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Abstract. We explore the prospects for confining alkaline-earth Rydberg atoms in

an optical lattice via optical dressing of the secondary core valence electron. Focussing

on the particular case of strontium, we identify experimentally accessible magic

wavelengths for simultaneous trapping of ground and Rydberg states. A detailed

analysis of relevant loss mechanisms shows that the overall lifetime of such a system

is limited only by the spontaneous decay of the Rydberg state, and is not significantly

affected by photoionization or autoionization. The van der Waals C6 coefficients for

the Sr(5sns 1S0) Rydberg series are calculated, and we find that the interactions are

attractive. Finally we show that the combination of magic-wavelength lattices and

attractive interactions could be exploited to generate many-body Greenberger-Horne-

Zeilinger (GHZ) states.

1. Introduction

The physics of strongly-correlated quantum systems is an important topic that cuts

across the fields of condensed matter physics and quantum information. Combining

high-lying Rydberg states with cold atomic gases provides an appealing approach,

as the strong long range van der Waals interactions between Rydberg atoms cause

strongly correlated, many-body quantum states to emerge directly as Rydberg atoms are

excited in dense clouds of cold atoms. The strong interactions inhibit the excitation of

neighbouring atoms to the Rydberg state in an effect known as the dipole blockade [1, 2].

This effect has been elegantly demonstrated in experiments using two independently

trapped atoms [3, 4], where it has also been exploited to entangle qubits [5], and perform

gate operations [6, 7]. The utility of tunable Rydberg-Rydberg interactions is not limited

to two atoms, and has lead to the theoretical development of a remarkably versatile

toolbox for quantum information processing [8]. Recent theoretical work has studied

the excitation dynamics and many-body phase diagram of large Rydberg atom chains

and lattices [9, 10, 11, 12, 13, 14, 15, 16], and demonstrated their utility for digital

quantum simulation of exotic many-body Hamiltonians [17, 18].

A pre-requisite for many of these applications is the ability to trap Rydberg atoms

and ground state atoms in a common lattice, in order to manipulate their properties
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without significant loss and heating. Optical trapping of alkali Rydberg atoms due to

the ponderomotive force exerted by spatially modulated light fields has been studied

theoretically [19, 20, 21, 22] and experimentally [23]. Static electric and magnetic

fields can also be used to trap Rydberg atoms [24, 25, 26, 27, 28]. Owing to the

exaggerated response of Rydberg atoms to external perturbations, achieving identical

trapping potentials for Rydberg and ground state atoms appears, however, challenging.

In this respect, atoms with two valence electrons offer a promising approach, as the

remaining valence electron of a singly excited Rydberg state provides an additional

degree of freedom to probe and manipulate the atom [29, 30].

Here we use the polarizability of the extra valence electron to realize a magic-

wavelength optical lattice for ground state atoms and strongly interacting Rydberg

atoms. We calculate the van der Waals coefficients for the Sr(5sns 1S0) Rydberg

series, and show that these interactions are attractive. For the bosonic isotopes

where the nuclear spin I = 0, the 1S0 states have no degeneracy, and are therefore

particularly attractive for high-fidelity quantum state preparation. We point out

qualitative differences between the resulting many-body excitation dynamics and that

of the previously studied case of repulsive Rydberg interactions [11, 12, 13, 14], and

show how the combination of attractive interactions and optical trapping can be used

to prepare many-body GHZ states. This class of entangled states is a resource for

entanglement-enhanced measurements [31], and their creation in a lattice of strontium

atoms could have applications in high-precision frequency metrology [32].

2. Optical traps for alkaline-earth Rydberg atoms

Figure 1 illustrates the setup for forming the proposed alkaline-earth Rydberg atom

lattice. Here we consider the particular case of strontium atoms, but the general

discussion can be applied to the other alkaline-earth elements, or atoms with a similar

electronic structure such as ytterbium. The optical lattice potential for atoms in the

5s2 1S0 ground state is provided by a periodic light field with electric field amplitude

E(r), that induces off-resonant coupling to low-lying excited states. Additional lasers

drive a near-resonant two-photon transition to a singly-excited ns5s 1S0 Rydberg state,

with a two-photon Rabi frequency Ω. The remaining 5s electron allows optical dressing

of the Rydberg state via the strong (5sns↔5pns) transitions, and the standing wave

