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ABSTRACT. Various least core concepts including the classical least core of co-
operative games are discussed. By a reduction from minimum cover problems,
we prove that computing an element in these least cores is in generalN P-hard
for minimum cost spannning tree games. As a consequence, computing the nu-
cleolus, the nucleon and the per-capita nucleolus of minimum cost spanning tree
games is alsoN P-hard.

1. INTRODUCTION

Minimum cost spanning tree problems have been widely studied in the literature.
After their introduction by Bird [1976], various results about the core and nucleolus
were established (see,e:g:, Aarts [1994], Granot and Huberman [1981], [1984]).

In this note, we discuss the least core of a cooperative game (see Maschleret
al. [1979]) and several variants of this solution concept. We prove that comput-
ing an allocation according to these least core concepts is in generalN P-hard for
minimum cost spanning tree games. It was shown in Faigleet al. [1998b] that
computing the nucleolus of minimum cost spanning tree games isN P-hard. We
obtain this result as an immediate corollary from our main result. Furthermore, we
are able to show that computing other solution concepts such as the nucleon (cf.
Faigleet al. [1998a]) of minimum cost spanning tree games isN P-hard.

A cooperative gameis described by a pair.N; c/, where N is a finite set ofn
players andc : 2N → R+ is a cost functionsatisfyingc.∅/ = 0: A coalition is a
subsetS⊆ N. c.S/ is called thecostof coalitionSwith the interpretation thatc.S/
is the joint cost of the players inS if they decide to cooperate.

A central problem in cooperative game theory is to find a ’fair’ allocation of the
total costsc.N/ to the players. A vectorx ∈ RN is anallocation if x.N/ = c.N/.
(Throughout the paper, we use the shorthand notationx.S/ =

∑
i∈S

xi .)

The idea of thecoreof a game essentially goes back to von Neumann and Morgen-
stern [1944]. core(c) is the set of all allocationsx for which there is no coalition
S⊆ N such thatx.S/ > c.S/, which means that no coalition should have to pay
more than its cost.
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There are games for which core(c) is empty. Theleast coreof a game attempts to
maximize the satisfactionc.S/− x.S/ over all coalitionsS 6= ∅; N. leastcore(c) is
defined to consist of all optimal solutionsx for the linear program

max ž

s:t x.S/ ≤ c.S/− ž for all S( N; S 6= ∅
x.N/ = c.N/:

It is not hard to see that leastcore(c) is non-empty.

A minimum cost spanning treegame (MCST-game, for short) is defined by a setN
of players, asupplynodes =∈ N, a complete graph with vertex setV = N∪ {s} and
by a non-negativedistanceor lengthfunction l ≥ 0 defined on the edge set of the
complete graph. Thecost c.S/ of a coalitionS⊆ N is, by definition, the length of
a minimum spanning tree in the subgraph induced byS∪ {s}.
It is well-known that core(c) is non-empty for MCST-games and core vectors can
be found in polynomial time: SupposeT is a minimum spanning tree belonging
to a MCST-game. Letx be the allocation vector that allocates to playeri ∈ N the
weight of the first edgei encounters on the (unique) path fromi to s in T. Granot
and Huberman [1981] have proved thatx ∈ core(c).

However, Granot and Huberman [1981] also point out that allocation vectors ob-
tained from the construction above may not be acceptable from a modeling point
of view. This motivates the search for allocations for example in the least core and
the following generalization of this solution concept. Consider the set of allocation
vectors that are optimal solutions of the linear program

.Pf / max ž

s:t x.S/ ≤ c.S/− ž f .S/ for all S( N; S 6= ∅
x.N/ = c.N/;

for a given function f : 2N→ R+. Denote this set byf -leastcore(c). Obviously,
the larger f .S/ is for some coalitionS⊆ N, the more decisiveS is for determin-
ing the optimum value of (Pf ). We therefore call a functionf as above apriority
function, which is closely related to the concept of ataxation function(see,e.g.,
Shapley and Shubik [1966], Tijs and Driessen [1986]). Note thatf ≡ 1 corre-
sponds with the classical least core of Maschleret al. [1979]. Moreover, because
of the non-emptiness of core(c) of a MCST-game,

f -leastcore.c/ ⊆ core.c/ for all f : 2N→ R+:

