
The limits of tractability in Resolution-based

propositional proof systems

Stefan Dantchev and Barnaby Martin 1

School of Engineering and Computing Sciences, Durham University,
Science Labs, South Road, Durham DH1 3LE, U.K.

Abstract

We study classes of propositional contradictions based on the Least Number Prin-
ciple (LNP) in the refutation system of Resolution and its generalisations with
bounded conjunction, Res(k). We prove that any first-order sentence with no fi-
nite models that admits a Σ1 interpretation of the LNP, relativised to a set that is
quantifier-free definable, generates a sequence of propositional contradictions that
have polynomially-sized refutations in the system Res(k), for some k. When one
considers the LNP with total order we demonstrate that a Π1 interpretation of
this is sufficient to generate such a propositional sequence with polynomially-sized
refutations in the system Res(k). On the other hand, we prove that a very simple
first-order sentence that admits a Π1 interpretation of the LNP (with partial and
not total order) requires exponentially-sized refutations in Resolution.

Key words: Propositional proof complexity, Resolution with bounded
conjunction, Lower bounds

1 Introduction

Many of the outstanding examples of propositional tautologies (contradic-
tions) used in proving lower bounds for propositional proof (refutation) sys-
tems are derived in a uniform fashion from first-order (fo) principles. For
refutation systems, one takes an fo sentence φ without finite models and de-
rives a sequence of propositional contradictions the nth of which asserts that
φ has a model of size n. The Pigeonhole principle (PHP) and Least number
principle are perhaps the most popular fo principles in this area. The (nega-
tion of the) PHP asserts that there is an injection from a set of size n to a set

1 The second author was supported by EPSRC grant EP/G020604/1.

Preprint submitted to Elsevier 13 September 2010

of size n− 1, and the (negation of the) LNP asserts that a strict partial order
has no minimal element. Thus neither of these fo sentences has a finite model
(though each has an infinite model).

A fairly recent sub-branch of Proof Complexity involves the studying of gap
phenomena within propositional proof (refutation) systems. The first such re-
sult of this kind appeared in [1], where it was noted that the sequence of propo-
sitional contradictions derived from an fo sentence φ without finite models –
as described above – either has 1.) a polynomially-sized refutation in tree-like
Resolution, or 2.) requires fully exponential tree-like Resolution refutations.
Moreover, the hard Case 2 prevails exactly when φ has some (infinite) model.
Since the publication of [1], another gap has been discovered based on rank,
and not size, for the integer linear programming-based refutation systems of
Lovász-Schrijver and Sherali-Adams [2]. In these cases, the separating crite-
rion is again whether or not an infinite model exists for φ, with the hard case
– of polynomial instead of constant rank – prevailing if it does.

A gap for Resolution, if it exists at all, can not form along the the same lines. It
is known that the LNP – which clearly has infinite models – has polynomially-
sized refutations in Resolution (while the PHP requires exponential refuta-
tions). Further, it has been argued that Resolution is not so suitable a system
in which to search for a gap, because of its instability with respect to relativisa-
tion. When one considers certain relativisations of the LNP, the ensuing prin-
ciples become hard for Resolution – requiring exponential-sized refutations [3].
Model-theoretically, the LNP and its relativisations are very similar, whence
the argument that looking for a model-theoretic separation in the case of Res-
olution might be difficult. Perhaps a more robust system in which to search
for a separation might be Resolution-with-bounded-conjunction, Res(k), in-
troduced by Kraj́ıĉek in [4] - for any relativisation of the LNP there exists a
k such that it admits polynomially-sized Res(k) refutations [3].

In this paper we explore the boundary of tractability – polynomially-sized
refutations – in the systems Res(k). We prove that any fo sentence with no
finite models that admits a Σ1 interpretation of the LNP, relativised to a
set that is quantifier-free (qf) definable, generates a sequence of propositional
contradictions that have polynomially-sized refutations in the system Res(k),
for some k. When one considers the LNP with total order we demonstrate that
a Π1 interpretation of this is sufficient to allow polynomially-sized refutations
in Res(k), for some k. On the other hand, we prove that a very simple fo
sentence that admits a Π1 interpretation of the LNP (with partial and not total
order) – and without relativisation – requires exponentially-sized refutations in
Resolution. This fo sentence is exactly a Π1-variant of the LNP. We conjecture
that this same fo sentence requires exponentially-sized refutation in Res(k),
for all k. We briefly explore a sequence of Πd+1-variants of the LNP, and
conjecture that they (in fact their negations) may be used to separate depth

2

d-Frege from depth d+ 1-Frege.

