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Conical Intersections in Laboratory Coordinates with Ultracold Molecules

Alisdair O.G. Wallis,' S. A. Gardiner,? and Jeremy M. Hutson'

"Department of Chemistry, Durham University, South Road, Durham, DHI 3LE, United Kingdom
*Department of Physics, Durham University, South Road, Durham, DHI 3LE, United Kingdom
(Received 11 May 2009; published 17 August 2009)

For two states of opposite parity that cross as a function of an external magnetic field, the addition of an
electric field will break the symmetry and induce an avoided crossing. A suitable arrangement of fields
may be used to create a conical intersection as a function of external spatial coordinates. We consider the
effect of the resulting geometric phase for ultracold polar molecules. For a Bose-Einstein condensate in
the mean-field approximation, the geometric phase effect induces stable states of persistent superfluid flow
that are characterized by half-integer quantized angular momentum.
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It is well known that the potential energy surfaces for
molecular electronic states of the same symmetry can cross
at a point in two dimensions or on a surface of dimension
n — 1 in n dimensions. These crossings are known as
conical intersections because the two surfaces locally
form a double cone. Conical intersections have a wealth
of interesting consequences for molecular structure and
dynamics. For example, they are responsible for the
Jahn-Teller effect [1] and play an important role in non-
adiabatic processes [2]. One of the most interesting con-
sequences of conical intersections is the geometric phase
(Berry phase) effect [3]: when the nuclei follow a path that
encircles a conical intersection once and returns to the
original configuration (pseudorotation), the electronic
wave function changes sign. Since the tofal wave function
must be a single-valued function of coordinates, this re-
quires that the wave function for nuclear motion must also
change sign. This has important dynamical consequences:
it produces half-odd-integer quantization for free pseudo-
rotation [4] and may have significant effects on collision
cross sections [5].

The purpose of this Letter is to explore conical inter-
sections of a different type. It is now possible to produce
atomic and molecular Bose-Einstein condensates (BECs)
and to subject them to applied magnetic and electric fields.
The atomic and molecular states split and shift as a func-
tion of the magnetic field (Zeeman effect) and electric field
(Stark effect). In the absence of an electric field, parity is
conserved, so it is possible to tune the magnetic field so that
two levels of different parity are exactly degenerate with
one another. However, if a simultaneous electric field is
applied, the two levels of opposite parity are mixed and the
degeneracy is resolved [6]. Conical intersections can thus
occur at points where the electric field is zero. It is possible
to envisage an arrangement of fields that creates conical
intersections between two atomic or molecular levels as a
function of external spatial coordinates rather than internal
coordinates.
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All the results that apply to conical intersections be-
tween molecular potential energy surfaces will continue to
apply in this new situation. The internal (electronic, vibra-
tional, or spin) wave function of the atom or molecule will
change sign along a path that encircles the intersection
once, so the spatial wave function of the condensate must
also change sign.

Quantized vortices are a characteristic sign of superfluid
flow [7], and since their first observation in the context of
Bose-Einstein condensed dilute atomic gases [8] they have
been key to some spectacular experimental results [9,10].
Recent experiments placing a BEC within a toroidal trap-
ping geometry [11-13] have enabled the observation of
persistent flow around a toroidal trap [11]. The possibility
of forming half-integer quantized vortices within a spinor
atomic BEC configuration has been investigated theoreti-
cally [14—17], as have a variety of differing consequences
of geometric phase effects in atomic BEC systems [18-21].
In this work we combine these different threads to show
how, with an appropriate configuration of magnetic and
electric fields, a BEC of heteronuclear diatomic molecules
will assume a toroidal geometry, such that the geometric
phase causes the system to manifest macroscopically oc-
cupied states of half-integer quantized persistent flow.

Effects of this type can in principle be observed in any
system where two states of opposite parity can be tuned
into degeneracy with a magnetic field and can be coupled
with an electric field. However, for atomic systems states
of different parity are usually far apart at zero field. More
accessible examples are provided by gases of hetero-
nuclear alkali-metal dimers such as RbCs and KRb, which
are the targets of current experiments. In the present work
we illustrate the effect for a gas of KRb molecules in a
single vibrational level of the lowest triplet state, 3.

The energy levels of a 33" molecule in an applied field
are conveniently expanded in a fully decoupled basis set of
functions [NM y)|SM), where N and S are quantum num-
bers for molecular rotation and electron spin and M, and
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M are the corresponding space-fixed projections onto the
magnetic field axis. Nuclear spin is neglected here for
simplicity. A simple form of the Hamiltonian that contains
all the essential ingredients is

24 .
H = BN? + 5)\(82 —382) + g upB;Mg — m - E, (1)

where B is the molecular rotational constant, A is the spin-
spin coupling constant, S, is the projection of S onto the
molecular axis, B, is the magnetic field orientated along
the space-fixed Z axis, and E and g are the vectors
representing the electric field and molecular electric dipole
moment. KRb has not been characterized in detail spec-
troscopically, but ultracold KRb has recently been formed
in the lowest rovibrational levels of both singlet and triplet
states [22]. Electronic structure calculations give an equi-
librium distance r, = 5.901 A for the triplet state [23].
This allows B and A for the lowest vibrational level
to be estimated as B =001813cm™! and A=
—0.00632 cm™!. The dipole moment function has been
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FIG. 1 (color online). Energy levels of KRb as a function of
magnetic field B. The upper panel shows an overview, with each
zero-field level [labeled by (N, J)] splitting into 2J + 1 compo-
nents as a function of magnetic field. The lower panel shows how
two levels of different parity cross (M; =0 and +1) in the
absence of an electric field (solid lines) but avoid one another in
the presence of a 5 kV/cm electric field (dashed lines).

calculated by Kotochigova, Tiesinga, and Julienne [24] and
has a value around 0.051 D near r,.

