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Nature Reserve Selection Problem:
A Tight Approximation Algorithm

Magnus Bordewich and Charles Semple

Abstract—The Nature Reserve Selection Problem is a problem that arises in the context of studying biodiversity conservation. Subject
to budgetary constraints, the problem is to select a set of regions to be conserved so that the phylogenetic diversity of the set of
species contained within those regions is maximized. Recently, it has been shown in a paper by Moulton et al. that this problem is
NP-hard. In this paper, we establish a tight polynomial-time approximation algorithm for the Nature Reserve Section Problem.
Furthermore, we resolve a question on the computational complexity of a related problem left open by Moulton et al.

Index Terms—Combinatorial algorithms, phylogenetic diversity, biodiversity conservation.

1 INTRODUCTION

A central task in conservation biology is measuring,
predicting, and preserving biological diversity as
species face extinction. In this regard, individual species
are often the focus of attention. However, as pointed out by
Rodrigues et al. [13], this is not necessarily the best way of
conserving diversity:

Although conservation action is frequently targeted toward

single species, the most effective way of preserving overall

species diversity is by conserving viable populations in their

natural habitats, often by designating networks of protected
areas.

In this paper, we consider a natural computational problem
in the context of conserving whole habitats instead of
individual species.

Dating back to 1992 [1], phylogenetic diversity (PD) is a
prominent quantitative tool for measuring the biodiversity
of a collection of species. This measure is based on the
evolutionary distance among the species in the collection.
Loosely speaking, if 7 is a phylogenetic tree whose leaf set
X represents a set of species and whose edges have real-
valued lengths (weights), then the PD score of a subset S of
X is the sum of the weights of the edges of the minimal
subtree of 7 connecting the species in S. The standard PD
optimization problem is to find a subset of X of a given size,
which maximizes the PD score among all subsets of X of
that size. Perhaps surprisingly, the so-called greedy algo-
rithm solves this problem exactly [1], [10], [16].

A canonical extension of the standard problem allows for
the consideration of conserving various regions such as
nature reserves at some cost. In particular, aside from an
edge-weighted phylogenetic tree 7 with leaf set X, we have
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a collection A of regions or areas containing species in X,
with each region having an associated cost of preservation.
Given a fixed budget B, the PD optimization problem for
this extension is to find a subset of the regions in A to be
preserved, which maximizes the PD score of the species
contained within at least one preserved region while
keeping within the budget. This problem is called the
Budgeted Nature Reserve Selection (BNRS) and generalizes
the analogous unit cost problems described in [9], [11], [12],
and [13]. Allowing the cost of conserving each region to
vary provides additional cost structure that is important in
practice but, as commented in [2] and [5], is often omitted
from such problems in conservation biology. For applica-
tions of BNRS with unit costs and using the maximum PD
score across areas to make assessments in conservation
planning, see, for example, [8], [12], and [15].

Moulton et al. [9] showed that a particular instance of
BNRS (and, therefore, BNRS itself) is NP-hard; that is, there
is no polynomial-time algorithm for solving it, unless
P = NP. Despite this negative result, in this paper, we show
that there is a polynomial-time (1 — 1/e)-approximation
algorithm for this problem. That is, an efficient algorithm
that generates a solution that has at least a (1 — 1/¢) fraction
(= 63 percent) of the PD of the optimal solution. Moreover,
this approximation ratio is the best possible.

This paper is arranged as follows: Section 2 contains a
formal definition of BNRS and a discussion of related work.
Section 3 contains the description of the approximation
algorithm and the statement of the main theorem, the proof
of which is established in Section 4. In Section 5, we answer
a computational complexity question on a related problem
that was left open in [9]. Throughout most of this paper, we
restrict ourselves to PD in the setting of unrooted trees.
However, in Section 6, we extend our earlier results to the
rooted analog of BNRS (RBNRS). The notation and
terminology in this paper follows [14].

