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Abstract—Reticulation processes in evolution mean that the ancestral history of certain groups of present-day species is non-tree-like.

These processes include hybridization, lateral gene transfer, and recombination. Despite the existence of reticulation, such events are

relatively rare and, so, a fundamental problem for biologists is the following: Given a collection of rooted binary phylogenetic trees on

sets of species that correctly represent the tree-like evolution of different parts of their genomes, what is the smallest number of

“reticulation” vertices in any network that explains the evolution of the species under consideration? It has been previously shown that

this problem is NP-hard even when the collection consists of only two rooted binary phylogenetic trees. However, in this paper, we

show that the problem is fixed-parameter tractable in the two-tree instance when parameterized by this smallest number of reticulation

vertices.

Index Terms—Rooted phylogenetic tree, reticulate evolution, hybridization network, agreement forest, subtree prune and regraft.

Ç

1 INTRODUCTION

EVOLUTIONARY (phylogenetic) trees are used in biology to
represent the ancestral history of a collection of present-

day species. While this is appropriate for many groups of
species, there are some groups (including certain plant and
fish species) for which the ancestral history is non-tree-like.
This is caused by processes that include hybridization,
lateral gene transfer, and recombination. Collectively, these
processes are referred to as reticulation events. For such
species, it is more appropriate to represent their ancestral
history using rooted acyclic digraphs, where vertices of in-
degree at least two represent reticulation events

Although reticulation events do occur, they are still
relatively rare and, so, a fundamental problem for biologists
studying the evolution of species is the following: Given a
collection of rooted phylogenetic trees on sets of species that
correctly represents the tree-like evolution of different parts
of their genomes, what is the smallest number of reticula-
tion events needed to explain the evolution of the species
under consideration? This smallest number sets a lower
bound on the number of such events.

This question has been considered in a number of papers
including [2], [3], [6], [10], [14], [15]. Furthermore, variants
of it (particularly when the input is a collection of binary
sequences) have also been considered, for example see [8],
[9], [11], [12], [13], [18]. In an earlier paper [6], we showed

that, computationally, the above problem is NP-hard even
when the initial collection consists of two rooted binary
phylogenetic trees. However, the main result of this paper
shows that, in the case where the input consists of two such
trees, there is a fixed-parameter algorithm for finding the
optimal solution.

The idea behind fixed-parameter complexity is that,
while the general case of computing the minimum number
of reticulation events is NP-hard, many biologically
relevant cases have a relatively small number of hybridiza-
tion events and, so, may be tractable. In particular, we show
that this minimum number can be computed in time
OðfðkÞ þ pðnÞÞ, where n is the number of species, k is the
actual minimum number, f is some computable function,
and p is a fixed polynomial. The importance of this result is
in the separation of the variables n and k; it shows that, for a
reasonable range of k, the problem may be tractable even for
a very large n.

To formally describe the above problem and, in
particular, the main result, we need several definitions. A
rooted binary phylogenetic X-tree is a rooted tree whose root
has degree two and all other interior vertices have degree
three and whose leaf set is X. The set X is called the label set
of T and is often denoted LðT Þ. Two rooted binary
phylogenetic trees are shown in Fig. 1a.

A hybridization network (on X) is a rooted acyclic digraph
with root � in which

1. X is the set of vertices of out-degree zero,
2. the out-degree of � is at least 2, and
3. for each vertex with out-degree 1, its in-degree is at

least 2.

For completeness, if jXj ¼ 1, then the digraph consisting of an
isolated vertex labeled by the element in X is also defined to
be a hybridization network onX. The setX represents a set of
present-day species and vertices of in-degree at least two
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represent an inheritance of genetic information from their
parents. Generically, we call such vertices hybridization
vertices. A hybridization network is shown in Fig. 1b. For
convenience, throughout the paper, we adopt the conven-
tion that hybridization networks are always drawn with
their arcs directed downward and, so, we omit the arrow-
heads. Note that hybridization networks are referred to as
“hybrid phylogenies” in [2], [3].

To quantify the number of hybridization events of a
hybridization networkH, we define the hybridization number
of H, denoted hðHÞ, to be

hðHÞ ¼
X
v 6¼�
ðd�ðvÞ � 1Þ;

where � denotes the root of H and d�ðvÞ denotes the in-
degree of v. Apart from the root, every vertex has at least
one parent and, so, “ðd�ðvÞ � 1Þ” represents the number of
“additional” parents of v. In Fig. 1b, hðHÞ ¼ 1.

