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ABSTRACT 

This paper presents a closed-form analytical solution for the consolidation of the soil 

around a laterally loaded pile, assuming the soil skeleton deforms elastically and under 

plane strain conditions. The problem is idealised as a circular rigid disc surrounded by a 

deformable soil zone. Expressions for the initial excess pore water pressure distribution 

are derived from the mean total stress changes given by the elastic solution. Curves 

showing decay of the excess pore water pressure with time, and also the variation of pile 

displacement, are plotted in non-dimensional form. The parameters that affect the 

displacement prediction are illustrated and discussed. 

 

 

 

 

 

INTRODUCTION 
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The problem of the response of a single cylindrical pile embedded in a homogeneous 

elastic soil and subjected to lateral load has received the attention of many researchers. 

Winkler’s (1867) concept of the modulus of sub-grade reaction has often been used to 

evaluate lateral displacements. In this approach the pile is regarded as a beam resting on 

elastic supports and the soil reaction is assumed to be proportional to deflection occurring 

at the point in question.  The coefficient of proportionality was termed the coefficient of 

subgrade reaction, expressed as the ratio of average pressure across the width of the pile 

to the deflection (thus with dimensions of pressure divided by length).  More recent work 

adopts the ‘subgrade modulus’ as the ratio of force per unit length along the pile to the 

lateral deflection (dimensions of modulus, or force per length squared),  The latter 

approach is more useful as the subgrade modulus is similar, both in dimensions and 

value, to the Young’s modulus, E of the soil.  Several modifications of this general 

approach can be found in the literature (Hetenyi, 1946, Matlock & Reese, 1960, 

Mylonakis, 2001) 

 

Poulos (1971) used an alternative approach to provide a general solution to the problem 

in a homogeneous linear and isotropic elastic medium by comparing the pile to a thin 

plate, using Mindlin’s formulae (1936) to determine soil displacements. Randolph (1981) 

presented algebraic expressions which allow the behaviour of flexible piles under lateral 

loading to be calculated, in terms of fundamental soil properties. These expressions are 

based on the results of finite element studies of the response of a laterally loaded 

cylindrical pile embedded in elastic soil with stiffness varying linearly with depth.  
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Baguelin et al. (1977) developed analytical solutions for the problem of a section of the 

elastic-plastic soil-pile system, assuming plane strain conditions. The plane-strain 

simplification is justified, at least near the pile, because the displacements of the various 

sections of the pile vary in a continuous manner. The analytical solution required an 

assumption that the displacements vanished at a distance R away from a rigid disc 

representing a pile of radius ro (Figure 1), without which infinite displacements would 

result. The solution was derived from a single Airy stress function expressed in polar 

coordinates (r, ).  Assuming the pile is bonded to an intact elastic soil, expressions for 

stress changes in the soil around the pile are: 
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where F is the lateral force per unit length, and r0 is the radius of the pile.  The 

corresponding radial displacement is given by: 
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where G is the shear modulus of the soil and  is Poisson ratio.  Baguelin et al. (1977) 

also developed solutions that take into account the disturbance of the soil in the vicinity 

of the pile. Expressions relating R to the embedded length of the pile were suggested for 

different pile head fixity conditions.  

 

In all the above solutions, no consideration was given to the excess pore water pressure 

that would be generated if the piles are embedded in a saturated load. The initial 

displacements would then be limited to those corresponding to  = 0.5, while dissipation 

of pore water pressure with time would cause additional deformations as the effective 

stresses increased. Finite element approximation can be used to predict the variation of 

displacements and stresses with time (Carter and Booker, 1981). Shirazi and Selvadurai 

(2005) developed a continuum-based computational model for stiff cylinders embedded 

in damage-susceptible poroelastic material.  Osman and Randolph (2010) studied the 

consolidation around a rigid infinite cylinder and derived expressions for the pore fluid 

pressure, stresses and displacements in the Laplace domain. However, no closed-form 

analytical solution in the time-domain has been developed for consolidation around 

laterally loaded piles.  

