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Abstract. We study the preemptive scheduling problem of a set of n jobs with
release times and equal processing times on a single machine. The objective
is to minimize the sum of the weighted completion times

∑n
i=1 wiCi of the

jobs. We propose for this problem the first parameterized algorithm on the
number k of different weights. The runtime of the proposed algorithm is
O(( n

k
+ 1)kn8) and hence, the problem is polynomially solvable for any fixed

number k of different weights.
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1. Introduction

In this paper we consider the preemptive scheduling of n jobs J1, J2, . . . , Jn with
equal processing time p on a single machine. Here, preemption means job splitting,
i.e. the execution of a job Ji may be interrupted for the execution of another job
Jj , while the execution of Ji will be resumed later on. Every job Ji has a release
time ri, after which Ji is available and a positive weight wi ∈ {αj}kj=1. A schedule
of these jobs is called feasible, if every job Ji starts not earlier than its release time
ri. The objective is to find a feasible schedule of these jobs that minimizes the
weighted sum

∑n
i=1 wiCi, where Ci is the completion time of job Ji.

The preemptive scheduling has attracted many research efforts. Several prob-
lems, which are NP-hard in the general case, admit polynomial algorithms under
the assumption of equal-length jobs. In particular, the problem of minimizing the
sum of completion times on identical parallel machines is polynomially solvable
for equal-length jobs [1, 2], while it is unary NP-hard for arbitrary processing
times [2]. The problem of maximizing the weighted throughput, or equivalently
of minimizing the weighted number of late jobs on a single machine, is NP-hard
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[3] and pseudo-polynomially solvable [4] in the general case. On the contrary, its
restriction to equal-length jobs is solvable in polynomial time in the preemptive, as
well as in the non-preemptive case [5, 6]. For the problem of minimizing the total
tardiness there is also a polynomial algorithm for equal-length jobs [7]. Further-
more, minimizing the sum of completion times [8] or the number of late jobs [4, 9]
on a single machine can be done in polynomial time also for arbitrary processing
times. More detailed complexity results on machine scheduling can be found in
[10, 11].

In the non-preemptive case, the problems of minimizing the number of late
jobs on a single machine [12] and minimizing the sum of the completion times
on identical parallel machines [13] are polynomial for equal-length jobs, while the
corresponding problems in the general case are both NP-hard, also on a single
machine [3, 14]. Moreover, polynomial time algorithms are presented in [15] for
the case of equal-length jobs on uniform parallel machines.

The complexity status of the problem we focus on in this paper has been
stated as an open question for equal-length jobs and arbitrary weights on a single
machine [2, 11, 16, 17]. This problem is known to be NP-hard, if the processing
times are arbitrary on a single machine [18], or even for equal processing times
on identical parallel machines [19]. We propose the first polynomial algorithm for
arbitrary release times ri, which is parameterized on the number k of different
weights wi. The runtime of the proposed algorithm is O((n

k + 1)kn8), while its
space complexity is O((n

k + 1)kn6).
Several real-time applications of this problem can be found. In the context

of service management, vehicles may arrive in predefined appointments for regular
check. This process is preemptive, while the service time of each vehicle is the same.
In addition, special purpose vehicles, such as ambulances, have higher priority
than others. In the context of logistics, products that need special conditions,
such as humidity and temperature, have to be stored with higher priority than
other products.

In Section 2 we provide some properties of an optimal schedule, in order to
determine the possible start and completion times of the jobs. By using these
results, we construct a polynomial dynamic programming algorithm in Section 3.
Finally, some conclusions and open questions are discussed in Section 4.

2. Properties of an optimal schedule

In this section we provide some properties of an optimal preemptive schedule S,
in order to determine the set of all possible start and completion times of the n
jobs in S. For every job Ji let ri be its release time and Ci be its completion time
in S. As a first step, we prove the technical Lemma 2.1 that will be used several
times in the remaining part of the article.

