NOTE ON THE COMPUTATIONAL COMPLEXITY OF LEAST CORE
CONCEPTS FOR MIN-COST SPANNING TREE GAMES
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ABSTRACT. Various least core concepts including the classical least core of co-
operative games are discussed. By a reduction from minimum cover problems,
we prove that computing an element in these least cores is in gexé&alard

for minimum cost spannning tree games. As a consequence, computing the nu-
cleolus, the nucleon and the per-capita nucleolus of minimum cost spanning tree
games is alstN P-hard.

1. INTRODUCTION

Minimum cost spanning tree problems have been widely studied in the literature.
After their introduction by Bird [1976], various results about the core and nucleolus
were established (seeg., Aarts [1994], Granot and Huberman [1981], [1984]).

In this note, we discuss the least core of a cooperative game (see Masthler
al. [1979]) and several variants of this solution concept. We prove that comput-
ing an allocation according to these least core concepts is in geké&rdlard for
minimum cost spanning tree games. It was shown in Faglal. [1998b] that
computing the nucleolus of minimum cost spanning tree gambsRdard. We
obtain this result as an immediate corollary from our main result. Furthermore, we
are able to show that computing other solution concepts such as the nucleon (cf.
Faigleet al.[1998a]) of minimum cost spanning tree gamesliB-hard.

A cooperative gamés described by a pai¢N, c), whereN is a finite set ofn
players anct : 2N — R* is acost functionsatisfyingc(9) = 0. A coalition is a
subsetSC N. c(S) is called thecostof coalition Swith the interpretation that(S)
is the joint cost of the players i if they decide to cooperate.

A central problem in cooperative game theory is to find a 'fair’ allocation of the
total costsc(N) to the players. A vectox € RN is anallocationif x(N) = c(N).
(Throughout the paper, we use the shorthand notati& = Z Xi.)

ieS
The idea of thecore of a game essentially goes back to von Neumann and Morgen-
stern [1944]. cora) is the set of all allocationg for which there is no coalition
S C N such thatx(S) > ¢(S), which means that no coalition should have to pay
more than its cost.
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There are games for which cocgfs empty. Thdeast coreof a game attempts to
maximize the satisfactioa(S) — x(S) over all coalitionsS# @, N. leastcoref) is
defined to consist of all optimal solutiomdor the linear program

max e
st X(S) =< ¢(S)—¢ forall SCN,S#£0
X(N) = c(N).

It is not hard to see that leastcarke{s non-empty.

A minimum cost spanning treame (MCST-game, for short) is defined by aNet
of players, asupplynodes ¢ N, a complete graph with vertex sét= N U {s} and
by a non-negativelistanceor lengthfunction| > 0 defined on the edge set of the
complete graph. Theost ¢ S) of a coalitionSC N is, by definition, the length of
a minimum spanning tree in the subgraph induce®hy{s}.

It is well-known that coreg) is non-empty for MCST-games and core vectors can
be found in polynomial time: SuppoSeis a minimum spanning tree belonging
to a MCST-game. Lex be the allocation vector that allocates to plaiyerN the
weight of the first edgé encounters on the (unique) path frorto sin T. Granot
and Huberman [1981] have proved tixat core().

However, Granot and Huberman [1981] also point out that allocation vectors ob-
tained from the construction above may not be acceptable from a modeling point
of view. This motivates the search for allocations for example in the least core and
the following generalization of this solution concept. Consider the set of allocation

vectors that are optimal solutions of the linear program

(Pf) max ¢
s.t X(S) < c(S—ef(S forall SCN,S#0
X(N) = c(N),

for a given functionf : 2N — R*. Denote this set byf-leastcoref). Obviously,
the largerf (S) is for some coalitionS C N, the more decisivéis for determin-
ing the optimum value ofR;). We therefore call a functiori as above griority
function which is closely related to the concept ofaxation function(see,e.g,
Shapley and Shubik [1966], Tijs and Driessen [1986]). Note that 1 corre-
sponds with the classical least core of Maschkleal. [1979]. Moreover, because
of the non-emptiness of co®(of a MCST-game,

f-leastcorec) < core(c) forall f ;2N — R*.

