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Abstract—This paper provides a new framework for modelling
uncertainty in the input data for power system risk calculations,
and the error bars that this places on the results. Differently from
previous work, systematic error in unit availability probabilities is
considered as well as random error, and a closed-form expression
is supplied for the error bars on the results. This closed-form
expression reveals the relative contribution of different sources
of error much more transparently than iterative methods. The
new approach is demonstrated using the thermal units connected
to the Great Britain transmission system. The availability prob-
abilities used are generic type availabilities, published rounded
to the nearest 5% by the system operator. Very wide error bars
on the results of risk calculations result from the use of these
probabilities; however, this is only revealed by modelling of the
systematic error caused by the rounding. The approach is also
used to investigate quantitatively the widely acknowledged view
that comparing relative risks is a more robust use of simulated
risk indices than stating absolute risk levels.

Index Terms—Power system reliability, Measurement errors

I. INTRODUCTION

INTEREST in power system reliability calculations has
increased over recent years, due to the increasing installed

capacity of variable output renewables. Applications have
included estimating the capacity credit of wind generation
[1] and calculation of operating reserve requirements [2]. In
any such risk calculation, it is necessary to provide a realistic
model of the conventional thermal and hydro plant availability,
as well as the variable renewables of direct interest. This paper
provides a new framework for modelling uncertainty in the
availability probabilities assumed for conventional plant, and
the error bars that this places on the results of risk calculations.

The low-availability tail of the probability distribution for
available capacity decays rapidly. The relationship between
system risk and unit availabilities is therefore highly nonlinear,
and it is possible for even small errors in input data to have a
substantial effect on the results of risk calculations. As an
example, the installed generation capacity in Great Britain
is around 75 GW; if all the unit availability probabilities
change by 1% in the same direction, then the mean available
capacity will change by almost 1 GW. This is substantial
when compared with the standard deviation of the available
capacity distribution, which (as will be seen later) is around
2 GW. Understanding and robust quantification of this effect
are therefore important.
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Power system reliability indices considering conventional
generation only are usually calculated via the Capacity Outage
Probability Table (COPT) method [3]. This involves a iterative
calculation, adding the generating units to the model one at
a time. The COPT iterative method was extended in [4] to
situations where the unit forced outage rates (FORs) are not
known precisely; a method for translating error bars on FORs
to error bars on reliability indices is provided. Subsequent
developments have included faster approximate methods based
on Taylor expansions, for small data uncertainties, of the
formulae for reliability indices, e.g. [5]–[7], and pp 63-67
of [3]. More recent work has extended this methodology to
network reliability studies [8] and multi-area systems [9], and
to the use of fuzzy set theory to model data errors [10].

All of this previous work has assumed that there is no
systematic error in the FORs, i.e. the errors are independent,
with no tendency for them to lie in the same direction.
The errors may then be modelled as statistically independent
random variables. This assumption was questioned by P.F
Albrecht and W.J. MacFarland in a discussion of [4] (see pp
1334-1335):

Recall that these random variables quantify the state
of knowledge of the investigator – therefore, all
forced outage rates have one thing in common – they
were made by the same individual or group. Hence,
it seems more likely that deviations in forced outage
rate will all tend to be in the same direction.

It will be shown later that another situation where systematic
error can also occur when using rounded generic data for each
type of generating unit.

This paper introduces consideration of systematic error in
FORs into power system reliability index calculation. Dif-
ferently from earlier related work, which has used iterative
calculations, here a direct method for translating uncertainty
in FORs into error bars on Loss of Load Probability (LOLP)
is provided. The new method is applicable as long as a contin-
uous approximation to the distribution for available generating
capacity is reasonable; while the individual unit capacities are
modelled as discrete, this continuous approximation will be
valid as long as the number of units is large and their capacities
are sufficiently diverse. The stronger assumption of a Normal
distribution is not required. The benefits of such a direct
method, in terms of revealing transparently the contributions of
random and systematic components of data errors, are great.
Iterative calculations are focused on obtaining a result, but
may not offer substantial insight into why the choice of input
parameters caused a particular numerical value to be obtained.

