simple knot diagram is very amenable to com-
putation, and this enables us to derive the slice genus lower bound without
needing to make complicated calculations involving the Reidemeister III
move taking place within a completely general knot diagram.

In the formalism of the previous section, delaying Reidemeister III moves
means moving triple points of f : Σ → R

2 × [0, 1] down with respect to the
time coordinate t ∈ [0, 1] (we are thinking of 0 as being ‘above’ 1).

The obvious way to try and do this is to pull down the triple point within
a small cylindrical neighbourhood D2 × [0, 1] of the point. Generically this
small cylindrical neighbourhood will intersect f(Σ) in the three discs which
intersect in the triple point, and in a finite number of disjoint discs. When
the triple point is pulled down, we are forced to introduce pairs of canceling
1- and 2-handles in each disc below the triple point to avoid introducing
more triple points. We explain this in more detail later, but for the general
idea refer to Figures 30, 31.

There is, however, a problem with this simple approach. In order to
apply Theorem 1.6 in our proof of Theorem 1.2, the requirement that the
sequence of elementary cobordisms includes an intermediary 1-component
knot diagram is essential. Hence we find it necessary to keep some control
over the 1-handles as well, and this gives rise to the approach of the next
section.

5.3 Proof of topological results

We now are in a position to prove Theorem 1.6.

Proof. Assume that i : Σg →֒ R
3 × [0, 1] is a connected knot cobordism

between links L0 and L1 as in the hypotheses of Theorem 1.6. We use the
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three RII moves

three 1 − handles

isotopy

Figure 30: Here we show the effect of pulling a triple point of the immersion
f : Σg

′ → R
2 × [0, 1] down in the t direction. In terms of elementary

cobordisms, the RIII move is replaced by three RII moves and three 1-
handles. This introduces an extra three boundary components to Σg

′, one
in each sheet in which the triple point of f ′ is included.
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PSfrag

isotopy 1 − handle

Figure 31: When we pull down a triple point of the immersion f ′ : Σg
′ →

R
2 × [0, 1], we also introduce 1-handles in sheets of the immersion f ′ that

pass beneath the triple point. In this way we avoid introducing more triple
points. Here we show this in terms of a movie picture.

notation R
3 × [0, 1] = Rh × R

2 × [0, 1]t as we discussed in Subsection 5.1,
and we make the assumption that the projection to the time interval [0, 1]
is a stratified Morse function.

Suppose a 0- or a 2-handle of i occurs at a point (h, p, q, t) ∈ Rh × R
2 ×

[0, 1]. Generically {(h, p, q)} × [0, 1] will not intersect i(Σg), so by isotoping
0-handles ‘up’ and 2-handles ‘down’ (we think of 0 as lying above 1) in the
time t direction and then rescaling [0, 1], we may assume that the 0-handles
of i occur when t = 1/6 and the 2-handles when t = 5/6. Furthermore
we may assume by Theorem 1.5 [5], that the 1-handles of i occur at time
t = 1/2 and that they come with an ordering which satisfies the conditions
on fusion and fission in the statement of Theorem 1.6.

We shall write Σt
g for i−1(Rh × R

2 × [0, t]), by it we shall mean the
restriction it = i|Σt

g
→ Rh × R

2 × [0, t], and by f t we shall mean the Rh-

collapsing projection f t : Σt
g → R

2 × [0, t].
Suppose that i has h1 saddle points. We let Ij be the part of the as-

cending manifold corresponding to the jth saddle point which is contained
in Rh × R

2 × [1/3, 2/3]. This is illustrated in Figure 33.

We shall write Ij and Ij for the projections of Ij to Rh × R
2 and to R

2

respectively. By rescaling t if necessary, we may assume that

(Ij × [1/3, 2/3]) ∩ i(Σg) = Ij

for all j.
Let h0 be the number of 0-handles of i. Since only 0-handles occur when
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D0

D0

. . .

h0−component unlink

h0 0 -handles

Figure 32: Here we show the movie presentation corresponding to the pro-

jection f1/3 : Σ
1/3
g → R

2 × [0, 1/3]. The projection f1/3 has only index= 0
critical points, and no critical points of positive codimensional strata.