E(r) therefore also creates an optical lattice potential for the Rydberg atoms. Upon

adiabatic elimination of the weakly admixed p-states, this setting yields effective two-

level atoms composed of a dressed ground (|g〉) and excited (|e〉) state, where only the

latter features strong van der Waals interactions (cf. figure 1). In the following, we

consider the optical lattice potential for the ground and Rydberg states in more detail,

and show that there are “magic wavelengths” where state-independent optical trapping

can be achieved.
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Figure 1. Level scheme for optical dressing of the Sr(5s2 1S0) ground state and the

Sr(ns5s 1S0) Rydberg state to provide an optical lattice for both states. The resulting

dressed ground (|g〉) and Rydberg (|e〉) states are coupled with a Rabi frequency Ω

which gives rise to strongly correlated excitation dynamics due to the strong van der

Waals interactions between atoms in state |e〉.

2.1. Magic wavelength for ground and Rydberg states

We consider a three-dimensional optical lattice created by three overlapping standing

waves with frequency ωL and lattice spacing a. As discussed below, the Rydberg-

Rydberg interaction can be very large for typical principal quantum numbers considered

in this work. In order to eliminate motional excitations, one, therefore, needs large

lattice spacings on the order of several µm, which is considerably larger than the optical

wavelength λL. As demonstrated in [33], the lattice spacing a = λL/[2 sin(θ/2)] can

be varied by adjusting the angle θ between the two co-propagating lattice beams that

form each of the three standing wave fields. For atoms in state |a〉, optical dressing on

transitions to nearby states |b〉, results in an optical lattice potential

Ua(r) =
αa
2
E2(r) (1)

where

αa =
∑
b

αba =
∑
b

℘2
ab

~
ωab

ω2
L − ω2

ab

(2)
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Figure 2. Scalar polarizability as a function of wavelength. Shown are the

polarizability of Sr(5s2) ground state atoms (blue solid line), the total polarizability of

the Sr(5sns) 1S0 Rydberg states (red dashed line) and the individual contributions of

the Rydberg electron (green dotted line), and the core (black dash-dotted line). The

two magic wavelengths at which the ground state and Rydberg state lattice potentials

coincide are marked by the arrows.

is the scalar polarizability of the atomic state |a〉, and αba denotes the constituent

polarizabilities arising from optical dressing on the respective transitions, with ℘ab and

ωab denoting the corresponding dipole matrix element and transition frequency.

In addition to polarizing the deeply bound core electrons, the optical lattice field

also affects the orbit of the weakly bound Rydberg electron. As shown in [19] the

resulting energy shift can be accurately described within a semiclassical picture based

on the ponderomotive potential e2E2/4meω
2
L of a free electron with mass me. For

energetically isolated ns Rydberg states, the resulting atomic potential [19]

Up(r) =

∫
dr′

e2E(r + r′)2

4meω2
L

|ψ(r′)|2 (3)

is well approximated by the electronic ponderomotive shift averaged over the

corresponding Rydberg wavefunction ψ. For sufficiently tight atomic confinement at the

local lattice sites the Rydberg electron only probes the harmonic part of the periodic

intensity pattern, such that the integral can be readily evaluated and rewritten in the

form of (1)

Up(r) =
αp

2
E2(r) +

∫
dr′

e2E(r′)2

4meω2
L

|ψ(r′)|2 (4)

with the corresponding polarizability given by the free-electron value

αp =
e2

2meω2
L

. (5)

The total polarizabilities of the ground (αg) and Rydberg (αe) states are shown

in figure 2. Over the plotted range of optical wavelengths, one needs to consider two
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transition resonances, 5s2 → 5s5p and 5s2 → 5s6p, for the dressed ground state and two

core resonances, 5s1/2ns1/2 → 5p1/2ns1/2 and 5s1/2ns1/2 → 5p3/2ns1/2, for the dressed

Rydberg state (cf. figure 1). The corresponding dipole matrix elements were calculated

from the atomic [34] and ionic [35] transition rates. Figure 2 also shows the individual

contributions of the core resonances and the ponderomotive shift. In the alkalis, only

the ponderomotive contribution is available for Rydberg atoms, leading to relatively

weak lattice potentials that are always repulsive. Here, the additional core potential

leads to much deeper Rydberg atom lattice potentials that can be either attractive or

repulsive. Attractive (red-detuned) potentials are appealing as they are simple to realize

experimentally. For strontium, red-detuned traps for Rydberg atoms are possible in the

wavelength range from ∼ 430 nm to ∼ 550 nm.