2 BuUDGETED NATURE RESERVE SELECTION

In order to define BNRS formally, we require the following
definitions. A phylogenetic X-tree T is an (unrooted) tree
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Fig. 1. where

A phylogenetic X-tree with edge
X ={ab,cdef g}

lengths,

with no degree-2 vertices and whose leaf set is X. Let 7 be a
phylogenetic X-tree with edge set £ and let A : E — IR=" be
an assignment of lengths (weights) to the edges of 7.
Ignoring the dashed edges, Fig. 1 illustrates a phylogenetic
X-tree with nonnegative real-valued edge weights, where
X ={a,b,c,d,e, f,g}.

For a subset S of X, the PD of S on 7T is the sum of the
edge lengths of the minimal subtree of 7 that connects S.
This sum is denoted as PD(7 ) (S); however, if there is no
ambiguity, we usually shorten it to PD(S). Referring to
Fig. 1, if S = {a,b, f}, then PD(S) is equal to the sum of the
weights of the minimal subtree (dashed edges) that
connects a, b, and f; in particular, PD(S) = 12.

BNRS is formally defined as follows:

Problem: BNRS

Instance: A phylogenetic X-tree 7, a nonnegative (real
valued) weighting A on the edges of 7, a collection A of
subsets of X, a cost function ¢ on the sets in A, and a
budget B.

Question: Find a subset A" of A, which maximizes the PD
score of |J,c 4 A on T such that ),y c(4) < B.

Referring to the informal discussions in the Introduction,
in the statement of BNRS, A is the collection of regions, and
A’ is an optimal subset of regions that we wish to conserve,
which maximizes the PD score of the species contained in at
least one of the preserved regions. Of course, the total cost
of the preserving the regions in A’ is at most B.

Example 2.1. As an example of an instance of BNRS, take 7
as the edge-weighted phylogenetic X-tree shown in
Fig. 1, choose A to be

{{b}7 {f7 C}7 {C7 d}7 {a’ b}7 {a7 g}7 {6}, {g7 6}},
and set c as the cost function on A defined by ¢({b}) =4,
c({f;e}) =8, cl{e,d}) =6, c({a,b}) =10, c({a,g}) =4,
c({e}) =4, and c({g,e}) = 5. By setting B = 24, we now
have an instance of BNRS.

A feasible solution of this instance is {{f, ¢}, {a,b}} as
c({f,c}) +c({a,b}) =8+ 10 = 18, which is within the
budget. Note that the PD score on 7 associated with this
feasible solution is

PD({f,c} U{a,b}) =15.

An optimal solution is {{b},{f,c},{c.d},{e, g}}. In this
case,

c({b}) + c({f,e}) + c({c,d})
+c({e,g}) =4+8+6+5=23,

and
PD{b} U{f,ctU{c,d}U{e, g}) = 21.

The BNRS problem extends the problem OPTIMIZING
DIVERSITY VIA REGIONS described in [9]. The extension
from the latter to the former is that, instead of each region
having a unit cost, the cost of conserving each region is
allowed to vary. Moulton et al. [9] showed that OPTIMIZ-
ING DIVERSITY VIA REGIONS is NP-hard and, so, conse-
quently, BNRS is also NP-hard. BNRS also extends the
problem BUDGETED MAXIMUM COVERAGE, in which each
element of X has a weight, and the objective is to
maximize the total weight of (J, 4 A without the addi-
tional structure imposed by a tree [7]. An instance of the
latter problem may be realized as a BNRS instance by
taking 7 to be a star tree with leaf set X and assigning the
weight of each element in X to be the length of the
incident edge in 7. (Note that a star tree is a phylogenetic
tree with a single interior vertex.) The approximation
algorithm and its proof presented here closely follow those
in [7] for the restricted “star tree problem” but must be
extended to cover the more complicated interactions of PD
score rather than a simple sum of weights. Last, BNRS is
the “0 % 0/1 Nature Reserve Problem” briefly discussed in
[11, Appendix].

3 THE APPROXIMATION ALGORITHM

In this section, we describe a tight polynomial-time
approximation algorithm for BNRS called ApproxBNRS.
The fact that it is such an algorithm is established in the next
section. For a subset G of A, the notations ¢(G) and PD(G)
denote ) .o c(A) and PD(UacgA), respectively.