 

This paper presents a closed-form analytical solution for the consolidation around a 

laterally loaded stiff pile embedded in a linear-elastic porous material. Similar to the 

assumptions used in Baguelin’s solutions, a plane strain section of the soil-pile system is 

considered. The plane strain disc is taken to deform as a rigid body, so its diameter does 

not change. The excess pore water pressure and the pore water pressure are assumed to 
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vanish at an outer radius R (Figure 1). It should be noted that soil response is generally 

nonlinear even at small strain levels. However, a poroelastic model, with the assumption 

of linear elasticity, is the common starting point for many (if not most) closed form 

solutions for consolidation problems. They have been shown to give good 

approximations for the consolidation behaviour (see for example Randolph and Wroth, 

1979 and Krost et al., 2010).  

 

The solution presented in this paper is also relevant to other engineering applications 

such as for consolidation around a T-bar full-flow penetrometer used for in situ testing of 

soil, and around deeply embedded pipelines.  

 

 

 

DERIVATION OF EQUATION FOR PORE WATER PRESSURE DISSIPATION 

The equations governing the consolidation of fully saturated porous elastic soil under 

one-dimensional may be attributed to Terzaghi (1923). These equations were extended by 

Biot (1941) to cover the general three-dimensional situations. The relation between the 

variation of the volumetric strain v with time and the excess pore water pressure ue can 

be expressed by: 
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k is the permeability coefficient, andw is the unit weight of water. 

 

Following the traditional sign convention in soil mechanics, with compressive stresses 

and strains positive, the radial and circumferential strains for plane strain deformations 

can be expressed as: 
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where r' and ' are the (changes in) effective stresses in the radial and circumferential 

direction respectively.  The volumetric strain can therefore be expressed as: 
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where s' is the mean effective stress change, equal to ('r + ')/2.   

 

Under undrained conditions, volumetric strains are zero and so the initial change in mean 

effective stress, s', is also zero. Hence the initial excess pore pressure, u0, is equal to the 

mean total stress change. From equations (1) and (2), taking  = 0.5: 
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During the consolidation process, the change in volumetric strain is linked to the change 

in mean effective stress by equation (8), and the latter may be assumed proportional to 

the change in excess pore pressure: 
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where  is a proportionality factor.  

 

For one-dimensional consolidation with constant total vertical stress, it may be shown 

that the proportionality factor is 1/(1 - ). Here, however, we do not have conditions of 

constant total radial stress (although the radial stress at r0 is essentially independent of 

Poisson’s ratio).   

 

The value of the proportionality factor  can be evaluated by relating the change of the 

excess pore water during the consolidation stage to the change of the effective stresses. 

At the end of consolidation the excess pore pressure will be zero and the change in mean 

effective stress is  
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Over the complete consolidation period, comparing equations (9) and (11) and ignoring 

the second terms within the square brackets (given that R >> r0), gives 
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Combining this result with equations (8) and (10) leads to:  
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Thus by substituting in equation (5) 
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where c is the consolidation constant given by: 
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This expression for c does indeed turn out to be identical to the usual one-dimensional 

consolidation coefficient, as suggested by Carter and Booker (1981); a similar result is 

found for purely radial consolidation around piles (Randolph and Wroth, 1979). 

 

SOLUTION OF EQUATION FOR PORE WATER PRESSURE DISSIPATION 

 

Equation (15) can be solved if it is assumed that the excess pore water pressure ue can be 

expressed as a separate function of three variables t, r, and : 
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By re-arranging and eliminating cos: 
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The left-hand side is now a function of t only and the right-hand side is a function of r 

alone. Therefore equation (19) can be re-written as two separate equations: 
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where  is a constant. 

