

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 5, pp. 1234–1257

THE RECOGNITION OF TOLERANCE AND BOUNDED
TOLERANCE GRAPHS∗

GEORGE B. MERTZIOS† , IGNASI SAU‡ , AND SHMUEL ZAKS§

Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate a
certain degree of overlap without being in conflict. This subclass of perfect graphs has been exten-
sively studied, due to both its interesting structure and its numerous applications (in bioinformatics,
constraint-based temporal reasoning, resource allocation, and scheduling problems, among others).
Several efficient algorithms for optimization problems that are NP-hard in general graphs have been
designed for tolerance graphs. In spite of this, the recognition of tolerance graphs—namely, the prob-
lem of deciding whether a given graph is a tolerance graph—as well as the recognition of their main
subclass of bounded tolerance graphs, have been the most fundamental open problems on this class
of graphs (cf. the book on tolerance graphs [M. C. Golumbic and A. N. Trenk, Tolerance Graphs,
Cambridge Stud. Adv. Math. 89, Cambridge University Press, Cambridge, UK, 2004]) since their
introduction in 1982 [M. C. Golumbic and C. L. Monma, Proceedings of the 13th Southeastern Con-
ference on Combinatorics, Graph Theory and Computing, Congr. Numer., 35 (1982), pp. 321–331].
In this article we prove that both recognition problems are NP-complete, even in the case where the
input graph is a trapezoid graph. The presented results are surprising because, on the one hand,
most subclasses of perfect graphs admit polynomial recognition algorithms and, on the other hand,
bounded tolerance graphs were believed to be efficiently recognizable as they are a natural special
case of trapezoid graphs (which can be recognized in polynomial time) and share a very similar struc-
ture with them. For our reduction we extend the notion of an acyclic orientation of permutation and
trapezoid graphs. Our main tool is a new algorithm that uses vertex splitting to transform a given
trapezoid graph into a permutation graph, while preserving this new acyclic orientation property.
This method of vertex splitting is of independent interest; very recently, it was also proved a powerful
tool in the design of efficient recognition algorithms for other classes of graphs [G. B. Mertzios and
D. G. Corneil, Discrete Appl. Math., 159 (2011), pp. 1131–1147].

Key words. tolerance graphs, bounded tolerance graphs, recognition, vertex splitting, NP-
complete, trapezoid graphs, permutation graphs

AMS subject classifications. Primary, 05C62; Secondary, 68Q25, 68R10, 05C17

DOI. 10.1137/090780328

1. Introduction.

1.1. Tolerance graphs and related graph classes. A simple undirected
graph G = (V,E) on n vertices is a tolerance graph if there exists a collection I =
{Ii | i = 1, 2, . . . , n} of closed intervals on the real line and a set t = {ti | i = 1, 2, . . . , n}
of positive numbers such that for any two vertices vi, vj ∈ V , vivj ∈ E if and only if
|Ii ∩ Ij | ≥ min{ti, tj}. The pair 〈I, t〉 is called a tolerance representation ofG. If G has
a tolerance representation 〈I, t〉 such that ti ≤ |Ii| for every i = 1, 2, . . . , n, then G is
called a bounded tolerance graph and 〈I, t〉 is a bounded tolerance representation of G.

Tolerance graphs were introduced in [12] in order to generalize some of the well-
known applications of interval graphs. The main motivation was in the context of

∗Received by the editors December 16, 2009; accepted for publication (in revised form) May 10,
2011; published electronically September 20, 2011. A preliminary conference version of this work
appeared in the Proceedings of the 27th International Symposium on Theoretical Aspects of Computer
Science (STACS), Nancy, France, 2010, pp. 585–596.

http://www.siam.org/journals/sicomp/40-5/78032.html
†Caesarea Rothschild Institute, University of Haifa, Haifa, 31905, Israel (mertzios@research.haifa.

ac.il).
‡AlGCo project-team, CNRS, LIRMM, 34095 Montpellier, France (ignasi.sau@lirmm.fr).
§Department of Computer Science, Technion, Haifa, 32000, Israel (zaks@cs.technion.ac.il).

1234

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1235

resource allocation and scheduling problems, in which resources, such as rooms and ve-
hicles, can tolerate sharing among users [15]. If we replace in the definition of tolerance
graphs the operator min by the operator max, we obtain the class of max-tolerance
graphs. Both tolerance and max-tolerance graphs find in a natural way applications
in biology and bioinformatics, as in the comparison of DNA sequences from different
organisms or individuals [19], by making use of a software tool BLAST [1]. Tolerance
graphs find numerous other applications in constraint-based temporal reasoning and
data transmission through networks to efficiently schedule aircraft and crews, as well
as contributing to genetic analysis and studies of the brain [14, 15]. This class of
graphs has attracted many research efforts [2, 4, 8, 13, 14, 15, 17, 20, 25, 27], as it
generalizes in a natural way both interval graphs (when all tolerances are equal) and
permutation graphs (when ti = |Ii| for every i = 1, 2, . . . , n) [12]. For a detailed
survey on tolerance graphs we refer the reader to [15].

A graph is perfect if the chromatic number of every induced subgraph equals the
clique number of that subgraph. Several difficult combinatorial problems can be solved
efficiently, i.e., in polynomial time, on the class of perfect graphs, such as minimum
coloring, maximum clique, and independent set [16]. Thus, since the class of tolerance
graphs is a subclass of perfect graphs [13], there exist polynomial algorithms for these
problems on tolerance and bounded tolerance graphs as well. In spite of this, faster
algorithms have been designed for tolerance and bounded tolerance graphs, which
exploit their special structure [14, 15, 25, 27].

A comparability graph is a graph which can be transitively oriented. A co-
comparability graph is a graph whose complement is a comparability graph. A
trapezoid (resp., parallelogram and permutation) graph is the intersection graph of
trapezoids (resp., parallelograms and line segments) between two parallel lines L1

and L2 [10]. Such a representation with trapezoids (resp., parallelograms and line
segments) is called a trapezoid (resp., parallelogram and permutation) representa-
tion of this graph. A graph is bounded tolerance if and only if it is a parallelogram
graph [2, 21]. Permutation graphs are a strict subset of parallelogram graphs [3]. Fur-
thermore, parallelogram graphs are a strict subset of trapezoid graphs [29], and both
are subsets of co-comparability graphs [10, 15]. On the contrary, tolerance graphs
are not even co-comparability graphs [10, 15]. Recently, we presented in [25] a nat-
ural intersection model for general tolerance graphs given by parallelepipeds in the
three-dimensional space. This representation generalizes the parallelogram represen-
tation of bounded tolerance graphs and has been used to improve the time complexity
of minimum coloring, maximum clique, and weighted independent set algorithms on
tolerance graphs [25].

Although tolerance and bounded tolerance graphs have been studied extensively,
the recognition problems for both classes have been the most fundamental open prob-
lems since their introduction in 1982 [5, 10, 15]. Therefore, all existing algorithms
assume that, along with the input tolerance graph, a tolerance representation of it
is given. The only result about the complexity of recognizing tolerance and bounded
tolerance graphs is that they have a (nontrivial) polynomial-sized tolerance represen-
tation; hence the problems of recognizing tolerance and bounded tolerance graphs are
in the class NP [17]. Recently, a linear time recognition algorithm for the subclass of
bipartite tolerance graphs was presented in [5]. Furthermore, the class of trapezoid
graphs (which strictly contains parallelogram, i.e., bounded tolerance, graphs [29])
can be also recognized in polynomial time [22, 24, 31]. On the other hand, the
recognition of max-tolerance graphs is known to be NP-hard [19]. Unfortunately, the
structure of max-tolerance graphs differs significantly from that of tolerance graphs

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1236 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

(max-tolerance graphs are not even perfect, as they can contain induced C5’s [19]),
so the technique used in [19] does not carry over to tolerance graphs.

Since very few subclasses of perfect graphs are known to be NP-hard to recog-
nize (for instance, perfectly orderable graphs [26], EPT graphs [11], and—recently—
triangle graphs [23]), it was believed that the recognition of tolerance graphs was in P.
Furthermore, as bounded tolerance graphs are equivalent to parallelogram graphs [2,
21], which constitute a natural subclass of trapezoid graphs and have a very similar
structure, it was plausible that their recognition was also in P.

1.2. Our contribution. In this article we establish the complexity of recogniz-
ing tolerance and bounded tolerance graphs. Namely, we prove that both problems
are surprisingly NP-complete, by providing a reduction from the monotone-Not-All-
Equal-3-SAT (monotone-NAE-3-SAT) problem. Consider a boolean formula φ in con-
junctive normal form with three literals in every clause (3-CNF), which is monotone;
i.e., no variable is negated. The formula φ is called NAE-satisfiable if there exists a
truth assignment of the variables of φ, such that every clause has at least one true
variable and one false variable. Given a monotone 3-CNF formula φ, we construct a
trapezoid graph Hφ which is parallelogram, i.e., bounded tolerance, if and only if φ
is NAE-satisfiable. Moreover, we prove that the constructed graph Hφ is tolerance if
and only if it is bounded tolerance. Thus, since the recognition of tolerance and the
recognition of bounded tolerance graphs are in the class NP [17], it follows that both
problems are NP-complete. Actually, our results imply that the recognition problems
remain NP-complete even if the given graph is trapezoid, since the constructed graph
Hφ is trapezoid.

For our reduction we extend the notion of an acyclic orientation of permutation
and trapezoid graphs. Our main tool is a new algorithm that transforms a given
trapezoid graph into a permutation graph by splitting some specific vertices, while
preserving this new acyclic orientation property. One of the main advantages of
this algorithm is that the constructed permutation graph does not depend on any
particular trapezoid representation of the input graph G. Moreover, this approach
based on splitting vertices has already been proved useful for the design of polynomial
recognition algorithms for other classes of graphs [24].

Organization of the paper. We present in section 2 several properties of per-
mutation and trapezoid graphs, as well as the algorithm Split-U , which constructs a
permutation graph from a trapezoid graph. In section 3 we present the reduction of
the monotone-NAE-3-SAT problem to the recognition of bounded tolerance graphs.
In section 4 we prove that this reduction can be extended to the recognition of gen-
eral tolerance graphs. Finally, we discuss the presented results and further research
directions in section 5.

2. Trapezoid graphs and representations. In this section we introduce (in
section 2.1) the notion of an acyclic representation of permutation and of trapezoid
graphs. This is followed (in section 2.2) by some structural properties of trapezoid
graphs, which will be used in what follows for the splitting algorithm Split-U . Given a
trapezoid graph G and a vertex subset U of G with certain properties, this algorithm
constructs a permutation graph G#(U) with 2|U | vertices, which is independent of
any particular trapezoid representation of the input graph G.

Notation. In this article we consider simple undirected and directed graphs with
no loops or multiple edges. In an undirected graph G, the edge between vertices u and
v is denoted by uv, and in this case u and v are said to be adjacent in G. If the graph

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1237

G is directed, we denote by uv the arc from u to v. Given a graph G = (V,E) and a
subset S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S, and we
use E[S] to denote E(G[S]). Whenever we deal with a trapezoid (resp., permutation
and bounded tolerance, i.e., parallelogram) graph, we will consider without loss of
generality a trapezoid (resp., permutation and parallelogram) representation, in which
all endpoints of the trapezoids (resp., line segments and parallelograms) are distinct [9,
15, 18]. Given a permutation graph P along with a permutation representation R,
we may not distinguish in the following between a vertex of P and the corresponding
line segment in R, whenever it is clear from the context. Furthermore, with a slight
abuse of notation, we will refer to the line segments of a permutation representation
simply as lines.

