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We study theoretically the mechanical failure of a simple model of double stranded DNA under
an applied shear. Starting from a more microscopic Hamiltonian that describes a sheared DNA,
we arrive at a nonlinear generalization of a ladder model of shear unzipping proposed earlier by
deGennes[1]. Using this model and a combination of analytical and numerical methods, we study the
DNA “unzipping” transition when the shearing force exceeds a critical threshold at zero temperature.
We also explore the effects of sequence heterogeneity and finite temperature and discuss possible
applications to determine the strength of colloidal nanoparticle assemblies functionalized by DNA.

PACS numbers:

I. INTRODUCTION

The physics of single molecule DNA unzipping
experiments[2] (in vitro mechanical analogues of helicase-
mediated unzipping during DNA replication[3]) is fairly
well understood. However, much less is known about
shear denaturation of DNA (see Fig.1). Although of
less immediate biological relevance, there are interest-
ing materials science applications such as determining
the strength of DNA/gold nanoparticle assemblies. In
one implementation[4], gold nanoparticles are function-
alized by attaching single-stranded thiol-capped oligonu-
cleotides. Nanoparticle aggregates form (and the solu-
tions change color) when duplex DNA with complemen-
tary “sticky ends” is added to the solution. In addition
to DNA detection applications associated with a shift in
the plasmon absorption frequency upon aggregation[5],
(which depends upon particle size, concentration and in-
terparticle distance) recent attention has focused on ther-
mal denaturation[6] and the effect of disorder[7] when
single stranded linker elements are used. In this paper
we adapt methods developed for DNA unzipping (gener-
alizing a simple harmonic model of deGennes[1]), in an
effort to understand the inherent strengths and shear de-
naturation pathways of the hybrid DNA “bonds” that
hold these aggregates together at low temperatures.

The physics governing the failure of a double stranded
DNA in shear mode is rather different from that in a
conventional tensile mode. Consider the two geometries
shown schematically in Fig.1(a) and 1(b). In the ten-
sile mode of Fig.1(b), bases are sequentially stretched as
the duplex is unzipped by forces exerted on the same
end of the duplex. For shear unzipping, however, these
forces act on opposite ends (as well as on opposite duplex
strands), and the stretching is spread out over many base
pairs. The statistical mechanics of DNA unzipping in the
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tensile mode can be simply understood by associating an
energy function that depends on the number of unzipped
bases m, ε(m) = mf where f = 2g(F )− g0, g0 being the
strength of the bonds and g(F ) the elastic response of
the unzipped handles including entropy effects[8, 9, 10].
Near the unzipping transition f(F ) ∼ F − Fc, where F
is the applied tensile force, and Fc the unzipping force of
the DNA. As F → F+

c , this analysis leads to the scal-
ing relation < m >∼ 1/(F −Fc) for a homopolymer and
< m > ∼ 1/(F − Fc)

2 for heteropolymers[8, 9].