The paper is organised as follows. After the preliminaries, we give in Sec-
tion 3 our upper bounds for Res(k). In Section 4 we give our lower bound
for Resolution. Finally, in Section 5 we give some final remarks as well as our
conjectures.

An extended abstract of this paper appeared as [5].

2 Preliminaries

Resolution and Res(k).

We denote by > and ⊥ the Boolean values “true” and “false”, respectively.
A literal is either a propositional variable or a negated variable. We shall de-
note literals by small letters, usually ls. A k-conjunction (k-disjunction) is
a conjunction (disjunction) of at most k literals. A term (k-term) is either
a conjunction (k-conjunction) or a constant, > or ⊥. We shall use capital
letters to denote terms or k-terms, usually Cs for conjunctions and Ds for
disjunctions. A k-DNF or k-clause (k-CNF) is a disjunction (conjunction) of
an unbounded number of k-conjunctions (k-disjunctions). We shall use calli-
graphic capital letters to denote k-CNFs or k-DNFs, usually Cs for CNFs and
Ds for DNFs. Sometimes, when clear from the context, we will say “clause”
instead of “k-clause”, even though, formally speaking, a clause is a 1-clause.

We can now describe the propositional refutation system Res(k), first intro-
duced by Kraj́ıĉek [6]. It is used to refute (i.e. to prove inconsistency) of a
given set of k-clauses by deriving the empty clause from the initial clauses.
There are four derivation rules:

(1) The ∧-introduction rule is

D1 ∨
∧
j∈J1

lj D2 ∨
∧
j∈J2

lj
D1 ∨ D2 ∨

∧
j∈J1∪J2

lj
,

provided that |J1 ∪ J2| ≤ k.
(2) The cut (or resolution) rule is

D1 ∨
∨
j∈J lj D2 ∨

∧
j∈J ¬lj

D1 ∨ D2

,

3

(3) The two weakening rules are

D
D ∨ ∧j∈J lj and

D ∨ ∧j∈J1∪J2
lj

D ∨ ∧j∈J1
lj

,

provided that |J | ≤ k.

A Res(k)-proof can be considered as a directed acyclic graph (DAG), whose
sources are the initial clauses, called also axioms, and whose only sink is the
empty clause. We shall define the size of a proof to be the number of the
internal nodes of the graph, i.e. the number of applications of a derivation
rule, thus ignoring the size of the individual k-clauses in the refutation.

In principle the k from “Res(k)” could depend on n – an important special
case is Res (log n). In the present paper, however, we shall be concerned only
with Res (k) for some constant k.

Clearly, Res(1) is (ordinary) Resolution, working on 1-clauses, and using only
the cut rule, which becomes the usual resolution rule, and the first weakening
rule.

Equivalence between Res (k) and a special class of branching programs.

If we turn a Res (k) refutation of a given set of k-clauses D upside-down,
i.e. reverse the edges of the underlying graph and negate the k-clauses on
the vertices, we get a special kind of restricted branching k-program. The
restrictions are as follows.

Each vertex is labelled by a k-CNF which partially represents the information
that can be obtained along any path from the source to the vertex (this is a
record in the parlance of [7]). Obviously, the (only) source is labelled with the
constant >. There are two kinds of queries, which can be made by a vertex:

(1) Querying a new k-disjunction, and branching on the answer, which can
be depicted as follows.

C

?
∨
j∈J lj

> ↙ ↘ ⊥

C ∧ ∨j∈J lj C ∧ ∧j∈J ¬lj
(1)

4

(2) Querying a known k-disjunction, and splitting it according to the answer:

C∧∨j∈J1∪J2
lj

?
∨
j∈J1

lj

> ↙ ↘ ⊥

C ∧ ∨j∈J1
lj C ∧ ∨j∈J2

lj

(2)

There are two ways of forgetting information,

C1 ∧ C2
↓

C1

and

C ∧ ∨j∈J1
lj

↓

C ∧ ∨j∈J1∪J2
lj

, (3)

the point being that forgetting allows us to equate the information obtained
along two different branches and thus to merge them into a single new vertex.
A sink of the branching k-program must be labelled with the negation of a
k-clause from D. Thus the branching k-program is supposed by default to
solve the Search problem for D: given an assignment of the variables, find a
clause which is falsified under this assignment.

The equivalence between a Res (k) refutation of D and a branching k-program
of the kind above is obvious. Naturally, if we allow querying single variables
only, we get branching 1-programs – decision DAGs – that correspond to
Resolution. If we do not allow the forgetting of information, we will not be
able to merge distinct branches, so what we get is a class of decision trees that
correspond precisely to the tree-like version of these refutation systems.