Figure 1 shows the lowest rotational levels of KRb
(@*X") as a function of magnetic field in the presence
and absence of a moderate electric field (5 kV/cm). At
zero field, the N = 0 level has a single sublevel with total
angular momentum J = 1, while the N = 1 level is split
into 3 sublevels with J = 0, 1, and 2. When a magnetic
field is applied, each sublevel is split into 2J + 1 compo-
nents labeled by M;. At zero electric field, the M; = +1
level originating from N = 0, J = 1 and the M; = 0 level
originating from N = 1, J = 1 have different parity and
cross near B, = 187 G.

When a nonzero electric field is introduced, parity is no
longer conserved. However, if the electric and magnetic
fields are parallel, M; is conserved and M; = 0 and +1
states cross. We have therefore chosen the electric field to
be perpendicular to the magnetic field to induce an avoided
crossing between the M; = 0 and +1 states as shown in
Fig. 1.

We may envisage an experiment in which a BEC is
subjected to a magnetic field B,, orientated along the
space-fixed Z axis, which varies along the X axis with field
gradient dB,/dX. An inhomogeneous electric field E is
oriented along the X axis with a magnitude which varies
with Y as dE/dY, vanishing on a plane at ¥ = 0. This
creates a seam of conical intersections along the line 0, 0, Z
where X = 0 is the position at which the magnetic field
brings the two states into degeneracy. Adding an external
cylindrically symmetric optical trapping potential in the
XY plane of the -electromagnetic field gradients,
Vop(p, &, Z) = A M(w? p? + %Z?), where p?=X?+Y?,
creates a toroidally shaped potential around the conical
intersection, with a radial minimum at p,. The left-hand
side of Fig. 2 shows the resulting potential for a magnetic
field gradient of 5 G/cm, an electric field gradient of
6.8 kV/cm?, and an optical trapping potential with a
height of 7 uK at p = 30 um [25] centered at the conical
intersection. This potential has significant anisotropy
(about 10 nK), which is manifested as an asymmetry along
a cut with ¥ =0 as shown schematically in the lower
panel.

The anisotropy of the toroidal trapping potential Vi, (¢)
can be controlled by offsetting the optical trapping poten-
tial from the point of intersection. Assuming that the
Zeeman effect is linear over the range of the intersection,
with respective gradients a and b, the asymmetry along
Y = 0 will be zero when the optical trap is centered at x, =
(a +b)/(2Mw,). The trapping potential still has slightly
different depths along the X and Y axes, but this can be
minimized by adjusting the electric field gradient. The
right-hand side of Fig. 2 shows the resulting optimized
trapping potential, with x, = 0.0715 um and dE/dY =
6.723 kV /cm?. This potential has an angular anisotropy on
the order of 0.01 nK.
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FIG. 2 (color online). Toroidal potentials formed around coni-
cal intersections. Left-hand panels: Potential formed when the
optical trapping potential (7 nK at 30 um) is centered at the
point of intersection (p = 0), with field gradients 5 G/cm X and
6.8 kV/cm? Y. Right-hand panels: Potential formed when the
trapping potential is offset along X by xo = 0.0715 um, with
field gradients 5 G/cm X and 6.723 kV/cm? Y. The electric
field gradient is chosen to minimize the anisotropy in each case.
The well depths are given in nK relative to the point of inter-
section. The lower panels show schematic cuts through the
potential at ¥ = 0: KRb eigenstates (red dashed lines), optical
trapping potential (blue dot-dashed lines), and the resultant
toroidal potential (black solid lines).

For a molecule of mass M moving in a toroidal potential
such as those in Fig. 2, the single-particle Schrodinger
equation is approximately separable, with solutions
V(p, ¢, Z) = (p)P(P)@(Z). In the absence of anisot-
ropy, the geometric-phase-induced antiperiodic boundary
condition  P(¢p) = —D(Pp +27) gives D(P) =
(2m) "2 exp(im¢p), where m takes half-integer values
+ %, i%, + %, etc. If the boundary conditions were peri-
odic over 27r, m would take integer values 0, =1, =2, etc.
For periodic boundary conditions the ground state has zero
angular momentum m = 0, but for antiperiodic boundary
conditions it has a nonzero angular momentum m = =+ 1

5.
The single-particle energy spectrum is

E= (vz + %)hwz + (up + %)hwp + brm<m2 - %) (2)

where the third term represents the rotational energy of the
particle with a rotational constant b, = h*/2Mp}.