Let T be a rooted binary phylogenetic X-tree and let H
be a hybridization network. We say that H displays T if T
can be obtained from a rooted subtree of H by suppressing
degree-two vertices. In other words, T can be obtained from
H by first deleting a subset of the edges of H and then
deleting the isolated vertices and suppressing nonroot
degree-two vertices. The hybridization network in Fig. 1b
displays the two trees in Fig. 1a. For two rooted binary
phylogenetic X-trees, T and T 0, we set

hðT ; T 0Þ ¼ minfhðHÞ :

H is a hybridization network that displays T and T 0g:

The decision problem HYBRIDIZATION NUMBER is for-
mally stated as follows:

Problem HYBRIDIZATION NUMBER

Instance: Two rooted binary phylogenetic X-trees T and T 0
and an integer k.
Question: Is hðT ; T 0Þ � k?

The main result of this paper is the following theorem:

Theorem 1.1. The decision problem HYBRIDIZATION

NUMBER, parameterized by hðT ; T 0Þ, is fixed-parameter
tractable.

We note here that, while Theorem 1.1 provides the first
fixed-parameter algorithm for HYBRIDIZATION NUMBER,
Hallet and Lagergren [10] give a fixed-parameter algorithm
in a slightly different setting which may be interpreted as a
restricted version of this problem.

Informally, the overall approach we use in proving
Theorem 1.1 is as follows: We start by taking the input to

HYBRIDIZATION NUMBER and reducing its size using two
reduction rules in a regulated way. We show that, once fully
reduced, the resulting input size is linear in our parameter:
the hybridization number of the original pair of input trees.
We then apply brute force to compute the hybridization
number on the smaller input, which may take exponential
time but is only ever performed on the bounded size input.
The resulting solution immediately provides the hybridiza-
tion number of the original pair of input trees.

This approach is similar to that used in showing that
“rooted subtree prune and regraft (rSPR) distance” is fixed-
parameter tractable [5]; in particular, we kernalize the
problem by using two rules that reduce the size of the input
trees sufficiently. Loosely speaking, for two rooted binary
phylogenetic X-trees T and T 0, the rSPR distance is the
minimum number of subtrees that must be “moved” to
transform T into T 0. Denoting this distance by drSPRðT ; T 0Þ,
the decision problem rSPR DISTANCE is to decide whether
drSPRðT ; T 0Þ � k for some given k. Like HYBRIDIZATION

NUMBER, this problem is also NP-hard [5]. In the last
section, Section 4, we compare the two approaches and
highlight an interesting observation with regard to finding a
polynomial-time approximation algorithm for HYBRIDIZA-

TION NUMBER.
The paper is organized as follows: In the next section, we

describe two notions of an “agreement forest.” Both of these
notions have proved fruitful in the study of rSPR DISTANCE

and HYBRIDIZATION NUMBER. A third notion, which
extends the other two and will be central to the results in
this paper, will be described in Section 3, where the proof of
Theorem 1.1 is established. Unless otherwise stated, the
notation and terminology follow [17]. For an authoritative
reference on fixed-parameter tractability, we refer the
reader to [7].

2 AGREEMENT FORESTS

Agreement forests have become an essential tool in under-
standing the decision problem HYBRIDIZATION NUMBER

and the closely related problem rSPR DISTANCE. In this
section, we describe two notions of agreement forests. The
second notion provides a characterization of HYBRIDIZA-

TION NUMBER that underpins many of the results in this area.
Let T be a rooted binary phylogenetic X-tree and let X0

be a subset of X. The minimal rooted subtree of T that
connects the vertices of T labeled by the elements of X0 is
denoted by T ðX0Þ. Furthermore, the restriction of T to X0,
denoted by T jX0, is the rooted binary phylogenetic tree that
is obtained from T ðX0Þ by suppressing any nonroot vertices
of degree two.
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Fig. 1. (a) Two rooted binary phylogenetic trees T and T 0. (b) A hybridization network H that displays them.
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Now, let T and T 0 be two rooted binary phylogenetic
X-trees. For the purposes of the definition of an agreement
forest, we regard the root of both T and T 0 as a vertex � at
the end of a pendant edge adjoined to the original root.
Furthermore, we also regard � as part of the label sets of
both T and T 0; thus, we view their label sets as X [ f�g. For
example, in Fig. 2, we have adjoined the vertex � to each of
the original roots of T and T 0. An agreement forest for T and
T 0 is a collection F ¼ fT �; T 1; T 2; . . . ; T kg of restricted
subtrees of T and T 0, where T � is a rooted tree whose (leaf)
label set L� includes � and T 1; T 2; . . . ; T k are rooted binary
phylogenetic trees with label sets L1;L2; . . . ;Lk, respec-
tively, such that the following properties are satisfied:

1. The label sets L�;L1;L2; . . . ;Lk partition X [ f�g.
2. For all i 2 f�; 1; 2; . . . ; kg, T i ffi T jLi ffi T 0jLi.
3. The trees in fT ðLiÞ : i 2 f�; 1; 2; . . . ; kgg and fT 0ðLiÞ :

i 2 f�; 1; 2; . . . ; kgg are vertex disjoint subtrees of T
and T 0, respectively.

