
 1 

Functional analyses of differentially expressed isoforms of 
the Arabidopsis inositol phosphorylceramide synthase 

 

J. G. Mina1,2#, Y. Okada3#, N. K. Wansadhipathi-Kannangara1,2,  

S. Pratt1,2, H. Shams-Eldin4, R. T. Schwarz4,5,  

P. G. Steel1, T. Fawcett3* and P. W. Denny1,2* 
 

1Centre for Bioactive Chemistry, Department of Chemistry and School of 

Biological and Biomedical Sciences, Durham University, U.K.; 2School of 

Medicine and Health, Durham University, Queen’s Campus, Stockton-on-

Tees, U.K.; 3School of Biological and Biomedical Sciences, Durham 

University, U.K.; 4Institute for Virology, Medical Center of Hygiene & Medical 

Microbiology, Philipps-University Marburg, Germany; 5Unité de Glycobiologie 

Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, 

France. 

# These authors contributed equally to this work. 

* Corresponding authors : p.w.denny@durham.ac.uk and 

tony.fawcett@durham.ac.uk 

 
Abbreviations: AbA – aureobasidin A; BSA – bovine serum albumin; Cer – 

ceramide; IPC – inositol phosphorylceramide; NDB C6-ceramide – 6-((N-(7-

nitrobenz-2-oxa-1,3-diazol-4-yl)amino) hexanoyl)sphingosine; PI – 

phosphatidylinositol; SD – synthetic minimal media with glucose; SGR – 

synthetic minimal media with galactose; SM – sphingomyelin 

 



 2 

Abstract 
 

Sphingolipids are key components of eukaryotic plasma membranes that are 

involved in many functions, including the formation signal transduction 

complexes. In addition, these lipid species and their catabolites function as 

secondary signalling molecules in, amongst other processes, apoptosis. The 

biosynthetic pathway for the formation of sphingolipid is largely conserved. 

However, unlike mammalian cells, fungi, protozoa and plants synthesize 

inositol phosphorylceramide (IPC) as their primary phosphosphingolipid. This 

key step involves the transfer of the phosphorylinositol group from 

phosphatidylinositol (PI) to phytoceramide, a process catalysed by IPC 

synthase in plants and fungi. This enzyme activity is at least partly encoded 

by the AUR1 gene in the fungi, and recently the distantly related functional 

orthologue of this gene has been identified in the model plant Arabidopsis. 

Here we functionally analysed all three predicted Arabidopsis IPC synthases, 

confirming them as aureobasidin A resistant AUR1p orthologues. Expression 

profiling revealed that the genes encoding these orthologues are differentially 

expressed in various tissue types isolated from Arabidopsis. 

 

Key words: Arabidopsis, AUR1, expression, inositol phosphorylceramide, 

IPC synthase, sphingolipids  
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Introduction 
 
The diverse, amphipathic sphingolipids consist of a long chain base backbone 

with long-chain fatty acid and polar alcohol attachments. These lipid species 

are ubiquitous membrane components of eukaryotic cells, as well as being 

found in some prokaryotic organisms and viruses (Smith and Merrill 2002). 

Studies in mammals and yeast have shown that they are important structural 

components of membranes and also serve as bioactive molecules involved in 

cell signalling and regulation (Dickson, et al. 2006; Fernandis and Wenk 2007; 

Hanada, et al. 1992). The unmodified sphingolipid, ceramide, is an 

intermediate in complex sphingolipid biosynthesis in the Golgi apparatus. 

These complex species ultimately concentrate in the outer leaflet of the 

plasma membrane where, with sterols, they form lipid raft microdomains 

(Futerman and Hannun 2004). Rafts have been proposed to be central to a 

multitude of cellular processes, from the polarized trafficking of lipid-modified 

proteins (Brown and London 1998) to the formation of signal transduction 

complexes (Magee, et al. 2002; Pierce 2002). Furthermore, sphingolipid 

metabolites such as ceramide and phosphorylated sphingosine (sphingosine-

1-phosphate), are central to intracellular signal transduction processes that 

regulate cell growth, differentiation and apoptosis (programmed cell death – 

PCD; Futerman and Hannun 2004). 

The biosynthesis of sphingolipids shows commonality between mammals, 

fungi and plants up to the formation of ceramide (phytoceramide in plants and 

fungi), but the predominant complex phosphosphingolipid species 

subsequently synthesized differs. Mammals produce sphingomyelin (SM; a 

ceramide unit with a phosphorylcholine moiety), whereas fungi and plants 

synthesize inositol phosphorylceramide (IPC) by the transfer of the 

phosphorylinositol group from phosphatidylinositol (PI) to phytoceramide, a 

reaction catalysed by IPC synthase. This enzyme was shown to be at least 

partly encoded by the AUR1 gene in yeast and other fungi (Nagiec, et al. 

1997), and recently an accessory protein involved in IPC synthase activity 

(KEI1p) in these organisms has been identified (Sato, et al. 2009). However, 

the plant enzyme remained unidentified although the activity had been 
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measured in bean microsomes (Bromley, et al. 2003). Then, during a screen 

for factors involved in PCD defence mechanisms, an AUR1 functional 

orthologue was identified in Arabidopsis. However, the encoded protein 

demonstrated little homology to the yeast AUR1p, having most similarity to 

the more recently identified animal sphingomyelin synthases (Wang, et al. 

2008). This lack of similarity to the long known fungal enzyme (Nagiec, et al. 

1997) lay behind the previously fruitless search for the plant orthologue 

(Dunn, et al. 2004).  