In this paper we explore the shear unzipping transition
in the same spirit. As pointed out in Ref.[1], an impor-
tant length scale for the DNA is the length κ−1 over
which strain relaxes on either end (see Fig.1(a)). Exper-
iments that measure rupture forces of short hybridized
DNA segments with one strand grafted onto a substrate
at one end, and the other strand grafted to a tip of an
AFM at the other end show an increasing dependence
of the rupture force on the overlap length of the two
strands[11, 12, 13]. In addition, the unzipping force for a
20 base pair long sequence is about three orders of mag-
nitude larger than that of the rupture force of a single
bond[11]. Using a simple model of harmonic springs, de-
Gennes showed that the rupture force scales linearly with
the overlap length for small system sizes while it saturates
for large ones[1]. Recently, these predictions have been
verified experimentally by the Prentiss group[14, 15]. In
these experiments one end of a DNA hybrid is grafted to
a glass capillary by antigen-antibody linkages while the
complimentary strand at the opposite end is attached
to a magnetic bead via biotin-streptavidin linkage. The
magnetic bead is then placed in a uniform magnetic field
gradient to ensure that a constant shear force is applied
to the DNA. Here, we elaborate the deGennes model,
and study whether the physics of shear unzipping coarse-
grained over this strain relaxation length yields the same
physics as conventional unzipping in context of a simple
model Hamiltonian. We answer this question in the af-
firmative. With the help of a “semi-microscopic” model
of a poly-(AT) hybrid, we find that the strain is indeed
localized over a narrow region κ−1 on either sides of the
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chain. At low temperatures the chain unzips when the
force exceeds a threshold value F ≈ f0L for short chains
and F ≈ 2f0/κa for long ones, f0 being the rupture
force of a single bond, L the system size (measured in
units of the average nucleotide) and a the equilibrium
spacing between the bases along the backbone. This be-
havior is similar to that observed in homopolymer un-
zipping in a tensile mode, albeit with a different criti-
cal unzipping force. We find that the simplified ladder
model of deGennes can be obtained from a more general
nonlinear Hamiltonian by modeling the sugar phosphate
backbone by Hookean springs and expanding in the dis-
placements of (i) the nearest neighbor interactions among
complementary base pairs on opposite rungs of the lad-
der and (ii) the next nearest neighbor interactions on
different rungs of the ladder (a simple model of stacking
interactions) to quadratic order and projecting out the
eigenmode corresponding to shear deformation. We then
study shear unzipping of a heteropolymer taking cues
from previous studies done in tensile mode. We charac-
terize the failure pathway of the heteropolymer in terms
of a meandering exponent that measures how different
it is from that of a homopolymer where the outermost
bonds on the left and right half of the chain break in al-
ternation. Finally, we consider a nonlinear vector model
of a poly-(AT) hybrid. The results from this analysis are
qualitatively similar to that of the simplified model pro-
posed in Ref.[1], although the mode of failure requires the
breaking of cross-braces, which are required to stabilize
the vector model. The cross-braces eliminate a spurious
soft mode present in the most straightforward general-
ization of the deGennes model[16]. Our most important
conclusion is that the physics of a vector model of shear
unzipping of homopolymers at zero temperature reduces
to a nonlinear generalization of the original deGennes
model at long wavelengths.

II. SEMI-MICROSCOPIC VECTOR MODEL

To introduce the basic ideas, consider a simple non-
linear model applicable to the poly-(A:T)-hybrid shown
in Fig.1. If ~rn and ~sn are the position vectors of the n-
th nucleotide along the upper and lower strands respec-
tively, and L is the size of the overlap region (measured
in units of the average nucleotide-spacing), the energy of
a sheared configuration is

H =
1

2
Q

L
∑

n=1

(

[|~rn+1 − ~rn| − a]
2

+ [|~sn+1 − ~sn| − a]
2
)

+

L
∑

n=1

[VLJ(|~rn − ~sn|) + V ′
LJ(|~rn+1 − ~sn|) + V ′

LJ(|~sn+1 − ~rn|)] ,(1)

where Q (see Fig.1) is a spring constant representing
the stiff sugar-phosphate backbones. When Q is large,
one can safely neglect the elastic properties of the single
stranded spacer elements αβ and ǫω. The direct A:T nu-
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FIG. 1: Schematic figure showing DNA unzipping in a shear
mode (a) and in a more conventional tensile mode (b). In the
shear mode, ~un and ~vn (see text) are the displacements de-
fined along the upper αβγ and lower δǫω strands respectively.
~F represents the shear force. Panel (c) shows an enlarged sec-
tion of the sheared configuration. The position co-ordinates
of the n-th nucleotide on the top and bottom rungs of the
ladder are represented by ~rn and ~sn respectively. VLJ and
V ′

LJ represent the complementary base pairing and stacking
interactions (see text).

cleotide pairing is described for simplicity by a nonlinear
Lennard-Jones pair potential

VLJ(|~rn − ~sn|) = 4ǫ

[

(

σ

|~rn − ~sn|

)12

−
(

σ

|~rn − ~sn|

)6
]

.(2)

The cross-brace interactions, V ′
LJ(|~rn+1 − ~sn|) and

V ′
LJ(|~sn+1 − ~rn|), represent the inter-strand next-nearest

neighbor interactions among nucleotides (shown as
dashed lines in Fig.1). We take these interactions to be
described by a Lennard-Jones form as well, but with a
different well depth and spatial extent. Thus

V ′
LJ(|~rn+1 − ~sn|) = 4ǫ′

[

(

σ′

|~rn − ~sn|

)12

−
(

σ′

|~rn − ~sn|

)6
]