By equating the ground state polarizability αg = α5s5p
5s2 + α5s6p

5s2 and Rydberg state

polarizability αe = α
5p1/2ns1/2
5s1/2ns1/2

+ α
5p3/2ns1/2
5s1/2ns1/2

+ αp one obtains several magic wavelengths

that facilitate trapping of ground state and Rydberg state trapping in identical optical

lattice potentials. Most relevant from a practical point of view, we find one magic

wavelength at

λm = 323.4 nm (6)

with αm = 93.9 a.u. and one at

λm = 418.6 nm (7)

with αm = 460.3 a.u.. Around the former, we find a broad range of wavelengths for

which the ground and Rydberg state polarizabilities are nearly identical. This range is

marked by the grey area in figure 2, and contains the third harmonic of the Nd:YAG laser

at λ = 355 nm, where single-frequency CW lasers are available with reasonable output

power. At this wavelength the potentials for the two states only differ by 4%. The

magic wavelength at 418.6 nm could be reached using commercially available tunable

frequency-doubled diode laser systems.

A similar analysis [20] for rubidium Rydberg states also revealed a magic

wavelength, based solely on the balance of the atomic ground state polarizability and the

ponderomotive Rydberg atom potential. As pointed out in [20], the corresponding laser

frequency lies close (∼ 1 GHz) to the atomic 5s→ 6p resonance. As we will show in the

next section, due to the polarizability of the additional valence electron of alkaline-earth

atoms the resulting magic wavelengths are sufficiently far from all resonances such that

deep trapping potentials are possible while decay effects due to off-resonant excited-state

populations are kept at a sufficiently low level.

2.2. Decay and loss mechanisms

As for any optical trap, the small admixture of excited p states to both the 5s2 ground

state and the 5sns Rydberg state leads to a finite photon scattering rate

γba = ΓbaS
b
a (8)
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Figure 3. Experimental Sr(5sns) lifetimes from [36] (triangles), [37] (dots), and [30]

(squares), extrapolated to high principal quantum numbers using (10) (solid red line).

The dashed and dotted blue lines shows the separate contributions of spontaneous

decay and black body radiation, respectively.

on the respective a → b transition for atoms in state |a〉. Here Γba denotes the rate of

radiative decay from level |b〉 to |a〉 (cf. figure 1) and the spatially dependent suppression

factor

Sba =
ω2
L + ω2

ab

(ω2
L − ω2

ab)
2

℘2
abE(r)2

2~2
(9)

corresponds to the admixed fraction of the quickly decaying state |b〉.
The excitation to Rydberg states opens up several additional decay channels due to

the finite radiative lifetime of the Rydberg state, off-resonant coupling to autoionizing

states and direct photoionization of the Rydberg electron. The lifetime of Sr(5sns 1S0)

Rydberg states due to spontaneous decay and black body radiation has been measured

for low and moderate n in [36, 37, 30]. In order to estimate lifetimes of higher excited

states we have fitted this data to the expected behaviour at large effective principal

quantum numbers n? [38]

Γryd =
γs
n?3

+
γbbr

n?5 (exp (n3
T/n

?3)− 1)
, (10)

yielding γs = 2 × 108 Hz, γbbr = 2 × 109 Hz and nT = 8.9. As shown in figure 3, this

simple formula yields a rather good fit of the available experimental data.