It is easily seen that, if F is an agreement forest for T and
T 0, then F can be obtained from each of T and T 0 by
deleting jF j � 1 edges and suppressing nonroot vertices of
degree two. An agreement forest for T and T 0 is a
maximum-agreement forest if it has the smallest number of
components among all agreement forests for T and T 0, in
which case, we denote the value of k by mðT ; T 0Þ.

While rSPR DISTANCE can be characterized in terms of
agreement forests [5] (see Section 4), such a characterization
for HYBRIDIZATION NUMBER requires an additional condi-
tion. This condition excludes the possibility of circular
inheritance, that is, inheriting genetic information from your
own descendants. Suppose that F ¼ fT �; T 1; T 2; . . . ; T kg is
an agreement forest for T and T 0. Let GF be the directed
graph whose vertex set is F and, for distinct vertices T i and
T j, the ordered pair ðT i; T jÞ is an arc precisely if either

1. the root of T ðLiÞ in T is an ancestor of the root of
T ðLjÞ in T or

2. the root of T 0ðLiÞ in T 0 is an ancestor of the root of
T 0ðLjÞ in T 0.

We say that F is an acyclic-agreement forest if GF is acyclic,
that is, GF contains no directed cycles. Furthermore, if F
contains the smallest number of components over all
acyclic-agreement forests for T and T 0, we say that F is a
maximum-acyclic-agreement forest for T and T 0, in which
case, we denote this value of k by maðT ; T 0Þ. To illustrate
these definitions, Fig. 3a shows a maximum-acyclic-agree-
ment forest F for the two rooted binary phylogenetic trees
shown in Fig. 2, while Fig. 3b shows the graph GF .

The following result is established in [2]:

Theorem 2.1. Let T and T 0 be two rooted binary phylogenetic

X-trees. Then, hðT ; T 0Þ ¼ maðT ; T 0Þ.

To provide some intuition for Theorem 2.1, suppose that
H is a hybridization network that displays T and T 0 such
that hðHÞ ¼ hðT ; T 0Þ. Then, it is easy to see that the in-
degree of every hybridization vertex is two. Furthermore,
up to suppressing degree-two vertices, an acyclic-agree-
ment forest F for T and T 0 can be obtained by deleting each
of the edges coming into every hybridization vertex. In this
case, jF j � 1 ¼ hðT ; T 0Þ and, so, we have one direction of
the statement (in particular, maðT ; T 0Þ � hðT ; T 0Þ). Biologi-
cally, the deleted edges correspond to different paths of
genetic inheritance. Consequently, the fewer edges deleted,
the smaller the number of hybridization events required to
explain T and T 0. On the other hand, if we have an acyclic-
agreement forest F for T and T 0, then the acyclicity of GF
allows one to construct a hybridization network H that
displays T and T 0 in which hðHÞ � jFj � 1. This gives the
other direction of Theorem 2.1.

3 FIXED-PARAMETER TRACTABILITY

In this section, we prove the main result of this paper,
Theorem 1.1. As mentioned in the introduction, we use two
reduction rules to kernalize the problem. We begin this
section by describing these two rules.

Let T be a rooted binary phylogeneticX-tree. Forn � 2, an
n-chain of T is an ordered tuple ða1; a2; . . . ; anÞ of leaves of T
such that the parent of a1 is either the same as the parent of a2

or a child of the parent of a2 and, for all i � 2, the parent of ai is
a child of the parent ofaiþ1. To illustrate, the treeT in Fig. 5 has
an n-chain ða1; a2; . . . ; anÞ. Furthermore, a pendant subtree of
T is one that can be detached by deleting a single edge.

Let T and T 0 be two rooted binary phylogenetic X-trees.
Let P be a disjoint collection of 2-element subsets of X such
that each pair fa; bg 2 P is a 2-chain in both T and T 0. Let
w : P ! ZZþ be a weight function on the elements of P , that
is, each pair in P is assigned a positive integer weight. In the
remainder of the paper, we refer to such a pair of trees with
associated set P and weight function w as a pair of weighted

phylogenetic trees on X.
The above-mentioned reduction rules are as follows: Let

T and T 0 be a pair of weighted phylogenetic trees on X.

Rule 1. Replace any maximal pendant subtree that occurs
identically in both trees by a single leaf with a new label.
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Fig. 2. Two rooted binary phylogenetic trees with their roots labeled. Fig. 3. (a) A maximum-acyclic-agreement forest F for T and T 0 in Fig. 2

and (b) the graph GF .
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Furthermore, delete all members of P whose elements
label leaves of the pendant subtree.