,(3)

with well depth ǫ′ ≈ 1.6 kBT ,[17] and a length scale

σ′ = 2−1/6
√

σ̃2 + a2, where σ̃ = 21/6σ the equilibrium
separation between the two strands. These cross braces
play the role of stacking energies, and stiffen the DNA
ladder against an applied shear and remove a soft mode
such that the inter-strand separation decreases till the
ladder collapses[16]. Since the stacking interactions rep-
resented by our cross braces involve base pairs “touching”
over a larger surface area, we assume that these interac-
tions are somewhat stronger than the complimentary in-

teractions. Adding opposing forces ~F to the two opposing
strands at opposite ends (Fig.1(a)) leads to total energy
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H ′ = H − ~F · (~r1 − ~sL). Upon defining ~un and ~vn as the
displacement fields on the top and bottom rungs of the
ladder, the position co-ordinates ~rn and ~sn can be written
in cartesian coordinates as ~rn = nax̂ + (1/2)σ̃ŷ + ~un and
~sn = nax̂−(1/2)σ̃ŷ+~vn respectively, a being the equilib-
rium unstretched separation between nucleotides on the
two sugar phosphate backbones. When thermal fluctu-
ations are neglected, the equilibrium physics of such a
ladder is obtained by solving the over-damped equations
of motion for the phonon fields ~un,

∂~un

∂t
= −Γ

δH ′

δ~un
, (4)

and similarly for ~vn, stepping forward in time until a
steady state is reached. In Eq.(4), Γ sets the inverse
time scale over which the system equilibrates.

An understanding of the equilibrium properties of

two DNA hybrids like that in Fig.1 connected in se-
ries would be necessary to describe the aggregates of
Refs.[4, 5, 6, 7]. Although more microscopic models
are certainly possible[18], the Hamiltonian H ′ is simple
enough to allow both analytic insights and an evalua-
tion of the effect of sequence heterogeneity, modeled by
nonlinear pair potentials with sequence specific Lennard-
Jones binding energies ǫn and ǫ′n. While the model ne-
glects helical twist, Lavery and Lebrun[18] have shown
from an ab initio approach that forces acting on oppos-
ing 3′ ends of a double stranded DNA segment eventually
lead to a planar configuration, much like that assumed
in Ref.[1] and sketched in Fig.1(a).

We postpone a full nonlinear analysis of sheared DNA
described by the semi-microscopic Hamiltonian described
in Eq.(1) to Sec.III. Instead, we first expand the Hamil-
tonian up to quadratic order in the displacement fields
~un and ~vn. We then compute the eigenfrequencies and
identify the low energy mode corresponding to the shear
deformation. Up to an additive constant, the Hamilto-
nian of Eq.(1) for small displacements reads

H =
1

2
Q

L
∑

n=1

(ux
n+1 − ux

n)2 +
1

2
Q

L
∑

n=1

(vx
n+1 − vx

n)2

+
36ǫ

σ̃2

L
∑

n=1

(uy
n − vy

n)2 + 18ǫ′
L

∑

n=1

[

a2(ux
n+1 − vx

n)2

(a2 + σ̃2)2

+
σ̃2(ux

n+1 − vx
n)2

(a2 + σ̃2)2
+

2aσ̃(ux
n+1 − vx

n)(uy
n+1 − vy

n)

(a2 + σ̃2)2

]

+ 18ǫ′
L

∑

n=1

[

a2(vx
n+1 − ux

n)2

(a2 + σ̃2)2
+

σ̃2(vx
n+1 − ux

n)2

(a2 + σ̃2)2

+
2aσ̃(vx

n+1 − ux
n)(vy

n+1 − uy
n)

(a2 + σ̃2)2

]

. (5)

To identify the eigenmode corresponding to shear de-
formation we numerically diagonalize Eq.(5) with free
boundary conditions on all the nodes. We then solve
the over-damped equations of motion Eq.(4) correspond-
ing to the Hamiltonian of Eq.(5) with a shearing term

−~F · (~r1 − ~sL) and match the motion with the modes
obtained from the diagonalization procedure.

