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Abstract 

In multiattribute decision problems the decision to differentiate between alternatives 

will be affected by the precision with which weights are specified. Specifications are 

imprecise because of the uncertainty characteristic of the judgements on which weights 

are based. Uncertainties are from two sources, the accuracy with which judgements are 

articulated and the inconsistency when multiple judgements are made and must be 

reconciled. These uncertainties are modelled using probabilistic weight estimates 

integrated by the Dirichlet distribution. This ensures the consistency of the estimates 

and leads to the calculation of significance of the differences between alternatives. A 

simple plot of these significant differences helps in the final decision whether this is 

selection or ranking. The method is used to find weight estimates in the presence of 

both types of uncertainty acting seperately and together. 
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Using imprecise estimates for weights.  

 

Introduction 

Developing a model to help a decision process is necessarily iterative. The forms of and 

relations between model, data, and parameter values change as the understanding of the user 

changes. They are also a vehicle for exploration and reflection by the user so that judgements 

are altered until the “form and content [are] sufficient to solve the problem” (Phillips 1984). 

This process attempts to resolve the many uncertainties inherent in the model and its use 

(French 2003, 1995). Sometimes the problem may be such that all uncertainties must 

somehow be resolved before a satisfactory decision is made but, equally, some residual 

uncertainty may be tolerated. For example, if the task is to make a short list of candidates for 

further consideration it is not necessary to discriminate between those on the short list, only to 

believe that they are better than the rest.  

Some parameter values will be based in whole or in part on judgement. At any stage in 

this process there is a need both to articulate this judgemental uncertainty and also to have a 

means of helping to reduce it by developing a better understanding of preferences through an 

exploration of their implications. Sensitivity analysis helps this exploration by testing the 

effects of changes in parameter values so that some reduction, perhaps resolution, of 

uncertainty may be achieved. There are many ways of structuring sensitivity analyses to help 

in this (see, for instance, French 1992; Insua and French 1991). Variations in parameter 

values may be considered one at a time or in combination (French 2003). For example, in 

multiattribute problems Mustajoki, Hämäläinen and Lindstedt (2006) describe three forms of 

sensitivity analysis. First, a single parameter test in which one weight is varied and the effect 

on scores observed. The reults are easily shown in a simple diagram. Second, a 

multiparameter test in which several weights are varied.  While this enables the effects of 

weight interactions to be explored the depiction of the results is not easy for more than two or 

three weights. Thirdly, a global sensitivity analysis assesses the effects of imprecision in all 

weights, most often by specifying probability distributions for weights and then using Monte 

Carlo analysis, though in some cases an analytical approach may be feasible, and preferable. 

The results of global analysis may be simply shown in two-dimensional plots (Kruskal and 

Wish 1978), an idea applied to multcriteria problems by Clarke and Rivett (1978; Rivett 

1977). 

Single parameter and global sensitivity analyses  have different puposes and languages 

and so are used in different  ways in the interaction between model and user. Considering all 

uncertainties together, whether by simulation or an anlystical model, uses probability 

distributions for input and so also for output. While it is fairly straightforward to specify 

inputs interpreting outputs in the context of a decision problem may be more difficult. 
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Standard reports such as confidence interval estimates of differences between performance 

measures provide an easy summary. This may be enough: given the uncertainties in inputs it 

is possible to decide that one alternative is superior to another, even though the magnitude of 

the difference is not known exactly. If this is not the case a modification of inputs (smaller 

variances) will give more discrimination in the output. This process gives a sequence of 

groups or clusters, starting with one undifferentiated group of all alternatives and producing  

increasingly more, and smaller, groups as uncertainties are reduced and discrimination 

increases. 

The purpose of this paper is to demonstrate the feasibility of a simple analytical model 

for global sensitivity analysis for those comfortable with a probabilistic approach. The 

analysis uses techniques seperately familiar elsewhere but brought together for this particular 

application to the simple multiattribute scoring model. Scores are the weighted sum of 

attributes. Values for weights are inferred from preference statements and it is this source of 

uncertainty which is the object of the model. 

This paper is organised as follows: the sources of uncertainty are outlined; a model 

incorporating uncertainty is described and an example using direct rating given. Extensions to 

other  methods involving several estimates of the same weights are shown and results 

discussed. 