2.1. Acyclic permutation and trapezoid representations. Let P = (V,E)
be a permutation graph and R be a permutation representation of P . For a vertex u ∈
V , denote by θR(u) the angle of the line of u with L2 in R. The class of permutation
graphs is the intersection of comparability and co-comparability graphs [10]. Thus,
given a permutation representation R of P , we can define two partial orders (V,<R)
and (V,	R) on the vertices of P [10]. Namely, for two vertices u and v of G, u <R v
if and only if uv ∈ E and θR(u) < θR(v), while u 	R v if and only if uv /∈ E and u
lies to the left of v in R. The partial order (V,<R) implies a transitive orientation
ΦR of P , such that uv ∈ ΦR whenever u <R v.

Note that an alternative definition of the transitive orientation ΦR of P is that
uv ∈ ΦR if and only if u 	R′ v in the representation R′ obtained by reversing in R
the ordering of the points on the top line L1. However, in the rest of the paper we will
use the first definition of ΦR, which involves the angles θR(u) and θR(v) of the lines
of u and v in R, respectively. Intuitively, the main reason for using this definition of
ΦR is that, in any parallelogram representation, the two lines of every parallelogram
have the same angle (see, for example, the proof of Lemma 3 below).

Let G = (V,E) be a trapezoid graph, and let R be a trapezoid representation
of G, where for any vertex u ∈ V , the trapezoid corresponding to u in R is denoted
by Tu. Since trapezoid graphs are also co-comparability graphs [10], we can similarly
define the partial order (V,	R) on the vertices of G, such that u 	R v if and only
if uv /∈ E and Tu lies completely to the left of Tv in R. In this case, we may denote
also Tu 	R Tv, instead of u	R v.

In a given trapezoid representation R of a trapezoid graph G, we denote by l(Tu)
and r(Tu) the left and the right line of Tu in R, respectively. Similarly to the case
of permutation graphs, we use the relation 	R for the lines l(Tu) and r(Tu), e.g.,
l(Tu) 	R r(Tv) means that the line l(Tu) lies to the left of the line r(Tv) in R.
Moreover, if the trapezoids of all vertices of a subset S ⊆ V lie completely to the left
(resp., right) of the trapezoid Tu in R, we write R(S) 	R Tu (resp., Tu 	R R(S)).
Note that there are several trapezoid representations of a particular trapezoid graph
G. Given one such representation R, we can obtain another one, R′, by vertical axis
flipping of R; i.e., R′ is the mirror image of R along an imaginary line perpendicular
to L1 and L2. Moreover, we can obtain another representation R′′ of G by horizontal
axis flipping of R; i.e., R′′ is the mirror image of R along an imaginary line parallel to
L1 and L2. We will use these two basic operations extensively throughout the article.

In the next two definitions we introduce the notions of acyclic permutation and
acyclic trapezoid graphs. These two new notions of acyclicity are essential for proving
some basic properties of our Algorithm Split-U (cf. Theorem 15), as well as for proving
the correctness of our reduction in section 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1238 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

Definition 1. Let P be a permutation graph with 2n vertices {u1
1, u

2
1, u

1
2, u

2
2, . . . ,

u1
n, u

2
n}. Let R be a permutation representation and ΦR be the corresponding transitive

orientation of P . The simple directed graph FR is obtained by merging u1
i and u2

i into
a single vertex ui for every i = 1, 2, . . . , n, where the arc directions of FR are implied
by the corresponding directions in ΦR. That is, uiuj is an arc in FR if and only
if ux

i u
y
j ∈ E(P) and θR(u

x
i) < θR(u

y
j) for some x, y ∈ {1, 2}. Then,

1. R is an acyclic permutation representation1 with respect to {u1
i , u

2
i }ni=1 if FR

has no directed cycle,
2. P is an acyclic permutation graph with respect to {u1

i , u
2
i }ni=1 if P has an

acyclic representation R with respect to {u1
i , u

2
i }ni=1.

In Figure 1 we show an example of a permutation graph P with six vertices
in Figure 1(a), a permutation representation R of P in Figure 1(b), the transitive
orientation ΦR of P in Figure 1(c), and the corresponding simple directed graph FR

in Figure 1(d). In the figure, the pairs {u1
i , u

2
i }3i=1 are grouped inside ellipses. In this

example, R is not an acyclic permutation representation with respect to {u1
i , u

2
i }3i=1,

since FR has a directed cycle of length two. However, note that, by exchanging the
lines u1

1 and u1
2 in R, the resulting permutation representation R′ is acyclic with

respect to {u1
i , u

2
i }3i=1, and thus P is acyclic with respect to {u1

i , u
2
i }3i=1.

u1
1

u2
1

u1
2

u2
2

u1
3

u2
3

P :

(a)

L1

L2

u1
1 u2

1u1
2 u2

2u1
3u2

3

R :

θR(u1
2)

(b)

u1
1

u2
1

u1
2

u2
2

u1
3

u2
3

ΦR :

(c)

u1

u2 u3

FR :

(d)

Fig. 1. (a) A permutation graph P , (b) a permutation representation R of P , (c) the transitive
orientation ΦR of P , and (d) the corresponding simple directed graph FR.

Definition 2. Let G be a trapezoid graph with n vertices, and let R be a trapezoid
representation of G. Let P be the permutation graph with 2n vertices corresponding to
the left and right lines of the trapezoids in R, let RP be the permutation representation
of P induced by R, and let {u1

i , u
2
i } be the vertices of P that correspond to the same

vertex ui of G, i = 1, 2, . . . , n. Then,
1. R is an acyclic trapezoid representation if RP is an acyclic permutation

representation with respect to {u1
i , u

2
i }ni=1,

2. G is an acyclic trapezoid graph if it has an acyclic representation R.
The following lemma follows easily from Definitions 1 and 2.
Lemma 3. Any parallelogram graph is an acyclic trapezoid graph.

1To simplify the presentation, throughout the paper we use {u1
i , u

2
i }ni=1 to denote the set of n

unordered pairs {u1
1, u

2
1}, {u1

2, u
2
2}, . . . , {u1

n, u
2
n}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1239

Proof. Let G be a parallelogram graph with n vertices {u1, u2, . . . , un}, and let R
be a parallelogram representation of G. That is, R is a trapezoid representation of G,
such that the left and right lines l(Tui) and r(Tui) of the trapezoid Tui , i = 1, 2, . . . , n,
are parallel in R; i.e., θR(l(Tui)) = θR(r(Tui)). Let P be the permutation graph with
2n vertices {u1

1, u
2
1, u

1
2, u

2
2, . . . , u

1
n, u

2
n} corresponding to the left and right lines of the

trapezoids of G in R; i.e., the vertices u1
i and u2

i correspond to l(Tui) and r(Tui),
i = 1, 2, . . . , n, respectively. Let RP be the permutation representation of P induced
by R, and let ΦRP be the corresponding transitive orientation of the permutation
graph P . Recall that, for two intersecting lines a, b in RP , it holds ab ∈ ΦRP whenever
θR(a) < θR(b). It follows that for any i = 1, 2, . . . , n, the pair {u1

i , u
2
i } of vertices in

P has incoming edges from (resp., outgoing edges to) vertices of other pairs {u1
j , u

2
j}

in ΦRP , which have a smaller (resp., greater) angle with the line L2 in RP . Thus, the
simple directed graph FRP defined in Definition 1 has no directed cycles, and therefore
RP is an acyclic permutation representation with respect to {u1

i , u
2
i }ni=1; i.e., R is an

acyclic trapezoid representation of G by Definition 2.

2.2. Structural properties of trapezoid graphs. In the following, we state
some definitions and notions concerning an arbitrary simple undirected graph G =
(V,E). These notions are essential in order to present and analyze our Algorithm
Split-U (in section 2.3). Although these definitions apply to any graph, we will use
them only for trapezoid graphs. Similar definitions, for the restricted case where
the graph G is connected, were studied in [6]. For u ∈ V and U ⊆ V , N(u) =
{v ∈ V | uv ∈ E} is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and
N(U) =

⋃
u∈U N(u) \ U . If N(U) ⊆ N(W) for two vertex subsets U and W , then U

is said to be neighborhood dominated by W . Clearly, the relationship of neighborhood
domination is transitive.

Let C1, C2, . . . , Cω, ω ≥ 1, be the connected components of G \N [u] and Vi =
V (Ci), i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in what
follows the component Ci and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω,
the neighborhood domination closure of Vi with respect to u is the set Du(Vi) =
{Vp | N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of connected components of G \N [u]. The clo-
sure complement of the neighborhood domination closure Du(Vi) is the set D∗

u(Vi) =
{V1, V2, . . . , Vω} \Du(Vi).

For a subset S ⊆ {V1, V2, . . . , Vω}, a component Vi of S is called maximal if
there is no component Vj ∈ S such that N(Vi) � N(Vj). Furthermore, a connected
component Vi of G \ N [u] is called a master component of u if Vi is a maximal
component of {V1, V2, . . . , Vω}.

Intuitively, if G is a trapezoid graph and R is a trapezoid representation of G, one
can think of a master component Vi of u as the first connected component of G\N [u]
to the right or to the left of Tu in R. For example, consider the trapezoid graph G
with vertex set {u, u1, u2, u3, v1, v2, v3, v4}, which is given by the trapezoid repre-
sentation R of Figure 2. The connected components of G \N [u] = {v1, v2, v3, v4} are
V1 = {v1}, V2 = {v2}, V3 = {v3}, and V4 = {v4}. Then, N(V1) = {u1}, N(V2) = {u1, u3},
N(V3) = {u2, u3}, and N(V4) = {u3}; thus V2 and V3 are the only master components
of u. Furthermore, Du(V1) = {V1}, Du(V2) = {V1, V2, V4}, Du(V3) = {V3, V4}, and
Du(V4) = {V4}. Therefore,D∗

u(V1) = {V2, V3, V4},D∗
u(V2) = {V3}, D∗

u(V3) = {V1, V2},
and D∗

u(V4) = {V1, V2, V3}.
Lemma 4. Let G be a simple graph, let u be a vertex of G, and let V1, V2, . . . , Vω,

ω ≥ 1, be the connected components of G \N [u]. If Vi is a master component of u
such that D∗

u(Vi) �= ∅, then D∗
u(Vj) �= ∅ for every component Vj of G \N [u].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1240 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

L1

L2

Tv1

Tv2

Tv3 Tv4

Tu

Tu2Tu1
Tu3

R :

Fig. 2. A trapezoid representation R of a trapezoid graph G.

Proof. The proof is done by contradiction. Suppose that there exists a component
Vj of G \ N [u] such that D∗

u(Vj) = ∅. That is, N(Vk) ⊆ N(Vj) for every component
Vk of G \N [u]. Therefore, in particular, N(Vi) ⊆ N(Vj). Suppose first that N(Vi) =
N(Vj). ThenN(Vk) ⊆ N(Vi) for every component Vk ofG\N [u], and thusD∗

u(Vi) = ∅,
which is a contradiction. Suppose now that N(Vi) � N(Vj). Then Vi is not a master
component of u, which is again a contradiction. Therefore D∗

u(Vj) �= ∅ for every
component Vj of G \N [u].

In the following we investigate several properties of trapezoid graphs, in order to
derive the vertex-splitting algorithm Split-U in section 2.3.

Remark 1. Similar properties of trapezoid graphs have been studied in [6], leading
to another vertex-splitting algorithm, called Split-All. However, the algorithm pro-
posed in [6] is incorrect, since it is based on an incorrect property,2 as was also verified
by [7]. In the remainder of this section, we present new definitions and properties. In
the cases where a similarity arises with those of [6], we refer to it specifically.