Lemma 2.1. For every job Ji that is at least partially executed in an optimal sched-
ule S in the time interval [rk, Ck), it holds Ci < Ck.
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Proof. The proof will be done by contradiction. Suppose that job Ji is partially
executed in at least one time interval I ⊂ [rk, Ck) and that Ci > Ck, as it is
illustrated in Figure 1. Since Jk is completed at time Ck in S, there is a sufficient
small positive ε ≤ |I|, such that Jk is executed during the interval [Ck − ε, Ck).
We can exchange now a part of length ε of the interval I with the interval [Ck −
ε, Ck). In this modified schedule S ′, the completion time of Jk becomes at most
Ck − ε, while the completion times of all other jobs remain the same. This is a
contradiction to the assumption that S is optimal. It follows that Ci < Ck. �

rk

Jk JkJi Ji

Ck Ci

I

ε ε

Figure 1. The impossible case Ci > Ck, where job Ji is partially
executed in [rk, Ck).

The following Lemma 2.2 restricts the possible values of the makespan Cmax

of any optimal schedule, i.e. the completion time of the last completed job.

Lemma 2.2. The makespan Cmax in an optimal schedule S equals

Cmax = ri + `p (2.1)

for some i, ` ∈ {1, 2, . . . , n}.

Proof. Let t be the end of the last idle period in S, i.e. the machine is working
continuously between t and Cmax. Let also that job Ji is executed directly after t,
for some i ∈ {1, 2, . . . , n}. Then, t equals the release time ri of Ji, since otherwise
Ji could be scheduled to complete earlier, resulting thus to a better schedule,
which is a contradiction. Furthermore, every job Jk that is at least partially
executed after t, has release time rk ≥ t, since otherwise Jk could be scheduled
to complete earlier, which is again a contradiction. Thus, since the machine is
working continuously between t and Cmax, it holds that Cmax = ri + `p, where
1 ≤ ` ≤ n is the number of jobs executed in the interval [t, Cmax). �

Now, Lemma 2.3 determines the possible start and completion times of the
jobs J1, J2, . . . , Jn in S.

Lemma 2.3. The start and completion times of the jobs in an optimal schedule S
take values from the set

T := {ri + `p : 1 ≤ i ≤ n, 0 ≤ ` ≤ n} (2.2)
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Proof. Consider an arbitrary job Jk and let J = {Ji : Ci ≤ Ck} be the set of
all jobs that are completed not later than Jk in S. Consider now a job Jm /∈ J .
Then, Lemma 2.1 implies that no part of Jm is executed at all in any time interval
[ri, Ci), where Ji ∈ J , since otherwise it would be Cm < Ci ≤ Ck, i.e. Jm ∈ J ,
which is a contradiction. It follows that the completion time Ck of job Jk remains
the same if we remove from schedule S all jobs Jm /∈ J .

Thus, it holds due to Lemma 2.2 that Ck = ri + `p, for some Ji ∈ J and
` ∈ {1, 2, . . . , |J |}. Since |J | ≤ n, it follows that for the completion time of an
arbitrary job Jk it holds Ck ∈ T . Furthermore, due to the optimality of S, an
arbitrary job Ji starts either at its release time ri, or at the completion time Ck

of another job Jk. Thus, all start points of the jobs belong to T as well. �

3. The dynamic programming algorithm

3.1. Definitions and boundary conditions

In this section we propose a polynomial dynamic programming algorithm that
computes the value of an optimal preemptive schedule on a single machine, where
the weights of the jobs take k possible values {αi : 1 ≤ i ≤ k}, with α1 > . . . >
αk > 0. We partition the jobs into k sets J i = {J i

1, J
i
2, . . . , J

i
ni
}, i ∈ {1, . . . , k},

such that job J i
` has weight αi for every ` ∈ {1, . . . , ni}. Assume without loss of

generality that for every i, the jobs J i
` are sorted with respect to ` in non-decreasing

order according to their release times ri
`, i.e.

ri
1 ≤ ri

2 ≤ . . . ≤ ri
ni

(3.1)