 

Uncertainty about weights 

The multiattribute model considered is 

 

 yj  =   wixij     ;   i = 1 n , j = 1 m     (1) 

                      
i 

 

with  wi = 1        (2)  

              
i 

 

and where  yj is the score for alternative j, wi is the weight attached to attribute i and xij is an 

appropriately scaled measure of the value of attribute i for alternative j. The scaling ensures 

that for each variable either the range is [0,1] or that mean = 0 and standard deviation = 1. If 

the unscaled ith attribute has values qij with minimum and maximum values qmin and qmax and 

mean and standard deviation q and sq then either 

 

 xij  =  (qij - qmin) / (qmax - qmin)      (3) 

 

or xij  =  (qij - q) / sq       (4) 
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with obvious adjustments if small values are preferred . 

There are a number of methods which may be used to derive weights from preference 

statements. Different methods generally give different weights, mainly because of the 

different modes of elicitation (Pöyhönen and Hämäläinen 2001). It is not the purpose in this 

paper  to compare such popular alternatives as SMART, SWING and AHP, simply to show how 

an analytical approach may be used to model uncertainty in some different methods 

Saaty and Vargas (1987) identify two types of uncertainty, that arising from uncertainty 

about events and that about making judgemental preference statements, attributing this second 

to limits of information and understanding. Lavary and Wan (1998) describe both uncertainty 

about the future context for the decision and of making judgements of pairwise weight ratios. 

Hauser and Tadikamalla (1996) cite uncertainties about facts and also a lack of agreement 

between decision makers. Whatever the sources of uncertainty the effect is the same; an 

inability to provide precise estimates of weights.  

What is a sensible response to these difficulties? Barron and Barrett (1996) speculate 

that “the pursuit of precise weights may be an illusion”, that trying to elicit exact weights is 

problematic because the result is likely to depend on the method used and because the 

exactness of the weights obtained “imposes a precision which may be absent in the mind of 

the decision maker”. Just what is in the mind of the decision maker is unknown and, probably, 

unknowable, perhaps even by the decision maker. Questions are asked which require answers 

based on some mental process we call judgement. These answers are the data for a model 

which uses weights as a description of the judgements. 

Uncertainty in judgement leads to uncertainty about weights. This may be described by 

specifying ranges (e.g. Mustajoki, Hämäläinen and Sahlo 2005) or probability distributions. 

Probabilistic models of imprecision in weight specification are usually found in studies which 

seek to explore the impact of uncertainty on model structure and performance (Moskowitz, 

Tang and Lam 2000; Fischer, Jia and Luce 2000). Similarly probabilistic models for practical 

decision support are harder to find, although using the cumulative probability distribution 

(risk function) for each score and the identification of stochastic dominance has been 

proposed (Moskowitz, Tang and Lam 2000) as have the modelling of a probability 

distribution of the rank of each alternative (Bañuelas and Antony 2007; Jessop 2002; Butler, 

Jia and Dyer 1997) and the probability of rank reversal (Stam and Duarte Silva 1997; Saaty 

and Vargas 1987).  

 

Modelling uncertainty 

When making  probabilistic judgements about weights assesors will have in mind marginal 

distributions. Because of (2) these distributions cannot be independent. The Dirichlet 
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distribution provides an appropriate model of the joint distribution to integrate individual 

weight estimates (Hora 2007; Butler, Jia and Dyer 1997): 

 

 f(W)  =  k  wi

ui-1   ;    0<wi<1,  wi = 1,  ui 0,   i   (5)  

                              
i                                                       i 

 

 k  =  (  ui) /  (ui)       (6)  

                          
i                 i 

  

which has Beta marginal distributions with properties 

 

 i  =  ui / v        (7) 

 

 i²  =  ui(v- ui) / v²(v+1)       (8) 

 

and covariances 

 

 ij  =  -uiuj / v²(v+1) ;  i≠j      (9) 

 

where v  =   ui             (10)
  

                                   i 

 

In Bayesian analysis (e.g. Congdon 2001; DeGroot 1970) the Dirichlet distribution is 

the conjugate prior for a process with a multinomial likelihood. As data are collected 

parameter values are updated, increasingly higher parameter values corresponding to more 

data and so to reduced variance. Fischer, Jia and Luce (2000) make an analogy with respect to 

weight estimates; that decision makers who feel themselves to have greater expertise or 

familiarity with the assessment model may give estimates with smaller marginal variance and 

that this may be seen as stored experience. Whether smaller variance represents greater 

experience, technical familiarity with the model or unjustified self-assurance may not be clear 

but, whichever it is, the effect is modelled in the same way: the smaller the variance the larger 

the value of v. 