We prove that the problem of computing an element off -leastcore(c) of general
MCST-games isN P-hard for a large class of priority functionsf . This class in-
cludes the following examples already known in the literature (see, Faigle and
Kern [1993], Shapley and Shubik [1966])

� f .S/ = 1 for all S( N; S 6= ∅
� f .S/ = c.S/ for all S( N; S 6= ∅
� f .S/ = |S| for all S ( N; S 6= ∅:
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The proof uses a reduction from minimum cover problems. We show that com-
puting a leastcore-allocation for a special class of graphs introduced in Faigleet
al. [1997] is alreadyN P-hard. These graphs will be treated in Section 2. Section 3
contains the proof of the theorem. In this section, we also introduce thef -nucleolus
which is a generalization of the nucleolus (see Schmeidler [1969]). In Section 4,
the functions mentioned above are treated. By giving sufficient conditions for a
priority function f to satisfy a number of properties defined in Section 3, we prove
that computing an element off -leastcore(c) of MCST-games isN P-hard for these
functions. As a consequence of the main theorem, computing the nucleolus, the
nucleon and the per-capita nucleolus of MCST-games is in generalN P-hard. We
end this section by mentioning some open problems.

2. EXACT COVER GRAPHS

Let q ∈ N, and letU be a set ofk≥ q elements andW be a set of 3q elements.

Consider a bipartite graph with node setU ∪W (partitioned intoU andW) such
that each nodeu ∈ U is adjacent to exactly three nodes inW. We say that the node
u ∈ U coversits three neighbors inW.

A set D ⊆ U is called acover if eachw ∈ W is incident with someu ∈ D. A
minimum coveris a cover that minimizes|D|. Finding a minimum cover is a well-
knownN P-hard problem. It includes theN P-complete problem known as EXACT
3-COVER (“X3C”) (cf. Garey and Johnson [1979]).

Even finding a minimum cover under the following assumptions isN P-hard.

(C1) Each node inW has degree 2 or more.
(C2) The size of a minimum cover is at mostq+ 2.

This can be shown as follows: Supposew ∈ W is a node with degree 1,w is
connected tou andu is also connected tow1 andw2. Add a vertexû to U and
connect it tow, w1 andw2. The size of a minimum cover will not change. Hence
computing the size of a minimum cover, in case (C1) holds, is at least as hard as
computing the size of a minimimum cover in the general case. To show the validity
of (C2), add verticesu1;u2; : : : ;uq to U that coverW. Eachui .i = 1; : : : ;q/
covers exactly 3 vertices inW. Next deleteuq. The size of a minimum cover will
be less than or equal toq+ 2. If the size is greater thanq, the original problem has
no exact cover. If the size of a minimum cover is equal toq, then also deleteuq−1.
Again the size of a minimum cover will be at mostq+ 2. If the size is greater
thanq, the original problem has no exact cover. If the size is equal toq, also delete
uq−2 and so on. In each step of the procedure only problems that have a minimum
cover with size at mostq+ 2 are considered. Ifu1 would be deleted, one arrives at
the original problem. Hence computing the size of a mimimum cover, in case (C2)
holds, is at least as hard as computing the size of a minimum cover in the general
case.

We construct an MCST-game from a minimum cover problem as follows (cf. Faigle
et al. [1997]). Define the graphG= .V; E/ such that the node set ofG consists
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of U ∪W and three additional nodes: TheSteiner node St, theguardian g, and the
supply s. The edge setE of G comprises the following:

• all edgese from the bipartite graph onU ∪W, each of them having length
l .e/ = q+ 1;
• for eachu ∈ U, an edge.u; St/ betweenu andStof length l .u; St/ = q and

an edge.u; g/ betweenu andg of lengthl .u; g/ = q+ 1;
• an edge.St; g/ betweenStandg of lengthl .St; g/= q+ 1;
• an edge.g; s/ betweeng ands of lengthl .g; s/ = 2q− 1.

q+1

W

U

g

s

St

q+1

q

...