Besides their spontaneous decay, the 5pns Rydberg states are also unstable against

autoionization [39]. The corresponding rates have been measured over a broad range of

principal quantum numbers [40] and were found to be well described by

Γ
5p1/2
ai =

6.0× 1014

n?3
Hz , Γ

5p3/2
ai =

9.0× 1014

n?3
Hz . (11)

Comparing these expressions to (10) we see that autoionization is much more rapid

than the spontaneous decay of the 5sns Rydberg state. However, the 5pns states are
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Figure 4. Lifetime of the trapped Sr(5s21S0) ground state and Sr(5s50s 1S0) Rydberg

atoms as a function of the local trapping frequency at (a) λm = 323.4 nm and (b)

λm = 418.6 nm . The thick red solid line shows the total lifetime of the atoms

obtained by summing all decay rates for both ground and Rydberg states. The thin

blue lines show the individual contributions from radiative Rydberg states decay (solid

line), spontaneous decay of the admixed p-states (dashed line), autoionization (dotted

line) and photoionization (dash-dotted line).

only weakly mixed into the primary Rydberg state such that its effective autoionization

rate

γai = Γ
5p1/2
ai S

5p1/2
5s1/2

+ Γ
5p3/2
ai S

5p3/2
5s1/2

(12)

is strongly suppressed.

Finally, the highly excited Rydberg electron may also be lost through direct

photoionization [20, 41, 42]. Photoionization at optical frequencies takes place far

above threshold and the corresponding cross sections are expected to be small. The

photoionization rate is calculated from [39]

γpi = E(x)2
πe2

4ωLme

df

dε

∣∣∣∣
εc

, (13)

where the oscillator strength distribution df/dε at the electron’s excess energy εc has

been obtained from a semiclassical expression for the required bound-free dipole matrix

elements [43], using the quantum defects from [44].

In order to balance the strong Rydberg-Rydberg atom interactions the optical

lattice needs to have large lattice spacings of a few µm and rather large trapping
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frequencies of a few 100 kHz. For, e.g., a = 3µm and ωtr = 300 kHz this requires

large peak intensities of 2× 105W/cm2 at the maxima of the periodic intensity pattern.

At such high intensities, the intensity dependent loss rates (9) and (12) and in particular

the photoionization rate (13) may become rather large [45]. Note, however, that the

scalar polarizabilities at the magic wavelengths (7) and (8) are positive. Consequently,

atoms in both states are trapped at the local minima of the optical lattice potential,

such that all intensity dependent loss mechanisms will be greatly suppressed. Moreover,

for tight confinement, the resulting average loss rate can be expressed as a sole function

of the local trapping frequency ωtr and without an explicit dependence on both the

peak intensity and the lattice spacing. In this tight-confinement limit we can use (1) to

re-express the electric field amplitude at a local lattice site

E(r)2 =
2U(r)

αm

=
M

αm

ω2
trr

2 (14)

in terms of the trap frequency ωtr, where αm is the total polarizability at a magic

wavelength ( (6) and (7)) and M is the mass of the atoms. Assuming that all atoms

reside in the lowest vibrational state |0〉 at the respective lattice sites, one obtains a

simple relation

S̄ab =
3αab
4αm

ω2
L + ω2

ab

ω2
L − ω2

ab

ωtr

ωab
(15)

between the average suppression factor S̄ba = 〈0|Sba|0〉 [cf. equation (9)] and the trap

frequency. Likewise the average photoionization rate can be obtained from

γpi =
3πe2~ωtr

8αmωLme

df

dε

∣∣∣∣
εc

, (16)

in terms of the trap frequency ωtr.

In figure 4 we show our calculated lifetimes as a function of the local trap frequency

for Sr(5s50s 1S0) Rydberg states at the two magic wavelengths (7) and (8). As we see,

the relevance of the different decay processes strongly depends on the wavelength of the

optical lattice. Most importantly, we find that the atomic lifetime is not affected by

the additional trapping fields for typical lattice parameters. Even for very large trap

frequencies of ωtr ∼ 1 MHz the total lifetime at both magic wavelengths is solely limited

by the Rydberg state decay.

3. Rydberg-Rydberg atom interactions

The van der Waals interaction between two 5sns Rydberg atoms arises from off-resonant

dipole-dipole coupling to energetically adjacent 5sn′p-5sn′′p pair states. At high n, the

5sns 1S0 Rydberg series is only weakly perturbed [44, 46], and the relevant dipole matrix

elements can be calculated using a single active electron treatment. We calculated

two independent sets of van der Waals C6 coefficients using wavefunctions obtained

from single-electron model-potential calculations [30] (circles in figure 5) and from two-

electron Hartree-Fock calculations using the effective Sr2+ core potential of [47]. As
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Figure 5. Van der Waals C6 coefficients for the Sr(5sns 1S0) states, scaled by n11. The

solid line shows the fit (17) to our numerical data. The different symbols correspond

to the numerical results obtained from two different methods described in the text.