The next lemma, which has been stated in Observation 3.1(4) of [6] (without a
proof), will be used in our analysis below. For the sake of completeness, we present
its proof in the following.

Lemma 5. Let R be a trapezoid representation of a trapezoid graph G, and let Vi

be a master component of a vertex u of G such that R(Vi)	R Tu. Then, Tu	R R(Vj)
for every component Vj ∈ D∗

u(Vi).
Proof. Suppose otherwise that R(Vj)	R Tu for some Vj ∈ D∗

u(Vi). Consider first
the case where R(Vj)	R R(Vi)	R Tu. Then, since Vi lies between Vj and Tu in R,
all trapezoids that intersect Tu and Vj must also intersect Vi. Thus, N(Vj) ⊆ N(Vi),
i.e., Vj ∈ Du(Vi), which is a contradiction, since Vj ∈ D∗

u(Vi). Consider now the case
where R(Vi)	R R(Vj)	R Tu. Then, we obtain similarly that N(Vi) ⊆ N(Vj). If
N(Vi) = N(Vj), then Vj ∈ Du(Vi), which is a contradiction to the assumption, since
Vj ∈ D∗

u(Vi). Otherwise, if N(Vi) � N(Vj), then Vi is not a master component of
u, which is again a contradiction to the assumption. Thus, Tu	R R(Vj) for every
Vj ∈ D∗

u(Vi).
In the following two definitions, we partition the neighbors N(u) of a vertex u

in a trapezoid graph G into four possibly empty sets. In the first definition, these
sets depend on the graph G itself and on two particular connected components Vi

2In [6], a different definition of a master component has been given. Namely, according to [6],
a component Vi is called a master component of u if |Du(Vi)| ≥ |Du(Vj)| for all j = 1, 2, . . . , ω. In
Observation 3.1(5) of [6], it is claimed that for an arbitrary trapezoid representation R of a connected
trapezoid graph G, where Vi is a master component of u such that D∗

u(Vi) �= ∅ and R(Vi) �R Tu,
it holds R(Du(Vi)) �R Tu �R R(D∗

u(Vi)). However, the first part of the latter inequality is not
true. For instance, in the trapezoid graph G of Figure 2, V2 = {v2} is a master component of u
(according to the definition of [6]), where D∗

u(V2) = {V3} = {{v3}}�= ∅ and R(V2) �R Tu. However,
V4 = {v4} ∈ Du(V2) and Tu �R Tv4 , and thus, R(Du(V2)) ��R Tu.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1241

and Vj of G \ N [u], while in the second one, they depend on a particular trapezoid
representation R of G.

Definition 6. Let G be a trapezoid graph, and let u be a vertex of G. Let Vi be
a master component of u, such that D∗

u(Vi) �= ∅, and let Vj be a maximal component
of D∗

u(Vi). Then, the vertices of N(u) are partitioned into four possibly empty sets:
1. N0(u, Vi, Vj): vertices not adjacent to either Vi or Vj,
2. N1(u, Vi, Vj): vertices adjacent to Vi but not to Vj,
3. N2(u, Vi, Vj): vertices adjacent to Vj but not to Vi,
4. N12(u, Vi, Vj): vertices adjacent to both Vi and Vj.

Definition 7. Let G be a trapezoid graph, R be a representation of G, and u
be a vertex of G. Denote by D1(u,R) and D2(u,R) the sets of trapezoids of R that
lie completely to the left and to the right of Tu in R, respectively. Then, the vertices
of N(u) are partitioned into four possibly empty sets:

1. N0(u,R): vertices not adjacent to either D1(u,R) or D2(u,R),
2. N1(u,R): vertices adjacent to D1(u,R) but not to D2(u,R),
3. N2(u,R): vertices adjacent to D2(u,R) but not to D1(u,R),
4. N12(u,R): vertices adjacent to both D1(u,R) and D2(u,R).

The following lemma connects the last two definitions; in particular, it states
that if R(Vi)	R Tu, then the partitions of the set N(u) defined in Definitions 6
and 7 coincide. This lemma will enable us to define in what follows a partition of the
set N(u), independently of any trapezoid representation R of G and regardless of any
particular connected components Vi and Vj of G \N [u]; cf. Definition 10.

Lemma 8. Let G be a trapezoid graph, R be a representation of G, and u be a
vertex of G. Let Vi be a master component of u such that D∗

u(Vi) �= ∅, and let Vj be a
maximal component of D∗

u(Vi). If R(Vi) 	R Tu, then NX(u, Vi, Vj) = NX(u,R) for
every X ∈ {0, 1, 2, 12}.

Proof. SinceD∗
u(Vi) �= ∅ andR(Vi)	R Tu, it follows by Lemma 5 that Tu	R R(Vj),

i.e., Vj ⊆ D2(u,R). Suppose that a component V� �= Vj is the leftmost one ofD2(u,R)
in R, i.e., Tu	R R(V�)	R R(Vj). Since V� lies between Tu and Vj in R, all trape-
zoids that intersect Tu and Vj must also intersect V�, and thus, N(Vj) ⊆ N(V�). It
follows that V� ∈ D∗

u(Vi), i.e., V� /∈ Du(Vi), since otherwise Vj ∈ Du(Vi), which is a
contradiction. Furthermore, since Vj is a maximal component of D∗

u(Vi), and since
N(Vj) ⊆ N(V�), it follows that N(Vj) = N(V�); i.e., NX(u, Vi, Vj) = NX(u, Vi, V�) for
every X ∈ {0, 1, 2, 12}.

Suppose that a component Vk �= Vi is the rightmost one of D1(u,R) in R, i.e.,
R(Vi)	R R(Vk)	R Tu. Then, Vk ∈ Du(Vi), since otherwise Tu	R R(Vk) by Lemma
5, which is a contradiction. Thus, N(Vk) ⊆ N(Vi). Furthermore, since Vk lies between
Vj and Tu in R, all trapezoids that intersect Tu and Vj must also intersect Vk, and thus,
N(Vi) ⊆ N(Vk). Therefore, N(Vi) = N(Vk), i.e., NX(u, Vi, V�) = NX(u, Vk, V�) for ev-
eryX ∈ {0, 1, 2, 12}, and thus, NX(u, Vi, Vj) = NX(u, Vk, V�) for everyX ∈ {0, 1, 2, 12}.

Now consider a vertex v ∈ N(u), and recall that Vk (resp., V�) is the rightmost
(resp., leftmost) component of D1(u,R) (resp., D2(u,R)) in R. Thus, if Tv inter-
sects at least one component of D1(u,R) (resp., D2(u,R)), then Tv intersects also
with Vk (resp., V�). On the other hand, if Tv does not intersect any component of
D1(u,R) (resp., D2(u,R)), then Tv clearly does not intersect Vk (resp., V�), since
Vk ⊆ D1(u,R) (resp., Vj ⊆ D2(u,R)). It follows that NX(u, Vk, V�) = NX(u,R),
and thus, NX(u, Vi, Vj) = NX(u,R) for every X ∈ {0, 1, 2, 12}. This proves the
lemma.

Note that, given a trapezoid representation R of G, we may assume in Lemma 8
without loss of generality that R(Vi)	RTu, by possibly performing a vertical axis

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1242 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

flipping of R. Thus, we can now state the following definition of the sets δu and δ∗u,
regardless of the choice of the components Vi and Vj of u.

Definition 9. Let G = (V,E) be a trapezoid graph, u be a vertex of G, and Vi

be an arbitrarily chosen master component of u. Then, δu = Vi and
1. if D∗

u(Vi) = ∅, then δ∗u = ∅;
2. if D∗

u(Vi) �= ∅, then δ∗u = Vj for an arbitrarily chosen maximal component Vj ∈
D∗

u(Vi).
From now on, whenever we speak about δu and δ∗u, we assume that these arbitrary

choices of Vi and Vj have been already made. Now, we are ready to define the following
partition of the set N(u), which will be used for the vertex splitting in Algorithm
Split-U ; cf. Definition 13.

Definition 10. Let G be a trapezoid graph and u be a vertex of G. The vertices
of N(u) are partitioned into four possibly empty sets:

1. N0(u): vertices not adjacent to either δu or δ∗u,
2. N1(u): vertices adjacent to δu but not to δ∗u,
3. N2(u): vertices adjacent to δ∗u but not to δu,
4. N12(u): vertices adjacent to both δu and δ∗u.

The next corollary follows now from Lemma 8 and Definitions 9 and 10. Intu-
itively, Corollary 11 states that, by possibly performing a vertical axis flipping of a
given trapezoid representation R of G, the components Vi and Vj of Definition 6 can
be thought of as the rightmost (resp., leftmost) connected component of G \N [u] to
the left (resp., to the right) of Tu in R.

Corollary 11. Let G be a trapezoid graph, R be a representation of G, and u
be a vertex of G with δ∗u �= ∅. Let Vi be the master component of u that corresponds
to δu. If R(Vi)	R Tu, then NX(u) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

The next lemma, which connects δ∗u with the sets N1(u,R) and N2(u,R) in an
arbitrary trapezoid representation R (see Definition 7), will be used in the proof of
Theorem 15.

Lemma 12. Let G be a trapezoid graph, R be a trapezoid representation of G,
and u be a vertex of G. Then, δ∗u �= ∅ if and only if N1(u,R) �= ∅ and N2(u,R) �= ∅.

Proof. Recall first by Definition 7 that D1(u,R) and D2(u,R) are the sets of
trapezoids of R that lie completely to the left and to the right of Tu in R, respectively.
Furthermore, recall by Definition 7 that N1(u,R) are the neighbors of u that are
adjacent to D1(u,R) but not to D2(u,R), while N2(u,R) are the neighbors of u that
are adjacent to D2(u,R) but not to D1(u,R).

Suppose first that δ∗u �= ∅. Let δu = Vi and δ∗u = Vj , where Vi is a master
component of u and Vj is a maximal component of D∗

u(Vi). By possibly performing a
vertical axis flipping of R, we may assume without loss of generality that R(Vi)	R Tu,
and thus Corollary 11 implies that N1(u) = N1(u,R) and N2(u) = N2(u,R). Recall
by Definition 10 that N(Vi) = N1(u) ∪ N12(u) and that N(Vj) = N2(u) ∪ N12(u).
Assume that N2(u) = ∅. Then N(Vj) = N12(u) ⊆ N1(u) ∪ N12(u) = N(Vi), i.e.,
N(Vj) ⊆ N(Vi), and thus Vj ∈ Du(Vi), which is a contradiction. Therefore N2(u) �= ∅,
and thus also N2(u,R) �= ∅. Assume now that N1(u) = ∅. Then N(Vi) = N12(u) ⊆
N2(u) ∪ N12(u) = N(Vj), i.e., N(Vi) ⊆ N(Vj). If N(Vi) � N(Vj), then Vi is not
a master component, which is a contradiction. Otherwise, if N(Vi) = N(Vj), then
Vj ∈ Du(Vi), which is again a contradiction. Therefore N1(u) �= ∅, and thus also
N1(u,R) �= ∅. Summarizing, if δ∗u �= ∅, then N1(u,R) �= ∅ and N2(u,R) �= ∅.

Conversely, suppose that N1(u,R) �= ∅ and N2(u,R) �= ∅. Assume that δ∗u = ∅.
Let Vi be the master component of u that corresponds to δu. Then, since δ∗u = ∅, it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1243

Algorithm 1. Split-U .