The solution to equation (20) is: 
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the solution of which is a linear combination of first order Bessel functions of the first 

and of the second kind (McLachlan, 1955): 
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Since Bessel functions of first order are oscillating functions, there are an infinite number 

of values of the coefficients A, , and  that satisfy this equation. The full expression for 

ue will involve a summation of all possible solutions: 
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The boundary conditions around a rigid, impermeable pile are: 
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Substituting equation (31) into (32) and satisfying the boundary condition given by 

equation (28) gives: 
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Thus, n represents the non-zero roots of the cylindrical function given by equation (33). 

Once n is found, n can be evaluated. 

  

Satisfying the boundary condition at t = 0 (equation (29)) implies that: 
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The values of An can then be found by integrating the left-hand side of equation (35).  

 

 

 

DERIVATION OF EQUATION FOR DISPLACEMENTS DURING 

CONSOLIDATION 

 

The stresses, strains, and displacements can be broken into transient and long-term 



 13 

components. The transient components are time dependent and vary with the change in 

excess pore water pressure.  The long-term components do not vary with time and can be 

calculated from the elastic solution. Thus, the radial displacement can be written as: 

 t
rrr ρρρ    (36) 

where the superscript  donates the long-term component while t indicates the transient 

component, which is a negative quantity that reduces in magnitude to zero at large time. 
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where  is  a constant (0 ).   

 

Substituting this into equation (6), the transient component of the radial strain can be 

written as: 
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from which the transient component of the radial displacement may be derived as:  
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Combining this with equation (4), the general expression for the total radial displacement 

is therefore:  
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The pile displacement at t=0 can be estimated from the elastic solution by putting =0.5 

in equation (4). Therefore,  can be shown to be given by: 
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It should be noted that the rate of change of radial effective stress with time is expected to 

be greater than the rate of change of circumferential effective stress, implying that 

 > 0.5.  If the radial total stress were to remain constant, the rate of change of the radial 
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effective stress would equal the rate of change of the excess pore water pressure, 

implying an upper limit for  of (1 - ). 

The lateral displacement of the pile due to consolidation can be expressed in a non-

dimensional form such as that suggested by Carter and Booker (1981): 
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where U is the degree of displacement. Substituting the expression for radial 

displacement into this gives 
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  (45) 

Thus, the degree of displacement of displacement does not depend on . 

VALIDATION  

 

Any analytical solution for the soil consolidation around a laterally loaded pile must be 

applied over a wide range of pile geometries and soil stiffness. It is helpful to form 

dimensionless groups of relevant parameters, rather than investigate how the solution is 

affected by the variation of each individual soil parameter. Following the technique of 

dimensional analysis, the radial displacement at any fixed location can be expressed as: 
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where the final group is the usual non-dimensional factor T (Soderberg, 1962).     
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Since the displacement is proportional to the load for elastic conditions, the groups 

containing F and r can be combined to give: 
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The excess pore water at any fixed location can be expressed as: 
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Similarly the incremental effective stress can be expressed as: 

 












T,

r

R
,f

F

r'

0
7

0    (49) 

Finite element analyses were carried out to provide data to validate the analytical solution 

derived in the previous sections. The parameters used in the FE analysis and the FE 

results will be presented in terms of the dimensionless groups shown above.  

 

2D FE models 

Two-dimensional plane-strain coupled stress-pore pressure finite element analyses were 

conducted using ABAQUS (HKS 2002) to investigate the response of a pile segment in a 

porous linear elastic soil subjected to a lateral load. The soil was modelled using eight-

node plane-strain consolidation elements. Because of the symmetry, only half of the 

problem was modelled. Since the analytical analysis assumes a rigid pile, the stiffness of 

the pile was taken to be 10
6
 times the stiffness of the soil. The soil and the pile were 

assumed to be fully bonded to be consistent with the assumption used in the elastic 
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solution of Baguelin et al. (1977). Smaller elements were used near the pile where the 

changes of stresses and strains are significant. The far field boundary was assumed to be 

fully fixed and displacements normal to the line of symmetry were prevented. The FE 

mesh consisted of 936 elements and 2950 nodes, with details of the finite element mesh 

shown in Figure 2. Two sets of analyses were conducted with different geometries and 

material properties (Table 1).  