Marginal variances will be inconsistent with proper Dirichlet marginal probability 

distributions in that they will not conform to (8). A reconciliation may be found by treating v 

as a parameter which controls the overall level of variance and finding a compromise value 

which ensures that the Dirichlet conditions are met. Using the mean and variance, ei and si
2
, of 

each weight estimate for i and i² in (7) and (8) gives an estimate for v from the ith weight: 
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 vi  =  [ei (1- ei) / si
2
] – 1       (11) 

 

The mean 

 

 v  =   vi / n            (12) 
                                       i 

 

 gives a compromise value of  v from which parameter values 

 

ui = v.ei          (13) 

 

can be used in (8) and (9) to give a variance/covariance matrix. The less the uncertainty in the 

marginal estimates the smaller will be the variances and so the higher the value of v, which 

may therefore serve as an indicator for the overall uncertainty of the weight estimates. 

The different estimates, vi , have some diagnostic value. Weights for which vi is low 

compared to the summary v are those which contribute most to overall imprecision. The 

judgements made about these particular weights are those which might most usefully be 

reconsidered if more precision is needed.  

Use of the Dirichlet distribution does not depend on particular procedures for weight 

elicitation. Estimates of mean and variance may be obtained from direct methods, matrices of 

weight ratios or any other means thought satisfactory for a given application. If the estimates 

are a summary of a number of different assessments, as when the judgements of a number of 

assessors are combined, marginal means and variances are available directly. If estimates are 

inferred from individual preference statements means and variances may be found using 

estimations familiar in, for example, PERT analyses. The underlying distributions are assumed 

to be Beta, which are the marginal distributions of the Dirichlet. Keefer and Verdini (1993) 

and Keefer and Bodily (1983) compare the accuracy of several estimators. The results given 

by Keefer and Bodily are used here. Low, central and high estimates (l , c , h) are given. If c is 

taken as the mode and  l and h are percentiles an estimate for the mean is 

 

e  =  ac  + (1-a)(l + h)/2          (14) 

 

with a = 0.32 for a 90% interval (Perry and Greig 1975) and a = 0.16 for an 80% interval 

(Keefer and Bodily 1983). If the central estimate is interpreted as a median then a = 0.63 for a 

90% interval (Pearson and Tukey 1965) and a = 0.40 for an 80% interval (Swanson in Megill 

1977). In this paper modal estimates are used. Estimates of variance are given by 
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 s
2
  =  [(h - l) / b]²       (15) 

 

where b = 3.25 for a 90% interval (Pearson and Tukey 1965)  and b = 2.65 for an 80% 

interval (Moder and Rogers 1968 as modified by Davidson and Cooper 1976).  

 

An example 

Data on MBA programmes are used for ranking and as an aid to selection. The data on full-

time MBA programmes published in the Financial Times of 29 January 2007 are used here. 

Nine attributes were chosen, each given as a percentage (the percentage of the MBA cohort 

that were women, and so on): 

 

1 Salary increase 

2 Aims achieved 

3 Employment at 3 months 

4 Women faculty 

5 Women students 

6 Women board  

7 International faculty 

8 International students 

9 International board 

 

In the analysis each is scaled according to (4), as was done by the newspaper. 

An MBA alumna was asked to provide weights using the SMART method. First she 

ranked the attributes then gave the most important a weight of 100. Lower ranked attributes 

were given smaller weights. Finally, for all but the highest reference weight high and low 

estimates were given. It was explained that these limits should not be absolute and would be 

interpreted as bounds of a 90% interval. The results are shown in Table 1. Means were 

calculated using (14) and scaled so that  e = 1:  

 

ei  =  ci / ci.        (16) 

               
i 

The values of l and h were scaled by the same factor and were then used to calculate  standard 

deviations s using (15). (This is also denoted by a to indicate uncertainty due to inaccuracy 

of response, as discussed in the next section.) Dirichlet scale factors v were found from (11). 

The marginal Dirichlet standard deviations, D , from (8), are also shown and include an 

estimate for the anchor weight, w2. It is a useful characteristic of the method that what might 

be seen as missing data, probabilistic estimates for the anchor, do not mean that uncertainty 

estimates cannot be made.  
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For those weights for which v < v the uncertainty after integration in the Dirichlet 

distribution is less that that specified, D< a , and vice versa.  