Input: A trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that
δ∗ui
�= ∅ for all i = 1, 2, . . . , k

Output: The permutation graph G#(U)

U ← V (G) \ U ; H0 ← G

for i = 1 to k do
Hi ← H#

i−1(ui) {Hi is obtained by the vertex splitting of ui in Hi−1}
end for
G#(U)← Hk[V (Hk) \ U] {remove from Hk all unsplitted vertices}
return G#(U)

follows that D∗
u(Vi) = ∅. By possibly performing a vertical axis flipping of R, we may

assume without loss of generality that R(Vi)	R Tu, and thus Corollary 11 implies
that N1(u) = N1(u,R). Now, since R(Vi)	R Tu and N2(u,R) �= ∅, there exist by
Definition 7 a vertex v /∈ N(u) and a vertex v′ ∈ N(u), such that Tu	R Tv and
v′ ∈ N(v) \ N(Vi). Let Vj be the connected component of G \ N [u] that contains
vertex v. Then v′ ∈ N(Vj) \N(Vi), and thus N(Vj) � N(Vi); i.e., Vj ∈ D∗

u(Vi). This
is a contradiction, since D∗

u(Vi) = ∅. Therefore δ∗u �= ∅. This completes the proof of
the lemma.

2.3. A splitting algorithm. We define now the splitting of a vertex u of a
trapezoid graph G, where δ∗u �= ∅. Note that this splitting operation does not depend
on any trapezoid representation of G. Intuitively, if the graph G was given along
with a specific trapezoid representation R, this would have meant that we replace the
trapezoid Tu in R by its two lines l(Tu) and r(Tu).

Definition 13. Let G be a trapezoid graph and u be a vertex of G, where δ∗u �= ∅.
The graph G#(u) obtained by the vertex splitting of u is defined as follows:

1. V (G#(u)) = V (G)\{u}∪{u1, u2}, where u1 and u2 are the two new vertices.
2. E(G#(u)) = E[V (G) \ {u}] ∪ {u1x | x ∈ N1(u)} ∪ {u2x | x ∈ N2(u)} ∪
{u1x, u2x | x ∈ N12(u)}.

The vertices u1 and u2 are the derivatives of vertex u.
We now state the notion of a standard trapezoid representation with respect to

a particular vertex.
Definition 14. Let G be a trapezoid graph and u be a vertex of G, where δ∗u �= ∅.

A trapezoid representation R of G is standard with respect to u if the following
properties are satisfied:

1. l(Tu)	R R(N0(u) ∪N2(u)).
2. R(N0(u) ∪N1(u))	R r(Tu).

Now, given a trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such
that δ∗ui

�= ∅, N1(ui) \ U �= ∅, and N2(ui) \ U �= ∅, for every i = 1, 2, . . . , k, Algorithm
Split-U returns a graph G#(U) by splitting every vertex of U exactly once. At every
step, Algorithm Split-U splits a vertex of U , and finally, it removes all vertices of the
set V (G) \ U which have not been split.

Remark 2. As mentioned in Remark 1, a similar algorithm, called Split-All,
was presented in [6]. We would like to emphasize here the following four differences
between the two algorithms. First, Split-All gets as input a sibling-free graph G (two
vertices u, v of a graph G are called siblings if N [u] = N [v]; G is called sibling-free
if G has no pair of sibling vertices), while our Algorithm Split-U gets as an input

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1244 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

any graph (though we will use it only for trapezoid graphs), which may contain pairs
of sibling vertices. Second, Split-All splits all the vertices of the input graph, while
Split-U splits only a subset of them which satisfy a special property. Third, the
order of vertices that are split by Split-All depends on a certain property (inclusion-
minimal neighbor set), while Split-U splits the vertices in an arbitrary order. Last, the
main difference between these two algorithms is that they perform a different vertex
splitting operation at every step, since Definitions 9 and 10 do not comply with the
corresponding Definitions 4.1 and 4.2 of [6].

Theorem 15. Let G be a trapezoid graph and U = {u1, u2, . . . , uk} be a vertex
subset of G, such that δ∗ui

�= ∅, N1(ui) \ U �= ∅, and N2(ui) \ U �= ∅ for every i =
1, 2, . . . , k. Then, the graph G#(U) obtained by Algorithm Split-U is a permutation
graph with 2k vertices. Furthermore, if G is acyclic, then G#(U) is acyclic with
respect to {u1

i , u
2
i }ki=1, where u1

i and u2
i are the derivatives of ui, i = 1, 2, . . . , k.

Proof. Let R be a trapezoid representation of G. In order to prove that the graph
G#(U) constructed by Algorithm Split-All is a permutation graph, we will construct
from R a permutation representation R#(U) of G#(U). To this end, we will construct
sequentially, for every i = 1, 2, . . . , k, a standard trapezoid representation ofHi−1 with
respect to ui, in which all derivatives u1

j , u
2
j , 1 ≤ j ≤ i− 1, are represented by trivial

trapezoids, i.e., lines.
Let u = u1. If R is not a standard representation with respect to u, we construct

first from R a trapezoid representation R′ of G that satisfies the first condition of
Definition 14. Then, we construct from R′ a trapezoid representation R′′ of G that
satisfies also the second condition of Definition 14; i.e., R′′ is a standard trapezoid
representation R′ of G with respect to u.

For the sake of presentation, we divide the proof of the theorem into several parts.

Properties of the representation R. Let Vi be the master component of
u that corresponds to δu. By possibly performing a vertical axis flipping of R, we
may assume without loss of generality that R(Vi) 	R Tu. Furthermore, the sets
N0(u), N1(u), N2(u), and N12(u) coincide by Corollary 11 with the sets N0(u,R),
N1(u,R), N2(u,R), andN12(u,R), respectively. Recall that, by Definition 7,D1(u,R)
and D2(u,R) denote the sets of trapezoids of R that lie completely to the left and to
the right of Tu in R, respectively.

Let px and qx be the endpoints on L1 and L2, respectively, of the left line l(Tx)
of an arbitrary trapezoid Tx in R. Suppose that N0(u) ∪ N2(u) �= ∅. Let pv and qw
be the leftmost endpoints on L1 and L2, respectively, of the trapezoids of N0(u) ∪
N2(u), and suppose that pv < pu and qw < qu; cf. Figure 3(a). Note that, possibly,
v = w. Then, all vertices x for which Tx has an endpoint between pv and pu on
L1 (resp., between qw and qu on L2) are adjacent to u. Indeed, suppose otherwise
that Tx ∩ Tu = ∅ for such a vertex x. Then, Tx 	R Tu, i.e., x ∈ D1(u,R), since
Tx has an endpoint to the left of Tu in R. Furthermore, since Tv ∩ Tu �= ∅ (resp.,
Tw ∩ Tu �= ∅), it follows that Tx ∩ Tv �= ∅ (resp., Tx ∩ Tw �= ∅). However, since
x ∈ D1(u,R), it follows that v ∈ N1(u,R) ∪ N12(u,R) = N1(u) ∪ N12(u) (resp.,
w ∈ N1(u,R) ∪N12(u,R) = N1(u) ∪N12(u)), which is a contradiction.

Consider now a vertex z ∈ N1(u) ∪ N12(u) with l(Tz) 	R l(Tu), where pv <
pz < pu (cf. the vertices z1 and z2 in Figure 3(a)). Then, qz < qw. Indeed, suppose
otherwise that qw < qz (recall that all endpoints are assumed to be distinct). Then,
since z ∈ N1(u) ∪ N12(u), there exists a vertex x ∈ D1(u,R), i.e., with Tx 	R Tu,
such that Tz ∩ Tx �= ∅. Since v, w ∈ N0(u) ∪N2(u), it follows that Tv ∩ Tx = ∅ and
Tw ∩ Tx = ∅, and thus, Tx 	R Tv and Tx 	R Tw. Therefore, since pv < pz and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1245

pu

qu

pv

qwqz1 qz2

pz1pz2

Tu

D∗
u

L2

L1

Du

R :

qz′

pz′

(a)

pu

qu

pv

qwqz1 qz2

pz1pz2

L2

L1

D∗
u

TuR′ :
Du

qz′

pz′

(b)

Fig. 3. The movement of the left line l(Tu) of the trapezoid Tu, in order to construct a standard
trapezoid representation with respect to u.

qw < qz, we obtain that Tx 	R Tz, and thus, Tz ∩Tx = ∅, which is a contradiction. It
follows that qz < qw. Moreover, z is adjacent to all vertices x in G whose trapezoid Tx

has an endpoint on L1 between pv and pz, including pv. Indeed, otherwise, Tx 	R Tz,
and thus, Tx 	R Tu, since l(Tz) 	R l(Tu). This is, however, a contradiction, since
x ∈ N(u), as we have proved above. Similarly, if qw < qz < qu, then pz < pv and z is
adjacent to all vertices x in G whose trapezoid Tx has an endpoint on L2 between qw
and qz , including qw (cf. vertex z′ in Figure 3(a)).

Construction of the representation R′. We now construct from R a new
trapezoid representation R′ of G as follows. First, for all vertices z ∈ N1(u)∪N12(u)
with l(Tz)	R l(Tu) for which pv < pz < pu (and thus qz < qw), we move the end-
point pz of l(Tz) directly before pv on L1 (cf. the vertices z1 and z2 in Figures 3(a)
and 3(b)). Then, for all vertices z′ ∈ N1(u) ∪N12(u) with l(Tz′)	R l(Tu) for which
qw < qz′ < qu (and thus pz < pv), we move the endpoint qz′ of l(Tz′) directly before
qw on L2 (cf. vertex z′ in Figures 3(a) and 3(b)). During the movement of all these
lines l(Tz) (resp., l(Tz′)), we keep the same relative positions of their endpoints pz
on L1 (resp., qz′ on L2) as in R, and thus we introduce no new line intersection among
the lines of the trapezoids of G. Since all these vertices z (resp., z′) are adjacent to
all vertices x of G whose trapezoid Tx has an endpoint on L1 (resp., L2) between pv
and pz, including pv (resp., between qw and qz , including qw), these movements do
not remove any adjacency from and do not add any new adjacency to G.

Finally, we move both endpoints pu and qu of l(Tu) directly before pv and qw
on L1 and L2, respectively. Since u is adjacent to all vertices x for which Tx has an
endpoint between pv and pu on L1, or between qw and qu on L2 in R, the resulting
representation R′ is a trapezoid representation of G, in which the first condition of
Definition 14 is satisfied. Since we moved all lines l(Tz) and l(Tz′) to the left of Tv

and Tw, R
′ has no additional line intersections than R. Moreover, note that for any

line intersection of two lines a and b in R′, the relative position of the endpoints of
a and b on L1 and L2 remains the same as in R. In the case where pv > pu (resp.,
qw > qu), in the above construction we replace pv by pu (resp., qw by qu), while in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1246 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

the case where N0(u)∪N2(u) = ∅, we define R′ = R. An example of the construction
of R′ is given in Figure 3. In this example, v ∈ N0(u), w ∈ N2(u), z1, z

′ ∈ N1(u), and
z2 ∈ N12(u).

Construction of the representation R′′. If R′ is not a standard trapezoid
representation with respect to u, then we move r(Tu) to the right (similarly to the
above), thus obtaining a trapezoid representation R′′ of G, in which the second con-
dition of Definition 14 is satisfied. Since during the construction of R′′ from R′ only
the line r(Tu) and other lines that lie completely to the right of r(Tu) are moved to
the right, the first condition of Definition 14 is satisfied for R′′ as well. Thus, R′′ is a
standard representation of G with respect to u. Similarly to R′, R′′ has no additional
line intersections than R. Moreover, for any line intersection of two lines a and b in
R′′, the relative position of the endpoints of a and b on L1 and L2 remains the same
as in R.