Denote now by
t = (tk, tk−1, . . . , t1) (3.2)

a vector t ∈ Nk
0 , where for its coordinates it holds 0 ≤ ti ≤ ni for every i ∈

{1, . . . , k}. Let P(t) = {i : ti > 0, 1 ≤ i ≤ k} be the set of indices that corresponds
to strictly positive coordinates of t. For every vector t 6= 0 = (0, . . . , 0) and every
i ∈ P(t) define the vectors

t′i = (tk, . . . , ti+1, ti − 1, ti−1, . . . , t1) (3.3)
t′′i = (0, . . . , 0, ti, ti−1, . . . , t1) (3.4)

and let
tmax = maxP(t) (3.5)

be the maximum index i, for which ti > 0. Denote by

Q(t, x, y, z) (3.6)

where t 6= 0 and x ≤ y < z, the set of all jobs among
⋃

i∈P(t)

⋃ti

`=1 J
i
` that have

release times

ri
` ∈

{
[x, z), if i = tmax and ` = ti
[y, z), otherwise (3.7)
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We define for t = 0
Q(0, x, y, z) = ∅ (3.8)

for all values x ≤ y < z. Denote now by

F (t, x, y, z) (3.9)

the value of an optimal schedule of all jobs of the set Q(t, x, y, z) in the interval
[y, z). Due to Lemma 2.3, we allow the variables y, z in (3.6) and (3.9) to take
values only from the set T . Also, due to (3.7), since every job is released not
earlier than x, it suffices to consider that x ∈ {ri

` : 1 ≤ i ≤ k, 1 ≤ ` ≤ ni}. For an
arbitrary y ∈ T , let

r(y) = min{ri
` : ri

` ≥ y, 1 ≤ i ≤ k, 1 ≤ ` ≤ ni} (3.10)

be the smallest release time that equals at least y. In the case Q(t, x, y, z) = ∅,
we define F (t, x, y, z) = 0.

Definition 3.1. The set Q(t, x, y, z) of jobs is called feasible, if there exists a feasible
schedule of these jobs in the interval [y, z). If Q(t, x, y, z) is not feasible, then we
define F (t, x, y, z) =∞.

The following lemma uses the release times of the jobs of Q(t, x, y, z) in order
to decide whether it is feasible, i.e. whether there exists a feasible schedule of these
jobs in the interval [y, z).

Lemma 3.2 (feasibility test). Let r̃1 ≤ r̃2 ≤ . . . ≤ r̃q be the release times of the
jobs of Q(t, x, y, z) and let

C1 = max{r̃1, y}+ p
C` = max{r̃`, C`−1}+ p

(3.11)

for every ` ∈ {2, 3, . . . , q}. It holds that Q(t, x, y, z) is feasible if and only if Cq ≤ z.

Proof. The proof is straightforward. The set Q(t, x, y, z) of jobs is feasible if and
only if there exists a schedule of these jobs with makespan Cmax not greater than
z. Without loss of generality, in a schedule that minimizes Cmax, every job is
scheduled without preemption at the earliest possible point. In particular, the job
with the earliest release time r̃1 starts at max{r̃1, y}. Suppose that the `− 1 first
jobs complete at point C`−1, for some ` ∈ {2, 3, . . . , q}. If the `th job has release
time r̃` > C`−1, then this job starts obviously at r̃`. In the opposite case r̃` ≤ C`−1,
it starts at C`−1. Since every job has processing time p, we obtain (3.11) for the
completion times of the scheduled jobs and thus the minimum makespan is Cq. It
follows that Q(t, x, y, z) is feasible, i.e. F (t, x, y, z) 6=∞, if and only if Cq ≤ z. �

3.2. The recursive computation

For every index i ∈ P(t) \ {tmax} of a vector t 6= 0 and any possible values x, y, z,
if ri

ti
/∈ [y, z), it holds that

F (t, x, y, z) = F (t′i, x, y, z) (3.12)



6 George B. Mertzios and Walter Unger

while for i = tmax, if ri
ti
/∈ [x, z), it holds that

F (t, x, y, z) = F (t′i, r(y), r(y), z) (3.13)

Indeed, in both cases it holds J i
ti
/∈ Q(t, x, y, z) due to (3.7) and thus we may

remove job J i
ti

from the schedule, i.e. we replace ti by ti − 1. In the first case
i 6= tmax, all the remaining jobs have release times according to (3.7) and they
are scheduled in the interval [y, z). In the second case i = tmax, all the remaining
jobs are released not earlier than y, i.e. not earlier than r(y) and thus they are
all scheduled in the interval [r(y), z). Therefore, suppose in the following without
loss of generality that J i

ti
∈ Q(t, x, y, z) for every i ∈ P(t).