Rule 2. Forn � 3, replace any maximaln-chain ða1; a2; . . . ; anÞ
that occurs identically in both T and T 0 by a 2-chain with
new labels a, b. Furthermore, add the new 2-element set
fa; bg to P with weight

wðfa; bgÞ ¼ n� 2þ
X

fai;ajg2P ;ai;aj2fa1;...;ang
wðfai; ajgÞ

and then delete all pairs in P whose elements are in
fa1; a2; . . . ; ang.

Rules 1 and 2 are illustrated in Figs. 4 and 5, respectively.

Remark. The label set of any maximal pendant subtree or
maximal chain which appears in both T and T 0 must
intersect each pair in P in either both elements or neither.
Hence, the rules above are well-defined. We freely use
this fact in the rest of the paper.

We next introduce a third notion of agreement forests.
This notion extends the previous two and is central to this
paper. For a pair of weighted phylogenetic X-trees T and
T 0, an agreement forest F for T and T 0 is legitimate if it is
acyclic and the following pairwise property holds:

(P) If fa; bg 2 P , then either a and b are both contained in the
label set of some component of F or a and b label isolated
vertices in F .

Furthermore, let F be an (ordinary) agreement forest for T
and T 0. We define the weight of F , denoted wðFÞ, to be

wðFÞ ¼ ðjFj � 1Þ þ
X

fa;bg2P ;a and b isolated in F
wðfa; bgÞ

and set fðT ; T 0Þ to be the minimum weight of a legitimate-
agreement forest for T and T 0. Note that we always have
fðT ; T 0Þ � hðT ; T 0Þ since the weight function is nonnega-
tive, and fðT ; T 0Þ ¼ hðT ; T 0Þ whenever the set P is empty.

The next lemma is a key result in establishing Theo-
rem 1.1. For a vertex v of a rooted binary phylogenetic
X-tree T , the subset of X whose elements are precisely the
descendants of v is a cluster of T , while the most recent

common ancestor of a subset A of X, denoted mrcaT ðAÞ, is the
vertex of T whose associated cluster is the minimal cluster
of T containing A.

Lemma 3.1. Let T and T 0 be a pair of weighted phylogenetic trees
on X. Let A be the leaf set of a maximal pendant subtree
common to T and T 0 and let ða1; a2; . . . ; anÞ be a maximal
n-chain common to both T and T 0, where n � 3. Then, every
legitimate-agreement forest F for T and T 0 of minimum
weight has the following properties:

1. F contains a tree whose label set contains every
element of A and

2. either F contains a tree whose label set contains
fa1; a2; . . . ; ang or each of a1; a2; . . . ; an labels an
isolated vertex in F .

Proof. We start with the proof of 1. Let F ¼
fT �; T 1; T 2; . . . ; T kg be a legitimate-agreement forest for
T and T 0 of minimum weight. Assume for a contra-
diction that no single component contains every
element of A in its label set. We form a new
legitimate-agreement forest F0 which satisfies 1 and
has smaller weight than F . Let J index the compo-
nents of F which include members of A in their label
sets. To be precise, J ¼ fj 2 f�; 1; . . . ; kg : Lj \A 6¼ ;g.
Let F0 be the forest that is obtained from F by deleting
each tree T j such that j 2 J and inserting the new tree
T A ¼ T jð[j2JLjÞ with label set LA, say. Observe that
Lj �A 6¼ ; for at most one member of J since the
corresponding subtrees in T (and T 0) must be vertex
disjoint. Hence, F0 is an agreement forest for T and T 0.
Furthermore, it is acyclic since the elements of A labeled
a pendant subtree and legitimate since A was maximal. It
remains to observe that wðFÞ > wðF 0Þ, since F0 has fewer
components and no additional pairs in P whose
elements are isolated, which gives a contradiction.

We now turn to the proof of 2. Let F ¼
fT �; T 1; T 2; . . . ; T kg be a legitimate-agreement forest

for T and T 0 of minimum weight and assume that some

ai does not label an isolated vertex. Then, without loss of
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Fig. 4. Two weighted phylogenetic trees reduced under Rule 1, where S
and S0 are the resulting trees.

Fig. 5. Two weighted phylogenetic trees reduced under Rule 2, where S
and S0 are the resulting trees.
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generality, the label ai is contained in the label set Li of

T i, where Li � faig is nonempty. First, we eliminate a

particular way in which ai may be related to Li � faig in

T and T 0.
Suppose ai is adjoined to the root of T i such that the

parent of ai in one of the original trees, T say, is an

ancestor of mrcaT ðLi � faigÞ while the parent of ai in T 0
is not an ancestor of mrcaT 0 ðLi � faigÞ (see Fig. 6). Then,

each of the elements in fa1; a2; . . . ; ang � faig must label

an isolated vertex in F ; otherwise, the corresponding

subtrees of two components of F in either T or T 0
overlap. By deleting ai from T i and replacing these