The task in either ranking or selection is to decide, first, if it is justifiable to believe that 

two programmes are different and only then, second, to decide which is superior. Uncertainty 

about the score for programme k is  

 

 var(yk)  =   ijxkixkj         (17) 

               
         i    j 

 

where values of  ij  are from (8) and (9). 

The difference in the scores of programmes k and l is statistically significant if 

 

 zk,l   =  (|yk - yl|- ) / [var(yk)  + var(yl)]
0.5

  ≥ zα/2    (18) 

 

where zα/2 is the critical value for a two-tailed significance test with significance level α. The 

parameter  is the test value of the difference. To test whether it is justifiable to believe that 

there is some non-zero difference set =0. This is common in hypothesis testing and is used 

here. (To identify as justifiably distinct only pairs with scores different by some larger margin 

set  >0.) Although significance testing has for long been the subject of dispute (Ziliak and 

McCloskey 2008;  Morrison and Henkel 1970) z values usefully summarise the effect of 

uncertainty on the attribution of difference: the greater z the less the risk of unjustifiably 

differentiating alternatives.  

Using twenty US MBA programmes from the Financial Times listing and the weights 

shown in Table 1 the resultant performance differences are shown in Figure 1. The numbers 

show programmes by rank. The plot is constructed so that the distances between pairs of 

alternatives correspond closely to their z value. This correspondence is characteristically high; 

r>0.9. The axes are arbitrary in that they are chosen just to maximise this correlation. The axis 

values are not shown here so that the diagram, a decision aid, has no detail not needed for this 

problem. Links are shown to identify those pairs which cannot sensibly be differentiated. In 

Figure 1 it is easy to see that there are four clusters of programmes and that the four most 

highly ranked are the most weakly clustered. Given the uncertainties of the weight 

assessments it may be that no more can be said. But this may be enough. If the purpose is to 

make a short list then it seems clear that the first four alternatives are that list. If the purpose is 

to make a final selection then some discussion about the first two programmes is needed.  

 

Sources of uncertainty 
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The example shows how three point weight estimates can be used to produce a diagram 

showing the consequent justifiable discrimination between programmes. The same framework 

can be used with different sources of uncertainty. In this section a typology is given showing 

three general cases, each of which is illustrated using the same MBA data. 

The number and type of questions asked and the style of the answers given are both 

possible sources of uncertainty in the elicitation process. Paulson and Zahir (1995) distinguish 

between inconsistency, when results are contradictory, and uncertainty arising “from doubts 

expressed by an individual decision maker as to the accuracy of his or her judgements.” 

Describe these by variances c
2
, for the uncertainty arising from contradictions, and  a

2
 for 

that resulting from imperfect accuracy of response.  

If the elicitation requires more than one estimate for each weight (from judgements 

made at different times, say, or by different people) then the variance of these different 

estimates,  c
2
, is a measure of the uncertainty arising from contradictions between 

assessments (Kleinmuntz 1990). Alternatively, if exactly n-1 questions are asked to determine 

n weights, as in the SMART (Edwards 1977) or SWING (Edwards and Barron 1994) methods,  

the weight estimation problem has zero degrees of freedom and so no way of assessing c
2
.   

Whatever the questions, answers may take one of two forms. If single point estimates 

are given then no estimate of the inaccuracy of  response is possible, but if answers are given 

probabilistically a
2
 can be found, as in the example above. 

Presuming that these two sources of uncertainty –  consistency and accuracy –  are 

independent the variance of weight estimates is w
2
 = c

2
 + a

2
. Table 2 shows the situation. 

There are three cases depending on which source or sources of uncertainty are considered. 

 

Case A: w
2
  =  a

2
           

Most of the direct elicitation methods use a reference point or anchor based on an initial 

ranking of attributes. Because these elicitatioins have zero degrees of freedom assessments 

must be made probabilistically. The n-1 evaluations contribute to finding the mean value of v 

but uncertainty estimates are found for all n weights. The example above using  SMART 

showed this (Table 1). 