In order for geometric phase effects to be observed, the
angular anisotropy of the toroidal trapping potential
Virap(¢p) must be small enough to allow the wave function
to fully encircle the intersection. For the potentials shown

in Fig. 2, %hwp ~ 4 nK and b,,, = 0.5 nK. For the poten-
tial on the left-hand side, the anisotropy is large compared
to b,y, so that the single-particle wave function will be
localized on one side of the trap. However, for the potential
on the right-hand side, the anisotropy is small compared
to b, and the single-particle wave function will fully
encircle the conical intersection and exhibit half-integer
quantization.

A BEC of a dilute gas may be modeled by the Gross-
Pitaevskii equation (GPE). The time-independent GPE is

[y + u(d)|¥(p, b, 2121V (p, b, 2) = uY(p, ¢, Z),
3)

where w is the chemical potential and the mean-field wave
function V¥ is normalized to unity, [ V*Wdr = 1. The ef-
fective interaction strength u(¢) is 4mh>’Na(¢p)/M, where
N is the number of particles in the condensate. The internal
molecular wave function at angle ¢ may be written in
terms of the individual molecular states ¢/ and ¢, as

Y(P) = thycos(¢/2) + i sin(/2), “)

so the effective angle-dependent scattering length a(¢) is
1 1
a(¢) = §(3011 + 3ay +2ap,) + E(all — an)
1
X COS(]’) + g(dll + ayy — 26112) COS2¢, (5)

where a;; is the scattering length for interaction between
molecules in states i and j. This is isotropic in the case
ay = dxp = dp.

Averaging over the radial and vertical wave functions
gives an effective 1D GPE in ¢,

92 _ -
[—bmw + u(¢)|<1><¢)|2]<1><¢> — 4d(¢), (6

where

T 2 a
) = TN [y lle@lpdpaz )

and pu = i + (vz + Dhowy + (v, + Dho, — by /4. For
a flat ring, this has analytical solutions ®(¢) =
(m)~V2exp(imep), with i = b,m? + ii/(27). Apply-
ing antiperiodic boundary conditions, we obtain the same
solutions as for the single-particle case, namely, states of
half-integer quantized angular momentum.

In the presence of a small anisotropy, there are two
classes of solution satisfying antiperiodic boundary
conditions: flowing solutions, @I ()~ (27)~ /2%
exp(*ime), and static solutions, such as ®Y(¢p) =
72 cos(m¢p) for small interactions, both with half-
integer m. For a trap with a residual anisotropy Vy.,,(¢) =
—V,cos¢p — V, cos2¢ and an angle-dependent interaction
strength ii(¢) = uy + u; cose + u, cos2¢, we obtain ap-
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proximate chemical potentials corresponding to these two
Ansitze of ,ali/z =~ b, /4 + uy/(27) and ,[l(l)/z =~ b /4 —
V1/2 + 3uy/(4m) — uy/(27) — uy/(87r). In this approxi-
mation, a flowing state with m = *1/2 is the ground state
if 2u; + u,/2 + 27V, < u,. For any given a(¢) and con-
densate number, we can apply an offset of the optical
potential sufficient to compensate for the anisotropy of
the interaction term and stabilize the flowing state.

The permitted velocities of the persistent flow can as-
sume only half-integer values compared to the quantized
units of circulation possible in a more conventional single-
species atomic BEC in a comparable toroidal geometry
[11]. The persistent flow should be observable by releasing
the trapped particles and employing a time-of-flight tech-
nique [11].

A BEC such as described here is stable only if a(¢)
remains positive all around the ring. From Eq. (5), this
requires that a;; and a,, are both positive and that 2a;, >
—(a;; + ay). In addition, a condensate of polar molecules
can undergo dipolar collapse [26] if the dipole length a,
exceeds the scattering length for the short-range interac-
tions, where a,; = |d*|M/(12meyh?) and d is the effective
dipole moment of the molecule in the field. Since the
molecular wave function is given by Eq. (4) and there is
a direct dipole moment matrix element {(1|®|2) between
the near-degenerate states ¢, and 5, d = (1|u|2)sin¢.
For the two states of KRb considered here, (1|u|2) ~
10732 Cm, which gives a7 ~ 5 X 107! m. This is sub-
stantially smaller than typical scattering lengths so dipolar
collapse is unlikely.

The present Letter has described a novel form of conical
intersection that can occur as a function of three-
dimensional laboratory coordinates, instead of internal
molecular coordinates. Using such conical intersections,
it may be possible to create novel superfluid states with
stable persistent flow characterized by half-integer, rather
than integer quantized angular momentum. Although we
have considered the effect for polar molecules, a similar
effect might be produced for well-separated levels, perhaps
even in atoms, using a laser field to bring the levels into
near-degeneracy and an inhomogeneous magnetic field to
provide a crossing. Conical intersections would appear at
points of zero laser amplitude, for example, at the nodes in
an optical lattice.

The effect proposed here can in principle be observed in
any system where two states of any different symmetry
(not just parity) can be tuned into degeneracy with one
external influence, and then split apart again with another
influence that breaks the symmetry.
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