isolated vertices with a single tree that is isomorphic to

T jfa1; a2; . . . ; ang, it is easily seen that the resulting

agreement forest F0 is acyclic. Since ða1; a2; . . . ; anÞ is a
maximal n-chain and F is legitimate, it follows that F0
satisfies (P). But, wðF 0Þ < wðFÞ, contradicting the minim-

ality of F . Thus, we may assume that, if ai is adjoined to

the root of T i and the parent of ai in T is an ancestor of

mrcaT ðLi � faigÞ, then the parent of ai in T 0 is also an

ancestor of mrcaT 0 ðLi � faigÞ.
Now, let J index the components of F which

contain elements of the chain. To be precise,

J ¼ fj 2 f�; 1; . . . ; kg : Lj \ fa1; a2; . . . ; ang 6¼ ;g. Observe
that Lj � fa1; . . . ; ang 6¼ ; for at most two members of J

since the corresponding subtrees in T (and T 0) are vertex

disjoint. Let F0 be the forest that is obtained from F by

deleting each tree T j such that j 2 J and inserting the

new tree T a ¼ T jð[j2JLjÞ with label set La, say.

Essentially, we have joined the components in F

involving elements of fa1; a2; . . . ; ang together, along the
chain. An illustration of this is shown in Fig. 7, where the

left-hand side of the figure shows the components of F
containing elements in fa1; a2; . . . ; ang, while the right-

hand side shows T a in F0. It follows from the assumption

at the end of the previous paragraph that F0 is an

agreement forest for T and T 0 since the chain is common

to both trees. Furthermore, as ða1; a2; . . . ; anÞ is maximal,

F0 satisfies (P).

We next show that F0 is acyclic. Consider the directed

graphs GF0 and GF associated with F0 and F , respec-

tively. First, the vertex set of GF0 is obtained from GF by
deleting the vertices T j for all j 2 J and introducing the

new vertex T a. Furthermore, if T l; T m 2 F0 � fT ag, then

ðT l; T mÞ is an arc in GF0 if and only if ðT l; T mÞ is an arc

in GF . Regarding the arcs incident with T a, there are two

cases to consider. First, suppose there is some j1 2 J such

that the root of T ðLj1Þ in T is above an (i.e., on the path

from an to �). Then, the root of T ðLaÞ is the same as the

root of T ðLj1Þ and, under our assumptions, the respec-
tive roots must also coincide in T 0. This occurs in the

example given in Fig. 7, where, in both T and T 0, the root

of T ðL2 [ fa6; a7gÞ is the same as the root of T ðLaÞ. So,

ðT a; T lÞ and ðT l; T aÞ are arcs in GF0 if and only if

ðT j1
; T lÞ and ðT l; T j1Þ are arcs in GF , respectively. Since

GF is acyclic, GF0 must be also. Second, suppose there is

no such j1 2 J . Then, the root of T ðLaÞ is the parent of an
in T and, likewise, the root of T 0ðLaÞ is the parent of an in
T 0. Since not all of the elements in fa1; . . . ; ang are

isolated in F , there is some j2 2 J such that the root of

T ðLj2
Þ in T is above a1. It again follows that ðT a; T lÞ and

ðT l; T aÞ are arcs in GF0 if and only if ðT j2 ; T lÞ and

ðT l; T j2Þ are arcs in GF , respectively, and, so, GF0 is

acyclic. Hence, F0 is a legitimate-agreement forest for T
and T 0. If a1; . . . ; an are not all in the same component of

F (i.e., if jJ j > 1), then we have reduced the number of
components and, so, wðF 0Þ < wðFÞ. This contradicts the

minimality of F . Hence, under the original assumption

that some ai does not label an isolated vertex, we

conclude that the chain is entirely contained in a single

component of F . This concludes the proof of the

lemma. tu
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Fig. 6. Under the assumption that this configuration appears in F , then

the rest of the members of fa1; a2; . . . ; ang � faig must label isolated

vertices in F .

Fig. 7. Joining the components of F containing elements in fa1; a2; . . . ; ang to form a new component T a in F0.
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Proposition 3.2. Let T and T 0 be a pair of weighted phylogenetic

X-trees onX. Let S and S0 be the pair of weighted phylogenetic

X0-trees obtained from T and T 0, respectively, by applying

either Rule 1 or Rule 2. Then, fðT ; T 0Þ ¼ fðS;S0Þ.
Proof. It is an immediate consequence of Lemma 3.1.1 that

the proposition holds if S and S0 have been obtained

from T and T 0 by applying Rule 1. Therefore, consider a

single application of Rule 2 to T and T 0, where the

common n-chain of T and T 0 that is used is

ða1; a2; . . . ; anÞ and the resulting 2-chain is ða; bÞ.
Let F T be a legitimate-agreement forest for T and T 0

of minimum weight. Then, by Lemma 3.1.2, either

1. fa1; a2; . . . ; ang is contained in the label set of a
tree in FT or

2. each of a1; a2; . . . ; an label isolated vertices in F T .