Following a review of previous work in Section II, Section
III introduces the idea of systematic error via an example
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based on the Great Britain power system, for which data is
supplied rounded to the nearest 5%. Section IV introduces the
new method, which is applied to model errors in the Great
Britain example in Section V. The widely acknowledged view
(see for instance page 5 of [11]) that comparing relative risks
is a more robust use of simulated risk indices than stating
absolute risk levels is investigated quantitatively in Section VI.
Finally, conclusions are presented in Section VII; in the Great
Britain example used, it is demonstrated that using rounded
data introduces large systematic error in addition to that arising
from uncertainty in the best point estimates.

II. PREVIOUS WORK

A. FORs Known Precisely: Capacity Outage Probability Table

The method for calculating the probability distribution for
the generating capacity on outage is well established, and is
described in detail in [3]. It works by adding units to the
system iteratively; if pu(x) is the probability that total capacity
of at least x is on outage from the first u units, and units are
modelled using a 2-state model (i.e. all or nothing available)
then

pu(x) = (1− ru)pu−1(x) + rupu−1(x− cu), (1)

where ru and cu are respectively the FOR and capacity of unit
u. This is generally known as the Capacity Outage Probability
Table (COPT) method.

B. Uncertain FORs

1) Exact Method for Independent Errors: [4] models
the errors in the FOR of unit u as a random variable Ru,
with mean µRu and variance σ2

Ru
. The probabilities in the

COPT are then themselves random variables1. An iterative
method of calculating their means E[Pu(x)] and covariances
Cov[Pu(x), Pu(y)], again adding one unit at a time, is derived.
Error bars may be placed on the probabilities pu(x) by
evaluating the variances V [PnU

(x)] = Cov[PnU
(x), PnU

(x)],
where nU is the number of units.

2) Use of Assumption of Independence: The derivation
of this iterative method for calculating Cov[Pu(x), Pu(y)]
involves expressions such as

E[Pu−1(x)Pu−1(y)(1−Ru)
2]. (2)

The assumption of independence allows this to be expanded
as

E[Pu−1(x)Pu−1(y)]E[(1−Ru)
2], (3)

which may be expressed in terms of Cov[Pu−1(x), Pu−1(y)].
There is no obvious way of extending this to situations involv-
ing systematic error, as the {Ru} are then not independent.

1Throughout this paper, the convention that random variables are denoted
by capital letters, and fixed parameters by lower case, will be used.

TABLE I
CONVENTIONAL UNIT TYPES ON THE GB TRANSMISSION SYSTEM, THE

SUMS OF UNIT OPERATIONAL REALISABLE CAPACITIES FOR EACH TYPE,
AND THE ASSUMED AVAILABILITIES FROM NATIONAL GRID’S WINTER

OUTLOOK 2008/09 [12].

Type No. Units Capacity (GW) Availability
Nuclear 22 10.5 80%
Hydro 42 1.1 60%
Coal 62 28.5 85%
Oil 7 3.7 95%
Pump storage 16 2.9 95%
OCGT 46 1.5 95%
CCGT 51 25.8 90%

246 74.0

3) Approximate Method: A more computationally efficient
approximate approach, which requires an iterative calculation
for the probabilities only (i.e. not the covariances), is presented
in [7]. This uses a Taylor expansion for small FOR errors to
express the covariances in terms of the entries in the COPT
(1) and the variance of the {Ri}. To first order:

Cov[PnU (x), PnU (y)] =

nU∑
u=1

(
∂pnU (x)

∂ru

)(
∂pnU (y)

∂ru

)
σ2
Ru

.