Finally, we mention that the queries of the form (1) and (2) as well as forget-
rules of the form (3) give rise to a Prover-Adversary game (see [7] where this
game was introduced for Resolution). In short, Adversary claims that D is
satisfiable, and Prover tries to expose him. Prover always wins if her strategy
is kept as a branching program of the form we have just explained, whilst
a good (randomised) Adversary’s strategy would show a lower bound on the
branching program, and thus on any Res (k) refutation of D.

5

Translation of fo sentences into propositional CNF formulae.

We shall use the relational language of first-order logic with equality, but
without function symbols (this is for convenience only – note that one may
simulate constants with added outermost existentially quantified variables).

For the sake of explaining the translation, we assume that such an fo sentence
φ is given in prenex normal form with quantifier-free part in r-CNF for some
r. We start with the easy case of Π1 sentences:

∀x1, x2, . . . xl F (x1, x2, . . . xl) ,

where F is quantifier-free, and thus can be considered as a propositional for-
mula over propositional variables of two different kinds: R

(
xi1 , xi2 , . . . xip

)
,

where R is a p-ary relation symbol, and (xi = xj). We now take the union

of the clauses of F as x1, x2, . . . xl range over [n]l (we shall always use [n] =
{1, 2, . . . n} as a finite universe). The variables of the form (xi = xj) evaluate to

either true or false, and we are left with variables of the form R
(
xi1 , xi2 , . . . xip

)
only. The general case, a Πl sentence φ,

∀x1∃y1 . . . ∀xl∃yl F (x, y) ,

can be reduced to the previous case by Skolemisation. We introduce Skolem
relations Si(x1, x2, . . . xi, yi) for 1 ≤ i ≤ l. Si (x1, x2, . . . xi, yi) witnesses yi for
any given x1, x2, . . . xi, so we need to add clauses stating that such a witness
always exists, i.e.

n∨
yi=1

Si (x1, x2, . . . xi, yi) (4)

for all (x1, x2, . . . xi) ∈ [n]i . The original sentence can then be transformed
into the following purely universal sentence

∀x, y
(

l∧
i=1

Si (x1, . . . xi, yi)

)
→ F (x, y) . (5)

We shall call the clauses (4) “big” (or Skolem) clauses, and the clauses that
result in the translation (5) “small” clauses in order to emphasise the fact
that the former contain n literals while the latter contain only a constant
number of literals, independent from n. Indeed, since F is assumed to be an
r-CNF, we can see the small clauses have width l + r – note the equivalence
of (

∧l
i=1 Si)→ F and

∨l
i=1 ¬Si ∨ F .

6

For the given fo sentence φ, we denote its CNF propositional translation ob-
tained as explained above by Cφ,n where n is the size of the (finite) model.

Given a (propositional) variable of the form Ri (x1, x2, . . . , xp) or Sj(x1, x2,
. . . , xp, y), we call x1, x2, . . . , xp arguments of Ri or Sj. We call y the witness
of Si. We also call x1, x2, . . . xp and y the elements of Ri or Sj.

Finally, we point out that the Skolemisation also gives us a transformation of
the original Πk sentence φ into a Π2 sentence φ′:

∀x, y∃z
k∧
i=1

Si (x1, . . . xi, zi) ∧
(

k∧
i=1

Si (x1, . . . xi, yi)→ F (x, y)

)
. (6)

Clearly φ′ is equivalent to φ, i.e. φ′ has the same set of countable models as φ
except for the Skolem relations Si (x1, x2, . . . xi, yi) that are explicit in φ′ but
not in φ.

Whenever we say that we refute an fo sentence φ in Res (k), we really mean
that we first translate the sentence into a set of (1-)clauses, assuming a finite
universe of size n, Cφ,n, and then refute Cφ,n with Res(k). Naturally, the size
of the refutation is then a function in n.

Least Number Principles

The least number principle is the assertion that every finite partial order has
a minimal element. We will consider two versions of it (more accurately, its
negation):

LNP : ∀x, y, z∃w R(x,w) ∧ ¬R(x, x) ∧ (¬R(x, y) ∨ ¬R(y, z) ∨R(x, z))

TLNP : ∀x, y, z∃w R(x,w) ∧ ¬R(x, x) ∧ (¬R(x, y) ∨ ¬R(y, z) ∨R(x, z))

∧(x = y ∨R(x, y) ∨R(y, x))

the latter of which enforces that the order is total. The translation of these
to propositional contradictions is a little verbose, involving as it does the
introduction of an essentially unnecessary Skolem relation. We will therefore
prefer the slightly more natural versions as follows (note that our results go
through for the more verbose versions). Recall the variables are R(i, j), i, j ∈

7

[n]; for LNPn we have the clauses:

¬R(i, i) for i ∈ [n]

¬R(i, j) ∨ ¬R(j, k) ∨R(i, k) for i, j, k ∈ [n],

R(1, j) ∨ . . . ∨R(n, j), for j ∈ [n]

and for TLNPn we add the clauses R(i, j) ∨R(j, i) for i 6= j.