0 < t < 1/3, i1/3 is an embedding of L0 × [0, 1/3] (with fibre L0 ⊂ R
3

at each value of t), along with h0 trivially embedded discs D2. Hence, by
possibly composing with a time-dependent diffeomorphism of R

3, we can
assume that the Rh-collapsing projection f1/3 has no dimension= 0 stratum
and no singular points of the dimension= 1 stratum, with fibreD0 over t = 0
and fibre D0 ⊔

∐h0 U over t = 1/3, where U is the 0-crossing diagram of the
unknot. We illustrate the corresponding movie presentation in Figure 32.

Let NIj be a small tubular neighbourhood Ij ×D2 of Ij, chosen small
enough that (NIj × [1/3, 2/3]) ∩ i(Σg) consists of a neighbourhood of Ij in
i(Σg). We form the space

(Rh × R
2 × [0, 1/3]) ∪





∐

j

NIj × (1/3, 2/3]



 ,

and call the smoothing of this space X.
Note that there are no critical points of the Morse function on Σg which

are mapped by i to (Rh × R
2 × [0, 2/3]) \ X and that points of (i(Σg) ∩

∂X) \ (Rh × R
2 × {0}) are in one-to-one correspondence with points of

i(Σg) ∩ (Rh × R
2 × {2/3}) since there is a unique flow-line in

i(Σg) ∩ ((Rh × R
2 × [1/3, 2/3]) \X)

connecting them. Indeed, by a standard Morse flow argument, i(Σg)∩X ⊂

X is diffeomorphic as a pair to i2/3(Σ
2/3
g ) ⊂ Rh × R

2 × [0, 2/3].
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0

1/3

2/3

1/2

Ij

jth saddle point

Figure 33: The jth saddle point of the embedding i occurs at a time t = 1/2.
Here we draw the part Ij of the corresponding ascending manifold contained
in Rh × R

2 × [1/3, 2/3]. For the horizontal discs, one should imagine 3-
dimensional space Rh × R

2.
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Furthermore, since (NIj× [1/3, 2/3])∩i(Σg) consists of a neighbourhood
of Ij in i(Σg), the pair i(Σg) ∩X ⊂ X is determined up to ambient isotopy
by the Ij ⊂ (Rh × R

2) and a framing of the Ij which lifts to the surface
framing of the Ij.

Now the Ij (the projections of the Ij to R
2) are generically immersed arcs

in R
2 with endpoints on the diagram D0⊔

∐h0 U , and elsewhere transverse to
this diagram. For any framing of the Ij, there exists a cobordism (realising

this framing) (Σ
2/3
g \Σ

1/3
g ) →֒ (Rh×R

2 × [1/3, 2/3]) whose projection to R
2

is supported on D0⊔
∐h0 U and on a small neighbourhood of the Ij. This is

illustrated in Figure 34, where it is observed that the corresponding movie
presentation of this cobordism consists of only Reidemeister I and II moves
which introduce crossings and of 1-handle Morse moves. We have shown
that we can create the cobordism i2/3 up to ambient isotopy by composing
a cobordism of this type with the cobordism i1/3.

In other words we have found a new decomposition of the ambient space
as Rh × R

2 × [0, 2/3] (we use the same notation for the new decomposition

as for the old) such that the projection f2/3 : Σ
2/3
g → R

2 × [0, 2/3] has no
triple points and no minima of the dimension= 1 stratum. As before, all
the 1-handles occur at time t = 1/2 and it is possible to perturb f in a
neighbourhood of t = 1/2 such that the conditions on the orders of fusion
and fission 1-handles in Theorem 1.6 hold.