Let FS be the forest obtained from F T by either replacing

the n-chain ða1; a2; . . . ; anÞ with the 2-chain ða; bÞ or

replacing the isolated vertices labeled with the elements

of this n-chain with two isolated vertices labeled a and b

depending upon whether 1 or 2 holds, respectively.

Illustrations of F T and FS for 1 and 2 are shown in Fig. 8.

Since FT is a legitimate-agreement forest for T and T 0, a

routine check shows that FS is a legitimate-agreement

forest for S and S0. Moreover, in the case where 2 holds,

the contribution of the isolated vertices a1; a2; . . . ; an to

wðF T Þ is exactly the same as the contribution of the

isolated vertices a; b to wðFSÞ. It now follows that

fðS;S0Þ � fðT ; T 0Þ.
Now, suppose that FS is a legitimate-agreement forest

for S and S0 with minimum weight. Since FS is
legitimate, either

1. there is a tree, Si, say, in FS whose label set
contains a and b or

2. a and b label isolated vertices in FS .

Depending on which holds, let F T be the forest obtained
from FS by either replacing Si with the restriction of T to
ðLðSiÞ � fa; bgÞ [ fa1; a2; . . . ; ang or replacing the isolated
vertices labeled a and b with n isolated vertices labeled
a1; a2; . . . ; an, respectively. Since FS is a legitimate-
agreement forest for S and S0, a routine check shows
that F T is a legitimate-agreement forest for T and T 0.
Furthermore, as the contribution of the isolated vertices
labeled a; b to wðFSÞ is the same as the contribution of
the isolated vertices labeled a1; a2; . . . ; an to wðF T Þ in
case 2, we have that fðT ; T 0Þ � fðS;S0Þ. This completes
the proof of the proposition. tu
Proposition 3.2 says that the tree reduction rules, Rules 1

and 2, preserve the function f . We now show that Rules 1
and 2 can be applied until the label set of the resulting
rooted binary phylogenetic trees has size bounded by a
linear function of the value of f .

Lemma 3.3. Let T and T 0 be two rooted binary phylogenetic
X-trees and let P be an empty collection of 2-element subsets
of X. Let S and S0 be two weighted phylogenetic X0-trees
obtained from T and T 0, respectively, by repeatedly applying
Rules 1 and 2 until no further reduction is possible. Then,
jX0j < 14hðT ; T 0Þ.

Proof. As in [5, Lemma 3.3], we follow the approach in
[1, Lemma 3.7]. Let fS�;S1; . . . ;Skg be a legitimate-
agreement forest for S and S0 with minimum weight. For
i ¼ �; 1; 2; . . . ; k, set Li ¼ LðSiÞ and let ni denote the
number of edges in EðSÞ �EðSðLiÞÞ which are incident
with the subtree SðLiÞ and let n0i denote the number of
edges in EðS0Þ � EðS0ðLiÞÞ which are incident with the
subtree S0ðLiÞ. The proof essentially consists of two
claims.

Claim 1.
P

i ni � 2k and
P

i n
0
i � 2k.

By symmetry, it suffices to show that
P

i ni � 2k.
Consider the tree ðV ;EÞ obtained from S by contracting
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each subtree SðLiÞ to a single vertex. In this tree, V
consists of the vertices corresponding to the trees Si, each
of which has degree ni, and the additional vertices of
degree 3. Hence, by the Handshaking Lemma,P

i ni þ 3ðjV j � ðkþ 1ÞÞ ¼ 2jEj. Therefore, as ðV ;EÞ is a
tree and so jV j ¼ jEj þ 1, it follows that

X
i

ni ¼ 2 jV j � 1ð Þ � 3 jV j � ðkþ 1Þð Þ ¼ 3k� jV j þ 1 � 2k:

Thus, Claim 1 holds.

Claim 2. For each i, the number of leaves in Si is at most

5ðni þ n0iÞ � 6.

Let I be the set of edges e of Si such that, in the path of
edges corresponding to e in either SðLiÞ or S0ðLiÞ, one of
the vertices in this path is incident with an edge in
EðSÞ � EðSðLiÞÞ or EðS0Þ �EðSðLiÞÞ, respectively. Note
that jIj � ni þ n0i. Let S0i denote the tree obtained from
the minimal subtree of Si that contains the edges in I by
suppressing nonroot degree-2 vertices not incident
with an edge in I. Let J denote the set consisting of
these new edges, EðS0iÞ � I, and let Ipend denote the set
of pendant edges of S0i. Note that Ipend � I. Observe
that every subtree of Si below an edge in Ipend will
have been replaced by a single vertex using Rule 1, as
these pendant subtrees are clearly common to both
trees since they are in the agreement forest and they
are maximal by Lemma 3.1. Similarly, each chain of
subtrees in Si corresponding to an edge in J will have
been replaced by a 2-chain using Rules 1 and 2.
Furthermore, the only other place a subtree, again
reduced to a leaf under Rule 1, could attach itself to Si
is at a degree-2 vertex that is incident with two edges
in I. If we identify each such vertex by the edge in I
above it, it is clear that there are at most jIj � jIpendj
such leaves. Hence, the number of leaves in Si is at
most jIpendj þ 2jJ j þ ðjIj � jIpendjÞ ¼ jIj þ 2jJj.