 

Each FE analysis was carried out in two steps. In the first step, a load was applied and no 

drainage was allowed across the boundaries of the mesh. This step establishes the initial 

distribution of the excess pore pressures which will be dissipated during the second step. 

During the second step, drainage was allowed to occur through the far-field boundaries. 

This was specified by prescribing the excess pore pressure at all nodes on this boundary 

to be zero. The analyses were carried out at different time increments until the excess 

pore water pressure dissipated. The reference stresses and the pore water pressure before 

applying the load in the initial step were taken to be zero.  

 

The finite element results can be influenced by the discretisation of the mesh. Since the 

reference stresses at the beginning of the analysis are taken to be zero, the effective 

stresses therefore become equal to the total stresses by the end of the consolidation stage 

once the pore water pressures reduce to zero. Thus, the elastic solution of Baguelin et al. 

(1977) can be used to check the accuracy of the finite element discretisation. Figure 3 

shows that the stresses in the radial and circumferential directions and the radial 

displacements along a centreline path in the direction of the load, as calculated from 
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equations (1), (2) and (4), are consistent with those predicted by the finite element.  

 

Stresses and excess pore water pressure at t = 0 

Figure 4 shows the effective radial and circumferential stresses at points located between 

the pile circumference and the outer boundary of the deformable soil along the direction 

of the pile loading ( = 0). The stresses are calculated immediately after applying the 

lateral load and before the pore water pressure starts to dissipate (t = 0). Figure 4 shows 

that the incremental effective radial and circumferential stresses generated in undrained 

conditions are equal in magnitude but opposite, giving zero change in mean effective 

stress as anticipated. r  and  are zero adjacent to the pile. Both r  and   

have a peak value at a radial distance of about 1.75r0 from the centre of the pile. After the 

peak, the incremental effective stresses decrease gradually to a zero value at the boundary 

of the deformable soil. Figure 4 demonstrates that the radial and the circumferential 

stresses from the FE analyses before the pore water pressure starts to dissipate can be 

replicated analytically. In the analytical solution the effective stresses are calculated by 

subtracting the initial pore water pressure, calculated from equation (9), from the total 

stresses, calculated from equations (1) and (2) with  = 0.5.  

  

Figure 5 shows the excess pore water pressure generated by the pile load in undrained 

conditions calculated from the FE analysis and that predicted from equation (9) assuming 

that the excess pore water pressure is equal to the total stress increment. The analytical 

values are in excellent agreement with the FE results. It can be seen from the results 

plotted in Figure 5 that there is a unique excess pore water pressure distribution near the 
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pile regardless of the size of the deformable soil zone. Away from the pile the values of 

the initial excess pore water pressure depend on R/r0. 

 

Dissipation of excess pore water pressure with time 

Figure 6a shows the variation of excess pore water pressure in the circumferential 

direction in the soil adjacent to the pile at different non-dimensional time factors. The 

results are obtained from the FE analysis using the Set 1 parameters. Figure 6b re-plots 

the data as excess pore water pressure normalized by the value at  = 0. This figure 

illustrates clearly that the distribution of the excess pore water pressure in the 

circumferential direction follows a cosine function throughout the consolidation process 

as proposed in equation (26). 

  

Figure 7 shows the variation of the excess pore water pressure with time factor T for a 

point adjacent to the pile (r = r0) located in the direction of the load ( = 0), for the two 

sets of the parameters given in Table 1. The excess pore water pressure is calculated 

using equation (26) and is normalized by its initial value which is calculated from 

equation (9). The calculations are carried out for the two different sizes of assumed soil 

deformation zones, R/r0 = 60 (Figure 7a) and R/r0 = 25 (Figure 7b). A summation of 

11268 terms of equation (26) was used to plot the analytical results in Figure 7a. This 

number of terms corresponds to the number of non-zero roots n of equation (33) for 

values of r0 between 0 and 600. This number of terms gives insignificant error of  

0.1619% for the value of the initial excess pore water pressure (at t = 0 and r = r0) 

calculated using equation (9). For the results shown in Figure 7b, 7639 terms were used 
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and the corresponding error was 0.3811%. The number of terms corresponds to the non-

zero roots of equation (33) for values of r0 between 0 and 1000.  