3 Short refutations in Res(k)

In this section we explore upper bounds in the systems Res(k). It is well-known
that the Least number principle has polynomially-sized Resolution refuta-
tions. We will now consider these as branching 1-programs. Essentially, one
maintains at each point a current minimal element m among the investigated
{1, . . . , j}, for m ∈ [j]. For the LNPn, we consider major nodes, boxed below,

of the program to be of the form ¬R(1,m) ∧ . . . ∧ ¬R(j,m) , for m ∈ [j].

For pedagogical reasons (relating to the forthcoming proof of Proposition 1)
we will query negated variables ¬R(x, y). The branching program begins:

¬R(1, 2)?

⊥
&&LLLLLLLLLLLLL

>xxqqqqqqqqqq

¬R(1, 2) ¬R(2, 1)?

⊥
 @

@@
@@

@@
@@

@@
@

>zzuuuuuuuuuuuu

¬R(2, 1) #

8

now, from a point ¬R(1,m) ∧ . . . ∧ ¬R(j,m) it continues

¬R(j + 1,m)?

⊥
��

>

++WWWWWWWWWWWWWWWWWWWWWWWWW

¬R(1,m) ∧ . . . ∧ ¬R(j,m) ∧ ¬R(j + 1,m) ¬R(m, j + 1)?

⊥

ssggggggggggggggggggggggggg

>
��

¬R(1, j + 1)?

⊥
��

>

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXX #

...

⊥
��

#

¬R(j + 1, j + 1)?

⊥
��

>

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

¬R(1, j + 1) ∧ . . . ∧ ¬R(j + 1, j + 1) #

The branching 1-program ends with ¬R(1,m) ∧ . . . ∧ ¬R(n,m) which con-

tradict the Skolem clauses. The total number of boxed nodes is bound by n2

and the internal nodes in navigating between boxed nodes are fewer than, say,
2n. It follows that the program is of size bound by 2n3. In the case of the
TLNPn we may go about our business in the dual fashion, with boxed nodes
of the form

R(m, 1) ∧ . . . ∧R(m,m− 1) ∧R(m,m+ 1) ∧ . . . ∧R(m, j) ,

for m ∈ [j], beginning with:

R(1, 2)?

⊥
%%JJJJJJJJJJJJ

>yyrrrrrrrrrr

R(1, 2) R(2, 1)?

⊥
��>

>>
>>

>>
>>

>>
>

>{{wwwwwwwwwww

R(2, 1) #

9

now, from a point R(m, 1) ∧ . . . ∧R(m,m− 1) ∧R(m,m+ 1) ∧ . . . ∧R(m, j)

it continues

R(m, j + 1)?

⊥
''OOOOOOOOOOOOOO

>rrffffffffffffffffffffffff

R(m, 1) ∧ .. ∧R(m,m− 1) ∧R(m,m+ 1) ∧ .. ∧R(m, j + 1) R(j + 1,m)?

⊥
��

>
wwoooooooooooooo

R(j + 1, 1)?

>

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

⊥
��

#

...

��

R(1, j + 1)

⊥
((QQQQQQQQQQQQQQQ

>
��

R(1,m)?

⊥
((QQQQQQQQQQQQQQQ

>
��

#

R(j + 1, j)?

>
��

⊥

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX # #

R(j + 1, 1) ∧ . . . ∧R(j + 1, j) R(j, j + 1)?

⊥
''OOOOOOOOOOOOOOOO

>
��

R(j,m)?

⊥
((RRRRRRRRRRRRRRR

>
��

#

#

We say that an fo sentence φ admits a quantifier-free interpretation of the
relativised LNP if there exist quantifier-free formulae P(x, y) and Q(x) such
that, in all models A of φ, P(x, y) defines a partial order without minimum
on the set of tuples given by Q(x) (which is non-empty). We are now ready
to state our first result.

Proposition 1 Let φ be an fo sentence with no finite models, but some in-
finite model, s.t. φ admits a quantifier-free interpretation of the relativised
LNP. Then there exists k s.t. the sequence Cφ,n has polynomially-sized Res(k)
refutations.