We prove that the problem of computing an elementf déastcoref) of general
MCST-games isN P-hard for a large class of priority functionk This class in-
cludes the following examples already known in the literature (see, Faigle and
Kern [1993], Shapley and Shubik [1966])

f(99=1 forall SC N, S#¢
f(S =c(S forall SCN,S#0
f(S9=1|§ foralS C N,S#g.
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The proof uses a reduction from minimum cover problems. We show that com-
puting a leastcore-allocation for a special class of graphs introduced in Edigle
al. [1997] is alreadyN P-hard. These graphs will be treated in Section 2. Section 3
contains the proof of the theorem. In this section, we also introduck-theleolus
which is a generalization of the nucleolus (see Schmeidler [1969]). In Section 4,
the functions mentioned above are treated. By giving sufficient conditions for a
priority function f to satisfy a number of properties defined in Section 3, we prove
that computing an element dfleastcoref) of MCST-games idN P-hard for these
functions. As a consequence of the main theorem, computing the nucleolus, the
nucleon and the per-capita nucleolus of MCST-games is in gehdPahard. We

end this section by mentioning some open problems.

2. ExACT COVER GRAPHS
Letg e N, and letU be a set ok > g elements andlV be a set of § elements.

Consider a bipartite graph with node &¢tJ W (partitioned intoU and W) such
that each node € U is adjacent to exactly three nodeswwh We say that the node
u € U coversits three neighbors ilV.

A set D C U is called acoverif eachw € W is incident with somai € D. A
minimum covers a cover that minimizefD|. Finding a minimum cover is a well-
knownN P-hard problem. It includes thid P-complete problem known as EXACT
3-COVER (“X3C") (cf. Garey and Johnson [1979]).

Even finding a minimum cover under the following assumptiond B-hard.

(C1) Each node i'WW has degree 2 or more.
(C2) The size of a minimum cover is at mag#- 2.

This can be shown as follows: Suppasec W is a node with degree Ly is
connected tas andu is also connected te; andw,. Add a vertexd to U and
connect it tow, w1 andw,. The size of a minimum cover will not change. Hence
computing the size of a minimum cover, in cas&l) holds, is at least as hard as
computing the size of a minimimum cover in the general case. To show the validity
of (C2), add verticesu, Up, ... , Uq to U that coverW. Eachu; (i=1,...,0Q)
covers exactly 3 vertices W. Next deleteug. The size of a minimum cover will

be less than or equal tp+ 2. If the size is greater thay the original problem has

no exact cover. If the size of a minimum cover is equal,tthen also deletegy_;.

Again the size of a minimum cover will be at magt+ 2. If the size is greater
thang, the original problem has no exact cover. If the size is equal &iso delete

Ug—2 and so on. In each step of the procedure only problems that have a minimum
cover with size at mog{ + 2 are considered. li; would be deleted, one arrives at
the original problem. Hence computing the size of a mimimum cover, in &3 (
holds, is at least as hard as computing the size of a minimum cover in the general
case.

We construct an MCST-game from a minimum cover problem as follows (cf. Faigle
et al.[1997]). Define the grapl®s = (V, E) such that the node set & consists
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of U U W and three additional nodes: TBéeiner node Stheguardian g and the
supply s The edge seE of G comprises the following:

¢ all edgese from the bipartite graph ok U W, each of them having length
l(e) =q+1;

e for eachu € U, an edggu, St) betweeru and Stof lengthl (u, St) = g and
an edgg(u, g) betweeru andg of lengthl (u, g) = q+ 1;

e an edgg St, g) betweenStandg of lengthl (St g) = q+ 1;

e an edgegg, s) betweeng ands of lengthl (g, s) = 2q — 1.