We begin with an informal overview of ApproxBNRS
and its subroutine Greedy (see Figs. 2 and 3). By
considering all possibilities, ApproxBNRS initially finds a
feasible solution whose size is at most two and which
maximizes the PD score on 7. The resulting solution is
called H;. Next, the algorithm, in turn, considers every
subset of A of size three and applies the subroutine Greedy
to each of these subsets. Algorithm Greedy is a greedy-like
algorithm that takes a subset G, of size three of A and
sequentially adds sets from A — Gj. The only criteria for
which set is selected is that, among all available sets, the
ratio of incremental diversity to cost is maximized, and we
keep within the budget. The resulting feasible solution that
maximizes the PD score is called H,. Finally, ApproxBNRS
compares the two feasible solutions H; and H, and returns
the one with the biggest PD score.

The main result of this paper is the following theorem,
whose proof is given in the next section.

Theorem 3.1. ApproxBNRS is a polynomial-time (1 —
1/e)-approximation algorithm for BNRS. Moreover, for any
€ > 0, BNRS cannot be approximated with an approximation
ratio of (1 —1/e + €), unless P = NP.
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Greedy (G, U):
G < Go

Repeat

PD(GUA)—PD(G)

select A € U that maximizes oy

if ¢(G) + ¢(A) < B then
G —Gu{a}
U—U\A
Until U = ()

Return G

Fig. 2. The greedy algorithm Greedy.

In terms of the runtime of ApproxBNRS, running the
greedy subroutine is very efficient; however, repeating this
for all subsets of A of size three incurs a multiplicative
overhead of O(]A]*). Typically, the number of regions or
nature reserves under consideration will be small, and
hence, this overhead is minor. Nevertheless, it is worth
noting that in the special case that all regions have the same
cost, this term can be removed from the runtime. In this
situation, the greedy algorithm, starting from a subset G, of
A of size two, which maximizes the PD score among all
two-element subsets of A, achieves the approximation ratio
(1 —1/e). The proof of this fact is a routine extension of [6],
using the same insights regarding the difference between
PD and the ordinary weight function as we have used in
the proof of Theorem 3.1 given in the next section.

4 PROOF OF THEOREM 3.1

This section consists of the proof of Theorem 3.1. Let St
denote a subset of A, which is an optimal solution to BNRS.
If |Sops| <2, then ApproxBNRS finds a feasible solution
whose PD score is equal to the PD score of S;. Therefore,
we may assume that |S,p| > 3, in which case it suffices to
show that there is a subset Gy of A, with |G| = 3, whose
input to Greedy (together with A — Gy) results in a subset of
A, whose PD score is within the approximation ratio stated
in the theorem.

Let Gy be the subset {51,5:, 55} of Sopy such that S; and
Sy are chosen to maximize PD(S; U S;) among all subsets of
Sopt Of size two and S3 maximizes PD(S; U S, U S3) among
all sets in Sy \ {S1,52}. Now, consider Greedy applied to
(Go, A—Gp). Let p denote the first iteration, in which a
member A1, say, of Sy, — Go is considered but, because of
budgetary reasons, is not added to the current greedy

ApproxBNRS(T , \, A, ¢, B):
Find G'in {G: G C A, ¢(G) < B,|G| < 2} that maximizes PD
H G
Hy 0
For all Gy C A, such that |Gy| = 3 and ¢(Gy) < B do
U «— A\Go
G «—Greedy(Gy,U)
if PD(G) > PD(Hs) then Hy — G

If PD(H,) > PD(H;) then Return Hy, otherwise Return H,

Fig. 3. The approximation algorithm ApproxBNRS.

solution. Up to iteration p, let, in order, A, As, ..., A; denote
the members of A — G, that are added to G, and, for
t=1,...,0,let G, =Gy U{A1, As,..., A;}. Observe that G, is
a feasible solution and a subset of the final output G* of the
greedy subroutine, and hence, PD(G*) > PD(G;). For
convenience, we also let G;1 = G U {4;;1}, but note that
G141 is not a feasible solution, as ¢(G;;1) > B. Furthermore,
for all 4, let ¢; denote ¢(A;). For a subset S of A, denote the
minimal subtree of 7 that connects the elements of X that
are contained in at least one member of S by 7 (S). Also, let
E(7T(S)) denote the edge set of 7(S). We begin the proof
with two lemmas.