...

...

2q-1

q+1

Figure 2.1

We extendG to the complete graphG on V with distances induced fromG, i:e:, if
e= .i; j/ is an edge inG, thenl .i; j/ is the length of a shortest path fromi to j in
G.

A minimum spanning tree (“MST”) inG is obtained by connecting eachw ∈W to
someu ∈ U by which it is covered. Such au ∈ U exists because each nodew ∈W
has a neighbor inU (indeed, it has at least 2 neighbors inU). Then one connects
eachu ∈ U to St, and finally connectsSt to g andg to s. The resulting MST has a
total length of

c.N/ = 3q.q+ 1/+ kq+ 3q:
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Furthermore note that, by (C1), eachw ∈ W is covered by at leasttwo vertices in
U. Hence it is straightforward to see that the following property holds forG:

(L ) For eachv ∈ U ∪W, there exists a MSTT in the graphG such thatv is a leaf
of T.

3. THE f -LEAST CORE OFMINIMUM COVER GRAPHS

Consider a graphG = .V; E/ and its completionG as described in the previous
section. Thef -leastcore(c), relative to a priority functionf : 2N → R+, of the
corresponding MCST-game consists of all allocation vectors that are optimal solu-
tions of the linear program

.Pf / max ž

s:t: x.S/ ≤ c.S/− ž f .S/ for all S( N; S 6= ∅
x.N/ = c.N/;

whereN = V\{s} andc.S/ is the length of a MST inG connectingSto the supply
s.

A basic observation is now the following. If a nodev ∈ N occurs as a leaf in some
MST T for G and if e is the unique edge inT incident withv, thenT\e is a MST
for V\{v}. Thusc.N\{v}/= c.N/− l .e/, wherel .e/ is the length ofe.

Hence, by property (L ) of the previous section, the feasibility constraints of.Pf /

imply the following inequalities

x.w/ ≥ q+ 1+ ž f .N\{w}/ .w ∈W/

x.u/ ≥ q+ ž f .N\{u}/ .u ∈ U/:

Furthermore, the coalitionS= N\{g} can be connected to the supply nodes at a
total cost ofc.N/. Hence, the feasibility constraints of.Pf / also imply

x.g/ ≥ ž f .N\{g}/ :
This motivates the following definition.

For ž > 0, let xž ∈ RN be the vector defined by

xž.w/ = q+ ž f .N\{w}/ for all w ∈W
xž.u/ = q+ 1+ ž f .N\{u}/ for all u ∈ U
xž.g/ = ž f .N\{g}/
xž.St/ = c.N/− xž.U ∪W∪ {g}/:

Motivated by the examples mentioned in Section 1, we restrict our attention to
priority functions f that depend only on the size and the cost of a coalition,i.e.,
we consider functions (also denoted byf ) of the type f : N× R→ R+, which
we always assume to be efficiently computable, and setf .S/ = f .|S|; c.S//. For
technical reasons, we assume thatf .S/ > 0 whenever|S| > 0 andc.S/ > 0.

It is straightforward to check that the following parameters do not depend on the
particular representativew ∈W or u ∈ U:

fw := f .N\{w}/ .w ∈W/

f u := f .N\{u}/ .u ∈ U/:
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Define for a coverD ⊆ U

ž f .D/ = |D| + 2q− 1
|D| f u+ 3qfw + f .N\{g}/+ f .D ∪W∪ {g}/ ;

and let

ž f =min{ž f .D/|D ⊆ U coversW}:

Remark 3.1 SupposeD ⊆ U is a cover and consider the coalitionS= D ∪W∪
{g}. The costc.S/ is easily seen to bec.S/ = 3q.q+ 1/+ |D|.q+ 1/+ 2q− 1,
i.e., c.S/ depends only on|D|. Hence alsof .S/ and, thereforež f .D/ only depend
on |D|, i.e., satisfiesž f .D1/ = ž f .D2/ if |D1| = |D2| for all coversD1; D2 ⊆ U.
As a consequence, we can a priori compute all possible values ofž f .D/ for |D|
ranging fromq to k.