(4)
The partial derivative with respect to ru may be expressed
in terms of entries from a COPT with unit u removed. This
approach is appropriate for modelling systematic errors; (4)
would then become

Cov[PnU
(x), PnU

(y)]

=

nU∑
u,v=1

(
∂pnU (x)

∂ru

)(
∂pnU (y)

∂rv

)
Cov[Ru, Rv]. (5)

The approach in this paper is related to this approximate
COPT-based method. The key advance is that by making the
further approximation of assuming a particular form for pn(x),
the new method provides a transparent closed-form expression
for the error bar on calculated LOLP values.

III. MOTIVATION: ROUNDED AVAILABILITY DATA FOR
THE GREAT BRITAIN SYSTEM

A. Units and Availability

1) Model for GB Conventional Plant: The conventional
generation connected to the Great Britain transmission system
is summarised in Table I. The unit capacities used are the
Operational Realisable Capabilities (ORCs), as determined by
National Grid, the System Operator [13].

2) Unit Availabilities: The availabilities in the table are
described as ‘assumed availabilities’ in [12]. They are rounded
to the nearest 5%, and their original use is as the typical
proportion of the capacity of each type of unit which is
available at winter peak. Using the two-state model for each
unit as in Sections II and IV (i.e. either unit ORC or no
capacity available), the mean and standard deviation of the
distribution for total available capacity are 64.16 and 2.09 GW
respectively. If these availability figures are to be used as unit
availability probabilities in a risk calculation, it is important to
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Fig. 1. Illustration of how using rounded typical type availabilities can lead
to systematic error. The true availability probabilities are scattered around a
central value of 87%. If a rounded typical probability of 85% is used, this
introduces a common error across all units of the type, termed a systematic
error.

have a means of estimating the consequences of such rounding
errors for the result of the calculation.

B. Systematic Error in Rounded Data

The ‘assumed availabilities’ are average availabilities across
the units of each type. This paper uses the reasonable picture
that actual availability probabilities for each type of unit are
distributed about some typical value (illustrated in Fig. 1 for a
typical availability of 87%, along with the ‘modelled’ spread if
the typical availability is rounded to 85%). Using the rounded
assumed availabilities as unit availability probabilities for all
units causes two types of error:

• Rounding errors in the typical availabilities. If the ‘as-
sumed availability’ for a type of unit is given as 85%, then
the best point estimate might be anywhere between 82.5%
and 87.5%. Moreover, exactly the same error would apply
to all units of the type if a probability of 85% is used
for each such unit. Hence, this is a source of systematic
error.

• Scatter about the typical availabilities. The actual avail-
ability probabilities for a type of unit will be scattered
about the typical availability. As the deviations from the
typical type value for different units are independent, this
is a source of random error.

The modelling of errors for this example will be discussed
in detail in Section V, after the methodology for treating
systematic errors is introduced in the next section.

IV. THEORY

A. Model

1) Normalised Capacity Variable: Here, a distribution for
the available capacity (denoted X), rather than the capacity
on outage, will be derived. If the unit availability probabilities
(au = 1 − ru for unit u) are known exactly, then the mean

and variance of X are:

µX =
∑
u

cuau (6)

σ2
X =

∑
u

c2uau(1− au). (7)

It is convenient in the derivation to work with the a nor-
malised2 capacity variable Z, which has mean 0 and standard
deviation (SD) 1:

Z =
X − µX

σX
. (8)

This is familiar for large systems, where the Central Limit
Theorem may be invoked to justify assuming a Normal dis-
tribution for X in a window about its mean; however, in this
context it is useful even if a Normal approximation is not
made. For the rest of this paper, these values for the mean
available capacity µX , and its SD σX , calculated using central
estimates for the availabilities will be referred to as µ0 and σ0

respectively. Given a fixed capacity level x, z0x will be defined
as (x− µ0)/σ0.