Lemma 4.1. Forall i € {1,2,...,l+ 1}

PD(G) = PD(Gin1) 2 5= (PD(Son) = PD(Gio1))

Proof. One crucial point to be observed for the approach in
[7] to be applicable in our setting is that the incremental
diversity from adding the entire optimal solution to the
current partial greedy solution is bounded by the sum of
the increments that would be obtained from adding each
set in the optimal solution individually. We formalize this
as follows: Let ¢ be any element in {1,2,...,l+1}. Let F
denote the set of edges in E(7 (Sopt U Gi—1)) — E(T(Gi—1))-
Observe that PD(Sop UGi—1) — PD(G;—1) is equal to
Y eer Ale). Since G;_; is nonempty, there is, for each
e € F, an element in (J, (s, g, ,) A such that e is on the
path from that element to a vertexin 7 (G;_ ). In particular,
there is a set A, in Sopy — Gi—1 such that 7(G;_; U A,)
contains e. Since A; is chosen so that %}’DD(M is

maximized, we have, for all A € S,y — Gi—1 '

PD(G;—1 UA) — PD(G;_1) < PD(G;) — PD(G;—1)
c(A) - ¢ '

Therefore, as the total cost of the elements in Sy — Gi—1
is at most B — ¢(Gy)
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PD(S(’Dt) - PD(g7—1) < PD(SOpt U gi—l) - PD(gi_l)

=Y A
eel

< > [ > M#
AE(Sopi—Gin1) | {e€F: e€T (G 1UA)}

- AE(Sopt—Gi1)
PD(Gi1UA)— PD(Gi1)

c(A) c(A)

. PDG) = PDG)
AE(Supi—Gin1) Gi

< TP = PP (o).

Ci

Rearrangement now gives the inequality in the statement
of the lemma, and the result follows. O

Lemma 4.2. For all i € {1,2,...

PD(Gy)

ZPHO%%Q

Proof. The proof is by induction on 4. The result for i =1
immediately follows from Lemma 4.1.

Now, assume that ¢ > 2 and that the result holds for
all j, where j <i. Then, by Lemma 4.1 (for the first
inequality) and by induction (for the second inequality),
we have

413
PD(G;) —

(PD(SOPt) - PD(QO))~

PD(G) — PD(Gy) = PD(G;_1) — PD(Gy) + PD(G;)

— PD(G;-1)

> PD(Gi-1) — PD(Go)
+ m(PD(Sopt) — PD(Gi-1))

= PD(Gi-1) — PD(Go)
+ 3—7;(% (PD(Sup) — PD(Go)
— (PD(Gi-1) — PD(Go)))

_ (1 — go>) (PD(G: 1) — PD(Gy))
+ c(go) (PD(Sopt) — PD(Gp))

2 (1  B- ;(go))

(PD(Sopt) — PD(G0))

Ci
+ B_elC (PD(Sopt)

—¢(Go)

()]

(PD(Sopt) = PD(G))-

— PD(%))

This completes the proof of the lemma. ]

Proof of Theorem 3.1. Since ¢(G;11) > B, we have

iﬂl ¢t = ¢(Gir1) — ¢(Go) > B —¢(Gp). Furthermore, the
function

1+1
II(1-<%)
k=1 Ek Ck
has a maximum at ¢; = %1 = for all k. Therefore,
1+1 .
C Ci
1- l-——"7>-=>+]>1- 1—
H( B_C(QO)) B g( chk)

I+1
21 (1-719)
I+1

>1-—1/e.

Hence, by Lemma 4.2, we have
PD(Gi1) — PD(Go) = (1 — 1/e)(PD(Sept) — PD(Go)). (1)
Recalling that Gy = {51, S2, S5}, we now show that
PD(S;US; U S3) —

Let Aj = E(T(S1 UsS,u Sg)) —
for j =1,2,3. Since

PD(S1USy) < PD(Go)/3. (2)
E(T((S1US,US;) —5)))

PD(S) U S, USs) =PD(S1USy) + > Ae)

e€A;
=PD(S1US3)+ Y Ae)

e€Ay

=PD(S,US3) + Y Ae)

e€A;

and since S; and S; were chosen to maximize
PD(S; U S,), it follows that

ST <D Ae)

ecAs ecA;

j=1,2.