 

Case B: w
2
  =  c

2
   

The uncertainty measured by c
2
 describes the distribution of a number of estimates provided 

by different people (Moskowitz, Tang and Lam 2000) or by different methods. There are a 

number of point estimates for each weight. The mean and variance of each weight estimate 

can be found directly. For example, when a number of assesors have each provided estimates. 
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Alternatively, the same assessor may provide more than one estimate for each weight, 

as in the specification of weight ratios wi/wj = aij. This method is closely identified with the 

Analytic Hierrchy Process, AHP, but can be used seperately.  While symmetry is commonly 

assumed (aji = 1/aij) it is not a requirement. Though this assumption of symmetry halves the 

work of the assessor it may mask the full effect of uncertainty. These estimates are inevitably 

inconsistent (aikakj ≠ aij) and so a weight set is found which is in some sense a best 

compromise (best fit) to the pairwise comparisons. The most frequently cited method is the 

eigenvector model of Saaty (1977). A number of studies have used simulation to investigate 

the effects of uncertainty on the ranking of alternatives found in this way (Bañuelas and 

Antony 2007;  Lipovetsky and Tishler 1999; Levary and Wan 1998; Stam and Duarte Silva 

1997; Hauser and Tadikamalla 1996;  Saaty and Vargas 1987; Vargas 1982). 

There are a number of other methods for analysing pairwise judgements. Choo and 

Wedley (2004) divide the methods into those which seek to optimise some function of the 

sum of differences (aij - wi/wj) and those based on an aggregation of the columns of the matrix 

of a values. They recommend the use of  a normalised column sum as giving good estimates 

for a range of problems. This simple method is found in standard management science texts 

(Albright and Winston 2007, Taylor 2007) recommended in its own right but also as a good 

approximation to Saaty’s results. The method relies on the observation that each column of 

the table of a values provides an unscaled estimate of the weight distribution. Scaling each 

column  to sum to 1 gives estimates 

 

  gij  =  aij /  aij                             (19) 

                                   
i 

of the weight wj with wi as the reference. The mean of these values 

 

  ei  =   gij / n                          (20) 

                            
j 

is a point estimate of weight wi. The estimation usually goes no further, thereby failing to 

exploit the positive degrees of freedom available. The variances of the estimates of wi , si
2
, 

permit the calculation of v using (11).  

As illustration the alumna who gave the judgements shown in Table 1 was asked to 

make a set of paired evaluations using the familiar nine point scale for judgemental estimates 

of the ratios (e.g. Vargas 1982). She made these evaluations two weeks after the first. The 

results are shown in Table 3 and the weight estimates in Table 4.  

With a greater number of attributes evaluation fatigue may result in an incomplete set of 

ratios. However, the averaging used is not, in principle, affected by missing data provided that 

such gaps are not so numerous as to undermine the process.  
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Case C: w
2
  =  c

2
  +  a

2
           

There are two circumstances where this might arise: when probabilistic estimates are made by 

a number of assessors and when a number of probabilistic estimates are made by the same 

assessor.  

First, consider that there are two or more assessors. Three MBA students were each 

asked to make weight assessments in the manner shown in Table 1 and to use them to make a 

ranking of the US MBA programmes. Their individual estimates were modelled as in Case A 

(Table 1) and are shown in the left-hand half of Table 5. Each of the three estimates  (e1, e2 

and e3) provides a point estimate of the weight. The mean these three values is  e and the 

standard deviation is c,  a measure of the variation due to the different assessors.  

The imprecision of the assessments themselves is a
2
, the mean of the three variances 

(s1
2
, s2

2
, s3

2
), a simple yet effective aggregation (Clemen and Winkler 2007). The two 

estimates of uncertainty are summed to give w
2
 = c

2
 + a

2
 which, with  e, provide the 

Dirichlet parameters as before.  

The second case is when the same assessor  makes a number of estimates for each 

weight. This could be at different times or in different circumstances. An example is provided 

when weight ratios are specified not as single point estimates but as three point estimates 

incorporating uncertainty (as in, for instance, Bañuelas and Antony 2007). The judgemental 

inputs in Table 3 were extracted from just such an evaluation, shown in full as Table 6.  

The resulting nine columns of three-point estimates were treated just as the different 

assessors’ estimates in Table 5. The results are shown in Table 7.  

 

Discussion 

This paper brings together and supplements existing methods to provide a treatment of the 

uncertainties inevitable in the statement of preferences and one which, via a simple diagram, 

provides a guide to what discrimination between alternatives may, and may not, be justified. 

For simple models such as this weighted sum an analytical approach is more convenient than 

a simulation but otherwise plays the same role. None of the constituents is new: probabilsitic 

models of weights, with and without the Dirichlet distribution; the use of three point 

estimates; two dimensional plots have all been used for some years. Bringing them together in 

this way has not been done before. The purpose is to demonstrate the feasibility of a decision 

aid which uses probability to describe uncertainty. 