Figure 2.1

We extendG to the complete grap® on V with distances induced froi@, i.e., if
e= (i, j) is an edge irG, thenl (i, j) is the length of a shortest path frano j in
G.

A minimum spanning tree (“MST”) ifG is obtained by connecting eaahe W to
someu € U by which it is covered. Suchae U exists because each nodez= W
has a neighbor it (indeed, it has at least 2 neighborsUn. Then one connects
eachu € U to St and finally connect$§tto g andg to s. The resulting MST has a
total length of

c(N) = 3a(q+ 1) +kg+ 3q.
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Furthermore note that, byC(l), eachw € W is covered by at leastvo vertices in
U. Hence it is straightforward to see that the following property hold€<zor

(L) Foreachw € UU W, there exists a MST in the graphG such that is a leaf
of T.

3. THE f-LEAST CORE OFMINIMUM COVER GRAPHS

Consider a grapl = (V, E) and its completiorG as described in the previous
section. Thef-leastcoref), relative to a priority functionf : 2N 5 R*, of the
corresponding MCST-game consists of all allocation vectors that are optimal solu-
tions of the linear program

(Pf) max €
st.  X(S) = c¢(S) —¢€f(S forall SCN,S#0
X(N) = c(N),

whereN = V\{s} andc(S) is the length of a MST irG connectingSto the supply
S.

A basic observation is now the following. If a node= N occurs as a leaf in some
MST T for G and ifeis the unique edge ifl incident withv, thenT\eis a MST
for V\{v}. Thusc(N\{v}) = c(N) — I (e), wherel (e) is the length ok.

Hence, by propertyl() of the previous section, the feasibility constrainty( B%)
imply the following inequalities

X(w) > g+ 1+ef(N\{w}) (weW)
X(u) > g+ ef(N\{u}) (ue V).

Furthermore, the coalitio® = N\{g} can be connected to the supply naiat a
total cost ofc(N). Hence, the feasibility constraints oP;) also imply

X(g) > ef(N\{g}) .
This motivates the following definition.
Fore > 0, letx¢ € RN be the vector defined by

x(w) = q+ef(N\{w}) forallw e W
x(Uu) = g+ 1+ ef(N\{u}) forallue U
x(9) = ef(N\{g})

X(SH = c(N)—x(UUWU{g}).

Motivated by the examples mentioned in Section 1, we restrict our attention to
priority functions f that depend only on the size and the cost of a coalitien,

we consider functions (also denoted Iy of the type f : N x R — R™, which

we always assume to be efficiently computable, and¢8j = (|, c(S)). For
technical reasons, we assume tlia6) > 0 whenevetS > 0 andc(S) > 0.

It is straightforward to check that the following parameters do not depend on the
particular representative € W or u € U:

fr = f(N\{w}) (weWw)

fu = f(N\{u})) (@ueU).
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Define for a coveD C U
IDI+29—-1

f _
B = BT T f(Nvgh + [(DUWU (gD’

and let

e" = min{e"(D)|D < U coverswi.

Remark 3.1 SupposeD C U is a cover and consider the coaliti®@= D U WU
{g}. The costc(S) is easily seen to be(S) = 3q(q+ 1) + |D|(q+ 1) + 29— 1,
i.e., c(S) depends only onD|. Hence alsdf (S) and, therefore f (D) only depend
on|D|, i.e, satisfiessT(D1) = €'(D>) if |D1| = |D>| for all coversD4, D, C U.
As a consequence, we can a priori compute all possible valueS(8X) for |D|
ranging fromq to k.

Lemma 3.1. If €* is the optimal value of Ps) thene* < €.

Proof: Let (x, €*) be an optimal solution offf;). As we have seen, the feasibility
constraints imply

X(w) > gq+1+€f* (weW)
X(u)y > q+e*f4 (ue )
X(@ = e f(N\{g}).