It is easily seen that each edge in E(7(S; U S, USs))
occurs in at most one A;. Hence,

>33 Ne)

PD(S1 U S, U Ss)

J=1 ecA;
>3 Ae)
ecAs
and so
PD(S; U S, USs) — PD(S1US) = > Ae) < PD(Go)/3,
e€A;
giving (2).
Next,
PD(ng) — PD(GI) < PD(S1 US, U A[+1) — P.D(Sl ] Sg),
and so
PD(Gi41) — PD(G) < PD(S51U S, USs)

— PD(S; U S;) < PD(Gy)/3. ®)

Otherwise, A;,1 would have been chosen, instead of S3,
to be in Gy. Putting together (1) and (3), we get
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PD(G)) > PD(Gi11) — PD(Gy)/3
> (L= 1/0)(PD(Sy) ~ PDG) + (1) PDG)
> (1= 1/€)PD(Sop0).

This proves the first part of the theorem.
For the proof of the second part, we begin by defining
the problem MAXIMUM k-COVERAGE:

Problem: MAXIMUM k-COVERAGE

Instance: A collection A of subsets of X and an integer k.
Question: Find a subset A" = {A;, 4, ..., A;} of A of
size k, which maximizes the size of the set
ATUA U - U Ay

Feige [3] showed that no polynomial-time approximation
algorithm for MAXIMUM k-COVERAGE can have an
approximation ratio better than (1 — 1/e), unless P = NP.
Observing that BNRS is a generalization of MAXIMUM
k-COVERAGE (see the following), it follows that no
approximation algorithm can exist for BNRS with a ratio
better than (1 — 1/e), unless P = NP.

Given an instance of MAXIMUM k-COVERAGE,
take 7 to be the star tree on leaf set X, in which each
edge has weight 1. Assign a cost of 1 to each element
of A and take the budget B = k. Under this setup, it is
clear that MAXIMUM k-COVERAGE can be interpreted
as a special case of BNRS. Hence, a polynomial-time
approximation algorithm for BNRS with approximation
ratio o would yield an approximation algorithm for
MAXIMUM k-COVERAGE with approximation ratio o.
According to Feige [3], no such algorithm can exist for
a=(1-1/e+e¢€), unless P = NP. O

5 OPTIMIZING DIVERSITY WITH COVERAGE

The problem OPTIMIZING DIVERSITY WITH COVERAGE
was defined in [9], where a very restricted version was
shown to have a polynomial-time algorithm. While, super-
ficially, this problem is similar to BNRS, the problem
behaves very differently. Loosely speaking, we are given an
edge-weighted phylogenetic X-tree 7 and a collection A of
subsets of X. Here, the members of A represent some
attributes that the species possess. For example, A=
{4, Ay, ..., A;} may be a collection of taxonomic groups,
and each A; contains the species in X that belong to the
group. Given a fixed positive integer k and positive integers
ni,no,...,ns, the PD optimization problem is to find a
subset X’ of X of size k, which contains, for all i, at least
n; species with attribute A; and maximizes the PD score
among all such subsets of X of size k. Formally, we have the
following problem.

Problem: OPTIMIZING DIVERSITY WITH COVERAGE
Instance: A phylogenetic X-tree 7, a nonnegative
real-valued weighting A on the edges of 7, a collection A of
subsets of X, a threshold n4 for each A € A, and a positive
integer k.

Question: Find a subset X’ of X, which maximizes the PD
score of X’ on T such that |X'| < k and, for each A € A, at
least n4 species from A are included in X'.

The restricted case solved in [9] is when each element of
X appears in exactly one set A € A and the subtrees in
{T(A): Aec A} are vertex disjoint. While this restricted
version is shown to be solvable in polynomial time, the
question of the computational complexity of the problem
under less stringent or no restrictions is left open. We end
this section by observing that determining if there is even a
feasible solution to the general problem OPTIMIZING
DIVERSITY WITH COVERAGE is NP-hard, let alone finding
an optimal solution. This is because determining if there is a
feasible solution is equivalent to the classic NP-complete
decision problem HITTING SET [4].

Problem: HITTING SET

Instance: A collection A of subsets of X and an integer k.
Question: Does there exist a subset X’ of X of size at most k
such that AN X' # () for all A € A?