shown in figure 4 both approaches yield nearly identical C6 values, which over the

depicted range are well described by the simple fit-formula

C6 (a.u.) ≈ −(1.4 + 2.2× 10−1n− 9.0× 10−4n2)n11 (17)

For a given n the magnitude of the C6 coefficients is comparable to that for Rb(ns)

states. However, in contrast to the alkalis [48, 49, 50], the van der Waals interaction

between Sr(5sns 1S0) atoms is attractive for all n. As will be shown below, this sign

change leads to profoundly different many-body excitation dynamics.

4. Many body dynamics

Having established optimal conditions for our interacting Rydberg atom lattice, we

finally give a brief discussion of the resulting many-body dynamics. For simplicity, we

will restrict the discussion to atoms arranged on a one-dimensional chain. Moreover, we

consider a lattice of N tightly confined atoms with negligible spatial overlap between

the Wannier states, such that tunneling between lattice sites can be neglected and the

quantum statistics of the atoms is not of relevance. The Hamiltonian that governs the

dynamics of this system may be split into three parts

Ĥ = ĤL + ĤCoM + ĤI . (18)

Here,

ĤL =
~Ω

2

N∑
i=1

(
σ̂(i)
eg + σ̂(i)

ge

)
− ~∆

N∑
i=1

σ̂(i)
ee (19)

describes the coupling of the Rydberg laser, where Ω and ∆ are the respective Rabi

frequency and detuning (cf. figure 1), and the operators σ̂
(i)
αβ = |αi〉〈βi| denote atomic

transition and projection operators for the dressed ground (|gi〉) and Rydberg state
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(|ei〉) of the ith atom. Introducing relative atomic coordinates ri with respect to the

corresponding sites ai = i · aex of the atomic chain (aligned along the x-axis), the

Hamiltonian of the atomic center-of-mass (CoM) dynamics

ĤCoM =
N∑
i=1

p̂2
i

2M
+

N∑
i=1

1

2
Mω2

trr
2
i (20)

is a simple sum of harmonic oscillators. The atomic motion and the internal state

dynamics are coupled by the interaction Hamiltonian

ĤI =
∑
i<j

C6

|ai + ri − aj − rj|6
σ̂(i)
ee σ̂

(j)
ee . (21)

If the trapping potential is not identical for the ground and Rydberg states, the

interactions will lead to entanglement between the atomic internal and CoM degrees of

freedom and may ultimately cause heating of the atoms. In the following, we will show

that for sufficiently strong confinement this interaction-induced coupling is adiabatically

eliminated, giving rise to an effective lattice Hamiltonian for spatially frozen spins.

4.1. Atomic motion

Since for tight confinement the extent σ =
√

~/Mωtr of the local atomic CoM

wavefunctions is much smaller than the lattice spacing a, we can expand the van der

Waals potential in (21)

C6

|ai + ri − aj − rj|6
≈ C6

a6(i− j)6
[
1− 6

xi − xj
a(i− j)

]
(22)

to leading order in the atomic CoM displacements ri and rewrite the CoM Hamiltonian

ĤCoM + ĤI = V0
∑
i<j

σ̂
(i)
ee σ̂

(j)
ee

(i− j)6 +
∑
i

~ωtrâ
†
i âi

+ Ṽ0
∑
i<j

(
â†j − â†i + âj − âi

) σ̂(i)
ee σ̂

(j)
ee

(i− j)7 (23)

in terms of creation and annihilation operators, â†i and âi, of vibrational states along

the chain axis at a given site i. Here V0 = C6/a
6 is the nearest neighbor interaction

between adjacent sites. We see that the Rydberg interactions not only yield the desired

level shifts of excited pair states, but also lead to intra-band coupling with a coupling

strength Ṽ0 = 6σV0/(a
√

2). This coupling can, however, be strongly suppressed by

realizing sufficiently strong trapping potentials, for which the vibrational splitting ~ωtr

exceeds the coupling strength Ṽ0. We can estimate its effect by assuming Ṽ0 < ~ωtr to

derive an effective single-band Hamiltonian for the lowest band of the atomic lattice. In

second order perturbation theory in Ṽ0/~ωtr one obtains

ĤCoM + ĤI = V0
∑
i<j

σ̂
(i)
ee σ̂

(j)
ee

(i− j)6 [1 + ηij] , (24)
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Figure 6. Many-body energy spectrum of an attractively interacting Rydberg atom

chain of N = 15 atoms for Ω̃ = 0, showing a single ground state crossing between

the many-body ground state |G〉 ≡ |ggg...〉 (blue line) and the fully excited state

|E〉 ≡ |eee...〉 (red line).