Suppose now that there are h2 2-handles of i. Then by construction

i(Σg) ∩ (Rh × R
2 × {2/3}) ⊂ R

3

is the link which consists of the disjoint union of K1 with the h2-component
unlink. Furthermore,

f(Σg) ∩ (R2 × {2/3}) ⊂ (R2 × {2/3})

is a diagram of this link. Since the link diagram D1 ⊔
∐h2 U as illustrated

in Figure 35 is also a diagram of this link, there exists a sequence of Reide-
meister moves taking one to the other. In other words we can extend the

immersion f2/3 : Σ
2/3
g → R

2 × [0, 2/3] to an immersion f ′ : Σ′
g → R

2 × [0, 1]
where Σg

′ is Σg punctured h2 times, the projection of Σg
′ to [0, 1] contains

no critical points with values in [2/3, 1], and

f ′(Σg
′) ∩ (R2 × {1}) ⊂ (R2 × {1})

is the link diagram D1 ⊔
∐h2 U .
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Figure 34: On the left of this figure is D0 ⊔
∐h0 U , (for example’s sake we

have taken h0 = 2 and D0 to be a diagram of a figure-8 knot), along with the

Ij (again for example’s sake we have drawn two of these). Such a diagram
along with a choice of (surface) framing for each Ij determines the cobordism
i2/3. On the right are the start and end diagrams of a corresponding movie
presentation which is supported on D0 ⊔

∐h0 U and on a neighbourhood of

the Ij. It is clear how to compose Reidemeister I and II moves and two
1-handle moves to achieve such a presentation. The twisting of the ribbons
(achieved with Reidemeister I moves) should be chosen to give the required
surface framing of each Ij.

D1

. . .

h2−component unlink

Figure 35: This is what we mean by the diagram D1 ⊔
∐h2 U .
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Figure 36: This is a diagram of a 3-component unlink. One of these occurs
on R

2 ×{1} for each triple point of f ′ that we remove by pulling it down to
the boundary of R

2 × [0, 1].

The lift of f ′ to a link cobordism i′ : Σg
′ →֒ (Rh × R

2 × [0, 1]) is the
cobordism i punctured h2 times. It is a cobordism between L0 and L1 ∪
∐h2 W where W stands for the unknot.

Finally it remains to pull down the triple points of f ′ which occur in
R

2 × [2/3, 1]. If the triple point occurs at (p, q, t) this means altering the
surface in a small tubular neighbourhood of {(p, q)}× [2/3, 1]. We puncture
each of the three sheets where the triple point occurs, and pull down the
punctures in the small tubular neighbourhood until they reach the boundary
R

2×{1}. Doing this introduces a 1-handle in each sheet, as well as a critical
point (hence a Reidemeister II move) at three points of the dimension= 1
stratum of f ′. We illustrate this in Figure 30.

Suppose f ′ has T triple points. Generically, below each triple point of
f ′ there will be a number of sheets of f ′(Σg

′) - call the total number of
such sheets S. We pull down each triple point and also puncture and pull
down the sheets below it to form a new immersion F : Σg

′′ → R
2 × [0, 1].

We puncture and pull down the sheets below each triple point to avoid
introducing any new intersections when we pull down the triple points - see
Figure 31. Here, Σg

′′ is Σg punctured k = h2+3T+S times and the diagram

F (Σg
′′) ∩ (R2 × {1}) ⊂ (R2 × {1})

is a diagram which consists of the disjoint union of D1 with T copies of the
diagram in Figure 36 and S copies of the 0-crossing knot diagram U . We
illustrate and explain further in Figures 31, 37. We note that in taking the
disjoint union we allow the diagram components to nest, so long as they
remain disjoint from each other as subsets of R

2. The Khovanov-Rozansky
complex does not see the nesting of diagram components.
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Figure 37: We introduce a 1-handle in every sheet of f ′ : Σg
′ → R

2 × [0, 1]
passing beneath a triple point. This means puncturing Σg

′ a number of
times (three times for each triple point that we pull down, and once for
each sheet of f ′ directly below a triple point). Here we show how these
punctures appear when pulled down to R

2 × {1}, giving a link diagram. It
is a 6-crossing diagram of a 3-component unlink, nested inside a number of
0-crossing knot diagrams, one for each sheet below the triple point.

The movie presentation corresponding to the immersion F satisfies the
requirements of Theorem 1.6 and so we are done.