Wallsten (1990) notes that decision makers “feel best served when representations of 

uncertainty are as precise as possible, but no more precise than warranted”.  It is in this spirit 

that a probabilistic approach is offerred. For some users the language of probability may be 
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unfamiliar and so inappropriate for them: they will prefer single parameter sensitivity tests. 

However, the probailistic approach takes account of all uncertainties simultaneously so that 

the user may have confidence in the results which can convincingly be communicated to 

decision makers (Mustajoki, Hämäläinen and Lindstedt 2006). This communication should be 

couched in terms of justifiable discrimination between alternatives. The simple diagram 

(Figure 1) helps.  

The application was illustrated using two popular methods for weight elicitation, SMART 

and weight ratios, as well as the aggregation of different judgements. There exist strongly 

held views about the different methods used for multiattribute modelling. No such views are 

offerred in this paper. These methods were used as illustrations only. 

A number of applications of probabilistic models for weights have been concerned with 

the likelihood of rank reversal. This occurs only if it is possible that the relative scores of two 

alternatives might be reversed. If it is unlikely that the difference between the scores is zero 

then it is correspondingly unlikely that there will be rank reversal. In looking at significant 

differences, as in Figure 1,  it is implicit that the stability of the ranks is also addressed. 

In both examples of Case C (Tables 5 and 7) it is notable that c > a. The results are 

given as illustrations of the feasibility of the proposed method of modelling weights and not 

as part of an argument about the relative importance of different sources of uncertainty. But if  

it were generally the case that uncertainty in articulation was the smaller this would argue in 

favour of elicitation methods with positive degrees of freedom. While elicitation methods 

with no degrees of freedom (Case A) make life easier for the user they necessarily cannot 

afford the means to estimate uncertainty due to contradictions, c.  

It was assumed that the sources of uncertainty are independent, that the differences 

between assessments is unrelated to the precision with which those assessments are 

expressed. This was certainly the case when more than one assessor was used (the correlation 

between c and a in Table 5 is r = 0.07) but for the multiple assessments of a single assessor 

it was not (for the results shown in Table 7 r = 0.94). Positive correlations will increase the 

overall uncertainty, w , and, were these dependencies shown to be generally characteristic, 

the calculation of w should take them into account. 

While none of the constituents used in the model is problematic the use of a 

probabilistic model for weights requires a difference in approach when compared with the use 

of single parameter sensitivity analysis. The forms of interaction are different. Whether it is 

more difficult, and less useful, to see the effects of altering three-point estimates, even if just 

one at a time, than changing point estimates is not resolved in this paper. The four MBA 

students (a small and particular sample, to be sure) who provided the data for the illustrations 

reported no difficulties. Global sensitivity analysis is, by definition, comprehensive. It speaks 
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probability and so the flavour of the argument is about what level of discrimination is 

justifiable. The price paid is that some may find this a too abstract language. In that weights 

are found as much by interaction with a problem as by contemplation of some inner 

dispositions it may well be that some users will not find the global model helpful. Both the 

nature of what constitutes justification in a particular case and the differences in the language 

used in the interactions will determine which approach a user will prefer. 

It was the object of this paper to establish the feasibility of the probablilistic model of 

uncertainty about weights and this has been done. Testing the utility of the approach on a 

wide range of problems, and users, remains to be done. 
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Figure 1. Plot of z distances. Lines show insignificantly different pairs: α=0.05, θ=0. 
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Attribute user estimates   scaled values     

 l c h  l e h  s = a v D 

1 70 90 95  0.144 0.175 0.196  0.016 572.4 0.020 

2  100    0.206      0.021 

3 70 90 100  0.144 0.179 0.206  0.019 403.4 0.020 

4 10 40 50  0.021 0.069 0.103  0.025 97.9 0.013 

5 40 50 60  0.083 0.103 0.124  0.013 572.7 0.016 

6 5 10 15  0.010 0.021 0.031  0.006 500.2 0.008 

7 10 30 40  0.021 0.055 0.083  0.019 142.0 0.012 

8 60 80 90  0.124 0.158 0.186  0.019 365.7 0.019 

9 5 20 25  0.010 0.034 0.052  0.013 204.1 0.010 

 