Lemma 3.1. If ž∗ is the optimal value of.Pf / thenž∗ ≤ ž f .

Proof: Let .x; ž∗/ be an optimal solution of (Pf ). As we have seen, the feasibility
constraints imply

x.w/ ≥ q+ 1+ ž∗ fw .w ∈W/

x.u/ ≥ q+ ž∗ f u .u ∈ U/
x.g/ ≥ ž∗ f .N\{g}/:

SupposeD ⊆ U is a cover for whichž f .D/ = ž f . Consider the coalitionS=
{g} ∪ D∪W. Then

x.S/ ≥ ž∗ f .N\{g}/+ |D|q+ ž∗|D| f u+ 3q.q+ 1/+ ž∗3qfw

whereas,

c.S/ = 3q.q+ 1/+ |D|.q+ 1/+ 2q− 1:

Sincex.S/ ≤ c.S/− ž∗ f .S/, we get

ž∗ ≤ |D| + 2q− 1
|D| f u+ 3qfw + f .N\{g}/+ f .D ∪W∪ {g}/ = ž f :

♦
We call a priority functionf : 2N→ R+ feasibleif f satisfies the following prop-
erties (with respect to MCST-games on minimum cover graphs):

(P1) ž f is the optimal value of.Pf /:

(P2) For a coverD ⊆ U of sizeq≤ |D| ≤ q+ 2, we have

ž f = ž f .D/ if and only if D ⊆ U is a minimum cover.

Our main result can be formulated as follows:

Theorem 3.1. For the class of feasible priority functions, the problem of comput-
ing an allocation vector x∈ f -leastcore(c) of MCST-games is N P-hard.
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Proof: First we will show that for allw ∈W

x.w/ = q+ 1+ ž f fw:

Suppose.x; ž f / is an optimal solution of.Pf /. The feasibility constraints imply

x.w/ ≥ q+ 1+ ž f fw .w ∈W/

x.u/ ≥ q+ ž f f u .u ∈ U/
and x.g/ ≥ ž f f .N\{g}/:

Now let D ⊆ U be a cover for whichž f = ž f .D/. Consider the coalitionS=
{g} ∪ D∪W. Then

3q.q+ 1+ ž f fw/+ |D|.q+ ž f f u/+ ž f f .N\{g}/

≤ x.S/

≤ c.S/− ž f f .S/

= 3q.q+ 1+ ž f fw/+ |D|.q+ ž f f u/+ ž f f .N\{g}/:
Hencex.S/ ≤ c.S/− ž f f .S/ implies that for allw ∈W

x.w/ = q+ 1+ ž f fw:

Hencex ∈ f -leastcore(c) provides us with the value of the parameterž f . We can
efficiently compute the size|D| of a minimum coverD ⊆ U as follows: Compute
ž f .D/ for |D| = q, |D| = q+ 1 and|D| = q+ 2 (cf. Remark 3.1). By (C2), it
suffices to computež f .D/ only for these sizes. By (P2), ž f = ž f .D/ for at least
one of these sizes. Note that a coverD of size|D| ≤ k− 2 implies the existence of
covers with size|D| + 1 and|D| + 2. Hence, by (P2), the size of a minimum cover
|D| will be the maximum of the sizes for which equality holds.

Given an allocation vectorx ∈ f -leastcore(c), we can thus compute the size of a
minimum coverD in polynomial time. Hence the computation of such a vector is
at least as hard as the computation of the size of a minimum cover.

♦
Theorem 3.2. The set of feasible priority functions f: 2N→ R+ forms a convex
cone (minus f≡ 0).