Let m2 and m3 denote the number of vertices of S0i of
degree 2 and 3, respectively. Then, as jIpendj is the number
of vertices of degree 1, it follows by the Handshaking
Lemma that 2jEðS0iÞj ¼ jIpendj þ 2m2 þ 3m3. Therefore, as
jEðS0iÞj ¼ jV ðS0iÞj � 1,

2 jIpendj þm2 þm3 � 1
� �

¼ jIpendj þ 2m2 þ 3m3:

This last equality implies that m3 ¼ jIpendj � 2. Further-

more,

jJ j þ jIj ¼ ðjIpendj þm2 þm3Þ � 1

and, by construction, any degree-2 vertex in S0i must be

adjacent to at least one edge in I, so m2 � 2jIj � jIpendj.
Therefore, the number of leaves in Si is at most

jIj þ 2jJ j ¼ jIj þ 2ðjIpendj þm2 þm3 � 1� jIjÞ
� jIj þ 2ðjIpendj þ ð2jIj � jIpendjÞ þ ðjIpendj � 2Þ
� 1� jIjÞ
¼ 2jIpendj þ 3jIj � 6

� 5jIj � 6

� 5ðni þ n0iÞ � 6:

This proves Claim 2.

Now, by Claim 1, we have
P

iðni þ n0iÞ � 4k and, so,

X
i

jLij � 5
X
i

ðni þ n0iÞ � 6ðkþ 1Þ � 14k� 6:

By the definition of f and Proposition 3.2,

k � fðS;S0Þ ¼ fðT ; T 0Þ. Since P is initially empty, we

also have fðT ; T 0Þ ¼ hðT ; T 0Þ and the result follows. tu
We are now in a position to show that the decision

problem HYBRIDIZATION NUMBER is fixed-parameter

tractable.

Proof of Theorem 1.1. Let T and T 0 be two rooted binary

phylogenetic X-trees and let P be an empty collection of

2-element subsets ofX. Let k be an integer. Let S and S0 be

the weighted phylogenetic X0-trees obtained from T and

T 0 by repeatedly applying Rules 1 and 2 until no further

reduction is possible. Then, as P is empty, hðT ; T 0Þ ¼
fðT ; T 0Þ and, by Proposition 3.2, fðT ; T 0Þ ¼ fðS;S0Þ, thus

hðT ; T 0Þ ¼ fðS;S0Þ. As in [1] and [5], S and S0 can be

found in time polynomial in jXj (pðjXjÞ, say). By

Lemma 3.3, jX0j � 14hðT ; T 0Þ. Thus, if jX0j > 14k, we

declare that hðT ; T 0Þ > k.

Now, suppose that jX0j � 14k. We next consider the

time taken to check whether there is a legitimate-

agreement forest for S and S0 of weight at most k by

deleting up to k edges of S and then seeing if the resulting

forest is such a legitimate-agreement forest. Note that

checking for legitimacy takes polynomial time. For a given

rooted binary phylogenetic X0-tree, there are 2jX0j � 1

possible edges to delete, including the edge incident with

�. Thus, there are at most
Pk

i¼0
2jX0 j�1

i

� �
�
Pk

i¼0ð2jX0j �
1Þi � 2ð2jX0j � 1Þk forests to examine, which can be done

in time Oðð2jX0jÞkÞ ¼ Oðð28kÞkÞ. If one of these forests is

a legitimate-agreement forest for S and S0 with weight at

most k, then we declare hðT ; T 0Þ � k. Otherwise, we

declare hðT ; T 0Þ > k. Hence, we can answer the

HYBRIDIZATION NUMBER decision problem for T and

T 0 in time OðfðkÞ þ pðjXjÞÞ, where fðkÞ is the computable

function ð28kÞk and pðjXjÞ is the polynomial bound for

reducing the trees using Rules 1 and 2. This satisfies the

conditions for HYBRIDIZATION NUMBER to be fixed-

parameter tractable. tu
Remark. By making an organized comparison of the set of

clusters of T and the set of clusters of T 0, a naive

approach for fully reducing T and T 0 using Rules 1 and 2

results in an Oðn3Þ algorithm, where n ¼ jXj. While a

further such approach for deciding if a particular set of

k edge cuts produces a legitimate-agreement forest for T
and T 0 gives an Oðk2 þ jP jÞ algorithm. We omit the

details of these algorithms as they are not necessarily the

best theoretically and we expect, in practice, much

quicker methods. An implementation of the associated

fixed-parameter algorithm and an analysis of its running

time is the subject of ongoing research.
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4 SOME REMARKS ON RSPR DISTANCE AND

HYBRIDIZATION NUMBER

In this section, we compare the approach used to prove
Theorem 1.1 with that used in [5] for showing that rSPR
DISTANCE is fixed-parameter tractable. We begin by
formally defining the subtree prune and regraft operation.