PROOF. In the following, suppose x and y are l-tuples. Let Q(x) be re-
alised as some k1-CNF DQ1 (x) ∧ . . . ∧DQs (x) and let ¬R(x, y) := ¬P(x, y) ∨
¬Q(x) ∨ ¬Q(y) be realised as some k2-CNF DR1 (x, y) ∧ . . . ∧ DRt (x, y). Set
k := max{k1, k2}. In a branching k-program, when we talk of questioning
Q(x) and ¬R(x, y) we in fact mean that we ask the sequence of questions
DQ1 (x)∧ . . .∧DQs (x) and DR1 (x, y)∧ . . .∧DRt (x, y), obtaining either that they
are all true or that one of them is false. This means the branching factor at

10

such a node will in fact be s+1 and t+1, instead of 2, corresponding to which
of the k-disjuncts might be false (for the sake of simplicity, in future digrams,
we will not draw these additional s− 1 and t− 1 branches). When ¬R(x, y) is
answered false, we assume that Q(x),Q(y) and P(x, y) are immediately asked
and answered true.

For i ∈ [nl], let i be the representation in n-ary of i. We consider major nodes,

boxed below, of the program to be of the form Q(m) ∧ ¬R(1,m) ∧ . . . ∧ ¬R(j,m) ,

for m ∈ [j]. Our branching k-program begins:

Q(1)?

⊥
''OOOOOOOOOOOOO

>
��

¬R(2, 1)?

⊥
��>uukkkkkkkkkkkkkk

· · ·

⊥
 B

BB
BB

BB
BB

BB

Q(1) ∧ ¬R(2, 1)
Q(1)∧Q(2)∧P(2,1)

¬R(1, 2)?

⊥

vvmmmmmmmmmmmmmmmmmmm

>
��

Q(nl)?

⊥

��
Q(2) ∧ ¬R(1, 2)

Now from the point Q(m) ∧ ¬R(1,m) ∧ . . . ∧ ¬R(j,m) we continue.

¬R(j + 1,m)?

>
�� ⊥ ++XXXXXXXXXXXXXXXXXXXXXXXXX

Q(m) ∧ ¬R(1,m) ∧ . . . ∧ ¬R(j + 1,m)
Q(j+1)∧Q(m)∧P(j+1,m)

¬R(m, j + 1)?

>
ssgggggggggggggggggggggggggg

⊥
��

¬R(1, j + 1)?

>
��

⊥
++WWWWWWWWWWWWWWWWWWWWWWWWWW
Q(m)∧Q(j+1)∧P(m,j+1)

#

...

>
��

Q(1)∧Q(j+1)∧P(1,j+1)

#

¬R(j + 1, j + 1)?

>
�� ⊥

++XXXXXXXXXXXXXXXXXXXXXXXXXXX

Q(j + 1) ∧ ¬R(1, j + 1) ∧ . . . ∧ ¬R(j + 1, j + 1)
Q(j+1)∧P(j+1,j+1)

#

11

The k-program ends with Q(m) ∧ ¬R(1,m) ∧ . . . ∧ ¬R(nl,m) , which yield

Q(m) ∧ (¬P(1,m) ∨ ¬Q(1)) ∧ . . . ∧ (¬P(nl,m) ∨ ¬Q(nl)),

which contradict Cφ,n. The total number of boxed nodes is bound by n2l.
The internal nodes in navigating between boxed nodes are fewer than, say,
2(t + 1)nl. And right at the beginning there is a branching of (s + 1)nl. It
follows that the program is of size bound by 2(s+ 1)(t+ 1)n3l.

We say that an fo sentence φ admits a Σ1 interpretation of the relativised
LNP if there exist quantifier-free formulae P(z, x, y) and Q(x), where x, y are
l-tuples and z is an l′-tuple, such that, in all models A of φ, ∃z P(z, x, y)
defines a partial order without minimum on the set of tuples given by Q(x)
(which is non-empty).

Proposition 2 Let φ be an fo sentence with no finite models, but some infinite
model, s.t. φ admits a Σ1 interpretation of the relativised LNP. Then there
exists k s.t. the sequence Cφ,n has polynomially-sized Res(k) refutations.

PROOF. The proof is similar to the one just given, except ¬R(x, y) :=∧
z∈[nl′] ¬P(z, x, y) ∨ ¬Q(x) ∨ ¬Q(y) (where we assume that ¬P(z, x, y) ∨
¬Q(x) ∨ ¬Q(y) is realised as some k-CNF DR1 (z, x, y) ∧ . . . ∧ DRt (z, x, y)).
Note that negative answers to questions ¬R(x, y) now have branching factor
tnl
′
.