Proof: It is obvious thatÞ f is feasible forÞ > 0 if f is feasible. Now suppose
f1; f2 : 2N → R+ are feasible. We will show thatf := f1+ f2 is feasible. It is
straightforward to verify that for all coversD ⊆ U

ž f .D/ = ž f1.D/ž f2.D/
ž f1.D/+ ž f2.D/

:

This expression is minimal if and only ifž f1.D/ and ž f2.D/ are minimal. Let
D ⊆ U be a cover withq≤ |D| ≤ q+ 2. Since f1 and f2 satisfy (P2), ž f1.D/ and
ž f2.D/ are minimal if and only ifD is a minimum cover. Hencef satisfies (P2).
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To show that (P1) holds for f , let D⊆ U be a minimum cover. Hencež f = ž f .D/.
We claim thatž f = ž∗, the optimum value of (Pf ). By Lemma 3.1, it suffices to
show thatž f is a feasible value for (Pf ).

Suppose.x1; ž f1/ is an optimal solution for (Pf1) and.x2; ž f2/ is an optimal solu-
tion for (Pf2). Define

x.v/ = ž
f2x1.v/+ ž f1x2.v/

ž f1 + ž f2
for all v ∈ N:

(Note thatx.N/ = c.N/ becausex1 andx2 are allocations.)

SupposeS( N; S 6= ∅: Then

c.S/− ž f f .S/ = c.S/− ž f1ž f2

ž f1 + ž f2
. f1.S/+ f2.S//

= ž f2.c.S/− ž f1 f1.S//+ ž f1.c.S/− ž f2 f2.S//
ž f1 + ž f2

≥ ž f2x1.S/+ ž f1x2.S/
ž f1 + ž f2

= x.S/:

♦
Priority functions f suggest to extend the notion of the classical nucleolus tot the
f -nucleolus as follows: We define theexcessof a non-empty coalitionS( N (with
respect tox) as the number

e.S; x/ =


c.S/− x.S/
f .S/

if f .S/ > 0

∞ if f .S/ = 0:

Theexcess vector2.x/ is obtained by ordering the 2N − 2 excess valuese.S; x/
in a non-decreasing sequence. Thef -nucleolusis then defined to be the set of
all allocation vectorsx ∈ RN that lexicographically maximize the excess vector
2.x/. If f only depends on the size of a coalition,i.e., f .S/ = f .T/ if |S| = |T|
for all coalitions S; T 6= ∅; N, f -nucleolus(c) coincides with thef -nucleolus of
Wallmeier [1983].

For f given by f .S/ = 1 for all S 6= ∅; N, the f -nucleolus is equal to the nucle-
olus (see Schmeidler [1969]). Forf given by f .S/ = c.S/ for all S 6= ∅; N, the
f -nucleolus is called thenucleon(see Faigleet al. [1998a]) and for f given by
f .S/ = |S| for all S 6= ∅; N, the f -nucleolus is called theper-capita nucleolus
(see,e.g., Younget al. [1982]).

Because it is clear thatf -nucleolus(c) ⊆ f -leastcore(c), the following corollary
holds.

Corollary 3.1. For the class of feasible priority functions, the problem of comput-
ing an allocation vector x∈ f -nucleolus(c) of MCST-games is N P-hard.
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4. SUFFICIENT CONDITIONS

In this section, we assume that a priority functionf : 2N → R+ satisfies the
following conditions with respect to MCST-games on minimum cover graphs.
Thereby we call a coalitionS⊂ N connected, if the induced subgraphG.S/ =
.V.S/; E.S// is connected.

Conditions:

(S1) fw ≤ f u ≤ .1+ 1
q/ fw

(S2) There exists a numberM ∈ R+, independent ofq andk, for which

f .S/ ≤ M fw for all S( N; S 6= ∅:

(S3) For all S; S′ ( N with S; S′ connected,|S| > 1
3q and 0≤ |S′| − |S| ≤ 2

| f .S′/− f .S/| ≤ 1
4

fw:

Theorem 4.1. Let the priority function f: 2N→ R+ satisfy conditions (S1), (S2)
and (S3). Then f satisfies (P1) and (P2), provided q is sufficiently large.