Splitting of vertex u. Since R′′ is standard with respect to u, the left line l(Tu)
of Tu in R′′ intersects exactly with those trapezoids Tz for which z ∈ N1(u) ∪ N12(u).
On the other hand, the right line r(Tu) of Tu in R′′ intersects exactly with those
trapezoids Tz for which z ∈ N2(u) ∪ N12(u). Thus, if we replace in R′′ the trape-
zoid Tu by the two trivial trapezoids (lines) l(Tu) and r(Tu), we obtain a trapezoid
representation R#(u) of the graph G#(u) defined in Definition 13.

Now consider a vertex v ∈ {u2, u3, . . . , uk}. Recall by the assumption in the
statement of the theorem that δ∗v �= ∅, N1(v) \ U �= ∅, and N2(v) \ U �= ∅ in G (before
the splitting of vertex u). We prove in the next claim that the same conditions on v
also remain true in the trapezoid graph G#(u) (after the splitting of vertex u), and
thus the above construction can be iteratively applied to eventually split all vertices
of U .

Claim 1. Let v ∈ {u2, u3, . . . , uk}. Then, in G#(u) (i.e., after the splitting of
u = u1), it remains δ∗v �= ∅, N1(v) \ U �= ∅, and N2(v) \ U �= ∅.

Proof of Claim 1. Let Vi and Vj be the components that correspond to δv and
δ∗v , respectively (before the vertex splitting of u). By possibly performing a vertical
axis flipping of R′′, we may assume without loss of generality that R′′(Vi) 	R′′ Tv,
and thus Corollary 11 implies that N1(v) = N1(v,R

′′) and N2(v) = N2(v,R
′′). Since

by assumption N1(v) \ U �= ∅ and N2(v) \ U �= ∅ before the splitting of u, there exist
vertices xv ∈ N1(v) = N1(v,R

′′) and yv ∈ N2(v) = N2(v,R
′′) such that xv, yv /∈ U .

That is, the trapezoid Txv is adjacent to the trapezoids to the left (but not to the
right) of Tv in R′′, and the trapezoid Tyv is adjacent to the trapezoids to the right (but
not to the left) of Tv in R′′. Furthermore, since xv, yv /∈ U , the trapezoids Txv and Tyv

are never split during the execution of Algorithm Split-U . Thus, in particular, Txv

and Tyv remain unchanged in both R′′ and R#(u), i.e., both before and after the
splitting of vertex u.

Now let ul and ur be the two derivatives of vertex u which correspond to the
lines l(Tu) and r(Tu) of Tu, respectively. Suppose first that v ∈ N(u) (before the
splitting of u). Then, in R#(u), each of the lines of ul and ur either intersects Tv or
lies to the left/right of Tv. In both cases, the trapezoid Txv remains adjacent to the
trapezoids to the left (but not to the right) of Tv in R#(u), and the trapezoid Tyv

remains adjacent to the trapezoids to the right (but not to the left) of Tv in R#(u).
Suppose now that u /∈ N(u) (before the splitting of u), i.e., either Tu 	R′′ Tv or
Tv 	R′′ Tu. Since the two cases are exactly symmetrical, it suffices to consider only
the case where Tu 	R′′ Tv. In this case, u ∈ N(xv) before the splitting of u if and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1247

only if ur ∈ N(xv) after the splitting of u. Furthermore, since yv ∈ N2(v,R
′′), it

follows that u /∈ N(yv) before the splitting of u and also that ul, ur /∈ N(yv) after the
splitting of u. Thus, the trapezoid Txv remains adjacent to the trapezoids to the left
(but not to the right) of Tv in R#(u), and the trapezoid Tyv remains adjacent to the
trapezoids to the right (but not to the left) of Tv in R#(u).

Summarizing, in both cases where v ∈ N(u) and v /∈ N(u) before the splitting of
u, it follows that xv ∈ N1(v,R

#(u)) and yv ∈ N2(v,R
#(u)) after the splitting of u.

Therefore, since xv, yv /∈ U , it follows thatN1(v,R
#(u)) \ U �= ∅ andN2(v,R

#(u)) \ U
�= ∅ after the splitting of u. Furthermore, sinceN1(v,R

#(u)) �=∅ andN2(v,R
#(u)) �=∅,

Lemma 12 implies that δ∗u �= ∅ after the splitting of u. Therefore, Corollary 11 implies
that the setsN1(v) andN2(v) are the same as the setsN1(v,R

#(u)) andN2(v,R
#(u)),

and thus also N1(v) \ U �= ∅ and N2(v) \ U �= ∅ after the splitting of u. Summarizing,
after the splitting of u = u1, we have that δ∗v �= ∅, N1(v) \ U �= ∅, and N2(v) \ U �= ∅
for every v ∈ {u2, u3, . . . , uk}.

Iterative splitting of all the vertices of the set U . Due to Claim 1, we can
iteratively apply the above construction for all u = ui, where i = 2, 3, . . . , k; i.e., we
can split sequentially all vertices of U exactly once. Then, after k vertex splittings,
and after removing from the resulting graph the vertices of U = V (G)\U , we obtain a
trapezoid representation R#(U) of the graph G#(U) returned by Algorithm Split-U .
Since every trapezoid Tu, u ∈ U , has been replaced by two trivial trapezoids (i.e.,
lines) in R#(U), it follows that G#(U) is a permutation graph with 2k vertices, and
R#(U) is a permutation representation of G#(U).

Acyclicity of the permutation graph G#(U). Finally, suppose that R is
an acyclic trapezoid representation of G. According to Definition 2, let P be the
permutation graph with 2n vertices corresponding to the left and right lines of the
trapezoids in R, let RP be the permutation representation of P induced by R, and let
{u1

i , u
2
i } be the vertices of P that correspond to the same vertex ui ofG, i = 1, 2, . . . , n.

Since R is an acyclic trapezoid representation of G, it follows by Definition 2 that RP

is an acyclic permutation representation with respect to {u1
i , u

2
i }ni=1. That is, the

simple directed graph FRP obtained (according to Definition 1) by merging u1
i and

u2
i in P into a single vertex ui, for every i = 1, 2, . . . , n, has no directed cycle.

Since, during the construction of R#(U), the trapezoid representation obtained
after every vertex splitting has no additional line intersections than the previous one,
it follows that R#(U) has no additional line intersections than R. Moreover, for any
line intersection of two lines a and b in R#(U), the relative position of the endpoints
of a and b on L1 and L2 remains the same as in R. Thus, the simple directed graph
FR#(U) obtained (according to Definition 1) by merging u1

i and u2
i in G#(U) into a

single vertex ui, for every i = 1, 2, . . . , k, is a subdigraph of FRP . Therefore, since
FRP has no directed cycle, FR#(U) has no directed cycle as well; i.e., G#(U) is an

acyclic permutation graph with respect to {u1
i , u

2
i }ki=1. This completes the proof of

the theorem.

3. The recognition of bounded tolerance graphs. In this section we pro-
vide a reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT)
problem to the problem of recognizing whether a given graph is a bounded tolerance
graph. A boolean formula φ is called monotone if no variable in φ is negated. Given
a monotone boolean formula φ in conjunctive normal form with three literals in each
clause (3-CNF), φ is NAE-satisfiable if there is a truth assignment of φ such that
every clause contains at least one true literal and at least one false one. The problem

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1248 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

of deciding whether a given 3-CNF formula φ is NAE-satisfiable is known to be NP-
complete [30]. In the next lemma we provide a reduction of the NAE-3-SAT problem
to the monotone-NAE-3-SAT problem, which proves that monotone-NAE-3-SAT is
NP-complete.

Lemma 16. The monotone-NAE-3-SAT problem is NP-complete.
Proof. To reduce NAE-3-SAT to monotone-NAE-3-SAT, first consider a 3-CNF

formula φ (the input of NAE-3-SAT). We construct from φ a monotone 3-CNF for-
mula φ′ as follows. Replace each appearance of a variable x in φ with two variables
x0 and x1 (depending on whether x appears negated or not), add variables x2, x3, x4,
and add the clauses (x0 ∨ x1 ∨ x2), (x0 ∨ x1 ∨ x3), (x0 ∨ x1 ∨ x4), and (x2 ∨ x3 ∨ x4).
Then, it is easy to check that the constructed 3-CNF formula φ′ is monotone (i.e.,
no variable appears negated in φ′) and that φ′ is NAE-satisfiable if and only if φ is
NAE-satisfiable.

We can assume in the following without loss of generality that each clause has
three distinct literals, i.e., variables. Given a monotone 3-CNF formula φ, we construct
in polynomial time a trapezoid graph Hφ such that Hφ is a bounded tolerance graph
if and only if φ is NAE-satisfiable. To this end, we first construct a permutation
graph Pφ and a trapezoid graph Gφ.

3.1. The permutation graph Pφ. Consider a monotone 3-CNF formula φ =
α1 ∧ α2 ∧ · · · ∧ αk with k clauses and n boolean variables x1, x2, . . . , xn, such that
αi = (xri,1 ∨ xri,2 ∨ xri,3) for i = 1, 2, . . . , k, where 1 ≤ ri,1 < ri,2 < ri,3 ≤ n. We con-
struct the permutation graph Pφ, along with a permutation representation RP of Pφ,
as follows. Let L1 and L2 be two parallel lines, and let θ(�) denote the angle of the
line � with L2 in RP . For every clause αi, i = 1, 2, . . . , k, we associate with each of
the literals, i.e., variables, xri,1 , xri,2 , and xri,3 a pair of intersecting lines with end-
points on L1 and L2. Namely, we associate with the variable xri,1 the pair {ai, ci},
with xri,2 the pair {ei, bi}, and with xri,3 the pair {di, fi}, respectively, such that
θ(ai) > θ(ci), θ(ei) > θ(bi), θ(di) > θ(fi) and such that the lines ai, ci lie completely
to the left of ei, bi in RP , and ei, bi lie completely to the left of di, fi in RP , as illus-
trated in Figure 4. Denote the lines that correspond to the variable xri,j , j = 1, 2, 3,
by �1i,j and �2i,j, respectively, such that θ(�1i,j) > θ(�2i,j). That is, (�1i,1, �

2
i,1) = (ai, ci),

(�1i,2, �
2
i,2) = (ei, bi), and (�1i,3, �

2
i,3) = (di, fi). Note that no line of a pair {�1i,j, �2i,j}

intersects with a line of another pair {�1i′,j′ , �2i′,j′}.

L1

L2

�1i,1 = ai �2i,1 = ci �1i,2 = ei �2i,2 = bi �1i,3 = di �2i,3 = fi

xri,1 xri,2 xri,3

θ(ai)

Fig. 4. The six lines of the permutation graph Pφ, which correspond to the clause αi =
(xri,1 ∨ xri,2 ∨ xri,3) of the boolean formula φ.

Denote by Sp, p = 1, 2, . . . , n, the set of pairs {�1i,j, �2i,j} that correspond to the

variable xp, i.e., ri,j = p. We order the pairs {�1i,j, �2i,j} such that any pair of Sp1

lies completely to the left of any pair of Sp2 whenever p1 < p2, while the pairs that
belong to the same set Sp are ordered arbitrarily. For two consecutive pairs {�1i,j, �2i,j}
and {�1i′,j′ , �2i′,j′} in Sp, where {�1i,j, �2i,j} lies to the left of {�1i′,j′ , �2i′,j′}, we add a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1249

pair {ui′,j′
i,j , vi

′,j′
i,j } of parallel lines that intersect both �1i,j and �1i′,j′ , but no other

line. Note that θ(�1i,j) > θ(ui′,j′
i,j) and θ(�1i′,j′) > θ(ui′,j′

i,j), while θ(ui′,j′
i,j) = θ(vi

′,j′
i,j).