2) Error Model: Uncertainty in the unit availability data
may be quantified by modelling the availability probabilities
as random variables {Au}. The random and systematic errors
which result from using a generic availability probability
across each unit type are modelled by setting

Au = at(u) +∆t(u) +∆u. (9)

The unit types are indexed by t. The availability probability
used for all units of type t is denoted at, and the difference
between this and the true typical probability for type t is
represented by ∆t (the two components of error are illustrated
in Fig. 1.) The {∆t} for different types are assumed to be
independent. Finally, the random scatter of the true individual
unit probabilities about the typical type value is represented
by ∆u. The {∆u} for different units are assumed to be
independent. The expectation values of ∆t and ∆u are both
zero, and their variances will be denoted σ2

t and σ2
u. Earlier

work essentially used this error model with σ2
t = 0 for all

types.

B. Mean and Variance

1) Linearisation: When the unit availability probabilities
are not known precisely, the mean and standard deviation of
the total available capacity become random variables, which
will be written as µ0+∆µ and σ0+∆σ respectively. Making a
Taylor expansion for small uncertainties, the random variable
representing uncertainty in the normalised capacity equivalent
to x GW is:

Zx = z0x

(
1− ∆µ

x− µ0
− ∆σ

σ0

)
. (10)

2There is an unfortunate clash of notation between the term normalised
and the Normal distribution. If a random variable is normalised to mean 0
and standard deviation 1, this carries no implication that it is assumed to be
Normally distributed, unless explicitly stated. A normalised capacity variable
has been used for a similar purpose in capacity credit calculations [14].
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Expanding ∆µ in terms of the unit errors,

∆µ =
∑
u

[
(∆t(u) +∆u)

∂µ0

∂au

∣∣∣∣
au=at(u)

]
,

(11)

and making a similar expansion for ∆σ, the following expres-
sion is obtained (the partial derivative ∂µ/∂au is simply cu,
see (6)):

Zx = z0x − 1

σ0

∑
u

cuku(∆t(u) +∆u), (12)

where
ku = 1 +

z0xcu
2σ0

(1− 2au). (13)

2) Mean and Variance of Zx: Finally, the mean and vari-
ance of Zx are:

µZx = z0x (14)

σ2
Zx

=
∑
u

[
σ2
u

(
cu
σ0

)2

k2u

]

+
∑
t

σ2
t

(∑
u∈Ut

(
cu
σ0

)
ku

)2
 . (15)

For units of a given type, this clearly indicates how corre-
lated systematic errors can be much more significant than
independent random errors; the contribution of units of type t
in the first (independent error) sum in (15) is proportional to
the number of such units, whereas in the second (systematic
error) term it is proportional to the number of units squared.
The closed form expression (15) is the key contribution of
this paper, as it gives greater insight into how errors combine
than previous iterative approaches. The next paragraphs show
how it may be used to derive error bars on the result of
risk calculations; if a Normal approximation for available
generating capacity is assumed, this may be done using direct
(i.e. non-iterative) expressions throughout.

C. Error Bars on Loss of Load Probability

1) Error Bars on Z: (15) allows the calculation of the
standard deviation of Z, given the standard deviations repre-
senting the random and systematic parts of the data errors (in
principle, it is possible to deduce the form of the distribution
for Z given the distributions for the {∆t} and {∆u}, but it
is almost certainly unrealistic to model the input errors in
sufficient detail to make this worthwhile.) In this paper, an
error bar covering the likely range of values of a calculation
result will be taken as 2 standard deviations above and below
the central estimate. For the value of z corresponding to a
generating capacity x (see Paragraph IV-A1 for definitions),
this means an error bar of z0 ± 2σZ .

2) Error Bars on LOLP: Normal Approximation: For a
demand level d, the Loss of Load Probability (LOLP) is simply
the cumulative distribution function FZ(z) = p(Z ≤ z), eval-
uated at the value of z corresponding to an available capacity
d. Given a form for this distribution, it is straightforward
to convert error bars on z into error bars on the LOLP. As
stated earlier, for large systems and sufficiently high LOLPs

(as discussed in Paragraph V-A1, for the GB model this means
LOLPs greater than about 3%), the Central Limit Theorem
may be invoked to justify assuming a Normal distribution for
the available generating capacity. The cumulative distribution
for the standard Normal distribution (with mean 0 and standard
deviation 1) is

FZ(z) =
1√
2π

∫ z

−∞
e−z̄2/2dz̄. (16)

The error bar on the LOLP is then the interval [FZ(z0 −
2σZ), FZ(z0 + 2σZ)], with a central estimate of FZ(z0).