SupposeD C U is a cover for whichef (D) = ¢f. Consider the coalitiors =
{gfuU DUW. Then

X(S) = €"f(N\{g}) +|Dlg+€"|D| "+ 3q(q+1) +€"3qf”
whereas,
c(S = 3q(q+1)+IDl(q+1)+29-1.
Sincex(S) < ¢(S) — e* f(S), we get
- IDI+29-1 _ ot
~ DU+ 3gf + f(N\{gh + F(DUWU{g})

*

&

We call a priority functionf : 2N — R* feasibleif f satisfies the following prop-
erties (with respect to MCST-games on minimum cover graphs):

(P1) €' is the optimal value ofPs).

(P2) ForacoverD C U of sizeq < |D| < g+ 2, we have

e' =¢'(D) ifand only if D C U is a minimum cover.

Our main result can be formulated as follows:

Theorem 3.1. For the class of feasible priority functions, the problem of comput-
ing an allocation vector x f-leastcore(c) of MCST-games is N P-hard.
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Proof: First we will show that for allv € W
X(w) = q+1+€'fv.
SupposéXx, € ') is an optimal solution of Py ). The feasibility constraints imply

X(w) > gq+1l+e ¥ (weW)
x(u) > q+effl (ueU)
and x(g) > €' f(N\{g).

Now let D € U be a cover for whiche? = ¢f(D). Consider the coalitior§ =
{gfUDUW. Then

3q(q+1+€f )+ |Dl(q+ e fU) +€f F(N\{g})

< X(S

A

c(S) —ef (9

= 30(q+1+€e" ") +|Dl(q+e" )+ F(N\{gh.
Hencex(S) < ¢(S) — e f(S) implies that for alw € W
X(w) = q+1+€'fv.

Hencex e f-leastcoreg) provides us with the value of the parametér We can
efficiently compute the sizgD| of a minimum coverD C U as follows: Compute
ef(D) for |ID| = q, |ID| = q+ 1 and|D| = q+ 2 (cf. Remark 3.1). By©2), it
suffices to compute’ (D) only for these sizes. ByR), €' = €7 (D) for at least
one of these sizes. Note that a coleof size|D| < k — 2 implies the existence of
covers with sizéD| + 1 and|D| + 2. Hence, byR2), the size of a minimum cover
| D] will be the maximum of the sizes for which equality holds.

Given an allocation vectax € f-leastcoref), we can thus compute the size of a
minimum coverD in polynomial time. Hence the computation of such a vector is
at least as hard as the computation of the size of a minimum cover.

<

Theorem 3.2. The set of feasible priority functions: 2N — R* forms a convex
cone (minus & 0).

Proof: It is obvious thatxf is feasible fora > 0 if f is feasible. Now suppose
f1, f, : 2N — RT are feasible. We will show that := f; + f, is feasible. It is
straightforward to verify that for all cove® € U

f1 f,
fioy € (D)e=(D)
e (D)= (D)1 c2(D)’
This expression is minimal if and only #™(D) and e (D) are minimal. Let

D C U be a cover withg < |D| < g+ 2. Sincef; and f, satisfy P2), ¢"(D) and
e 2(D) are minimal if and only ifD is a minimum cover. Hencé satisfies P2).
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To show that P1) holds for f, let D € U be a minimum cover. Hened = (D).
We claim thate’ = ¢*, the optimum value ofR;). By Lemma 3.1, it suffices to
show that f is a feasible value forRs).

Supposegxt, €) is an optimal solution forRs,) and (x?, € 2) is an optimal solu-

tion for (Py,). Define

efle(v) + eflxz(v)
efipef

(Note thatx(N) = c¢(N) because andx? are allocations.)