This completes the construction. Denote the resulting permutation graph by Pφ, and
the corresponding permutation representation of Pφ by RP . Observe that Pφ has n
connected components, which are called blocks, one for each variable x1, x2, . . . , xn.

An example of the construction of Pφ and RP from φ with k = 3 clauses and

n = 4 variables is illustrated in Figure 5. In this figure, the lines ui′,j′
i,j and vi

′,j′
i,j are

drawn in bold.
The formula φ has 3k literals, and thus the permutation graph Pφ has 6k lines

�1i,j , �
2
i,j in RP , one pair for each literal. Furthermore, two lines ui′,j′

i,j , vi
′,j′
i,j correspond

to each pair of consecutive pairs {�1i,j, �2i,j} and {�1i′,j′ , �2i′,j′} in RP , except for the
case where these pairs of lines belong to different variables, i.e., when ri,j �= ri′,j′ .

Therefore, since φ has n variables, there are 2(3k − n) = 6k − 2n lines ui′,j′
i,j , vi

′,j′
i,j

in RP . Thus, RP has in total 12k − 2n lines; i.e., Pφ has 12k − 2n vertices. In the
example of Figure 5, k = 3, n = 4, and thus, Pφ has 28 vertices.

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2

x1 x2 x3 x4

b1e1

RP :

Fig. 5. The permutation representation RP of the permutation graph Pφ for φ = α1∧α2∧α3 =
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Let m = 6k − n, where 2m is the number of vertices in Pφ. We group the lines
of RP , i.e., the vertices of Pφ, into pairs {u1

i , u
2
i }mi=1, as follows. For every clause

αi, i = 1, 2, . . . , k, we group the lines ai, bi, ci, di, ei, fi into the three pairs {ai, bi},
{ci, di}, and {ei, fi}. The remaining lines are grouped naturally according to the

construction; namely, every two lines {ui′,j′
i,j , vi

′,j′
i,j } constitute a pair.

Lemma 17. If the permutation graph Pφ is acyclic with respect to {u1
i , u

2
i }mi=1,

then the formula φ is NAE-satisfiable.
Proof. Suppose that Pφ is acyclic with respect to {u1

i , u
2
i }mi=1, and let R0 be an

acyclic permutation representation of Pφ with respect to {u1
i , u

2
i }mi=1. Then, in partic-

ular, R0 is acyclic with respect to {ai, bi}, {ci, di}, {ei, fi} for every i = 1, 2, . . . , k. We
will construct a truth assignment of the variables x1, x2, . . . , xn that NAE-satisfies φ,
as follows. For every i = 1, 2, . . . , k, we define xri,1 = 1 if and only if θ(ci) < θ(ai) in
R0, xri,2 = 1 if and only if θ(bi) < θ(ei) in R0, and xri,3 = 1 if and only if θ(f i) < θ(di)
in R0.

Note that this assignment is consistent; that is, all variables xri,j that correspond
to the same xk are assigned the same value. Indeed, every block (i.e., connected com-
ponent) of the permutation graph Pφ is a very particular graph, namely, an odd path
with pendent vertices on alternating vertices and duplicating the other vertices. It is
easy to see that each such connected component of Pφ has exactly two permutation
representations (related by the horizontal axis flipping), where these representations
correspond to the values 0 and 1 of xk in the assignment, respectively. In other words,

the existence of the lines ui′,j′
i,j , vi

′,j′
i,j (cf. the bold lines in Figure 6(a)) forces all pairs

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1250 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2b1e1

x1 = 1 x2 = 1 x3 = 0 x4 = 0

R0 :

(a)

d1 e1 f1c1

a1

b1

x2 = 1
x1 = 1

x3 = 0

x2 = 1
x3 = 0 x2 = 1x1 = 1

α1 α2 α3

x4 = 0

x4 = 0

a2

b2

c2

d2 e2 f2 c3

d3 e3 f3

a3

b3

ΦR0 :

(b)

Fig. 6. The NAE-satisfying truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of the formula φ
of Figure 5: (a) an acyclic permutation representation R0 of Pφ and (b) the corresponding transitive
orientation ΦR0

of Pφ.

of crossing lines {�1i,j, �2i,j} in the same connected component to correspond to either 0
or 1 in the assignment.

Now, we show that in each clause αi, i = 1, 2, . . . , k, there exists at least one
true and at least one false variable. For an arbitrary index i ∈ {1, 2, . . . , k}, let Pi

be the subgraph induced by the vertices ai, bi, ci, di, ei, fi in Pφ, and let Ri be the
permutation representation of Pi, which is induced by R0. According to Definition 1,
we construct the simple directed graph FRi by merging into a single vertex each of
the pairs {ai, bi}, {ci, di}, and {ei, fi} of vertices of Pi. The arc directions of FRi are
implied by the corresponding directions in ΦRi (or, equivalently, in ΦR0). Then, since
R0 is acyclic with respect to {ai, bi} ∪ {ci, di} ∪ {ei, fi}, so is Ri. Thus, it follows by
Definition 1 that FRi has no directed cycle. Therefore, it does not hold simultaneously
that ciai, biei, fidi ∈ ΦR0 or that aici, eibi, difi ∈ ΦR0 . That is, it does not hold si-
multaneously that θ(ci) < θ(ai), θ(bi) < θ(ei), and θ(f i) < θ(di) or that θ(ai) < θ(ci),
θ(ei) < θ(bi), and θ(di) < θ(f i) in R0, respectively. Then, by the definition of the
above truth assignment, it does not hold simultaneously that xri,1 = xri,2 = xri,3 = 1
or xri,1 = xri,2 = xri,3 = 0, and therefore, the clause αi = (xri,1 ∨ xri,2 ∨ xri,3) is NAE-
satisfied. Finally, since this holds for every i = 1, 2, . . . , k, φ is NAE-satisfiable.

Note here that the converse of Lemma 17 is also true; i.e., if the formula φ is NAE-
satisfiable, then the permutation graph Pφ is acyclic with respect to {u1

i , u
2
i }mi=1 (this

can be easily proved, similarly to the necessity part of the proof of Theorem 19 below).
That is, the permutation graph Pφ is acyclic with respect to {u1

i , u
2
i }mi=1 if and only

if the monotone formula φ is NAE-satisfiable. Therefore, since the monotone-NAE-3-
SAT problem is NP-complete by Lemma 16, it follows that, given a permutation graph

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1251

L1

L2

u2
iu1

i

Tui

Tui,2 Tui,1Tui,3 Tui,4 Tui,5 Tui,6

Fig. 7. The addition of the six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 to the trapezoid Tui ,
i = 1, 2, . . . ,m, in the construction of the trapezoid graph Hφ from Gφ.

P with vertices {u1
1, u

2
1, . . . , u

1
m, u2

m}, it is NP-hard to decide whether P is acyclic with
respect to {u1

i , u
2
i }mi=1.

For the formula φ of Figure 5, an example of an acyclic permutation representation
R0 of Pφ with respect to {u1

i , u
2
i }mi=1, along with the corresponding transitive orien-

tation ΦR0 of Pφ, is illustrated in Figure 6. This transitive orientation corresponds
to the NAE-satisfying truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of φ. Similarly to

Figure 5, the lines ui′,j′
i,j and vi

′,j′
i,j are drawn in bold in Figure 6(a). Furthermore, for

better visibility, the vertices that correspond to these lines are grouped in shadowed
ellipses in Figure 6(b), while the arcs incident to them are drawn dashed.

3.2. The trapezoid graphs Gφ and Hφ. Let {u1
i , u

2
i }mi=1 be the pairs of

vertices in the constructed permutation graph Pφ, and let RP be its permutation
representation. We now construct from Pφ the trapezoid graph Gφ with m vertices
{u1, u2, . . . , um}, as follows. We replace in the permutation representation RP for
every i = 1, 2, . . . ,m the lines u1

i and u2
i by the trapezoid Tui , which has u1

i and u2
i as

its left and right lines, respectively. Let RG be the resulting trapezoid representation
of Gφ.

Finally, we construct from Gφ the trapezoid graphHφ with 7m vertices, by adding
to every trapezoid Tui , i = 1, 2, . . . ,m, six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 in the
trapezoid representation RG, as follows. Let ε be the smallest distance in RG between
two different endpoints on L1, or on L2. The right (resp., left) line of Tu1,1 lies to the
right (resp., left) of u1

1 and is parallel to it at distance ε
2 . The right (resp., left) line of

Tu1,2 lies to the left of u1
1 and is parallel to it at distance ε

4 (resp., 3ε
4). Moreover, the

right (resp., left) line of Tu1,3 lies to the left of u1
1 and is parallel to it at distance 3ε

8
(resp., 7ε

8). Similarly, the left (resp., right) line of Tu1,4 lies to the left (resp., right)
of u2

1 and is parallel to it at distance ε
2 . The left (resp., right) line of Tu1,5 lies to the

right of u2
1 and is parallel to it at distance ε

4 (resp., 3ε
4). Finally, the right (resp., left)

line of Tu1,6 lies to the right of u2
1 and is parallel to it at distance 3ε

8 (resp., 7ε
8), as

illustrated in Figure 7.
After adding the parallelograms Tu1,1 , Tu1,2 , . . . , Tu1,6 to a trapezoid Tu1 , we up-

date the smallest distance ε between two different endpoints on L1, or on L2 in
the resulting representation, and we continue the construction iteratively for all i =
2, . . . ,m. Denote by Hφ the resulting trapezoid graph with 7m vertices and by RH

the corresponding trapezoid representation. Note that in RH , between the endpoints
of the parallelograms Tui,1 , Tui,2 , and Tui,3 (resp., Tui,4 , Tui,5 , and Tui,6) on L1 and
L2, there are no other endpoints of Hφ, except those of u1

i (resp., u2
i) for every

i = 1, 2, . . . ,m. The next lemma is crucial in the proof of Theorem 19.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1252 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

Lemma 18. In the trapezoid graph Hφ, let U = {u1, u2, . . . , um}. Then δ∗ui
�= ∅,

N1(ui) \ U �= ∅, and N2(ui) \ U �= ∅ for every i = 1, 2, . . . ,m.
Proof. Consider the trapezoid representation RH of Hφ. Let i ∈ {1, 2, . . . ,m}.

Recall by Definition 7 that D1(ui, RH) (resp., D2(ui, RH)) denotes the set of trape-
zoids of Hφ that lie completely to the left (resp., to the right) of Tui in RH . In
particular, Tui,2 , Tui,3 ∈ D1(ui, RH) and Tui,5 , Tui,6 ∈ D2(ui, RH). Furthermore, re-
call by Definition 7 that N1(ui, RH) are the neighbors of ui that are adjacent to
D1(ui, RH) but not to D2(ui, RH), while N2(ui, RH) are the neighbors of ui that
are adjacent to D2(ui, RH) but not to D1(ui, RH). In particular, ui,1 ∈ N1(ui, RH)
and ui,4 ∈ N2(ui, RH). Therefore, since ui,1, ui,4 /∈ U , it follows that N1(ui, RH)\U �=
∅ and N2(ui, RH) \ U �= ∅. Furthermore, since N1(ui, RH) �= ∅ and N2(ui, RH) �= ∅,
Lemma 12 implies that δ∗ui

�= ∅.
By the construction of RH , note that Tui,2 ∪ Tui,3 (resp., Tui,5 ∪ Tui,6) is the

rightmost (resp., leftmost) connected component of D1(ui, RH) (resp., D2(ui, RH)).
ThereforeN(Vk) ⊆ N({ui,2, ui,3}) (resp.,N(V�) ⊆ N({ui,5, ui,6})) for every connected
component Vk (resp., V�) of D1(ui, RH) (resp., D2(ui, RH)). Let Vp be the master
component of ui that corresponds to δui . Then, either Vp = {ui,2, ui,3} or Vp = {ui,5,
ui,6}. In the case where Vp={ui,2, ui,3}, Corollary 11 implies thatN1(ui)=N1(ui, RH)
andN2(ui) = N2(ui, RH). Thus, sinceN1(ui, RH) \ U �= ∅ andN2(ui, RH) \ U �= ∅ by
the previous paragraph, it follows that N1(ui) \ U �= ∅ and N2(ui) \ U �= ∅. Similarly,
in the case where Vp = {ui,5, ui,6}, Corollary 11 implies (by performing a vertical axis
flipping of RH) that N1(ui) = N2(ui, RH) and N2(ui) = N1(ui, RH). Thus, since
N2(ui, RH) \ U �= ∅ and N1(ui, RH) \ U �= ∅ by the previous paragraph, it follows
that N1(ui) \ U �= ∅ and N2(ui) \ U �= ∅. Summarizing, δ∗ui

�= ∅, N1(ui) \ U �= ∅,
and N2(ui) \ U �= ∅ for every i = 1, 2, . . . ,m. This completes the proof of the
lemma.