3) Error Bars on LOLP: Other Distributions: As long
as the system is sufficiently large, and the unit capacities
sufficiently diverse, the distribution for available capacity may
be regarded as continuous, irrespective of whether a Normal
approximation is valid (for smaller systems, or those with
less diverse generation connected, methods such as those
described in Section II may be more appropriate.) Provided
that the shape of the distribution for available capacity does not
change substantially over the range of possible unit availability
probabilities, this same approach could then be applied (albeit
with less formal justification). Paragraph V-A2 will show
that this condition is indeed satisfied for the Great Britain
example used here. A normalised (i.e. rescaled to mean 0
and standard deviation 1) version of the distribution function
obtained through the COPT method would be used in (16),
instead of the standard Normal distribution (one and only
one COPT calculation is required to obtain the form of the
distribution.) The form of the distribution for Z does not affect
any earlier parts of the derivation.

4) ‘Error Bars’ or ‘Confidence Interval’?: In the original
paper on risk assessment with uncertain availability proba-
bilities [4], the term ‘confidence intervals’ was used for the
range of reasonable LOLP vales found based on the SD of the
distribution for the LOLP. In their discussion on that paper,
Albrecht and MacFarland commented that these might more
properly be called Bayesian confidence intervals. Some other
work, e.g. [3], presents only the SD of the LOLP distribution.
We prefer the term ‘error bar’, as used above, due to the
difficulty in defining precisely the variances of the distributions
representing availability probability errors. We believe that this
term captures the fact that the interval derived gives an order-
of-magnitude estimate for the uncertainty in the calculated
LOLP, rather than a more precise statement of the possible
error.

V. EXAMPLE – ROUNDED AVAILABILITY DATA IN GB

A. Test System

The Great Britain test system used in this paper is described
in Section III. The mean and standard deviation of the distribu-
tion for available capacity, calculated using the unit availability
probabilities in Table I, are 64.16 and 2.09 GW respectively.

1) COPT versus Normal Approximation: The COPT-
derived cumulative distribution function for available capacity
is compared with the Normal approximation in Fig. 2 (upper
panel). It may be seen that the Normal approximation is
reasonable down to capacities of about two standard deviations
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Fig. 2. Upper panel: comparison between COPT-derived cumulative distribu-
tion function and Normal approximation. Lower panel: comparison between
the shapes of the COPT-derived central, best and worst case distributions,
as described in Paragraph V-A2. In each case the x-axis the the normalised
capacity (X − µX)/(σX).

below the mean (corresponding to LOLP of around 3%). This
is consistent with the expectation that a Normal approximation
based on the Central Limit Theorem will be best near the
mean, and that the tails of the exact distribution will usually
be fatter than those of the Normal distribution.

2) Central, Best and Worst Case Probabilities: In order
to examine whether the method described in this paper can
be used when the Normal approximation does not suffice
(see Paragraph IV-C3), it is necessary to investigate how the
form of the COPT distribution depends on the unit availability
probabilities. The probabilities used are given rounded to the
nearest 5%. As discussed in Section III-B, it might therefore
reasonably be assumed that (e.g.) a probability given as 85%
can be taken to lie between 82.5% and 87.5%. Cumulative
distribution functions for available capacity using

• the central case (the given probabilities)
• the best case (all probabilities increased by 2.5%)
• the worst case (all probabilities decreased by 2.5%)

are compared in the lower panel of Fig. 2. By plotting the
distribution functions against normalised capacity, it may be
seen that the shapes of the distributions are indeed very similar.
It is reasonable to deduce that this will be the case for

any combination of availability probabilities which may be
rounded to the given values. For this test problem, the direct
method described in Section IV may therefore be used to
derive error bars on LOLP for a demand d (i.e. not just on the
corresponding value of z), even when a COPT-based LOLP
calculation is performed.