6 Derivation of slice genus bound

In this section we deduce Theorem 1.2 on the lower bound for the slice genus
of a knot coming from HKhw, and Milnor’s conjecture on the value of the
slice genus of a torus knot Corollary 1.3.

6.1 Heuristics

Given a knot K that bounds a connected surface in the 4-ball, we can
puncture the surface once to get a connected knot cobordism Σg : K → W
between K and the unknot W .

Suppose there is a presentation of Σg as a sequence of elementary cobor-
disms, not including the Reidemeister III move, between a diagram D of K
and the 0-crossing diagram U of the unknot. By work of previous sections,
this gives us an induced map on the perturbed homologies

F jHKh0
w(D) → F j−(n−1)χ(Σg)HKh0

w(U).
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Since we know that this map is an isomorphism as a plain (unfiltered)
vector space homomorphism and we know the homology of U , we can deduce
a slice genus lower bound for K from the associated graded vector space to
the filtered vector space F jHKh0

w(D).
However, it is not always possible to find such a composition of elemen-

tary cobordisms that avoids the Reidemeister III move. But, as we have
shown in Section 5, it is possible to puncture Σg a number of times to get a
cobordism Σg

′ between K and an unlink, such that there is a presentation
of Σg

′ that includes no Reidemeister III moves, that starts with D, and that
ends in a ‘simple’ diagram Z of the unlink (see Figure 37 for the worst case
scenario).

Under the action of this presentation on homology, we shall see that it
is possible to compute directly the filtration grading in HKh0

w(Z) of the
image of a generator of HKh0

w(D) under the induced map

F jHKh0
w(D) → F j−(n−1)χ(Σg

′)HKh0
w(Z).

This is because we have been careful not to allow Z to be a very complicated
diagram of the unlink.

In this way we recover the same slice genus bound on K as we would
expect to achieve using a much more laborious algebraic computation of the
invariance of HKhw under the Reidemeister III move.

6.2 Computation

Let Σ : K → U be a connected knot cobordism of genus g between the 1-
component knotK and the unknot U , and suppose we are given a diagramD
ofK. We know that by puncturing Σ a number of times to get the cobordism
Σ′ : K → E (where E is the e-component unlink), we can find a presentation
S′ of Σ′ satisfying the conditions of Theorem 1.6. The presentation S′ ends
with the diagram Z of E where each component of Z (as a subset of R

2)
comes as a 0-crossing unknot or as a diagram of a 3-component unlink as
appears in the left of Figure 38.

The presentation S′ has been constructed so that it contains no Reide-
meister III moves. By the work of previous sections, associated to S′ is a
map

HKhw(S′) : F jHKhiw(D) → F j−(n−1)χ(Σ′)HKhw(Z).
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Proposition 6.1. If αξ ∈ CKhw(D) is the chain representative of the
generator [αξ] ∈ HKhw(D) associated to decorating K with the root ξ of ∂w
then

HKhw(S′)([αξ ]) = [αξ] ∈ HKhw(Z)

where we write [αξ] also for the element of HKhw(Z) associated to decorat-
ing each component of Z with ξ.

Proof. This follows from the results proved in Sections 3 and 4, where
we considers what happens to chain representatives of basis elements of
HKhw(D) upon performing a Reidemeister I or II move or a handle ad-
dition to D. It is important here also to remember Theorem 1.6, which
ensures that there is an intermediate diagram D′ of a connected knot in
the presentation S′. This will mean that [αξ] ∈ HKhw(D) gets mapped
to [αξ] ∈ HKhw(Z), since every 0-handle of S′ gets joined to D by 1-handles
before other 1-handles split any 0-handles into more pieces.

Recall that there is a filtration

. . . ⊆ F j−1HKhi ⊆ F jHKhi ⊆ . . .

and an associated graded vector space

HKhi,jw = F jHKhi/F j−1HKhi.

Necessarily [αξ] ∈ HKh0(Z), we would like now to know in which degree
of the quantum grading of HKhw(Z) the element [αξ] lies.

Lemma 6.2.

[αξ ] ∈ HKh0,e(n−1)(Z).