which shows that the motional intra-band coupling simply yields a correction ηij =
V0
~ωtr

(
6σ
a

)2
(i− j)−1 to the van der Waals shifts.

To be specific let us consider our preceding example of ωtr = 300 kHz and a = 3µm.

For a typical Rydberg state with n = 50 the resulting correction factor ηii+1 = 0.05 is

indeed negligibly small. This simple discussion shows that, for reasonable experimental

parameters, atomic motion can be practically frozen out, despite the presence of

strong interactions (V0 = 9.6 MHz) that greatly exceed the energy scale of the lattice

confinement. Such large interactions are essential to assure a sufficiently short timescale

for the many body dynamics of the internal states, which must be faster than the decay

of the Rydberg lattice.

4.2. Excitation dynamics

Following the preceding discussion, we start from our reduced Hamiltonian

Ĥ =
Ω̃

2

∑
i

(
σ̂(i)
eg + σ̂(i)

ge

)
− ∆̃

∑
i

σ̂(i)
ee −

∑
i<j

σ̂
(i)
ee σ̂

(j)
ee

(i− j)6 (25)

where we have introduced the dimensionless Rabi frequency Ω̃ = ~Ω/|V0| and laser

detuning ∆̃ = ~∆/|V0|. Lattice Hamiltonians of this type have recently been

investigated by several authors [11, 12, 13, 14]. While previous work has focussed on

repulsive Rydberg-Rydberg atom interactions, the present case of attractive interactions

(C6 < 0) leads to qualitatively different behaviour. Consider, for example, the many-

body ground state phase diagram of the Hamiltonian (25), spanned by Ω̃ and ∆̃. Here,

it was found that repulsive interactions cause a series of energy crossings between
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Figure 7. Final populations PG (blue dashed line), PE (red dot-dashed line ) of the

many-body ground state |G〉 and the fully excited state |E〉 respectively, as a function

of the duration of the Rydberg excitation pulse for a chain of N = 15 atoms. The

thick black line shows the fidelity F = PE + PG.

different Rydberg lattice states as a function of ∆̃, which leads to the formation of

Rydberg atom crystals upon adiabatic excitation with chirped laser pulses [11]. For

attractive interactions, on the other hand, this series is replaced by a single curve crossing

between the N -atom ground state |G〉 ≡ |gggg...〉 and the fully excited many-body state

|E〉 ≡ |eeee...〉 (cf. figure 6). In the classical limit Ω̃ = 0 we find a real crossing at

∆̃c = −N−1
∑
i<j

1

(i− j)6 , (26)

which turns into an avoided crossing at finite Ω̃. Upon dynamic changes of Ω̃, i.e.

pulsed Rydberg excitation, this can be exploited to create coherent superposition states

between |G〉 and |E〉. To illustrate the physical mechanism, we consider the most simple

scenario of an excitation pulse at a fixed laser frequency. Figure 7 shows the resulting

excitation dynamics, obtained by exact diagonalization for N = 15 atoms. The laser is

slightly red detuned from ∆̃c such that the initial state with all atoms in their individual

ground states coincides with the initial many body ground state. The initial increase

of Ω̃ lifts the near-degeneracy of |G〉 and |E〉, and, more importantly, leads to Landau-

Zener transitions between these two many-body states at the wings of the excitation

pulse. Consequently, at the end of the pulse, one obtains a collective excitation of N -

atom superpositions of |G〉 and |E〉, whose composition is controlled by the pulse length

T . In particular, we find a high fidelity N -atom GHZ state (F ≈ 0.95), for a rather

short pulse length of V0 · T ≈ 27 and F ≈ 0.9997 for V0 · T ≈ 76 (cf. Figure 7). For

the above parameters, the former corresponds to a preparation time of 0.4 µs, which is

much smaller than the total atomic lifetime calculated above.
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5. Conclusion and Outlook