Fig.2 shows the acoustic and optical phonon branches
of the corresponding eigenmodes of the Hamiltonian in
Eq.(5) with the parameters of B-DNA (ǫ ≈ 1kBT , σ̃ =
2.073A◦). The strength of the stacking interactions ǫ′

was taken as 1.6 kBT . The longitudinal and transverse
branches are shown in Fig.2(a) while the optical branches
are shown in Fig.2(b). Also shown are the schematic
pictures of the configurations of the ladder eigenmodes
corresponding to the respective phonon branches. The
phonon branch that is flat near k = 0 is clearly the one
excited most prominently by a force-induced shear de-
formation like that in Fig.1. The relative displacement
field δx

n ≡ ux
n − vx

n along the direction of shear (shown
in Fig.2(c)) is visually similar to the one obtained from
the elastic description of the simplified model studied by
deGennes[1]. Fig.2(d) shows the displacement field in the
direction perpendicular to the chain axis δy

n = uy
n − vy

n.
Though the displacements are an order of magnitude
smaller than those in the direction of shear, we see a
reverse deGennes effect: The strain field δy

n is negative
near the edges and zero in the interior implying a verti-
cal distance smaller than the equilibrium spacing σ̃ near
the edges than in the middle except for the penultimate
bond on either side. This pinching effect is a result of
the imbalance in the number of next nearest neighbor
interactions on the last and last-but-one bond. Having
identified the eigenmode corresponding to the shear de-
formations, we now focus on a nonlinear scalar Hamilto-
nian that describes this mode alone.

III. NONLINEAR SCALAR DISPLACEMENT

MODEL

A nonlinear generalization of the deGennes Hamilto-
nian of Ref.[1], written in terms of scalar local phonon
fields un and vn (corresponding to vector phonon dis-
placements projected along the chain direction) is given
by

H =
1

2
Q

L
∑

n=1

(un+1 − un)2 +
1

2
Q

L
∑

n=1

(vn+1 − vn)2

+

L
∑

n=1

VLJ (|un − vn|) − Fu1 + FvL. (6)

Eq.(6), could, in principle be obtained from the more mi-
croscopic model of Eq.(1) by solving and eliminating all
phonon displacements except those that couple directly
to force. We expect that this procedure would lead di-
rectly to Eq.(6) with small renormalizations of the spring
constants Q and an effective nonlinear pair potential cou-
pling the two strands. The nature of interaction among
complementary base pairs in this model is again assumed
to be of the same Lennard-Jones form as in Eq.(2) i.e.

VLJ(|un − vn|) = 4ǫ
(

(σ/|un − vn|)12 − (σ/|un − vn|)6
)

,
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with renormalized parameters ǫ and σ . The original
model of Ref.[1] follows from expanding the potential
around its minimum and retaining terms up to quadratic
order in the displacement fields. In the harmonic ap-
proximation, VLJ ≈ 1

2
R(un − vn)2, and the shear strain

δn = un − vn due to a force F is given by,[1]

δn = δ0 cosh[κn], (7)

where δ0 = F/ (Q cosh[κL/2] + 2R sinh[κL/2]), and the
important elastic screening length κ−1 expressed in units
of the nucleotide spacing is given by the ratio of the
strengths of the covalent and hydrogen bonds, κ−1 =
√

2R/Q ≈ 10a.
The strain profile in Fig.2(c), as well as the one ob-

tained by numerical solution of the equations of motion of
scalar displacement fields un and vn for the Hamiltonian
in Eq.(6), can be fit to Eq.(7). The healing length κ−1

for the nonlinear generalization of the deGennes model is
given by κ−1 =

√

2Reff/Q where Reff = 72ǫ/(21/3σ2),
the curvature of the Lennard-Jones potential at its min-
imum. For the semi-microscopic vector model with cross
braces a closed form expression for the healing length is
more difficult. However, a comparison between the nu-
merical values of the length scale obtained by fitting the
strain profile to the form in Eq.(7) with that obtained
from fitting the optical phonon branch corresponding to
the shear mode at k = 0 to the form ω(k) = A + Bk2

(κ−1 =
√

B/A) matches closely.
In the original description of Ref.[1], where comple-

mentary base pair interactions were modeled as Hookean
springs, the rupture force was not directly calculable, but
was instead inserted by hand. The nonlinear generaliza-
tion proposed here allows us to explore rupture in more
detail. Consider first a single nucleotide pair interacting
via the Lennard-Jones potential VLJ , and acted on by a
force F . The resulting nucleotide potential is given by
Vtot = VLJ(r) − F · r. When thermal fluctuations are
neglected, the bond ruptures as the limit of metastabil-
ity of the potential Vtot is reached. This happens when
the slope at the point of inflection matches the force, i.e.