Let Ci
` denote the completion time of job J i

` , where i ∈ {1, . . . , k} and
` ∈ {1, . . . , ni}. Denote in the following by S the optimal schedule that lexico-
graphically minimizes the vector of the completion times (C1

1 , C
1
2 , . . . , C

k
nk

) among
all other optimal schedules. Next, we compute in the main Theorem 3.5 the values
F (t, x, y, z). To this end, we provide first the technical Lemma 3.3 and Corollary
3.4 that will be used in the proof of the theorem. Denote by si and ei the start
and completion time of job J i

ti
in S respectively. Also, for i = tmax, denote for

simplicity J i
ti

and αi by Jtmax and αtmax , respectively.

Lemma 3.3. Suppose that J i
ti
∈ Q(t, x, y, z) for some i ∈ P(t). For every other

job Jj
` ∈ Q(t, x, y, z) \ {J i

ti
} with j ≤ i, if Jj

` is completed in S at a point Cj
` > si,

then its release time is rj
` > si.

Proof. The proof will be done by contradiction. Consider a job Jj
` ∈ Q(t, x, y, z)\

{J i
ti
} with j ≤ i and suppose that Jj

` is completed in S at a point Cj
` > si. We

distinguish the cases Cj
` > Ci

ti
and Cj

` < Ci
ti

, respectively.
Suppose that Cj

` > Ci
ti

and that Jj
` is executed in [Ci

ti
, z) for a time period

of total length L ≤ p, as it is illustrated in Figure 2(a). If rj
` ≤ si, then we can

exchange the execution of Jj
` in the interval [Ci

ti
, z) with the last part of total

length L of the execution of J i
ti

in the interval [si, C
i
ti

). In the resulting schedule
S ′, the completion times Cj

` and Ci
ti

exchange values, while the completion times
of all other jobs remain the same. Since j ≤ i, it holds αj ≥ αi and therefore
the schedule S ′ is not worse than S. Thus, since S is optimal, S ′ is also optimal.
However, S ′ is lexicographically smaller than S, which is a contradiction to the
assumption on S. It follows that job Jj

` is released not earlier than si, i.e. rj
` > si.

Suppose now that Cj
` < Ci

ti
, as it is illustrated in Figure 2(b). Then, there

exists a sufficiently small time period ε > 0, such that during the time intervals
[si, si + ε) and [Cj

` − ε, Cj
` ) the jobs J i

ti
and Jj

` are executed, respectively. If
rj
` ≤ si, we can now exchange the execution of the jobs J i

ti
and Jj

` in these
intervals, obtaining a completion time of Jj

` at most Cj
` − ε, while the completion

times of all other jobs remain the same. Since all weights are positive, the resulting
schedule is better than S, which is a contradiction to its optimality. This implies
again that job Jj

` is released not earlier than si, i.e. rj
` > si. �
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L L

si

J i
ti

Ci
ti Cj

`

Jj
` Jj

`
J i

ti
J i

ti

rj
` z

(a)

ε ε

si

J i
ti

J i
ti

Jj
`

Ci
ti

Cj
`rj

` z

(b)

Figure 2. The impossible case rj
` ≤ si, where j ≤ i and Cj

` > si.

Corollary 3.4. Suppose that J i
ti
∈ Q(t, x, y, z) for some i ∈ P(t). Then, every

other job J i
` ∈ Q(t, x, y, z) \ {J i

ti
} is completed in S at a point Ci

` ≤ si.