3) Limitations: All the models described in this paper
assume that if a unit is mechanically available, then its full
capacity is available to the system. This might not quite reflect
reality due to transmission constraints, limits on energy output
at a station due to emissions constraints, derated operating
states, or other operational factors. In Great Britain, some of
these effects are encapsulated in station Operational Realisable
Capacities (see Paragraph 49 of [15]); it is assumed that
a station’s total output cannot exceed its station ORC. The
generating capacities given by type in the Winter Outlook
[12] are based on these station ORCs, hence the difference
from those listed in Table I. The COPT method may be
extended to model these station output limits if the availability
probabilities are assumed to be known exactly [16], but the
(both previous iterative and new non-iterative) methods for
dealing with availability probability uncertainty discussed here
do not extend in such a straightforward manner. However,
results for the order-of-magnitude of uncertainty in LOLP due
to uncertainty in availability probabilities, as opposed to the
precise width of error bars, are expected to be robust even
given these caveats.

B. Quantification of Data Uncertainty

1) Modelling Rounded Data: If a data point is given
rounded to the nearest 0.05 as a, then it is reasonable to assume
that the true best point estimate may lie anywhere between
a − 0.025 and a + 0.025. This uncertainty may naturally be
modelled as a Uniform distribution on [a−0.025, a+0.025]. As
the probability density function for this distribution is constant
within that range, and zero elsewhere, it is easy to verify that it
has mean a and standard deviation (SD) 0.05/

√
12 = 0.0144.

2) Random and Systematic Components: As discussed in
Section III, the ‘assumed availabilities’ in National Grid’s
Winter Outlook are intended for use as average availabilities
across each type of unit; there is no implication that all
units of a given type should be modelled as having the same
availability probability. Therefore:

• at, the central estimate of the typical availability proba-
bility for units of type t, is taken to be the Winter Outlook
assumed availability for that type.

• ∆t, the distribution representing error in the typical
availability probability for type t, is modelled as a Uni-
form distribution on [−0.025, 0.025] as described in the
previous paragraph. This gives σt = 0.0144 for all t.

• Random variations of individual unit availabilities about
these typical values are modelled by σu, the SD of the
distribution for ∆u.

C. Results

1) Variation of LOLP With Demand: The central estimate
for, and upper and lower ends of the error bar on, LOLP are
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Fig. 3. Central estimate for, and error bar on, LOLP, plotted against fixed
demand. The solid lines show the limits error bar calculated using the COPT-
derived distribution, and the dashed lines the limits of the error bar using the
Normal approximation.

plotted against fixed demand in Fig. 3. The distributions for the
systematic errors are chosen to model the rounded availability
data, as described in the previous paragraph. The random error
in all units’ availabilities are modelled as having standard devi-
ations of 0.01. Results using both a COPT-derived distribution
for available capacity, and a Normal approximation, are shown;
particularly at low LOLP levels, the Normal approximation
to the central case may differ substantially from the COPT
distribution, but these differences are much smaller than the
error bars on either. The graph illustrates just how much
uncertainty the use of rounded generic data induces in the
final LOLP results; at a fixed demand of 59 GW, the LOLP
varies by a factor of more than 40 from 0.17% to 4.4%, and at
62 GW it varies from 5.5% to 33%. For this example, while
at low LOLP the COPT calculation is required for the central
estimate, the fully closed form approach using the Normal
approximation gives the key information on the width of the
error bar. The coarse rounding adds substantial additional error
above that due to uncertainty in the best point estimates.