V ′′
tot(r) = 0, and V ′

tot(r) = F . For parameters used in
this paper, the rupture force of a single nucleotide pair
is f0 ≈ 5 pN. Fig.3 shows the force vs. extension curves
for DNA hybrids of different overlap lengths. The force
is normalized by the unzipping force of a single bond
while the total extension δn = un − v1 by the equilib-
rium nucleotide spacing a. A system size dependence
of the rupture force (denoted by the value at which the
extension ∆x diverges) is observed. Although for small
hybridized DNA segments L << 1/κa, the rupture force
Fc = f0L, for large system sizes L >> 1/κa one expects
that Fc ≈ 2f0/κa. This saturation of the rupture forces
can be explained as follows[1]. For short hybridized DNA
segments, when a shear force is applied all the bonds are
stretched. Since all the springs are acting in approxi-
mately parallel the effective spring constant of the system
is given by keff =

∑

i ki, ki being the spring constant of
the ith spring. Hence the force required to break the DNA
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FIG. 2: Phonon spectrum of a DNA ladder with stacking
interactions and the corresponding strain profile. Panel (a)
shows the longitudinal (upper) and transverse (lower) acoustic
branches while (b) shows the optical branches corresponding
to a shear mode (upper curve) and a “peristalsis” mode (lower
curve). Panel (c) shows the strain profile of the uppermost
eigenmode in (b) projected along the direction of the chain.
This is the mode studied in Ref.[1]. Panel (d) shows the
relative displacements in the direction perpendicular to the
strain axis. These displacements are much smaller than in
panel (c).
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FIG. 3: Force (normalized by the rupture force of a single
bond, f0 ≈ 5 pN) vs. extension curves (normalized by the
separation of a base pair a) for the nonlinear generalization
of the deGennes model for different hybridized lengths L = 5,
10, 20, 40, 60, 80. Chain rupture is indicated by the steep
upturns in ∆x. Note that the rupture force begins to saturate
for large L, as predicted in Ref.[1]. For the parameters of our
model κ−1

≈ 10a. Inset shows the strain profiles δn for a
L = 80 sized system for F = 20f0 (dashed line) and F = 24f0

(full line).
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hybrid is given by Fc = f0L. For long DNA strands, the
strain relaxes over a length κ−1 on either side. Thus ap-
proximately 1/κa springs act in parallel on either side
and hence the rupture force is 2f0/κa. A scaling func-
tion that interpolates between small and large overlap
lengths is given by Fc = 2f0/κa(1 − 2 exp[−κL]). The
inset shows the strain profile for a L = 80 base pair DNA
ladder with a shear force F = 20f0 and F = 24f0. Al-
though these profiles can be fit to Eq.(7) near the center
of the construct, the strain profile is in fact linear near
the edges of the ladder with a slope F/Q. The physics
in this regime is described by a partially unzipped chain,
with some of the force taken up by the stretched sugar
phosphate backbone.

IV. FAILURE PATHWAYS FOR SHEAR

UNZIPPING

The strain profile of a homopolymer (see Fig.2(c) and
Fig.3) is symmetric about the midpoint of the chain as
a consequence of the n → −n symmetry of the Hamil-
tonians in Eqs.(6) and (1). However such a symmetry is
absent for a heteropolymer. The quenched heterogeneity
in the bond strengths is reflected in the failure pathway,
a template of the unzipping process in nL − nR space,
where nL indicates the number of bonds broken on left
half of the chain and nR the number on the right (see
Fig.4). For a homopolymer, we can summarize the re-
sult of averaging over many runs by observing that the
left and right bonds break in alternation from the outside
edges of the duplex inwards. The failure pathway can be
different, however, when modest bond heterogeneity is
present. Although we expect that bonds still break from
the outside in, several bonds might break first on the
right side, followed by a different number on the left etc.
Provided thermal fluctuations can be neglected, this fail-
ure pathway provides a reproducible fingerprint of the
rupture process. The failure pathway in the nL − nR

space resembles that of a 2-d random walk away from
the diagonal line nL = nR as the failure progresses, a
process controlled by the heterogeneity in the DNA se-
quence.