SupposeSC N, S=#£ @. Then

X(v) = forall v e N.

fi 2

(9 —e'f(S) = C(S)—ﬁ(fl(S)Jrfz(S))

€2(c(S) — e f1(9) +eM(c(S) — €2 1(9))
efifef

e2x1(S) + e1x2(S)
efifefe

= X(9).
<&

Priority functions f suggest to extend the notion of the classical nucleolus tot the
f-nucleolus as follows: We define teaces®f a non-empty coalitior5 C N (with
respect tok) as the number

«(S-x(S .
aSx = 1 (S ﬁ”$>0
o0 if £(S)=0.

The excess vecto® (x) is obtained by ordering theN2— 2 excess values(S, x)

in a non-decreasing sequence. Thaucleolusis then defined to be the set of
all allocation vectorsx € RN that lexicographically maximize the excess vector
O(). If f only depends on the size of a coalitiorg., f(S) = f(T) if |§ = |T|

for all coalitionsS, T # @, N, f-nucleolus€) coincides with thef-nucleolus of
Wallmeier [1983].

For f given by f(S) = 1 for all S+ @, N, the f-nucleolus is equal to the nucle-
olus (see Schmeidler [1969]). Fdrgiven by f(S) = c(S) for all S# @, N, the
f-nucleolus is called thaucleon(see Faigleet al. [1998a]) and forf given by
f(S) = |9 for all S=# @, N, the f-nucleolus is called thger-capita nucleolus
(seee.g, Younget al.[1982]).

Because it is clear that-nucleolus€) C f-leastcoreg), the following corollary
holds.

Corollary 3.1. For the class of feasible priority functions, the problem of comput-
ing an allocation vector x f-nucleolus(c) of MCST-games is N P-hard.
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4. SUFFICIENT CONDITIONS

In this section, we assume that a priority functidn: 2N — R* satisfies the
following conditions with respect to MCST-games on minimum cover graphs.
Thereby we call a coalitiors € N connectedif the induced subgrapls(S) =
(V(S), E(9)) is connected.

Conditions:
(S f* < f¥ < A+ f"
(S2 There exists a numbévl € R, independent off andk, for which

f(S) < Mf* forall SC N, S#£ 4.

(S3 ForallS, S € Nwith S, S connected|S| > %q and0< |S|—|9 <2

1 w
1(S) - FSI= 41"

Theorem 4.1. Let the priority function f: 2N — R* satisfy conditions$1), (S2
and 3. Then f satisfiesH1) and P2), provided q is sufficiently large.

Proof: Let D C U be a cover with minimum size. We will prove that= x¢' (®)
ande := (D) are feasible for P;). By Lemma 3.1 and the definition eff,
ef = ¢T(D) is then the optimal value ofR;). Because ' (D) and, therefore:f
only depends onD| (cf. Remark 3.1)D can be any minimum cover. Finally, we

will show thatef < €f(D) for all coversD C U that are not minimal.

Let SC N, S# ¥ maximized(S) := X(S) — ¢(S) + «f (S). We have to show that
3(S) < 0. Suppos&(S) > 0.

Recall that,
X(w) = q+1+ef?” forallweW

X(u)y = g+efl forallue U
X(9) ef (N\{g}).

For the rest of the proof, we need the following relations.

21 31

1
(4.2) If SC N connected and(S) > 0, then|S§| > éq.
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Proof of (4.1): We have

. - ID|+29-1
B D[ fu+3gfw + f(N\{g}) + fF(DUWU {g})
IDI+29—-1
- |D| fU+4 3qgfw
<y DI+29-1
- |D| fw 4 3qfw
<cy 9+11
- 49+ 2 fw
31
< —_
- 4 fw’
and
¢ — IDI+29-1
ID| fu+3qf» + f(N\{g}) + F(DUWU {g})
~ (S1),(S2) |D|+2q_1
= 1
|D|(1+a)f“’+3qf“’+2Mf“’
~(C2) ID|+29—1 1

ID|+3q+2M +2 fw

3g-1 1 .