Proof: Let D ⊆ U be a cover with minimum size. We will prove thatx := xž
f .D/

and ž := ž f .D/ are feasible for.Pf /. By Lemma 3.1 and the definition ofž f ,
ž f = ž f .D/ is then the optimal value of (Pf ). Becausež f .D/ and, thereforež f

only depends on|D| (cf. Remark 3.1),D can be any minimum cover. Finally, we
will show thatž f < ž f .D/ for all coversD ⊆ U that are not minimal.

Let S( N; S 6= ∅ maximizeŽ.S/ := x.S/− c.S/+ ž f .S/: We have to show that
Ž.S/ ≤ 0: SupposeŽ.S/ > 0.

Recall that,

x.w/ = q+ 1+ ž fw for all w ∈W
x.u/ = q+ ž f u for all u ∈ U
x.g/ = ž f .N\{g}/:

For the rest of the proof, we need the following relations.

(4.1)
2
3

1
fw
≤ ž ≤ 3

4
1
fw
:

(4.2) If S( N connected andŽ.S/ > 0 , then|S| > 1
3

q:



10 ULRICH FAIGLE, WALTER KERN, AND DANIËL PAULUSMA

Proof of (4.1): We have

ž = |D| + 2q− 1
|D| f u+ 3qfw + f .N\{g}/+ f .D∪W∪ {g}/

≤ |D| + 2q− 1
|D| f u+ 3qfw

≤.S1/ |D| + 2q− 1
|D| fw + 3qfw

≤.C2/ 3q+ 1
4q+ 2

1
fw

≤ 3
4

1
fw
;

and

ž = |D| + 2q− 1
|D| f u+ 3qfw + f .N\{g}/+ f .D ∪W∪ {g}/

≥.S1/;.S2/ |D| + 2q− 1

|D|.1+ 1
q
/ fw + 3qfw + 2M fw

≥.C2/ |D| + 2q− 1
|D| + 3q+ 2M + 2

1
fw

≥ 3q− 1
4q+ 2M + 2

1
fw

(since|D| ≥ q)

≥ 2
3

1
fw

(for q sufficiently large):

Proof of (4.2): First we show thatx.St/ ≤ 1
3q: We have

x.St/ = c.N/− x.g/− kx.u/− 3qx.w/

≤ 3q+ 3q.q+ 1/+ kq− kq− žk fu− 3q.q+ 1/− ž3qfw

= 3q− žk fu− ž3qfw

≤ 3q− žqfu− ž3qfw (sincek≥ q)

≤.S1/ 3q− ž4qfw

≤.4:1/ 1
3q:



LEAST CORE CONCEPTS 11

Hence, in particular,x.St/ ≤ q+ 1+ ž f u. Thus, forS( N, we have

x.S/ ≤.S1/ .q+ 1+ ž f u/|S| + ž f .N\{g}/

≤.S1/;.S2/ .q+ 1+ ž.1+ 1
q/ fw/|S| + žM f w

≤.4:1/ .q+ 2/|S| + M;

c.S/ ≥ q|S| + q− 1;

and

ž f .S/ ≤.S2/ žM f w

≤.4:1/ M:

Hence

0 < x.S/− c.S/+ ž f .S/

≤ .q+ 2/|S| + M− q|S| − q+ 1+ M

= 2|S| − q+ 1+ 2M:

Then |S| > 1
2q− 1

2 − M > 1
3q (for q sufficiently large).

This completes the proof of (4.2). We now continue the proof of the theorem by
establishing a sequence of claims.

Claim (1): If St∈ S then|S| < |N| − 1:

SupposeS= N\{v} for somev ∈ {g} ∪U ∪W, thenŽ.S/= 0 by definition ofx.