We say that an fo sentence φ admits a Π1 interpretation of the relativised
TLNP if there exist quantifier-free formulae P(z, x, y) and Q(x), where x, y
are l-tuples and z is an l′-tuple, such that, in all models A of φ, ∀z P(z, x, y)
defines a total order without minimum on the set of tuples given by Q(x)
(which is non-empty).

Proposition 3 Let φ be an fo sentence with no finite models, but some infinite
model, s.t. φ admits a Π1 interpretation of the relativised TLNP. Then there
exists k s.t. the sequence Cφ,n has polynomially-sized Res(k) refutations.

PROOF. The proof is similar to the one just given, except we use the dual
method for refuting the TLNP.

12

4 Exponential refutations in Resolution

In this section we will prove an exponential lower bound on a variant of the
LNP in Resolution; a result that is somehow a counterpoint to those of the
previous section. A similar result for a relativised version of the LNP has
appeared in [3]. Our variant, which is not relativised, will be designated the
Π1-LNP. It will be specified by the conjunction of the following

∀x, y, z ¬(∀uR(u, x, y)) ∨ ¬(∀uR(u, y, z)) ∨ (∀uR(u, x, z))

∀x ¬(∀uR(u, x, x))

∀x∃y (∀uR(u, y, x)),

and which more naturally appear as

∀x, y, z (∃u¬R(u, x, y)) ∨ (∃u¬R(u, y, z)) ∨ (∀uR(u, x, z))

∀x (∃u¬R(u, x, x))

∀x∃y (∀uR(u, y, x)).

It is transparent that this admits a Π1 interpretation of the LNP (with partial
and not total order) and no relativisation. We will translate this slightly dif-
ferently from our stated procedure, with the addition of only a single Skolem
relation S(x, y) (this is in order to maintain some simplicity, our argument
would work equally well in the normal circumstance).

∀x, y, z (∃u¬R(u, x, y)) ∨ (∃u¬R(u, y, z)) ∨ (∀uR(u, x, z))

∀x (∃u¬R(u, x, x))

∀x∀y∀u ¬S(x, y) ∨R(u, y, x).

∀x∃y S(x, y).

We can now give these naturally as the clauses

for each w, x, y, z ∈ [n]
∨
u∈[n] ¬R(u, x, y) ∨ ∨u∈[n] ¬R(u, y, z) ∨R(w, x, z)

for each x ∈ [n]
∨
u∈[n] ¬R(u, x, x)

for each w, x, y, z ∈ [n] ¬S(x, y) ∨R(w, y, x).

for each x ∈ [n]
∨
u∈[n] S(x, y).

13

The main result of this section is the following.

Theorem 4 Any Resolution refutation of Π1-LNPn must be of size ≥ 2
n
64 .

This will follow immediately from Lemma 10, below. We will derive our re-
sult through the probabilistic method, as appears, e.g., in [7]. Considering a
decision DAG for the Π1-LNP, we first prove that certain large records (con-
junctions of facts) must appear. We then prove that a large - exponential -
number of distinct large records (“bottlenecks”) must appear, because other-
wise there is a random restriction that generates a decision DAG for a (smaller)
Π1-LNP, that itself has no large records (a contradiction).

Let us imagine that n is divisible by four (we may handle the other cases in
a similar manner). We will describe the following random restrictions to the
Π1-LNP. Consider a random partition of our universe into two equal parts A
and B, with A again randomly divided into the two equal A1 and A2. Our
random restriction will constrain the variables as follows.

• S(x, y) and R(w, y, x) for all w and y ∈ A1 and x ∈ A2.
• ¬S(x, y) and ¬R(w, y, x) for all w and x ∈ A1 and y ∈ A2.
• ¬S(x, y) and ¬R(w, y, x) for all w and x ∈ A, y ∈ B or x ∈ B, y ∈ A.

Finally, we set all of the remaining variables of the form R(w, y, x) [i.e. x, y
both in A1, A2 or B], to > with probability 1

4
. Considering a decision DAG

for the Π1-LNP, we describe an element x ∈ [n] as busy if either

S(x, y) holds (for some y) or∧
y∈Y ¬S(x, y) holds (for a set of elements Y of size > n

2
).

Further, we describe the pair (x, y) as busy if either

R(w, y, x) holds (for some w) or

¬R(w, y, x) holds (for some w).

We will consider an n
2
-modified variant of the Π1-LNPn in which there are, for

each x, y, at most n
2

distinct w s.t. R(w, y, x) is set to >.

Lemma 5 Any decision DAG for an n
2
-modified Π1-LNPn contains a record

with ≥ n
4

busy entities.