2) Importance of Systematic and Random Errors: The vari-
ation of the error bars on the LOLP with the error distribution
SDs is demonstrated in Fig. 4. The central case used has
σt (which drives the systematic error) based on the rounding
model discussed above, and random error σu = 0.01; this is
marked with black squares in both panels. The figure clearly
demonstrates how the uncertainty in LOLP depends much
more strongly on the size of the systematic error than it
does on the random component of the error; this confirms the
prediction following (15). Indeed, a random component of the
same order of magnitude as the systematic ‘type’ components
hardly affects the LOLP error bar at all. For the central case,
where the possible systematic error is quite large, the precise
values for the {σu} chosen to quantify the random error
components are therefore not very important. It may also be
observed in the upper panel that inaccuracies due to a Normal
approximation for the capacity distribution are more significant
when the possible error is small.
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Fig. 4. Central estimate for, and upper and lower bounds on, LOLP, plotted
against the SD of error distributions. A fixed demand of 61 GW is assumed.
All types are assumed to have the same σt, and all units the same σu.
Upper panel: variation of LOLP with σt for fixed σu of 0.01. Lower panel:
variation of LOLP with σu for fixed σt of 0.05/

√
12. The black squares

indicate the common point between the two graphs, where σu = 0.01 and
σt = 0.05/

√
12. The COPT calculation is represented by solid lines, and the

Normal approximation by dashed lines.

3) Implications for Practical Risk Calculations: It is clear
from the results presented that any risk calculation based on
the model used in this paper, and the rounded data considered,
will yield highly approximate results. However, as discussed
in Paragraph V-A3, it may not be possible for all power
stations to supply capacity equal to the sum of their unit
capacities. As this reduces the effective capacity connected to
the system by about 2 GW (around one standard deviation
of the distribution for available capacity), this will have a
very substantial effect on the results of risk calculations. The
method in this paper will however still give a good idea of the
degree of uncertainty in the results resulting from uncertainty
in availability probabilities alone.

4) Error Quantification: For the example presented here,
the error in the final results is dominated by rounding errors
in the input data. As discussed earlier, rounding errors may
naturally be modelled as Uniform random variables. In more
general situations, for instance where a best point estimate is
used for the typical type availabilities but where systematic
error might still be possible, there might not be such a natural
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choice of distribution family. Partly as a consequence (as dis-
cussed in Paragraph IV-C1) the choice of error bars (effectively
the {σt}) on the input data is necessarily rather approximate.
This and the previous paragraph emphasise still further our
suggestion in Paragraph IV-C4 that our and related methods for
calculating errors in risk indices should be regarded as order-
of-magnitude estimates for the errors, rather than calculations
of precise error distributions.

5) Validity of Method: As demonstrated by Fig. 2 and
Paragraph V-A2, the method presented here does not rely on a
Normal approximation for its validity. It does however rely on
the possibility of approximating the discrete distribution for
available capacity with a continuous random variable. This
approximation is clearly valid for the test system used, as
would be expected from the system size and diversity of
units, and is demonstrated by the smooth nature of the curves
in Fig. 2. One benefit of using the Normal approximation
however is that the various formulae are then completely
closed form, and require no reference to an iterative COPT
calculation at all; in this case, where the possible error is
rather large, the Normal approximation provides all the key
information (Figs. 3 and 4). For smaller systems, or ones
with less diversity of unit capacities, it might therefore be
necessary if quantitative results are required to use an iterative
method more closely based on the COPT approach. The direct
calculation should still however yield valuable insight into the
order of magnitude of errors, and the relative importance of
systematic and random errors.

VI. ERROR IN RELATIVE RISKS

A. Model

1) Absolute and relative risks: It is widely acknowledged
in the literature that comparing the relative values of simulated
risk under different scenarios is more robust than quoting
absolute values of risk (see for example page 5 of [11].)
The same approach as above may be used to quantify the
relative uncertainties in calculations of relative and absolute
risk arising from uncertain availability probabilities; in the
former, data uncertainties cancel out to some extent.