= Zg+omMT2te (Sneelbl=
21 -

> 37 (for g sufficiently large)

Proof of (4.2): First we show that(St) < %q. We have
X(St) = c(N) — x(g) — kx(u) — 3gx(w)

< 39+ 3q(g+1) + kqg— kq— ekf¥ —3g(q+ 1) — €3qf®

= 309 — ekfY — €3qf¥

A

3q—eqf¥ — 3gf¥ (sincek > q)
<D 39— e4qfv

1 1
<@b 1q.
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Hence, in particularx(St) < g+ 1+ ¢fY. Thus, forSC N, we have
x(§ <& A+ 1+ ef)[S + ef (N\{g})

<D (g4 1+ed+ ) ) +eMfr

<@D q+2)|S+ M,

S = asS+aq-1,
and
ef(5 < eMfv

<@ M.

Hence
0 < X(S) —c(S+€ef(9
= Q+2[8+M-qS-q+1+M
= 2|5 —-q+1+2M.
Then |S > 1q—1-M > 1q (for gsufficiently large).

This completes the proof of (4.2). We now continue the proof of the theorem by
establishing a sequence of claims.

Claim (1): If Ste Sthen|S < |[N| — 1.

Supposes = N\{v} for somev € {g} UU U W, thens(S) = 0 by definition ofx.

Claim (2): Ste Sor ge S

SupposeSsCUUW, S=SUSU...uSwith§ (i=1,...,r)connected. Then
X(S) = ISNU|efY+ SN WIef” +|SNU|q+ [SNW|(g+ 1)

<O 1SNUleL+ ) Y + SN WIef” +SNUIg+ SN WI(Q+ 1)
<D 35Ny + (-11) +3ISNW| +[SNUJg+ SN W|(q+ 1)

2
= AEsnUl+ g+ DHISnw.

(S > 39+2q0r — D +Yi_;(SI-1)(Qg+1)

= r@-bH+q9+1S(Q+D
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and
ef(S) < Mefv
S(4.1) M.
Note thatfori =1, ...,r
ISNW| <2]SNU|+ 1L
Hence

r r
ISAPW -1 1 1
SnU| = nul=S 20T Sisnw)—
SnUI=3 IS NUI= 3 = SISN W] — o

Then
8(S) = X(S) —c(S +e€f(9
< EAB1SAU|+ g+ DISNWI —r(@-1) —q— [SI(q+1) + M

= 3ISnw|—-%2IsnU|-r(@—-1) —q+M

< ASNWi+92Gr - 3ISnW) —r@@-1) —q+ M
< M+2-1q (since|SN'W| < 3gandr > 1)
< 0 (for g sufficiently large)

Henceg € Sor Ste S
Claim (3): SNU coversSN'W.

Up to now, we have proved that a MST f8looks as follows. Each e SNU is
connected ta (with costq+ 1) or to St(with costq). Each coveredv € SN'W
is connected to a vertaxe SN U (with costq+ 1). Each uncovered € SNW
is w.l.o.g. joined tag (with cost 21+ 2) or to St(with cost 21+ 1). Now suppose
w € SN W is not covered bysN U. Supposew is covered byu(¢ S). Then

c(S\fwiufu) = c(9—-(q+1),

and

S(S\{w}U{u}) —48(9
= X(U) — X(w) + ¢(S) — c(S\{w} U {u}) +e(f(S\{w}U{u}) — F(9))
>(S2) e(f'— ")y +q—eMf¥

2(51),(4-1) q — %M

> 0 (for g sufficiently large)
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contradicting the maximality af(S). HenceSN U coversSN W. In particular,S
is connected and, by (4.2)S > iq.

Claim (4): Scontains allw covered bySN U.
Supposev € W is covered bySNnU andw ¢ S. By (1), IN\S > 2. Then
§(SU{w}) —48(5 = X(w) +¢(S) — c(SU {w}) + e(F(SU{w}) — f(9))

= e(fv + f(SU{w}) — f(9)
>,

contradicting the maximality of(S).