Proof. Consider such a job J i
` , with ` < ti and suppose that J i

` is completed at a
point Ci

` > si. Then, Lemma 3.3 implies that ri
` > si. On the other side, it holds

due to (3.1) that ri
` ≤ ri

ti
≤ si, which is a contradiction. �

Theorem 3.5. Suppose that J i
ti
∈ Q(t, x, y, z) for every i ∈ P(t). Let e = y + p ·

|Q(t, x, y, z)|. If Qk(x, y, z) is feasible, it holds that

F (t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}


F (t′tmax

, r(y), r(y), s) + F (t, x, s, z),

F (t′i, x, y, s) + F (t′′i , r(y), s, z),

F (t′tmax
, r(y), r(y), e) + e · αtmax

 (3.14)

Proof. Let S be the optimal schedule that lexicographically minimizes the vector
of the completion times (C1

1 , C
1
2 , . . . , C

k
nk

) among all other optimal schedules. Let
also job J i

ti
∈ Q(t, x, y, z) start at point si and complete at point ei in S, for every

i ∈ P(t). We distinguish in the following the cases stmax > y and stmax = y.
Case stmax > y. For every job Jj

` ∈ Q(t, x, y, z) it holds j ≤ tmax, due to
(3.5). Thus, Lemma 3.3 implies that all jobs Jj

` ∈ Q(t, x, y, z) \ {Jtmax} with
rj
` ≤ stmax are scheduled completely in the interval [y, stmax), while all jobs Jj

`

with release times rj
` > stmax are clearly scheduled in S completely in the interval

[stmax , z). Note that the extreme case rj
` = stmax is impossible, since otherwise job

Jj
` must be scheduled in the empty interval [stmax , stmax), which is a contradiction.



8 George B. Mertzios and Walter Unger

In the first part [y, stmax) of S, only jobs of the set Q(t′tmax
, x, y, z) =

Q(t, x, y, z)\{Jtmax} may be scheduled. These jobs are assumed to be released not
earlier than y, i.e. not earlier than r(y) and thus the value of this first part of S
equals F (t′tmax

, r(y), r(y), stmax). On the other side, in the second part [stmax , z) of
S, each job of Q(t, x, y, z) with release time greater than stmax may be scheduled.
Since Jtmax is released not earlier than x, the value of the second part of S equals
F (t, x, stmax , z). It follows that

F (t, x, y, z) = F (t′tmax
, r(y), r(y), stmax) + F (t, x, stmax , z) (3.15)

Case stmax = y. Let i be the greatest index of P(t), such that si ≥ etmax , if
one exists. That is, for every index j ∈ P(t) with j > i, job Jj

tj
starts at a point

sj ∈ [stmax , etmax), as it is illustrated in Figure 3(a). Then, Lemma 2.1 implies
that this job completes also in this interval, i.e. ej ∈ [stmax , etmax). Furthermore,
Corollary 3.4 implies that for every such index j ∈ P(t) with j > i, all jobs Jj

` ∈
Q(t, x, y, z)\{Jj

tj
} are completed at a point Cj

` ≤ sj . Then, since sj < si, we obtain
that Cj

` < si. It follows that for every job Jj
` that is completed at a point Cj

` > si,
it holds j ≤ i. Thus, Lemma 3.3 implies that all jobs Jj

` ∈ Q(t, x, y, z) \ {J i
ti
}

with rj
` ≤ si are scheduled completely in the interval [y, si), while all jobs Jj

` with
release times rj

` > si are clearly scheduled in S completely in the interval [si, z).
Note that the extreme case rj

` = si is impossible, since otherwise job Jj
` must be

scheduled in the empty interval [si, si), which is a contradiction.

y = stmax etmax
sj ej si

Jtmax Jtmax
Jj

tj
Jj

tj
J i

ti

zx

(a)

y = stmax etmax

Jtmax Jtmax
Jtmax

. . . . . .

(b)

Figure 3. The case stmax = y.

In the first part [y, si) of S, only jobs of the set Q(t′i, x, y, z) = Q(t, x, y, z) \
{J i

ti
} may be scheduled. Since Jtmax is released not earlier than x, the value of

this first part of S equals F (t′i, x, y, si). In the second part [si, z) of S, only jobs
Jj

` ∈ Q(t, x, y, z) with j ≤ i < tmax and release time greater than si may be
scheduled. Since all these jobs are assumed to be released not earlier than y,
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i.e. not earlier than r(y), the value of the second part of S equals F (t′′i , r(y), si, z).
It follows that

F (t, x, y, z) = F (t′i, x, y, si) + F (t′′i , r(y), si, z) (3.16)
Consider now the remaining case that for every i ∈ P(t) it holds si < etmax .