In summary, we have given a detailed analysis of optical trapping of alkaline-earth

Rydberg atoms, that exploits the availability of two valence electrons. This work

highlights the great potential of alkaline-earth atoms to provide new ways of studying

and manipulating cold Rydberg gases. We have demonstrated that the polarizability

of the additional valence electron can be used to create deep high-field seeking or low-

field seeking optical potentials for Rydberg atoms. Focussing on the particular case

of strontium atoms, we have identified accessible magic wavelengths that permit the

simultaneous confinement of ground and Rydberg states in identical trapping potentials.

Such a trap provides an ideal setting for studying many-body spin dynamics, as the

interactions no longer couple the internal and external states if the confinement at

each lattice site is sufficiently strong. We show that even at rather high intensities, as

required for strong confinement, the total lifetime of the atomic lattice is limited only

by spontaneous decay of the Rydberg state, which is essential for its applicability to

quantum simulation and quantum information processing schemes. In contrast to the

alkalis, the van der Waals interactions for the Sr(5sns 1S0) Rydberg series are found to

be attractive. As we have shown, the many-body dynamics of a Rydberg atom lattice is

qualitatively different for attractive, rather than repulsive, interactions. In particular,

they can be used to prepare highly-entangled N -atom GHZ states in a single excitation

step by appropriately chosen pulses. The applicability of such Rydberg-based schemes

to high-precision frequency metrology in strontium optical lattices may be subject of

future work. While we have focussed on 1S0 Rydberg states, higher angular momentum

states could also be trapped in an analogous way.

Attractive interactions between non-degenerate Rydberg states are also appealing

fin the context of recently proposed techniques for engineering effective ground state

atom interactions by off-resonant Rydberg dressing of Bose-Einstein condenstates

[51, 52, 53]. Quantum degeneracy was recently achieved for strontium atoms [54, 55, 56].

In contrast to alkali condensates, here Rydberg dressing using the Sr(5sns) states could

be used to realize attractive effective ground state atom interactions, which, for example,

may permit the creation of three-dimensional bright solitons [57].

The discussion of the internal state dynamics was based on the most simple setting

of a single ground state coupled to one Rydberg state. Recently, there have been

several theoretical proposals describing new schemes for quantum simulations [58, 59]

and quantum information processing [60, 61], based on the particular level structure of

low-lying states in two-electron atoms. We anticipate that the combination of these more

sophisticated coupling schemes, specific to alkaline earth atoms, with the availability of

strong and long-range Rydberg-Rydberg atom interactions will offer new perspectives

for such applications.
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[19] Dutta S K, Guest J R, Feldbaum D, Walz-Flannigan A and Raithel G 2000 Phys. Rev. Lett. 85

5551

[20] Saffman M and Walker T G Phys. Rev. A 72 022347

[21] Knuffman B and Raithel G 2007 Phys. Rev. A 75 053401

[22] Younge K C, Anderson S and Raithel G 2010 New J. Phys. 12 023031

[23] Younge K C, Anderson S and Raithel G 2010 Phys. Rev. Lett. 104 173001

[24] Hogan S D and Merkt F 2008 Phys. Rev. Lett. 100 043001

[25] Lesanovsky I and Schmelcher P 2005 Phys. Rev. Lett. 95 053001

[26] Hezel B, Lesanovsky I and Schmelcher P 2006 Phys. Rev. Lett. 97 223001

[27] Mayle M, Lesanovsky I and Schmelcher P 2009 Phys. Rev. A 80 053410

[28] Pohl T, Sadeghpour H R and Schmelcher P 2009 Physics Reports 484 181

[29] Millen J, Lochead G and Jones M P A 2010 Phys. Rev. Lett. 105 213004

[30] Millen J, Lochead G, Corbett G R, Potvliege R M and Jones M P A 2011 TO APPEAR IN THIS

SPECIAL ISSUE (cross-reference to be inserted)

[31] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330

[32] Blatt S, Ludlow A, Campbell G, Thomsen J, Zelevinsky T, Boyd M, Ye J, Baillard X, Fouché M,
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