Claim (2): St∈ S or g ∈ S:

SupposeS⊆U∪W; S= S1∪ S2∪ : : :∪ Sr with Si .i = 1; : : : ; r / connected. Then

x.S/ = |S∩U|ž f u+ |S∩W|ž f w + |S∩U|q+ |S∩W|.q+ 1/

≤.S1/ |S∩U|ž.1+ 1
q/ fw + |S∩W|ž f w + |S∩U|q+ |S∩W|.q+ 1/

≤.4:1/ 3
4|S∩U|.1+ 1

q/+ 3
4|S∩W| + |S∩U|q+ |S∩W|.q+ 1/

= 4q2+3q+3
4q |S∩U| + .q+ 7

4/|S∩W|;

c.S/ ≥ 3q+ 2q.r − 1/+∑r
i=1.|Si | − 1/.q+ 1/

= r.q− 1/+ q+ |S|.q+ 1/



12 ULRICH FAIGLE, WALTER KERN, AND DANIËL PAULUSMA

and

ž f .S/ ≤.S2/ Mž f w

≤.4:1/ M:

Note that fori = 1; : : : ; r

|Si ∩W| ≤ 2|Si ∩U| + 1:

Hence

|S∩U| =
r∑

i=1

|Si ∩U| ≥
r∑

i=1

|Si ∩W| − 1
2

= 1
2
|S∩W| − 1

2
r:

Then

Ž.S/ = x.S/− c.S/+ ž f .S/

≤ 4q2+3q+3
4q |S∩U| + .q+ 7

4/|S∩W| − r.q− 1/− q− |S|.q+ 1/+ M

= 3
4|S∩W| − q−3

4q |S∩U| − r.q− 1/− q+ M

≤ 3
4|S∩W| + q−3

4q .
1
2r − 1

2|S∩W|/− r.q− 1/− q+ M

≤ M + 2− 1
8q (since|S∩W| ≤ 3q andr ≥ 1)

≤ 0 (for q sufficiently large):

Henceg ∈ Sor St∈ S:

Claim (3): S∩U coversS∩W:

Up to now, we have proved that a MST forS looks as follows. Eachu ∈ S∩U is
connected tog (with costq+ 1) or to St (with costq). Each coveredw ∈ S∩W
is connected to a vertexu ∈ S∩U (with costq+ 1). Each uncoveredw ∈ S∩W
is w.l.o.g. joined tog (with cost 2q+ 2) or to St (with cost 2q+ 1). Now suppose
w ∈ S∩W is not covered byS∩U. Supposew is covered byu.=∈ S/. Then

c.S\{w} ∪ {u}/ ≤ c.S/− .q+ 1/;

and

Ž.S\{w} ∪ {u}/− Ž.S/

= x.u/− x.w/+ c.S/− c.S\{w} ∪ {u}/+ ž. f .S\{w} ∪ {u}/− f .S//

≥.S2/ ž. f u− fw/+ q− žM f w

≥.S1/;.4:1/ q− 3
4 M

> 0 (for q sufficiently large);
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contradicting the maximality ofŽ.S/: HenceS∩U coversS∩W. In particular,S
is connected and, by (4.2),|S| > 1

3q.

Claim (4): Scontains allw covered byS∩U.

Supposew ∈W is covered byS∩U andw =∈ S. By (1), |N\S| ≥ 2: Then

Ž.S∪ {w}/− Ž.S/ = x.w/+ c.S/− c.S∪ {w}/+ ž. f .S∪ {w}/− f .S//

= ž. f w + f .S∪ {w}/− f .S//

>.S3/ 0;

contradicting the maximality ofŽ.S/:

Claim (5): St =∈ S:

SupposeSt∈ S: If S∩ U = U then, by (4), S∩W = W. HenceS= N\{g} in
contradiction to (1). Supposeu =∈ S. By (1), |N\S| > 1: Then

Ž.S∪ {u}/− Ž.S/ = x.u/+ c.S/− c.S∪ {u}/+ ž. f .S∪ {u}/− f .S//

= ž. f u+ f .S∪ {u}/− f .S//

≥.S1/ ž. f w + f .S∪ {u}/− f .S//

>.S3/ 0;

contradicting the maximality ofŽ.S/.