Corollary 3.4 implies that for every i ∈ P(t), all jobs J i
` with ` < ti are completed

at most at point si. Thus, in this case all jobs of Q(t, x, y, z) are scheduled
completely in the interval [y, etmax), as it is illustrated in Figure 3(b). Since the
processing time of every job equals p, the total processing time of all jobs equals
p · |Q(t, x, y, z)|. On the other side, there is no idle period between y and etmax ,
since otherwise Jtmax would be scheduled to complete earlier, resulting thus to a
better schedule, which is a contradiction to the optimality of S. Therefore, it holds

etmax = y + p · |Q(t, x, y, z)| (3.17)

Lemma 2.1 implies that no part of Jtmax is executed in any time interval [ri
`, C

i
`),

where J i
` ∈ Q(t, x, y, z) \ {Jtmax}, since otherwise Jtmax would complete before J i

` ,
which is a contradiction. Thus, the completion times of all these jobs remain the
same if we remove Jtmax from the schedule S. Since the weight of Jtmax is αtmax

and its completion time is etmax , it follows in this case that

F (t, x, y, z) = F (t′tmax
, r(y), r(y), etmax) + etmax · αtmax (3.18)

Summarizing, since S is optimal, the value F (t, x, y, z) is the minimum of the
expressions in (3.15), (3.16) and (3.18) over all possible values stmax , si ∈ (y, z)∩T
and i ∈ P(t) \ {tmax} respectively. This proves the Theorem. �

3.3. The algorithm

Since the start and endpoints of the jobs in an optimal schedule belong to T , the
value of such a schedule equals

F (t∗,minT,minT,maxT ) (3.19)

where
t∗ = (n1, n2, . . . , nk) (3.20)

and minT coincides with the smallest release time, due to (2.2). The dynamic
programming Algorithm 1 follows now from Lemma 3.2 and Theorem 3.5. The
correctness and the complexity of this algorithm is proved in the following theorem.

Note that, as a preprocessing step, we partition the n jobs into the sets
J i = {J i

1, J
i
2, . . . , J

i
ni
}, i ∈ {1, . . . , k}, such that job J i

` has weight αi for every
` ∈ {1, . . . , ni}, and that, for every i, the jobs J i

` are sorted with respect to `
according to (3.1). This can be done clearly in O(n log n) time.

Theorem 3.6. Algorithm 1 computes an optimal schedule S in O((n
k + 1)kn8) time

and O((n
k + 1)kn6) space.

Proof. In the first two lines, Algorithm 1 initializes F (0, x, y, z) = 0 for all possible
values of x, y, z. It iterates further for every t between 0 and t∗ in lexicographical
order and for every possible x, y, z. For every such tuple (t, x, y, z), the algorithm
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Algorithm 1 Compute the value of an optimal schedule with n jobs

1: for each x = ri
` and y, z ∈ T , with x ≤ y < z do

2: F (0, x, y, z)← 0

3: for every t in lexicographical order do
4: for every x = ri

` and z ∈ T with x < z do
5: for y = z downto x (with y 6= z) do

6: if Q(t, x, y, z) = ∅ then
7: F (t, x, y, z)← 0
8: else if Q(t, x, y, z) is not feasible then
9: F (t, x, y, z)←∞

10: else

11: for every i ∈ P(t) do
12: if i = tmax then
13: if ri

ti
/∈ [x, z) then

14: F (t, x, y, z)← F (t′i, r(y), r(y), z)
15: else {i 6= tmax}
16: if ri

ti
/∈ [y, z) then

17: F (t, x, y, z)← F (t′i, x, y, z)

18: if F (t, x, y, z) has not been computed in lines 14 or 17 then
19: Compute F (t, x, y, z) by Theorem 3.5

20: return F (t∗,minT,minT,maxT )

computes the value F (t, x, y, z) as follows. At first, it computes the set Q(t, x, y, z)
in line 6. If this set is empty, it defines F (t, x, y, z) = 0. Otherwise, it checks in line
8 its feasibility, using Lemma 3.2 and, if it is not feasible, it defines F (t, x, y, z) =∞
by Definition 3.1. In the case of feasibility of the set Q(t, x, y, z), the algorithm
checks in lines 11-17 the release times of the jobs J i

ti
for all i ∈ P(t). If at least one

of these jobs does not belong to Q(t, x, y, z), it computes F (t, x, y, z) recursively
in lines 14 and 17, due to (3.13) and (3.12), respectively. Finally, if all jobs J i

ti
,

i ∈ P(t) belong to Q(t, x, y, z), i.e. if the value F (t, x, y, z) has not been computed
in the lines 14 or 17, the algorithm computes F (t, x, y, z) in line 19 by Theorem
3.5.