Proof. First note that if Z = U it is automatic that [αξ] ∈ HKh0,n−1(U).
Write B for the unlink that appears in the left of in Figure 38. Since the
homology of a diagram composed of disjoint pieces is the tensor product
of the homologies of the pieces, we are done if we can show that [αξ] ∈

HKh0,3n−3
w (B).

Figure 38 shows B and the oriented resolution Bo of B. The chain repre-
sentative αξ of [αξ] lies in H(Bo) which is a summand of the 0th homological
degree chain group CKh0

w(B).
The canonical chain representative αξ ∈ H(Bo) is, up to non-zero scalar

multiplication, the module element
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B Bo

Figure 38: The diagram B of the 3-component unlink possibly occurs a
number of times as a component of Z. The diagram Bo is the oriented
resolution of B.

∏

i=1,2,3

∂iw

xi − ξ
∈ (C[x1, x2, x3]/(∂1w, ∂2w, ∂3w)){3 − 3n}

which is of top filtration grading 3n − 3. A priori, of course, it does not
follow that [αξ] ∈ HKh0,3n−3

w (B), since we have not yet seen that αξ is not
homologous to an element of CKhw(B) which is of a lower filtered degree.
We shall show this now.

The diagram B is a diagram of the unlink, so for dimensional reasons the
spectral sequence converging from E2 = HKhi,jn (B) to E∞ = HKhi,jw (B)
collapses immediately (E2 = E∞).

The reduction α̃ξ ∈ F3n−3H(Bo)/F3n−4H(Bo) is a cycle in the page

E1 = CKhi,jn . If we can show that α̃ξ is not a boundary with respect to
the E1 differential (which is just the standard Khovanov-Rozansky sl(n)
differential) then, since E2 = E∞, α̃ξ will represent a non-zero class on the
E∞ page. The grading of this class (which is necessarily j = 3n− 3) will be
the grading in which [αξ] lies in HKh0,j

w (B).

So, in order to show that [αξ ] ∈ HKh0,3n−3
w (B), we need to see that α̃ξ

represents a non-zero class in HKhn(B). Khovanov and Rozansky [7] have
provided quantum-degree 0 chain homotopy equivalences between the chain
complexes CKhn corresponding to tangle diagrams differing by a single
Reidemeister move. We shall change B by certain of these Reidemeister
moves to arrive at the 0-crossing 3-component unlink. We shall see that
the chain maps of Khovanov-Rozansky’s chain homotopy equivalences will
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B

Reidemeister
III move

Reidemeister
II.1 move

Reidemeister
II.1 moveReidemeister

II.1 move

Figure 39: Uncrossing the unlink. We show the sequence of moves we use
in the proof of Lemma 6.2 when converting the 3-component unlink B into
the 3-component 0-crossing diagram of the unlink.

act on α̃ξ, mapping it to a cycle of the chain complex corresponding to
the 0-crossing 3-component unlink. This cycle represents a non-zero class
in the homology, so α̃ξ represents a non-zero class. This will complete our

argument that [αξ] ∈ HKh0,3n−3
w .

In Figure 39 we have shown the sequence of Reidemeister moves that
we use to convert B to the 0-crossing 3-component unlink. Note that all
the Reidemeister II moves are II.1 moves, that the Reidemeister III move in-
volves three positive crossings, and that the number of circles in the oriented
resolution never changes.

The cycle α̃ξ in CKhn lies in the 0th chain group summand H(Bo). Up
to non-zero scalar multiplication:

α̃ξ = xn−1
1 xn−1

2 xn−1
3 ∈ (C[x1, x2, x3]/x

n
1x

n
2x

n
3 ){3 − 3n} = H(Bo).

Unpacking the proofs a little in [7], we see that (for the Reidemeister
II.1 move which reduces the number of crossings and for the Reidemeister
III move with all positive crossings) the maps induced from the chain group
summands corresponding to the oriented resolutions are just the identity
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map of matrix factorizations. (The fact that, in Figure 22, the double-
headed arrow labeled id represents the identity map, is a reflection of this
fact).