 

Both the analytical calculations in Figures 7a and 7b are in excellent agreement with the 

finite element results. The results plotted in Figure 7 show that about 90% of the excess 

pore water pressure dissipated by a time factor T ~ 5. About 99% of the excess pore 

water pressure dissipated by T ~ 50.  

 

The analytical curves shown in Figure 7a and 7b are almost identical. Therefore, it can be 

concluded that the relation between the normalized excess pore water pressure and the 

non-dimensional time factor T is independent of the assumed size of the deformable zone 

(i.e. the radius R). 

 

Displacement prediction  

Figure 8 shows the pile displacement calculated from the finite element analysis and that 

predicted using equation (42). The values of calculated from equation (43) are 0.6398 

and 0.5752 respectively for the two parameter set.  The analytical solution gives 

reasonable displacement prediction. However, it should be noted that substitution of 

 = 0.5 in equation (4) gives values of rG/F of 0.246 and 0.177 respectively for the two 

parameter sets, and these values are slightly lower than the true undrained displacements. 

 

Figure 9 shows the results shown in Figure 8 re-plotted as the degree of consolidation 

displacement U against the non-dimensional time factor T. The analytical solution is 
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calculated using equation (45). The finite element results plot to the right of the analytical 

solution, which therefore slightly overestimates the degree of consolidation displacement 

for any given value of T.  

 

Figure 9 indicates that the degree of consolidation displacement for a given value of T 

varies with R/r0. Further insight into this can be obtained by plotting just the transient 

component of displacement, non-dimensionalised as rG/F, as shown in Figure 10. It 

may be seen that the consolidation displacement follows approximately a unique curve, 

independent of R/r0 (apart from a slight variation for the extreme value of R/r0 = 10), 

until the limiting value is reached, but that the limiting value itself depends on R/r0. 

 

COMPARISON WITH 3D ANALYSIS 

The analysis and results presented here are based on conditions of plane strain. In the true 

three-dimensional case of a laterally loaded pile, drainage can occur towards the ground 

surface at shallow depths. The surface drainage will therefore accelerate the consolidation 

process at shallow depths. In order to examine the three-dimensional effects, 3D finite 

element analysis was carried out. The three-dimensional finite element mesh is shown in 

Figure 11, and represents a semi-cylindrical section through a diametrical plane of a pile 

of radius r0 and a length L equal to 20r0. The radius of the mesh is equal to 25r0 and the 

depth of the mesh is equal to 30r0. Displacement boundary conditions prevent out-of-

plane displacements of the vertical boundaries (that is, the flat diametrical plane on the 

front face of the mesh, and around the circumference), and the base of the mesh is fixed 

in all three coordinate directions. The finite element mesh comprises 10,484 second-order 
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continuum hexahedral (brick) elements with a total of 46,374 nodes. The stiffness of the 

pile was taken to be 10
6
 times the stiffness of the soil. The soil and the pile were assumed 

to be fully bonded. Smaller elements were used near the pile where the changes of 

stresses and strains are significant.  

 

The 3D FE analysis was carried out with a Poisson’s ratio  of 0.2 and F/G r0 of 0.48, 

with the horizontal force F is applied at the top of the pile (i.e. at the ground surface). 

During the consolidation step of the analysis, drainage was allowed to occur through the 

far-field vertical boundaries at circumference of the mesh (i.e. in the radial direction) and 

through the free surface. 