Note here that, for every i ∈ P(t), the vectors t′i and t′′i are lexicographically
smaller than t. Thus, the values F (t′i, r(y), r(y), z) and F (t′i, x, y, z), which are
used in lines 14 and 17, have been already computed at a previous iteration of the
algorithm. Furthermore, since we iterate for y in line 5 from the value z downwards
to the value x, the values F (t, x, s, z), for every s ∈ T with y < s < z, have been
computed at a previous iteration of the algorithm. Thus, all recursive values that
are used by Theorem 3.5, cf. equation (3.14), have been already computed at
a previous iteration of the algorithm as well. This completes the correctness of
Algorithm 1.
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The runtime of the algorithm can be computed as follows. The initialization
of the values F (0, x, y, z) for all possible x, y, z takes O(n5) time, since x can take
O(n) possible values and y, z can take at most O(n2) possible values each. Further-
more, for each vector t = (tk, tk−1, . . . , t1), the set P(t) = {i : ti > 0, 1 ≤ i ≤ k}
and the value tmax = maxP(t) can be clearly computed in linear O(n) time, since
k ≤ n. Thus, the computation of the set Q(t, x, y, z) in line 6 can be done in linear
time as well, by checking in (3.7) the release times of the jobs

⋃
i∈P(t)

⋃ti

`=1 J
i
` .

The feasibility of Q(t, x, y, z) in line 8 can be checked in O(n log n) time using
Lemma 3.2, by sorting first increasingly the release times r̃1, r̃2, . . . , r̃q of the jobs
in Q(t, x, y, z) and then, by computing in linear time the value Cq. The execution
of lines 11-17 can be simply done in linear time, by checking the release times of
the jobs J i

ti
, for all i ∈ P(t).

Finally, for the computation of F (t, x, y, z) by Theorem 3.5 the algorithm
uses for every s ∈ (y, z) ∩ T and every i ∈ P(t) \ {tmax} the values of one or two
smaller instances that have been already computed at a previous iteration. This
takes O(n3) time, since T has at most n2 elements and P(t) has at most n ele-
ments. Thus, the algorithm needs for the lines 6-19 O(n3) time. There are in total∏k

i=1 (ni + 1) possible values of the vector t, where it holds
∑k

i=1(ni + 1) = n+ k.
The product

∏k
i=1(ni + 1) is maximized, when (ni + 1) = n+k

k holds for every
i = 1, . . . , k. Thus, there are in total at most O((n

k + 1)kn5) possible tuples
(t, x, y, z). Since the lines 6-19 are executed for all these tuples, it follows that the
runtime of Algorithm 1 is O((n

k + 1)kn8).
For the computation of the optimal value, the algorithm stores for every tuple

(t, x, y, z) the value F (t, x, y, z) in an array of size O((n
k + 1)kn5). The storage of

the release and completion times in Lemmas 3.2 and Theorem 3.5 can be done in
an array of linear size O(n). In order to build the optimal schedule, instead of its
value, we need to store at every entry of these arrays the corresponding schedule.
For each one of them we store the start and completion times of the jobs in an
array of size O(n). Then, the optimal schedule can be easily computed by sorting
these start and completion times in non-decreasing order, storing the interrupted
jobs in a stack. This implies space complexity O((n

k + 1)kn6). �

4. Concluding remarks

In this paper we presented the first polynomial algorithm for the preemptive sched-
uling of equal-length jobs on a single machine, parameterized on the number k of
different weights. The objective is to minimize the sum of the weighted completion
times

∑n
i=1 wiCi of the jobs, where wi and Ci is the weight and the completion

time of job Ji. The complexity status of the generalized version with an arbi-
trary number of positive weights on a single machine remains an interesting open
question for further research.
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