Claim (6): S∩W=W.

Supposew ∈ W\S. By (4), w is not covered byS∩U: Because each vertex inW
has at least two neighbors inU, we have|S∩U| ≤ |U| − 2. Supposew is covered
by u.=∈ S/. Then

Ž.S∪ {u} ∪ {w}/− Ž.S/

= x.u/+ x.w/+ c.S/− c.S∪ {u} ∪ {w}/+ ž. f .S∪ {u} ∪ {w}/− f .S//

= −1+ ž. f u+ fw + f .S∪ {u} ∪ {w}/− f .S//

>.S1/;.S3/ −1+ ž 3
2 fw

≥.4:1/ 0;

contradicting the maximality ofŽ.S/:

Claim (7): S= {g} ∪ D∪W for some minimum coverD ⊆ U:

Up to now, we have proved thatS= {g} ∪ D′ ∪W for some coverD′ ⊆U. Suppose
D ⊆ U is a cover with|D| < |D′|. W.l.o.g. we may assume that|D| = |D′| − 1
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(otherwise add a sufficient number of verticesu ∈ U to D). Let S= {g} ∪ D ∪W.
It is obvious thatx.S/ = x.S/− q− ž f u andc.S/ = c.S/− q− 1. Then

Ž.S/− Ž.S/

= 1+ ž. f .S/− f .S/− f u/

>.S1/;.S3/ 1− ž 4
3 fw

≥.4:1/ 0;

contradicting the maximality ofŽ.S/:

We have proved that

S= {g} ∪ D∪W for some minimum coverD ⊆ U;

Then (by definition ofž) Ž.S/ = 0. Hence.x; ž/ is a feasible solution for (Pf ),
which we had to show.

We complete the proof by showing thatž f < ž f .D/ for all coversD ⊆ U that are
not minimal. LetD′ ⊆ U be a cover that is not minimal. We have already shown
that Ž.S/ = xž

f
.S/ − c.S/ + ž f f .S/ = 0 for all coalitions S= {g} ∪ D ∪W

whereD⊆U is a minimum cover and thatŽ.S/≥ Ž.T/ for all coalitionsT 6= ∅; N.
Furthermore, from Claim (7), we know that there exists a coverD ⊆ U with |D| =
|D′|−1 andŽ.{g} ∪ D∪W/ > Ž.{g} ∪ D′ ∪W/: Then we haveŽ.{g} ∪ D′ ∪W/ <

0, which is equivalent tož f < ž f .D′/.
♦

It is straightforward to see that the priority functionsf given by

� f .S/ = 1 for all S( N; S 6= ∅
� f .S/ = c.S/ for all S( N; S 6= ∅
� f .S/ = |S| for all S ( N; S 6= ∅

satisfy (S1), (S2) and (S3). Hence, by Theorem 3.1 and Theorem 4.1, the problem
of computing an allocation vectorx ∈ f -leastcore(c) of MCST-games isN P-hard
for these functions. By Corollary 3.1, the problem of computing the nucleolus, the
nucleon and the per-capita nucleolus of MCST-games is alsoN P-hard. Further-
more, one can verify that functions such as,e.g.,

� f .S/ = c.S/|S| for all S( N; S 6= ∅
� f .S/ = c.S/

|S| for all S( N; S 6= ∅

satisfy (S1), (S2) and (S3). Hence these functions also belong to the class of feasi-
ble priority functions.

We end our discussion by mentioning some priority functions for which our ap-
proach does not yield anyN P-hardness result. In particular, functions that give
high priority to small conditions, such as,e.g.,
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� f .S/ = e−|S| for all S( N; S 6= ∅
� f .S/ = 1

|S| for all S( N; S 6= ∅

violate conditions (S2) and (S3).

As an extreme case, suppose there is a setT ⊆ N of important individuals. One
may then consider the priority function

f .S/ =
{

1 if S= {i}; i ∈ T
0 else:

We do not know whether thef -least core orf -nucleolus for any of these functions
can be computed efficiently.
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