 

Figure 12 compares the degree of displacement of the pile head from the three-

dimensional finite element analysis compared with the two-dimensional analytical 

solution. The 3D finite element results are similar to those obtained by Taiebat and Carter 

(2001) using a discrete Fourier finite element approach. However, it should be noted that 

in Taiebat and Carter (2001) drainage was allowed to occur only at the free surface. It 

may be seen from the figure that the present solution under-predicts the degree of 

consolidation in respect of the pile head displacement unless surface drainage is 

eliminated (by a pile cap for example). Nevertheless, it remains useful to estimate the 

duration of the consolidation process.  

 

Figure 13 shows the FE results of the decay of the excess pore water pressure during the 

consolidation at all the nodes at the soil-pile interface at normalized depth z/L between 
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0.05 and 0.7. The excess pore water pressure is normalized by its initial value. This figure 

shows that the 2D analytical solution can reasonably predict the consolidation process 

along the shaft of the pile. However, it cannot predict the consolation of soils near the tip 

of the pile or near the ground surface. As can be seen from the displacement vectors 

shown in Figure 14, the vertical displacements around a laterally loaded pile at the end of 

consolidation are significantly smaller compared with the horizontal displacements. 

Therefore, the 2D analysis is justified. 

 

 

CONCLUSIONS 

A closed form solution for the variation of the excess pore water pressure with time 

around a laterally loaded pile has been derived. The solution is based on a two-

dimensional plane-strain idealisation with the soil taken to be a porous linear elastic 

material. In this solution, drainage is assumed to occur at the boundary of the assumed 

zone of deformable soil around the pile. The analytical solution has been validated 

against results from coupled consolidation finite element analysis.  

 

An expression for the initial excess pore water pressure generated immediately after the 

application of the load and before the start of consolidation was derived from the elastic 

solution of Baguelin et al. (1977) assuming incompressible conditions. This prediction is 

shown to be in excellent agreement with the finite element results. 

 

It was found that there is a unique relation between the excess pore water pressure 
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normalised by its initial value and the non-dimensional time factor T = ct/r0
2
 where c is 

the conventional one-dimensional consolidation coefficient. This relationship does not 

depend on the assumed radius of the deformable zone or the soil properties.  

 

A closed form solution for the variation of the pile displacement with time was obtained. 

The accuracy of this solution requires estimation of the relationship between the rate of 

change of radial effective stress and the excess pore water pressure.  Guidelines on how 

to estimate this relationship are given and illustrated.  

 

The solution is based on plane-strain assumptions. Comparison with three-dimensional 

analysis of a laterally loaded pile shows that the degree of consolidation is slightly under-

predicted because of effects such as drainage towards the free surface. 

 

The solution for consolidation around an embedded cylinder in a porous medium, which 

is presented here, has potential for applications in a variety of geotechnical problems. 

Consolidation around T-bar penetrometers and around deeply embedded pipelines are 

among the possible applications of this solution.  
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Set 1 0.48 0.2 60 

Set 2 0.14 0.4 25 

 

Table 1 Parameters used in the FE analysis 
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Figure 1 Nomenclature for pile under lateral load 
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Figure 2 2D finite element mesh 
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Figure 3 Accuracy of the finite element mesh: comparison with elastic solution at the steady state 

(after the dissipation of the excess pore water pressure) 
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Figure 4 Effective stresses before the excess pore water pressure starts to dissipate 
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Figure 5 Initial excess pore water pressure distribution along a path in the direction of the lateral 

load (=0) 
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Figure 6 Variation of excess pore water pressure in the circumferential direction (r=r0) 
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Figure 7 Decay of excess pore water pressure with time 
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Figure 8 Variation of pile displacement with time 
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Figure 9 Variation of the degree of pile displacement with time 
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Figure 10 Variation of the pile consolidation displacement with time 
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Figure 11 3D finite element mesh 
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Figure 12 Effect of 3-dimensional consolidation on the displacement of the pile head 
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Figure 13 Decay of excess pore water pressure with time along the shaft of the pile (z/L=0.05~0.70) 
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Figure 14 Displacement vectors at the end of the consolidation process (note: magnitude of 

displacements is not to scale) 

 