As a measure of the randomness of the failure pathway
we compute the “meandering exponent” that measures
how much the failure pathway deviates from that of a ho-
mopolymer as a function of the total number of steps. A
schematic representation of the failure pathway is shown
in Fig.4. The dashed line passing through the origin de-
notes the average failure pathway of a homopolymer (we
take this to be an average of the “staircase” pathway
shown in blue either on the upper half plane or the lower
half plane depending upon whether the left most or the
right most outer bond is broken first). The x-axis and y-
axis denote the number of bonds that are broken on the
right and left half of the chain respectively. Thus ~∆, the
deviation of a failure pathway of a heteropolymer from a

(n  ,  n  )
L R

n
R

n
L

∆

(0, L)

(L, 0)

( )
2 2

 n  + n   ,  n  + n  
RL RL

FIG. 4: Schematic figure showing the meandering of the fail-
ure pathway of a heteropolymer (red line). The meandering is
parametrized by the deviation ∆ of the failure pathway from
that of a homopolymer (dashed line). The failure pathway for
a homopolymer (dashed line) is an average over many runs.
On average, we can imagine that the bonds break in alterna-
tion and a staircase like pathway (blue line) results either on
the upper half or the lower half, depending upon whether the
outermost bond is broken on the left or the right side. In con-
trast to the left-right bond breaking we expect on average in a
homopolymer, repeated ruptures of the same heteropolymer
should follow the same failure pathway.

homopolymer, is given by

~∆ =

(

nL

nR

)

−
(

(nL + nR)/2
(nL + nR)/2

)

. (8)

One can view the dashed line in Fig.4 as a time like co-

ordinate. The quantity ∆ = |~∆| = |nL−nR|
2

is then a
random walk as a function of nL + nR along this line.
We expect that this quantity scales with the total num-
ber of bonds broken N = nL + nR as ∆ ∼ Nν , where
ν is the meandering exponent. It is computationally in-
tensive to follow the unzipping histories of long DNA
sequences. Moreover, the decision to rupture on the left
or right side of the construct is determined by an aver-
age over roughly 1/κa bonds on each side, thus obscuring
the effect of sequence heterogeneity. Nevertheless some
insight follows from a simplified bond breaking model
which we believe captures the essential physics of the
shear unzipping pathways of heterogenous DNA for large
L >> 1/κa.

The model is constructed from a random DNA se-
quence that is generated with 1 : 1 ratio of AT and GC
bonds. Next, the left-most or right-most bond is erased
(i.e. broken) depending upon which one of these is the
weaker one. In case of a tie, one of them is erased ran-
domly. A variant such that both bonds are erased simul-
taneously gives very similar results. Simulations done on
system sizes L = 10 − 1000 for both the models yield a
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FIG. 5: Unzipping pathway, parameterized by the number of
broken bonds nL on the left vs. the number of broken bonds
nR on the right half of a randomly chosen heterogeneous DNA
sequence with the average ratio of strong (GC) and weak (AT)
bonds being 1:1. The GC bond strength is 1.5 times that of
a AT bond (blue line). The system is not large enough to
see significant deviations from the pathway of a homopoly-
mer. When the GC bond is made 10 times stronger, and the
bonds representing the backbone 5 times weaker, larger de-
viations from the homopolymer unzipping pathway is seen,
as indicated by the magenta line. The inset shows the scal-
ing of meandering length (see text) of the failure pathway for
a highly simplified model of DNA rupture as a function of
system size.

value of the meandering exponent ν = 0.50±0.01, consis-
tent with a one dimensional random walk in the variable
nL−nR as a function of the total number of broken bonds
N = nR + nL (see Fig.5).

V. NONLINEAR FORCE EXTENSION CURVES:

SEMI-MICROSCOPIC VECTOR MODEL

Figure 6 shows the force versus extension curves aris-
ing from the semi-microscopic nonlinear vector model for
a homopolymer at zero temperature for a short L = 4
hybridized DNA segment, for intermediate L = 10 and
L = 20 DNA hybrids and for a long strand with L = 40.
The force vs. extension curves are similar to the ones
obtained by the scalar version of the deGennes model.
However the rupture force in this case is lower than those
obtained in the scalar model without the cross braces but
the same ǫ and σ for VLJ(r). A careful examination of
the configuration of the chain for a small system (L = 4)
shows that the chain rotates with respect to its initial
orientation upon application of collinear forces. In this
orientation, the cross braces offer an easier pathway in
breaking open the chain. The rupture force obtained
from numerics match very well with the estimate of L
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F/f
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 x

/a
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F−F

FIG. 6: Force vs. extension curves for the nonlinear vector
generalization of the deGennes model with cross brace for L =
4, 10, 20, and 40 respectively. Inset is a configuration snapshot
illustrating the rotation of the sheared DNA for L = 4 and a
small force F = 0.093f0.

springs acting in parallel with an effective spring con-
stant of R′

eff = 72ǫ′/(21/3σ′2) for small systems. Since
this rotation leads to softer springs, the deGennes length
increases from κ−1 = 10a to κ−1 = 15a for this system.
In our earlier description, we observed that the rupture
force saturated for L & 4/κa. Although we have not
simulated large enough systems, we estimate that signa-
tures of the saturation effect appear for L & 60 in the
nonlinear vector generalization of the model.