Claim (5): St¢ S.

SupposeSte S If SNU = U then, by (4), SNW = W. HenceS= N\{g} in
contradiction to (1). Suppose¢ S. By (1), IN\S > 1. Then

S(SU{uh) —48(S = X(U) +¢(S) — c(SU{u}) + e(f(SU{up) — f(9)
— e(fU+ f(SU{U) — f(9)
>BDe(fr 4+ f(SU{U) - ()
(8
contradicting the maximality of(S).

Claim (6): SNW=W.

Supposav € W\'S. By (4), w is not covered bysN U. Because each vertex W
has at least two neighbors h, we havglSNU| < |U| — 2. Supposev is covered
by u(¢ S). Then

S(SU{upU{w}) —48(S)
= X(U) + x(w) +¢(S) — c(SU{u} U {w}) + e(F(SU{up U {w}) — £(9))
= —14e(fU4 f¥ 4 f(SU{uyU{w}) — f(S)
>(SD.(SY) 14 3fw
>@b o,
contradicting the maximality of(S).

Claim (7): S={g} U D U W for some minimum coveb C U.

Up to now, we have proved th&= {g} U D’ U W for some coveD’ C U. Suppose
D C U is a cover with|D| < |D’|. W.l.o.g. we may assume thgd| = |D’| — 1
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(otherwise add a sufficient number of vertiees U to D). Let S={g} UD U W.
It is obvious thax(S) = x(S) — q— efYandc(S) = c(S) —q— 1. Then

8(S) —8(9)
= 1+e(f(S— (S — fY)

> (8D, (S3) 1—6% fv

> (41) 0,
contradicting the maximality of(S).
We have proved that

S={glUDUW for some minimum coveb C U,

Then (by definition of¢) §(S) = 0. Hence(x, ¢) is a feasible solution forK;),
which we had to show.

We complete the proof by showing thdlt < (D) for all coversD c U that are
not minimal. LetD’ C U be a cover that is not minimal. We have already shown
that 8(S) = x¢' (S) — ¢(S) + € f(S) =0 for all coalitonsS= {g} UDUW
whereD C U is a minimum cover and that(S) > §(T) for all coalitionsT # @, N.
Furthermore, from Claim (7), we know that there exists a c&vet U with |D| =
|D'| —1ands({g} UDUW) > §({g} U D’ UW). Then we havé({g} U D' UW) <
0, which is equivalent te < ¢f(D").

<&

It is straightforward to see that the priority functiofgjiven by

f(99=1 forall SC N, S#¢
f(S =c(S forall SCN,S#0
f(S9=|§ forallS CN,S#0

satisfy §81), (S2 and 3. Hence, by Theorem 3.1 and Theorem 4.1, the problem
of computing an allocation vectore f-leastcoref) of MCST-games i\ P-hard

for these functions. By Corollary 3.1, the problem of computing the nucleolus, the
nucleon and the per-capita nucleolus of MCST-games isldIBehard. Further-
more, one can verify that functions such ag,

f(S =c(9|Y forall SC N, S#¢
f(S):C|(—§|) forall SC N, S# ¢

satisfy §81), (S2 and §3). Hence these functions also belong to the class of feasi-
ble priority functions.

We end our discussion by mentioning some priority functions for which our ap-
proach does not yield ani P-hardness result. In particular, functions that give
high priority to small conditions, such as.g,
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f(S =e!¥ forall SC N, S#
. (S5 = é forall SC N,S#0

violate conditions $2 and §3.

As an extreme case, suppose there is a'set N of important individuals. One
may then consider the priority function

1 ifS={i},ieT
0 else

f(S) = {

We do not know whether thé-least core orf-nucleolus for any of these functions
can be computed efficiently.
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