This means that the element α̃ξ always gets mapped to the top-degree
element in the chain group summand that is the homology of the oriented
resolution. In the final diagram of the 0-crossing 3-component unlink, the
homology of the oriented resolution is the only chain group summand. So
the image of α̃ξ represents a non-zero element in homology and, since the
chain maps are all chain homotopy equivalences, α̃ξ also represents a non-
zero element in homology.

We now have enough to deduce our result on the slice genus Theorem 1.2.

Proof of Theorem 1.2. Consider the map

HKhw(S′) : F j+(n−1)(χ(Σ)−e+1)HKh0
w(D) → F jHKh0

w(Z).

By Proposition 6.1 and Lemma 6.2, we know that HKhw(S′)([αξ ]) is a
non-zero element of Fe(n−1)HKh0

w −Fe(n−1)−1HKh0
w. Hence HKh0

w(D)−
F (n−1)(χ(Σ)+1)−1HKh0

w(D) is non-empty. So there exists some j ≥ (n −
1)(χ(Σ) + 1) = (1 − n)(2g(Σ) − 1) for which HKh0,j

w (D) 6= 0. Theorem 1.2
follows.

We deduce Milnor’s conjecture on the slice genus of torus knots as Corol-
lary 1.3 to Theorem 1.2. We start by discussing positive knots.

Suppose that a knot K has a diagram D in which all the crossings are
positive (i.e. they look like the crossing on the left of Figure 4). Suppose
that D has k crossings and l circles in its oriented resolution. We compute
the top grading of HKhw(D).

Since all the crossings are positive, the homology of the oriented resolu-
tion is the leftmost chain group in the Khovanov cube (also the chain group
of homological degree 0). Hence the homology HKhw(D) will just be the
kernel of the differential coming from this chain group. In particular the
filtration grading of chain representatives of the homology will be the same
taken in the chain group CKh0

w as taken in the homology HKh0
w since there

is no boundary group by which to quotient.

Each basis element [αξ] of HKhw(D) lies in HKh
0,(1−n)(k−l)
w (D). In

particular, HKh
0,(1−n)(k−l)
w (D) 6= 0. Now, (1 − n)(k − l) is the highest

filtration degree of the 0th chain group, so Theorem 1.2 says that
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(n− 1)(2g∗(K) − 1) ≥ (n− 1)(k − l).

There exists an explicit description of a Seifert surface for K which con-
sists of l disks (filling the circles of the oriented resolution of D), connected
by k bands (where the crossings of D are). The Euler characteristic of this
surface with boundary is l−k, so the surface is of genus (k− l+1)/2. Push-
ing this Seifert surface slightly into the 4-ball yields a slice surface for K of
the same genus. Since we have seen that

2g∗(K) ≥ k − 1 + 1

it follows that 2g∗(K) = k − l + 1.

Proof of Corollary 1.3. Performing this computation in the case of the stan-
dard diagram of a torus knot yields Milnor’s conjecture on the slice genus
of torus knots.

7 Appendix

Here we give two basic results used (sometimes implicitly) throughout this
paper.

7.1 Removal of Marks

Below, we omit mention of the various quantum grading shifts that occur,
although readers friendly with matrix factorizations can easily assure them-
selves that the filtration grading of each map is as expected.

To first explain Figure 40: the matrix factorization N (resp. N ′) is
obtained from Q (resp. Q′) by tensoring with the matrix factorization P .
Also, the matrix factorization M (resp. M ′) is the same as Q (resp. Q′)
with the formal replacement of the variable y by x.

Lemma 7.1. Removal of marks
We prove that the matrix factorizations M (resp. M ′) and N (resp. N ′)

(in which we intend the circles to contain the same arbitrary trivalent graph
with thick edges) in Figure 40 are equal in the homotopy category of matrix
factorizations.

Furthermore, suppose M ′, N ′, Q′ are factorizations, maybe different
from M , N , Q but with the same boundary labels. If we then have a map of
matrix factorizations αx : M → M ′ (and, replacing x by y, αy : Q → Q′),
inducing a map of matrix factorizations A : N → N ′, then
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Figure 40: Removal of marks

αx = L ◦A ◦K

where L : N → M and K : M → N are the homotopy equivalences con-
structed.