PROOF. We consider an Adversary strategy for the decision DAG. Adver-
sary keeps in mind a set of comparisons P , each of the form x ≺ y, whose

14

transitive closure TC(P) is a partial order involving ≤ n
2

elements. Initially, P
is empty. While Prover asks questions of the form S(x, y), Adversary answers
⊥ if x = y, x ≺ y is in TC(P) or ¬R(w, y, x) is on record; and > otherwise,
adding y ≺ x to P . If Prover asks questions of the form R(w, y, x), Adversary
should answer > if y ≺ x is in TC(P), and ⊥ otherwise.

If S(x, y) is forgotten then y ≺ x should be removed from P , unless some
R(w, y, x) or ¬S(x, y′) for more than n

2
distinct y′, or ¬R(wy′ , y

′, x) for more
than n

2
distinct y′, is on record. If ¬S(x, y) is forgotten and there are now < n

2

distinct y′ s.t. ¬S(x, y′) is on record, then, if there is z with z ≺ x in P , this
should be removed unless S(x, z), some R(w, z, x), or ¬R(wy′ , y

′, x) for more
than n

2
distinct y′, is on record.

If R(w, y, x) is forgotten then y ≺ x should be removed from P , unless S(x, y),
some other R(w′, y, x) or ¬S(x, y′) for more than n

2
distinct y′, or ¬R(wy′ , y

′, x)
for more than n

2
distinct y′, is on record. If ¬R(w, y, x) is forgotten and there

are now < n
2

elements y′ s.t. ¬R(wy′ , y
′, x) is on record, then, if there is z with

z ≺ x in P , this should be removed unless some other R(w′, z, x), S(x, y) or
¬S(x, y′), for more than n

2
distinct y′, is on record.

The Adversary strategy clearly does not fail until TC(P) has more than n
2

elements, which can not happen unless P contains at least n
4

pairs; and this
can not happen without reference to n

4
busy entities.

Consider a set of clauses Γ obtained from Π1-LNPn by imposing the random
restrictions. We describe Γ as good if, for all x, y, both of which are in either
of A1, A2 or B, there are ≤ n

2
distinct w s.t. R(w, y, x) is set (to >). If Γ is

not good it is bad.

Lemma 6 The probability that Γ is bad is ≤ 3
8
· e−n12 .

PROOF. We use the following version of the Chernoff bound as appears in
[8]. LetX1, X2, . . . Xn be independent 0−1 random variables with Pr [Xi = 1] =
pi. Let X =

∑n
i=1Xi and µ = E [X]. Then, for every δ, 0 < δ ≤ 1, the following

bound holds

Pr [X ≥ (1 + δ)µ] ≤ e
−µδ2

3

In our case we have pi = 1
4

(and thus µ = n
4
) and δ = 1, so the probability

for a specific pair (x, y) to be “bad” is at most e
−n
12 . The probability that a

bad pair exists is then (by the union-bound on (n
2
)2 + 2 · (n

4
)2 pairs) at most

3
8
n2e

−n
12 .

15

Lemma 7 Consider a good Γ obtained from Π1-LNPn by imposing the random
restrictions. Any decision DAG for Γ contains a record with ≥ n

16
busy entities.

PROOF. Any decision DAG for Γ contains a refutation of the n
2
-modified

Π1-LNP on either A1 or B. (It will never contain a refutation of an LNP on
A2 because these elements have other elements below them in the partial order
– specifically, those in A1. However, we asked for the criterion of goodness on
A2 to ensure against the possibility that, for all x, y ∈ A2 and for all w, we get
both R(w, x, y) and R(w, y, x), which would be an immediate contradiction.)
The former may be treated as an instance of an n

8
-modified Π1-LNPn

4
; the

latter as an instance of an n
4
-modified Π1-LNPn

2
. The argument for these

follows as in Lemma 5.

Consider a decision DAG for Π1-LNPn. We describe a record involving ≥ n
16

busy entities as a bottleneck.

Lemma 8 With probability > 1− (1
2
)
n
32 , any bottleneck is falsified by the ran-

dom restrictions.

PROOF. Consider each busy entity within the given bottleneck. If x is busy
by virtue of S(x, y), then this is falsified with probability ≥ 1

2
(if x ∈ A, then

y ∈ B with probability ≥ 1
2
; if x ∈ B, then y ∈ A with probability ≥ 1

2
).