For an instance of HITTING SET as aforementioned,
consider the instance of OPTIMIZING DIVERSITY WITH
COVERAGE by taking the same sets X and A and integer
k. Now, take ny =1 for all A € A and let 7 be an arbitrary
phylogenetic X-tree. Then, a subset of X is a feasible
solution to the latter problem if and only if it is a feasible
solution to the former problem. Conversely, for an instance
of OPTIMIZING DIVERSITY WITH COVERAGE, consider the
instance of HITTING SET by taking the ground set to be X,
the bound to be k, and choosing the collection of subsets of
X to be

{(B:3Ac A BCA,|B|=|A—na+1}.

In short, this collection consists of, for each A € A, all subsets
of A of size |B| = |A| — n4 + 1. It is now easily seen that a
subset of X is a feasible solution to this instance of HITTING
SET if and only if it is a feasible solution to the original
instance of OPTIMIZING DIVERSITY WITH COVERAGE.

The above-mentioned equivalence suggests that the
restrictions required to make OPTIMIZING DIVERSITY WITH
COVERAGE solvable or even approximable must be fairly
severe. Certainly, they must at least make the associated
restricted version of HITTING SET tractable. One example
could be to restrict & to be at least ), ,n4. In this case,
HITTING SET is trivial, and hence, a feasible solution to
OPTIMIZING DIVERSITY WITH COVERAGE can be found
easily. However, it is still not clear whether the optimal
solution can be found efficiently.

6 ROOTED PHYLOGENETIC TREES

In practice, one frequently wants to work with the rooted
analog of PD. In this short section, we briefly describe how
ApproxBNRS can be applied to RBNRS and the conse-
quences of Theorem 3.1 for this problem.

A rooted phylogenetic X-tree T is a rooted tree with no
degree-2 vertices, except for, perhaps, the root and whose
leaf set is X. Let £/ denote the edge set of 7 and let \:
E — IR=’ be an assignment of lengths (weights) to the edges
of 7. For a subset S of X, the rooted PD (rPD) of S on 7 is
the sum of the edge lengths of the minimal subtree of 7 that
connects S and the root of 7. RBNRS is the same as that in
the unrooted setting but with the rooted phylogenetic tree
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replacing the unrooted phylogenetic tree and using rPD
instead of PD. In particular, it is formally defined as follows:

Problem: RBNRS

Instance: A rooted phylogenetic X-tree 7, a nonnegative
(real-valued) weighting A on the edges of 7, a collection A
of subsets of X, a cost function ¢ on the sets in A, and a
budget B.

Question: Find a subset A’ of A, which maximizes the rPD
score of |J,c 4 A on T such that ), ,c(4) < B.

We can interpret an instance of RBNRS as an instance of
BNRS as follows: Given an instance of RBNRS, let 7, denote
the unrooted phylogenetic tree obtained from 7 by
adjoining a new leaf p via a new edge to the root of T
and then viewing the resulting tree as an unrooted
phylogenetic tree with leaf set X Up. Let A, denote the
set {{AUp}: A € A} and let ¢, denote the cost function on
A, by setting c,(AU p) = c(A) for all A € A. Furthermore,
let A\, be the weighting on the edges of 7, by setting the
weight of the edge incident with p to be 0 and let A (e) =
A(e) for all e € E(7).

With the above setup, let G be a feasible solution to RBNRS
andletG, = {AUp: A € G}. Then, G, is a feasible solution to
the above instance of BNRS, and rPD(G) = PD(G,). Simi-
larly, if g; is a feasible solution of the above instance of BNRS,
then ¢'={A: AUpe G} is a feasible solution of RBNRS,
and PD(G,) =rPD(G). It is now easily seen from this
equivalence that ApproxBNRS provides a polynomial-time
(1 —1/e)-approximation algorithm for RBNRS. Moreover,
the argument at the end of the proof of Theorem 3.1, showing
that MAXIMUM k-COVERAGE can be interpreted as a special
case of BNRS, still works for RBNRS but uses a rooted star
tree instead of an unrooted star tree. Thus, no approximation
algorithm for RBNRS exists with a ratio better than (1 — 1/e),
unless P = NP.
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