Let i ∈ {1, 2, . . . ,m}. Note that, by the construction of RH , the left line l(Tui)
(resp., the right line r(Tui)) of Tui intersects in RH exactly with the trapezoids
that intersect Tui,2 ∪ Tui,3 (resp., Tui,5 ∪ Tui,6). That is, the left line l(Tui) inter-
sects exactly with the trapezoids of N1(ui, RH) ∪N12(ui, RH), while the right line
r(Tui) intersects exactly with the trapezoids of N2(ui, RH) ∪N12(ui, RH). Now let
Vp be the master component of ui that corresponds to δui in Hφ. Recall by the
proof of Lemma 18 that either Vp = {ui,2, ui,3} or Vp = {ui,5, ui,6}, since {ui,2, ui,3}
and {ui,5, ui,6} are the two master components of ui (i.e., the two maximal con-
nected components of Hφ \N [ui]). However, since δui = Vp is an arbitrarily cho-
sen master component of ui by Definition 9, we can choose Vp = {ui,2, ui,3}, i.e.,
RH(VP)	RH Tui . Furthermore, since δ∗ui

�= ∅ by Lemma 18, it follows by Corollary 11
that N1(ui) ∪N12(ui) = N1(ui, RH) ∪N12(ui, RH) and that N2(ui) ∪ N12(ui) =
N2(ui, RH) ∪ N12(ui, RH). Therefore, the left line l(Tui) of Tui intersects in RH

exactly with the trapezoids of N1(ui) ∪N12(ui), while the right line r(Tui) intersects
exactly with the trapezoids of N2(ui, RH) ∪N12(ui, RH). Thus, by Definition 14, RH

is a standard trapezoid representation with respect to ui.
Theorem 19. The formula φ is NAE-satisfiable if and only if the trapezoid graph

Hφ is a bounded tolerance graph.
Proof. Since a graph is a bounded tolerance graph if and only if it is a parallel-

ogram graph [2, 21], it suffices to prove that φ is NAE-satisfiable if and only if the
trapezoid graph Hφ is a parallelogram graph.

(⇐) Suppose that Hφ is a parallelogram graph, and let U = {u1, u2, . . . , um}.
Then, Hφ is an acyclic trapezoid graph by Lemma 3. Consider the permutation graph

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1253

H#
φ (U) with 2m vertices, which is obtained by Algorithm Split-U on Hφ. Starting

with the trapezoid representation RH of Hφ, we obtain by the construction of The-

orem 15 a permutation representation R#
H(U) of H#

φ (U). Note that, since RH is a
standard trapezoid representation of Hφ with respect to every ui, i = 1, 2, . . . ,m, the

line u1
i (resp., u2

i) of Tui is not moved during the construction of R#
H(U) from RH

for every i = 1, 2, . . . ,m. Therefore, H#
φ (U) = Pφ. On the other hand, since by

Lemma 18 δ∗ui
�= ∅, N1(ui) \ U �= ∅, and N2(ui) \ U �= ∅ for every vertex ui ∈ U ,

and since Hφ is an acyclic trapezoid graph, Theorem 15 implies that H#
φ (U) = Pφ is

an acyclic permutation graph with respect to {u1
i , u

2
i }mi=1. Thus, φ is NAE-satisfiable

by Lemma 17.
(⇒) Conversely, suppose that φ has an NAE-satisfying truth assignment τ . We

will first construct a permutation representation R0 of Pφ and then two trapezoid
representations R′

0 and R′′
0 of Gφ and Hφ, respectively, as follows. Similarly to the

representation RP , the representation R0 has n blocks, i.e., connected components,
one for each variable x1, x2, . . . , xn. R0 is obtained fromRP by performing a horizontal
axis flipping of every block, which corresponds to a variable xp = 0 in the truth
assignment τ . Every other block which corresponds to a variable xp = 1 in the
assignment τ remains the same in R0 as in RP . Thus, θ(�1i,j) > θ(�2i,j) if xri,j = 1 in

τ , and θ(�1i,j) < θ(�2i,j) if xri,j = 0 in τ for every pair {�1i,j, �2i,j} of lines in R0 (which
correspond to the literal xri,j of the clause αi in φ). An example of the construction
of this representation R0 of Pφ for the truth assignment τ = (1, 1, 0, 0) is illustrated
in Figure 6(a).

Since τ is an NAE-satisfying truth assignment of φ, at least one literal is true and
at least one is false in τ in every clause αi, i = 1, 2, . . . , k. Thus, there are six possible
truth assignments for every clause, namely, (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0),
and (1, 0, 0). For the first three, we can assign appropriate angles to the lines ai, bi, ci,
di, ei, and fi in the representation R0, such that the relative positions of all endpoints
in L1 and L2 remain unchanged, and such that ai is parallel to bi, ci is parallel to di,
and ei is parallel to fi, as illustrated in Figure 8. The last three truth assignments
of αi are the complement of the first three. Thus, by performing a horizontal axis
flipping of the blocks in Figure 8, to which the lines ai, bi, ci, di, ei, and fi belong,
it is easy to see that for these assignments, we can also assign appropriate angles to
these lines in the representation R0, such that the relative positions of all endpoints
in L1 and L2 remain unchanged, and such that ai is parallel to bi, ci is parallel to di,
and ei is parallel to fi.

Recall that for every two consecutive pairs {�1i,j, �2i,j} and {�1i′,j′ , �2i′,j′} of lines in
RP (resp., R0) which belong to the same block, i.e., where ri,j = ri′,j′ , there are two

parallel lines ui′,j′
i,j , vi

′,j′
i,j that intersect both �1i,j and �1i′,j′ . Thus, after assigning the

appropriate angles to the lines {�1i,j, �2i,j}, i = 1, 2, . . . , k, j = 1, 2, 3, we can clearly

assign the appropriate angles to the lines ui′,j′
i,j , vi

′,j′
i,j , such that the relative positions

of all endpoints in L1 and L2 remain unchanged, and such that ui′,j′
i,j remains parallel

to vi
′,j′
i,j . Summarizing, the lines u1

i and u2
i are parallel in R0 for every i = 1, 2, . . . ,m.

We now construct the trapezoid representation R′
0 of Gφ from the permutation

representation R0 by replacing for every i = 1, 2, . . . ,m the lines u1
i and u2

i by the
trapezoid Tui , which has u1

i and u2
i as its left and right lines, respectively. Since

R0 is obtained by performing horizontal axis flipping of some blocks of RP , and then
changing the angles of the lines while respecting the relative positions of the endpoints,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1254 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

L1

L2

ai ci ei bi fi di

xri,1 = 1 xri,2 = 1 xri,3 = 0

(a)

L1

L2

eibi fidi

xri,2 = 0 xri,3 = 1

ai ci

xri,1 = 1

(b)

L1

L2

ei bi fidi

xri,3 = 1

aici

xri,1 = 0 xri,2 = 1

(c)

Fig. 8. The relative positions of the lines ai, bi, ci, di, ei, and fi for the truth assignments (a)
(1, 1, 0), (b) (1, 0, 1), and (c) (0, 1, 1) of the clause αi.

R′
0 is indeed a trapezoid representation of Gφ that is different from RG. Since u1

i is
now parallel to u2

i for every i = 1, 2, . . . ,m, it follows clearly that R′
0 is a parallelogram

representation, and thus, Gφ is a parallelogram graph.
Finally, we construct the trapezoid representation R′′

0 of Hφ from R′
0, similarly

to the construction of RH from RG. Namely, we add for every trapezoid Tui , i =
1, 2, . . . ,m, six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 , resulting in a trapezoid graph
with 7m vertices. Since in R′′

0 the parallelograms Tui,1 , Tui,2 , and Tui,3 (resp., Tui,4 ,
Tui,5 , and Tui,6) are sufficiently close to the left line u1

i (resp., right line u2
i) of Tui ,

i = 1, 2, . . . ,m, and since between the endpoints of the parallelograms Tui,1 , Tui,2 ,
and Tui,3 (resp., Tui,4 , Tui,5 , and Tui,6) on L1 and L2 there are no other endpoints, it
follows that R′′

0 is indeed a trapezoid representation of Hφ that is different from RH .
Finally, since R′

0 is a parallelogram representation, and since Tui,1 , Tui,2 , . . . , Tui,6 ,
i = 1, 2, . . . ,m, are all parallelograms, R′′

0 is also a parallelogram representation, and
thus, Hφ is a parallelogram graph.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recog-
nizing bounded tolerance graphs is NP-hard by Theorem 19. Moreover, since the
recognition of bounded tolerance graphs lies in NP [17], we can summarize our results
as follows.

Theorem 20. It is NP-complete to decide whether a given graph G is a bounded
tolerance graph.

4. The recognition of tolerance graphs. In this section we show that the
reduction from the monotone-NAE-3-SAT problem to the problem of recognizing
bounded tolerance graphs presented in section 3 can be extended to the problem
of recognizing general tolerance graphs. In particular, we prove that a given mono-
tone 3-CNF formula φ is NAE-satisfiable if and only if the graph Hφ constructed in
section 3.2 is a tolerance graph.

4.1. Structural properties of tolerance graphs. In the following we as-
sume without loss of generality that any tolerance graph has a tolerance represen-
tation, in which all tolerances are distinct and no two different intervals share an
endpoint [13, 14]. We state now similarly to [14, 15] some definitions and lemmas
concerning tolerance graphs. In a certain tolerance representation 〈I, t〉 of a tolerance
graph G = (V,E), a vertex v is called bounded if tv ≤ |Iv|; otherwise, v is called

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1255

unbounded. An unbounded vertex v of G is called inevitable (for a certain tolerance
representation) if v is not an isolated vertex and if setting tv = |Iv| creates a new
edge in the representation, that is, the representation is no longer a tolerance repre-
sentation of G. A tolerance representation of G is called inevitable unbounded if every
unbounded vertex in this representation is inevitable. For an inevitable unbounded
vertex v of G (for a certain tolerance representation), a vertex u is called a hovering
vertex of v if uv /∈ E and Iv ⊆ Iu. The next lemma follows easily from the above
definitions.

Lemma 21. There exists a hovering vertex u for every inevitable unbounded vertex
v of the tolerance graph G (for a certain tolerance representation).