VI. CONCLUDING REMARKS

In conclusion, we have constructed a “semi-
microscopic” vector description of a sheared double-
stranded DNA. The Hamiltonian Eq.(1), when coarse
grained, leads to a nonlinear generalization of a scalar
model first studied by deGennes. Cross-brace interac-
tions (designed to represent stacking energies in real
DNA) eliminate an unphysical soft mode. Our results
show that the deGennes effect, namely the shear strain
being localized over a narrow band on either ends of the
ladder, arises as well in this more microscopic Hamil-
tonian. Using this model, we have obtained the force
extension curve for a homopolymer at low temperatures.
We find a nonlinear force extension curve with an unzip-
ping transition at a critical force that is consistent with
roughly L sets of springs (direct interactions and cross
braces) acting in parallel for small systems and of or-
der 2/κa springs for large systems. We also explored the
role of sequence heterogeneity in the scalar version of the
deGennes model.

It is of some interest to (1) extend these ideas to the



7

statistical mechanics of finite temperature shear denatu-
ration and (2) study further the effect of sequence het-
erogeneity. The equations of motion of a sheared chain
at finite temperature are given by Eq.(4) with an addi-
tive white noise acting on each node of the ladder and
obeying the fluctuation dissipation theorem. Thus

〈ηi(t)ηj(t
′)〉 = 2ΓkBTδijδ(t − t′), (9)

where i and j index particular nodes of the ladder, on
both the upper and lower strands. The equations of mo-
tion for the u-displacement at the ith node is given by

∂ui

∂t
= −Γ

δH

δui
+ ηi(t), (10)

and similarly for the v field. Preliminary calculations for
homopolymers suggest that for this system ∆x ∼ kBT

F−Fc

,
where Fc is the rupture force of the chain, similar to
results for unzipping due to forces applied at the same
end of a homopolymer DNA duplex,[8, 9] provided the
chain is much longer than the elastic screening length
κ−1.

Sequence heterogeneity leads to models with elastic
“disorder”, which could dramatically alter the physics of
shear unzipping, as found earlier for tensile unzipping[8,
9]. We note that inchworm excitations, which exploit
translational invariance,[20] and are neglected here, are
strongly disfavored by sequence heterogeneity. Of partic-
ular interest is the shear denaturation pathway described
by sequence-dependent bond breaking at alternate ends
of a heterogeneous DNA hybrid. It would be interest-
ing to explore in more detail how the deGennes effect is
modified for shear denaturation of heteropolymers. Pro-
vided the disorder is correlated on the scale of a few base
pairs for a double stranded DNA[21], we believe that the
shear unzipping of a heteropolymer would be similar to
unzipping in a tensile mode with sequence heterogene-
ity. Preliminary results for heterogeneous systems show

that the force extension curve comprises of plateaus and
jumps akin to tensile unzipping of heteropolymers[8, 9].

We have not incorporated the effects of helical twist
in our work here. As discussed above, a more detailed
model by Lavery and Lebrun[18, 19] shows that for 3′−3′

pulling, DNA unwinds to assume a ladder like form (S-
DNA). Recent experiments by Danlowicz et al.[15] have
shown that the unzipping force of a DNA hybrid is
larger for 3′ − 3′ pulling than that of 5′ − 5′ pulling.
A straightforward generalization of the semi-microscopic
vector model discussed above that would capture this ef-
fect would be to consider two different sets of stacking
interaction strengths ǫ′ for the diagonals top left corner
to bottom right corner as opposed to the ones from bot-
tom left to top right. Since the effective spring constant
is that of the cross braces of the leading diagonal, the
rupture forces arising from such a model could be differ-
ent depending upon whether the stronger/weaker cross
braces are being broken under shear.
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