If x is busy by virtue of
∧
y∈Y ¬S(x, y), then this is falsified with probability

≥ 1
16

(in fact each conjunct ¬S(x, y) is falsified with probability ≥ 1
16

as this
is the likelihood of x being in A2 while y is in A1). If (x, y) is busy by virtue
R(w, y, x) then this is falsified with probability ≥ 1

2
(if x ∈ A, then y ∈ B

with probability ≥ 1
2
; if x ∈ B, then y ∈ A with probability ≥ 1

2
). Finally,

if (x, y) is busy by virtue of ¬R(w, y, x) then this is falsified with probability
≥ 1

16
(this is the likelihood of x being in A2 while y is in A1).

Now, we do not quite have independence of the busy entities. For, example, if
x is busy by virtue of S(x, y) then it is more likely that some (x, y) is busy by
virtue of some R(w, y, x); however, these dependencies can only come in pairs.
Therefore, we may consider that there are n

16
/2 busy entities whose business is

independent. It follows that a bottleneck is falsified by probability exceeding
1− (1−max{1

2
, 1

16
}) n

32 .

Lemma 9 If there are < 2
n
64 bottlenecks then there is a random restriction

that falsifies all bottlenecks.

PROOF. The probability that a bottleneck survives the random restrictions
is ≤ (1

2
)
n
32 . Thus, by the union bound, the probability that any of the 2

n
64

16

bottlenecks survives is ≤ (1
2
)
n
32 . Now, again using the union bound, we deduce

that the probability any bottleneck survives or the Γ induced by the random
restrictions is bad is at most (1

2
)
n
32 + 3

8
n2e

−n
12 < 1 (at least for n ≥ 101). It

follows that there is some good random restriction that kills all bottlenecks.

Lemma 10 Any decision DAG for Π1-LNPn must contain ≥ 2
n
64 bottlenecks.

PROOF. If not it follows from the Lemma 9 that there is a random restric-
tion that kills all bottlenecks and induces a good Γ. But then what remains
incorporates a refutation of this good Γ which has a record involving ≥ n

16

busy entities by Lemma 7. But, such a record would have been a bottleneck
in the decision DAG for the original Π1-LNPn – a contradiction.

5 Final remarks

We believe that our proof of Theorem 4 can be canonically extended to prove
that the lower bound holds not only in Resolution, but also in Res(k).

Conjecture 11 There exists εk > 0 s.t. any Res(k) refutation of Π1-LNPn

must be of size ≥ 2εk·n.

We may define the following further variants of the least number principle
which we will designate the Πd-LNP. They may be specified by the conjunction
of the following

∀x, y, z ¬(∀u1∃u2 . . . , QudR(u1, .., ud, x, y))∨ ¬(∀u1∃u2 . . . , QudR(u1, .., ud, y, z))

∨(∀u1∃u2 . . . , QudR(u1, .., ud, x, z))

∀x ¬(∀u1∃u2 . . . , QudR(u1, .., ud, x, x))

∀x∃y (∀u1∃u2 . . . , QudR(u1, .., ud, y, x)),

where Q is ∀ if d is odd and is ∃ if d is even. We conjecture that the (negations
of the) principles Πd-LNP may be used to separate depth d-Frege from depth
d+ 1-Frege (for the definitions of these proof systems see [6]).

Conjecture 12 The negation of the Πd+1-LNP gives rise to a sequence of
propositional tautologies Cn that admits polynomially-sized proofs in depth d+
1-Frege but requires exponentially-sized proofs in depth d-Frege.

17

References

[1] S. Riis, A complexity gap for tree-resolution, Computational Complexity 10
(2001) 179–209.

[2] S. Dantchev, Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof
systems, in: Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, ACM, 2007, pp. 311–
317.

[3] S. Dantchev, S. Riis, On relativisation and complexity gap for Resolution-based
proof systems, in: The 17th Annual Conference of the EACSL, Computer Science
Logic, Vol. 2803 of LNCS, Springer, 2003, pp. 142–154.

[4] J. Kraj́ıĉek, On the weak pigeonhole principle, Fundamenta Mathematica 170
(2001) 123–140.

[5] S. Dantchev, B. Martin, The limits of tractability in resolution-based
propositional proof systems, in: The 6th Conference Computability in Europe,
Vol. 6158 of LNCS, Springer, 2010, pp. 98–107.

[6] J. Kraj́ıĉek, Bounded Arithmetic, Propositional Logic, and Complexity Theory,
Cambridge University Press, 1995.

[7] P. Pudlák, Proofs as games, American Mathematical Monthly (2000) 541–550.

[8] M. Buot, Probability and computing: Randomized algorithms and probabilistic
analysis. Michael Mitzenmacher and Eli Upfal, Journal of the American
Statistical Association 101 (2006) 395–396.
URL http://ideas.repec.org/a/bes/jnlasa/v101y2006p395-396.html

18