Let T be a rooted binary phylogenetic X-tree and, as in
the definition of an agreement forest, view the root of T as a
vertex � adjoined to the original root by a new pendant
edge. Let e ¼ fu; vg be an edge of T that is not incident with
�, where u is in the path from � to v. Let T 0 be the rooted
binary phylogenetic X-tree obtained from T by deleting e
and then adjoining a new edge f between v and the
component Cu that contains u as follows: Create a new
vertex u0 which subdivides an edge in Cu, adjoin f between
u0 and v, and then suppress the degree-two vertex u. The
tree T 0 has been obtained from T by a single rooted subtree
prune and regraft (rSPR) operation. The rSPR distance ðdrSPRÞ
between two arbitrary rooted binary phylogenetic X-trees T
and T 0 is the minimum number of rSPR operations required
to transform T into T 0.

Historically, drSPRðT ; T 0Þ has been used as a replacement
for hðT ; T 0Þ. The reason for this is that individual
hybridization events correspond to individual rSPR opera-
tions and, indeed, a collection of hybridization events can
be modeled by a sequence of rSPR operations. However, the
converse does not hold since an arbitrary sequence of rSPR
operations may include circular inheritance. It is shown in
[2] that the difference between rSPR DISTANCE and
HYBRIDIZATION NUMBER can be arbitrarily large. Never-
theless, the two values are closely related. Recall Theo-
rem 2.1, which says that, for two rooted binary phylogenetic
X-trees, T and T 0, the value hðT ; T 0Þ is one less than the
number of components in a maximum-acyclic-agreement
forest, maðT ; T 0Þ. In comparison, we have the following
result from [5]:

Theorem 4.1. Let T and T 0 be two rooted binary phylogenetic
X-trees. Then, drSPRðT ; T 0Þ ¼ mðT ; T 0Þ, where mðT ; T 0Þ
denotes the size of a maximum-agreement forest for T and T 0
minus one.

The overall approach we have used to prove Theorem 1.1
is similar to that used in [5] to show that rSPR DISTANCE is
fixed-parameter tractable (parameterized by drSPRðT ; T 0Þ),
but there are some crucial differences. In both papers, the
problems are kernalized using two reduction rules which
bound the size of the leaf sets of the resulting pairs of trees
in terms of the parameter. The first rule in [5] is essentially
identical to Rule 1 here, but the second rule differs from
Rule 2 here. The lack of the acyclicity constraint means that
there is a maximum-agreement forest in which every
common n-chain ðn � 3Þ is a connected subtree of a
component [5, Lemma 3.1] and, so, each such chain can
be replaced by an unweighted 3-chain.

The implication of this is that there is no need for weighted
forests, so, if S and S0 are the rooted binary phylogenetic
X0-trees resulting from applying the appropriate two rules,
then the size of a maximum-agreement forest for T and T 0 is
bounded above by jX0j, the number of leaves in S (or S0). The
consequence is that the fixed-parameter algorithm for

rSPR DISTANCE in [5] also provides a polynomial-time

approximation algorithm for this problem. The analogue of

Lemma 3.3 in [5] (with the upper bound on drSPRðT ; T 0Þ
included) is that

drSPRðT ; T 0Þ � jX0j � 28drSPRðT ; T 0Þ:

Therefore, the size of the label sets of the reduced trees S
and S0 gives a 28-approximation for drSPRðT ; T 0Þ. With some

modifications along the lines of legitimate-agreement

forests, this approach can be made to yield a 9-approxima-

tion. However, no such approximation algorithm for

HYBRIDIZATION NUMBER follows in an analogous way

from the results in this paper since jX0j does not bound the

hybridization number due to the presence of weights.

Indeed, there is currently no polynomial-time approxima-

tion algorithm for HYBRIDIZATION NUMBER.
Using a different approach, based upon ideas in [13],

[16], the current best polynomial-time approximation

algorithm for rSPR DISTANCE is a 5-approximation algo-

rithm by Bonet et al. [4]. Intuitively, this algorithm builds an

agreement forest by looking only at local structures. One

might hope that this algorithm extends to HYBRIDIZATION

NUMBER (using Theorem 2.1), but, due to the additional

global condition on an acyclic-agreement forest, it seems

unlikely that such an approach will work.
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