Table 1. Case A: w
2
  =  a

2
. Explicit uncertainty estimates.  v = 357.3. 
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  type of answer 

  single point three-point 

degrees of freedom 0 none available a
2
 

implicit in questions >0 c
2
 c

2
  +  a

2
 

 

Table 2: Classes of weight estimator and estimates of w
2
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Attribute i   

1 3 8 5 4 7 9 6   

3 3 7 5 9 9 9 9 2  

 3 9 6 7 5 9 9 1  

  3 5 5 9 9 5 3  

   3 5 5 5 5 8 j 

    4 1 5 5 5  

     1 5 5 4  

      3 5 7  

       5 9  

 

Table 3. Estimates of aij = wi/wj (attributes ordered by importance). 
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Attribute e s = a v D 

1 0.239 0.124 17.7 0.099 

2 0.318 0.099 13.1 0.124 

3 0.159 0.068 28.1 0.068 

4 0.043 0.052 30.1 0.037 

5 0.063 0.041 33.9 0.041 

6 0.016 0.037 91.4 0.013 

7 0.043 0.028 51.0 0.028 

8 0.092 0.031 30.0 0.052 

9 0.027 0.013 26.5 0.031 

 

Table 4. Case B: w
2
  =  c

2
. Weight estimates from Table 3.  v = 41.6. 
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 calculations as for Case  A (Table 1)  effect of        

 student 1  student 2  student 3  different assessors        

 e1 s1  e2 s2  e3 s3  e c  
a   w v  D 

1 0.180 0.025  0.096 0.011  0.162 0.018  0.146 0.044  0.019  0.048 53.0  0.035 

2 0.246 0.028  0.160 0.014  0.146 0.017  0.184 0.054  0.020  0.058 43.9  0.038 

3 0.205 0.026  0.192 0.015  0.192 0.019  0.196 0.007  0.020  0.022 335.5  0.039 

4 0.029 0.011  0.075 0.010  0.069 0.012  0.058 0.025  0.011  0.027 71.6  0.023 

5 0.094 0.019  0.128 0.013  0.088 0.014  0.104 0.022  0.015  0.026 133.0  0.030 

6 0.004 0.004  0.053 0.008  0.058 0.011  0.038 0.030  0.008  0.031 37.7  0.019 

7 0.090 0.018  0.153 0.013  0.092 0.014  0.112 0.036  0.015  0.039 64.3  0.031 

8 0.139 0.022  0.100 0.011  0.108 0.015  0.116 0.021  0.017  0.027 142.2  0.032 

9 0.012 0.007  0.043 0.008  0.085 0.013  0.047 0.036  0.010  0.038 30.4  0.021 

 

Table 5. Case C: w
2
  =  c

2
  +  a

2
. Estimates from three assessors.  v = 101.3. 
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Attribute  

1 3 8 5 4 7 9 6  

(3,3,4) (3,3,4) (7,7,9) (5,5,7) (8,9,9) (8,9,9) (8,9,9) (8,9,9) 2 

 (3,3,5) (8,9,9) (5,6,7) (7,7,9) (5,5,7) (8,9,9) (8,9,9) 1 

  (3,3,5) (5,5,7) (5,5,7) (8,9,9) (8,9,9) (4,5,6) 3 

   (3,3,4) (5,5,7) (5,5,7) (4,5,6) (5,5,7) 8 

    (3,4,5) (1,1,3) (5,5,7) (4,5,6) 5 

     (1,1,2) (5,5,7) (5,5,7) 4 

      (3,3,5) (4,5,5) 7 

       (5,5,6) 9 

 

Table 6. Paired comparisons using three point estimates. 
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   standard deviation    

Attribute e  c           a           w           v D 

1 0.236  0.099 0.031 0.104  15.8 0.076 

2 0.319  0.137 0.029 0.140  10.1 0.083 

3 0.155  0.068 0.016 0.070  26.1 0.065 

4 0.047  0.042 0.007 0.043  23.3 0.038 

5 0.064  0.042 0.012 0.044  30.6 0.044 

6 0.016  0.014 0.001 0.014  77.6 0.023 

7 0.040  0.029 0.007 0.029  43.7 0.035 

8 0.096  0.059 0.013 0.061  22.6 0.053 

9 0.027  0.033 0.002 0.033  23.0 0.029 

 

Table 7. Case C: w
2
  =  c

2
  +  a

2
. Estimates from a single assessor.  v = 30.3. 
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Figure 1. Plot of  z distances. Lines show insignificantly different pairs: α=0.05, θ=0. 
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