It is not possible to transform these relative z-values into
relative risks in such an instructive way as in the previous
sections, and it is therefore necessary to express results in
terms of uncertainties in relative z-values as opposed to
system risk probabilities. While this section provides important
theoretical support for the robustness of comparing relative
risk levels, it therefore not so useful in quantifying error bars
in practical risk calculations.

2) Definitions and Derivation: The difference in nor-
malised capacities equivalent to (x, y) GW will be denoted
Zxy = Zx−Zy; as in Section IV, the uncertainty in availability
probabilities is modelled using random variables. It follows
that

Zxy = z0xy

(
1− 1

2

∑
u

[(
cu
σ0

)2

(1− 2au)(∆t(u) +∆u)

])
(17)
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Fig. 5. SD of Zxy against systematic error, for x = 61 GW and y = 60
GW. For comparison, the variance of Zx is also plotted.

It is clear that µZxy = z0xy . The uncertainty may again be
estimated from the standard deviation:

σ2
Zxy

=
(z0xy)

2

4

[∑
u

σ2
u

(
cu
σ0

)4

(1− 2au)
2

+
∑
t

σ2
t

(∑
u∈Ut

(
cu
σ0

)2

(1− 2au)

)2
(18)

It may be seen immediately that, when taking the difference
of two normalised capacities, much of the systematic error
has cancelled. The second (systematic error) term is vastly
the more important in (15) and (18). In the relative risk result
(18), ku (which for availability probabilities of at least 0.5 and
z0u < 0 is always greater than 1) has been replaced by(

z0xy
2

)(
cu
σ0

)
(1− 2au),

in which for most relevant values of zxy all three terms have
magnitude less than 1; because these terms are summed and
squared, the relative error (18) will be much smaller than the
absolute error (15).

B. Numerical Results

The SD of Zxy is plotted in Fig. 5 against the SD σt

which quantifies the systematic error; the two demand levels
for which the risks are compared are x = 61 GW and y = 60
GW. For comparison, the SD of Zx is also plotted. It may be
seen that the uncertainty in the relative risk calculation is more
than an order of magnitude less than that found in the absolute
risk calculation. This verifies the algebraic inference in the
previous paragraph, and also provides quantitative support for
the commonly stated view that comparing relative risk levels
is much more robust than quoting absolute risk levels.

VII. CONCLUSIONS

This paper has presented a new direct approach to esti-
mating uncertainty in power systems reliability calculations,
based on the uncertainty in the unit availability probabilities.
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Differently from previous approaches, it provides a closed-
form (non-iterative) expression for the error bar on the central
estimate for loss-of-load probability. A further new contribu-
tion is to consider the effect of systematic error, where there
may be a tendency for errors in the availability probabilities of
multiple units to be in the same direction, as well as random
errors.

Systematic error is considered by dividing availability prob-
ability errors into two components: the systematic component,
which is modelled by a single random variable for each unit
type, and the random component, which is modelled by a sepa-
rate independent random variable for each unit. The analytical
expression for the error bar on the LOLP demonstrates clearly
and quantitatively how, for the same degree of uncertainty,
systematic errors are far more significant than random ones.
The transparency of such calculations is a major advantage
over earlier iterative approaches. Moreover, the method is
applicable for any system where the distribution for total
available capacity may be approximated as continuous; the
stronger assumption of a Normal distribution is not required.
However, where a Normal distribution is assumed, the method
is completely non-iterative (otherwise, a single capacity outage
probability table calculation is required to obtain the form
of the available capacity distribution). The new approach is
also used to verify the commonly stated view that comparing
relative risk levels is much more robust than quoting absolute
risk levels.

The method has been demonstrated using as a test system
the conventional plant connected to the Great Britain transmis-
sion network. Data on generic availabilities for each type of
unit is published by the system operator rounded to the nearest
five percent. It is demonstrated that this places an error bar
on the result of typical LOLP calculations which can extend
over an order of magnitude or more about the central value;
the coarse rounding adds additional error above that due to
uncertainty in the best point estimates.
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