Proof. We exhibit filtered degree-0 maps M → N , N → M which we show
are homotopy equivalences.

The matrix factorizations M and N are both defined over the same
ground ring R = C[x1, x2, ..., xr, x]. We write M as

M0 fx
→M1 gx

→M0.

The matrix factorization Q is the same but with any occurence of x relabelled
as y. We shall consequently write Q as

Q0 fy

→ Q1 gy

→ Q0

where the subscripts are to remind us that the difference between the fac-
torizations M and Q is just the interchanging of x with y.

Then if P is the factorization
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P 0 πxy

→ P 1 x−y
→ P 0

where P 0 and P 1 are free rank-1 modules over C[x, y], we have that N0 =
(Q0 ⊗P 0)⊕ (Q1 ⊗P 1), N1 = (Q1 ⊗P 0)⊕ (Q0 ⊗P 1) and N can be written

N0

0

@

fy −(x− y)
πxy gy

1

A

→ N1

0

@

gy x− y
−πxy fy

1

A

→ N0

in which we are implicitly thinking of N as a factorization over the polyno-
mial ring C[x1, x2, ..., xr, x, y] with degenerate potential.

Now we give the homotopy equivalence between M and N . We define
maps of matrix factorizations K : M → N and L : N →M by the following
C[x1, x2, ..., xr , x]-module maps:

K0 =

(

1

−
fx−fy

x−y

)

K1 =

(

1
gx−gy

x−y

)

L0 = ( Py 7→x 0 ) L1 = ( Py 7→x 0 )

where by Py 7→x we mean the map which looks like the ring map

C[x1, x2, ..., xr , x, y] → C[x1, x2, ..., xr , x, y]/(x − y) = C[x1, x2, ..., xr, x]

on each module summand C[x1, x2, ..., xr, x, y].
Note that L ◦K : M →M is already the identity map.
We define an homotopy H0 : N0 → N1,H1 : N1 → N0 as follows:

H0 =

(

0 0
1−Py 7→x

x−y 0

)

H1 =

(

0 0
Py 7→x−1
x−y 0

)

.

It is now an exercise to see that

idN0 −K0 ◦ L0 = H1 ◦

(

fy −(x− y)
πxy gy

)

+

(

gy x− y
−πxy fy

)

◦H0

and

idN1 −K1 ◦ L1 =

(

fy −(x− y)
πxy gy

)

◦H1 +H0 ◦

(

gy x− y
−πxy fy

)

.
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1 111 222 2

3 3 3 34 4 4 4

==

η0

η1

χ0

χ1

Figure 41: Definition of the η maps. By this diagram we mean the reader
to understand that the maps η0 and η1 are defined as conjugation of the
maps χ0 and χ1 respectively. This is not a commutative diagram.

The second part of the theorem amounts to the observation that if αy,0
and αy,1 are the components of αy : Q→ Q′ then the induced map A : N →
N ′ has components

A0 =

(

αy,0 0
0 αy,1

)

A1 =

(

αy,1 0
0 αy,0

)

and then it is immediate that

αx,0 =
(

Py→x 0
)

(

αy,0 0
0 αy,1

)

(

1

−
fx−fy

x−y

)

and

αx,1 =
(

Py→x 0
)

(

αy,1 0
0 αy,0

)

(

1
gx−gy

x−y

)

.

7.2 The η map

The η0 and η1 maps from Section 2 are defined as in Figure 41.
The equalities in Figure 41 are equalities as bare matrix factorizations.

It is useful for us to know how this η map would be different if it were
defined as conjugation of the χ map by swapping x1 and x2 instead of x3

and x4. In particular, at the end of our proofs of Propositions 4.6 and 4.8,
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1

11 11

1 11 2 2

22 22

2 2

33 33

33 33

44 44

44 44

==

= =

χ0χ1 −χ0−χ1

Figure 42: A commutative diagram.

we implicitly use the fact that the η map would merely change up to sign.
We state this as Lemma 7.2, the proof of which is just to write down the
relevant matrices and multiply them out:

Lemma 7.2. Figure 42 is commutative.
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