Proof. Since v is an inevitable unbounded vertex, setting tv = |Iv| creates a new
edge in G; let uv be such an edge. Then, clearly Iu ∩ Iv �= ∅. Since initially uv /∈ E, it
follows that |Iu∩Iv | < min{tu, tv} ≤ tu. Furthermore, since setting tv = |Iv| creates a
new edge in G, we obtain that min{tu, |Iv|} ≤ |Iu∩Iv| < tu, and thus, |Iu∩Iv| = |Iv|,
i.e., Iv ⊆ Iu. Therefore, since uv /∈ E and Iv ⊆ Iu, it follows that u is a hovering
vertex of v.

Lemma 22 (see [25]). Every tolerance representation can be transformed into an
inevitable one in O(n log n) time.

Lemma 23. Let v be an inevitable unbounded vertex of a tolerance graph G
and u be a hovering vertex of v, in a certain tolerance representation of G. Then,
N(v) ⊆ N(u) in G.

Proof. Since v is an inevitable unbounded vertex, N(v) �= ∅. Let w ∈ N(v) be
a neighbor of v in G. Since u is a hovering vertex of v, it follows that uv /∈ E, and
thus, w �= u. Furthermore, since vw ∈ E, and since v is unbounded, we obtain that
min{tv, tw} ≤ |Iv ∩ Iw| ≤ |Iv| < tv, and thus, tw ≤ |Iv ∩ Iw|. Then, since Iv ⊆ Iu, it
follows that |Iv ∩ Iw| ≤ |Iu ∩ Iw |, and thus, tw ≤ |Iu ∩ Iw|, i.e., w ∈ N(u). Therefore,
N(v) ⊆ N(u) in G.

4.2. The reduction. Consider now a monotone 3-CNF formula φ and the trape-
zoid graph Hφ constructed from φ in section 3.2.

Lemma 24. In the trapezoid graph Hφ, there are no two vertices u and v such
that uv /∈ E(Hφ) and N(v) ⊆ N(u) in Hφ.

Proof. The proof is done by investigating all cases for a pair of nonadjacent
vertices u, v. First, observe that, by the construction ofHφ fromGφ, we haveN [ui,2] =
N [ui,3], N [ui,1] = N [ui,2] ∪ {ui}, N [ui,5] = N [ui,6], and N [ui,4] = N [ui,5] ∪ {ui}.

Consider first two vertices ui and uk in Hφ for some i, k = 1, 2, . . . ,m and i �= k.
Then, by the construction of Hφ from Gφ, and since ui and uk are nonadjacent,
ui,1 ∈ N(ui) \ N(uk) and uk,1 ∈ N(uk) \ N(ui). Consider next the vertices ui and
uk,j for some i, k = 1, 2, . . . ,m and j = 1, 2, . . . , 6. If i = k, then j ∈ {2, 3, 5, 6},
since ui,1, ui,4 ∈ N(ui). In the case where j ∈ {2, 3}, we have ui,4 ∈ N(ui) \N(uk,j)
and uk,5−j ∈ N(uk,j) \ N(ui), while in the case where j ∈ {5, 6}, we have ui,1 ∈
N(ui) \ N(uk,j) and uk,11−j ∈ N(uk,j) \ N(ui). Suppose that i �= k. Then, it
follows by the construction of Hφ from Gφ that ui,1 ∈ N(ui) \N(uk,j). Furthermore,
if j ∈ {1, 2, 3} (resp., j ∈ {4, 5, 6}), then uk,j′ ∈ N(uk,j) \ N(ui) for any index
j′ ∈ {1, 2, 3} \ {j} (resp., j′ ∈ {4, 5, 6} \ {j}).

Finally, consider the vertices ui,� and uk,j for some i, k = 1, 2, . . . ,m and �, j =
1, 2, . . . , 6. If i = k, then without loss of generality � ∈ {1, 2, 3} and j ∈ {4, 5, 6},
since ui,� and uk,j are nonadjacent. In this case, ui,�′ ∈ N(ui,�) \N(uk,j) and uk,j′ ∈
N(uk,j) \ N(ui,�) for all indices �′ ∈ {1, 2, 3} \ {�} and j′ ∈ {4, 5, 6} \ {j}. Suppose
that i �= k. If j ∈ {1, 2, 3} (resp., j ∈ {4, 5, 6}), let j′ be any index of {1, 2, 3} \ {j}

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1256 GEORGE B. MERTZIOS, IGNASI SAU, AND SHMUEL ZAKS

(resp., {4, 5, 6} \ {j}). Similarly, if � ∈ {1, 2, 3} (resp., � ∈ {4, 5, 6}), let �′ be any
index of {1, 2, 3} \ {�} (resp., {4, 5, 6} \ {�}). Then, it follows by the construction of
Hφ from Gφ that ui,�′ ∈ N(ui,�) \N(uk,j) and uk,j′ ∈ N(uk,j) \N(ui,�).

Therefore, for all possible choices of nonadjacent vertices u, v in the trapezoid
graph Hφ, we have N(u) \ N(v) �= ∅ and N(v) \ N(u) �= ∅, which proves the
lemma.

Lemma 25. If Hφ is a tolerance graph, then it is a bounded tolerance graph.
Proof. Suppose that Hφ is a tolerance graph, and consider a tolerance represen-

tation R of Hφ. Due to Lemma 22, we may assume without loss of generality that
R is an inevitable unbounded representation. If R has no unbounded vertices, then
we are done. Otherwise, there exists at least one inevitable unbounded vertex v in R
which has a hovering vertex u by Lemma 21, where uv /∈ E(Hφ). Then, N(v) ⊆ N(u)
in Hφ by Lemma 23, which contradicts Lemma 24. Thus, there exists no unbounded
vertex in R; i.e., Hφ is a bounded tolerance graph.

Theorem 26. The formula φ is NAE-satisfiable if and only if Hφ is a tolerance
graph.

Proof. Suppose that φ is NAE-satisfiable. Then, by Theorem 19, Hφ is a bounded
tolerance graph, and thus, Hφ is a tolerance graph. Suppose conversely that Hφ is a
tolerance graph. Then, by Lemma 25, Hφ is a bounded tolerance graph. Thus, φ is
NAE-satisfiable by Theorem 19.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recogniz-
ing tolerance graphs is NP-hard by Theorem 26. Moreover, since the recognition of
tolerance graphs lies in NP [17], and since Hφ is a trapezoid graph, we obtain the
following theorem.

Theorem 27. It is NP-complete to decide whether a given graph G is a tolerance
graph, even if G is a trapezoid graph.

5. Concluding remarks. In this article we proved that both tolerance and
bounded tolerance graph recognition problems are NP-complete by providing a re-
duction from the monotone-NAE-3-SAT problem, thus answering a longstanding open
question. Furthermore, our reduction implies that, given a trapezoid graph, it is NP-
complete to decide whether this graph is a tolerance or a bounded tolerance (i.e.,
parallelogram) graph. A unit interval representation is an interval representation in
which all intervals have the same length. A proper interval representation is one in
which no interval is properly contained in another. These terms can apply to both
interval graphs and tolerance graphs. It is known that the subclasses of unit and
proper interval graphs are equal [28], but the corresponding tolerance subclasses are
different [2]. The recognition of unit and of proper tolerance graphs, as well as the
recognition of any other subclass of tolerance graphs, except bounded tolerance and
bipartite tolerance graphs [5], remain interesting open problems [15].

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment
search tool, J. Mol. Biol., 215 (1990), pp. 403–410.

[2] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley, Proper and unit tolerance graphs,
Discrete Appl. Math., 60 (1995), pp. 99–117.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr.
Discrete Math. Appl. 3, SIAM, Philadelphia, 1999.

[4] A. H. Busch, A characterization of triangle-free tolerance graphs, Discrete Appl. Math., 154
(2006), pp. 471–477.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE RECOGNITION OF TOLERANCE GRAPHS 1257

[5] A. H. Busch and G. Isaak, Recognizing bipartite tolerance graphs in linear time, in Pro-
ceedings of the 33rd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), Springer-Verlag, Berlin, Heidelberg, 2007, pp. 12–20.

[6] F. Cheah and D. G. Corneil, On the structure of trapezoid graphs, Discrete Appl. Math., 66
(1996), pp. 109–133.

[7] F. Cheah and D. G. Corneil, private communication, 2009.
[8] S. Felsner, Tolerance graphs and orders, J. Graph Theory, 28 (1998), pp. 129–140.
[9] P. C. Fishburn and W. Trotter, Split semiorders, Discrete Math., 195 (1999), pp. 111–126.

[10] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Ann. Discrete Math.
57, Elsevier Science, Amsterdam, 2004.

[11] M. C. Golumbic and R. E. Jamison, Edge and vertex intersection of paths in a tree, Discrete
Math., 55 (1985), pp. 151–159.

[12] M. C. Golumbic and C. L. Monma, A generalization of interval graphs with tolerances,
Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and
Computing, Congr. Numer., 35 (1982), pp. 321–331.

[13] M. C. Golumbic, C. L. Monma, and W. T. Trotter, Tolerance graphs, Discrete Appl. Math.,
9 (1984), pp. 157–170.

[14] M. C. Golumbic and A. Siani, Coloring algorithms for tolerance graphs: Reasoning and
scheduling with interval constraints, in Proceedings of the Joint International Con-
ferences on Artificial Intelligence, Automated Reasoning, and Symbolic Computation
(AISC/Calculemus), Springer-Verlag, London, 2002, pp. 196–207.

[15] M. C. Golumbic and A. N. Trenk, Tolerance Graphs, Cambridge Stud. Adv. Math. 89,
Cambridge University Press, Cambridge, UK, 2004.

[16] M. Grötshcel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[17] R. B. Hayward and R. Shamir, A note on tolerance graph recognition, Discrete Appl. Math.,
143 (2004), pp. 307–311.

[18] G. Isaak, K. L. Nyman, and A. N. Trenk, A hierarchy of classes of bounded bitolerance
orders, Ars Combin., 69 (2003), pp. 33–53.

[19] M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian, Max-tolerance
graphs as intersection graphs: Cliques, cycles, and recognition, in Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp. 832–
841.

[20] J. M. Keil and P. Belleville, Dominating the complements of bounded tolerance graphs and
the complements of trapezoid graphs, Discrete Appl. Math., 140 (2004), pp. 73–89.

[21] L. Langley, Interval Tolerance Orders and Dimension, Ph.D. thesis, Dartmouth College,
Hanover, NH, 1993.

[22] T.-H. Ma and J. P. Spinrad, On the 2-chain subgraph cover and related problems, J. Algo-
rithms, 17 (1994), pp. 251–268.

[23] G. B. Mertzios, The recognition of triangle graphs, in Proceedings of the 28th International
Symposium on Theoretical Aspects of Computer Science (STACS), 2011, pp. 591–602.

[24] G. B. Mertzios and D. G. Corneil, Vertex splitting and the recognition of trapezoid graphs,
Discrete Appl. Math., 159 (2011), pp. 1131–1147.

[25] G. B. Mertzios, I. Sau, and S. Zaks, A new intersection model and improved algorithms for
tolerance graphs, SIAM J. Discrete Math., 23 (2009), pp. 1800–1813.

[26] M. Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs,
Discrete Math., 80 (1990), pp. 327–333.

[27] G. Narasimhan and R. Manber, Stability and chromatic number of tolerance graphs, Discrete
Appl. Math., 36 (1992), pp. 47–56.

[28] F. S. Roberts, Indifference graphs, in Proof Techniques in Graph Theory, Academic Press,
New York, 1969, pp. 139–146.

[29] S. P. Ryan, Trapezoid order classification, Order, 15 (1998), pp. 341–354.
[30] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual

ACM Symposium on Theory of Computing (STOC), 1978, pp. 216–226.
[31] J. P. Spinrad, Efficient Graph Representations, Fields Inst. Monogr. 19, American Mathemat-

ical Society, Providence, RI, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