Here we demonstrate that all three orthologues identifiable in the Arabidopsis 

genome database represent aureobasidin A resistant functional orthologues 

and that, through phylogenetic analyses, these represent a new group of 

sphingolipid synthases within the wider enzyme family. Furthermore, we show 

the expression profile of all three isoforms in the tissues of Arabidopsis. This 

demonstrated that there is differential expression of IPC synthase, an enzyme 

central to the synthesis of plasma membrane sphingolipids (Dunn et al. 2004) 

and a regulator of PCD (Wang, et al. 2008) in this plant species. 
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Materials and Methods 
 

Complementation of auxotrophic AUR1 mutant yeast with AtIPCS1-3 

Arabidopsis IPC synthase 1, 2 and 3 (AtIPCS1 - At3g54020.1, AtIPCS2 - 

At2g37940.1 and AtIPCS3 - At2g29525.1) were amplified from Arabidopsis 

cDNA using primers  

5’ AtIPCS1 EcoRI gaattcATGACGCTTTATATTCGCCGCG and 3’ AtIPCS1 

SalI gtcgacGAGCAGAGATCTCATGTGCC;  

5’ AtIPCS2 EcoRI gaattcATGACACTTTATATTCGTCGTG and 3’ AtIPCS2 

SalI gtcgacTCACGCGCCATTCATTGTG;  

5’ AtIPCS3 EcoRI gaattcATGCCGGTTTACGTTGATCGCG and 3’ AtIPCS3 

SalI gtcgacTCAATGATCATCTGCTACATTG. 

The products were subsequently cloned into the yeast vector pRS426MET25, 

creating pRS426 AtIPCS1-3. In the YPH499–HIS–GAL–AUR1 S. cerevisiae 

strain expression of the essential AUR1 gene (Nagiec, et al. 1997) is under 

the control of the GAL1 promoter and is repressed in the presence of glucose 

(Denny, et al. 2006). YPH499–HIS–GAL–AUR1 was transformed with 

pRS426 AtIPCS1-3 and pRS426 AUR1 and functionally complemented 

transformants selected on non-permissive SD medium containing necessary 

nutritional supplements (Denny, et al. 2006). 

 

Diffusion assay of complemented auxotrophic AUR1 mutant yeast 

YPH499–HIS–GAL–AUR1 pRS246 AtIPCS1-3 and YPH499–HIS–GAL–AUR1 

pRS246 AUR1 were assayed for susceptibility to aureobasidin A (Takara) and 

myriocin (Sigma) as previously described (Nagiec, et al. 2003). Briefly, 

2.4x107 logarithmically dividing cells were embedded in 15 ml of YPD-agarose 

(1% yeast extract, 2% peptone, 2% dextrose, 0.8% agarose) on 100 mm2 

square Petri dishes (Sarstedt). Inhibitors were applied in Me2SO at the 

concentrations described below and the dishes incubated at 30°C. 
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Microsomal assay of AtIPCS 

For in vitro assay microsomal membranes were prepared from YPH499–HIS–

GAL–AUR1 pRS246 AtIPCS1-3 and YPH499–HIS–GAL–AUR1 pRS246 

AUR1 and assayed as described (Mina, et al. 2009). In brief, assays were 

performed in 50µl of 100mM Tris HCl pH 7.4, 10mM EDTA and 6mg/ml 

defatted BSA, with or without 1mM PI (soybean, Avanti Polar Lipids; 

predominant species C16:0-C18:2) and 5µM aureobsidin A, and with 2 µl of 

microsomes (10 mg/ml protein) and 2µl of 5mM NBD C6-Ceramide (Molecular 

Probes) in DMSO. After incubation at 30°C for 60 min the reaction was 

stopped by the addition of 150µl of chloroform/methanol/water (10:10:3 v/v/v) 

and the lipid fraction isolated by phase separation. This process facilitated 

reproducible quantitative analyses of IPC formation. Following equilibriation 

(Synergy HT, Bio-tek) samples were analysed by high performance thin-layer 

chromatography (Denny, et al. 2001; Ralton and McConville 1998), imaged 

using a FLA3000 scanner (Fuji) and quantified using the Aida V3.11 software 

package. 

 
Plant growth and harvesting of material 

Arabidopsis thaliana (Col-0) plants were grown under long-day conditions (16 

h day/8 h night) and the following tissues were harvested at specific 

development stages (Boyes, et al. 2001). Rosette leaves were collected at 

stage 3.90, cauline leaves and stem were collected at stage 5.10, roots and 

flowers were collected at stage 6.50, siliques were collected at stage 8.00. 

  

RNA Isolation and RT 

Plant tissue was harvested and immediately frozen in liquid nitrogen. Total 

RNA was isolated using an RNeasy Plant Mini Kit (Qiagen), including DNAse I 

digestion, according to the manufacturers instructions.  

RNA integrity was tested by electrophoresis on 1% agarose gels and was 

quantified by measuring the absorbance at 260 nm. The A260 nm ⁄ A280 nm ratios 

of purified RNA samples were in the range of 2.0 to 2.1 and were determined 

to be free of genomic DNA by the absence of larger, intron containing, PCR 
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products. 

RT reactions were carried out on 1.0µg of total plant RNA using Superscript III 

reverse transcriptase (Invitrogen) and oligo dT primer according to the 

manufacturers instructions. 

 
Real-Time qRT-PCR conditions and analysis 

Steady-state levels of RNA for each AtIPCS gene in plant material were 

analysed using SYBR green to monitor DNA synthesis with a Rotor-Gene RG-

3000 (Corbett Research) instrument. Amplification was achieved with the 

following gene-specific primers; AtIPCS1-forward 5’-

AGCCTCTTGATTATTGCGTC-3’ and AtIPCS1-reverse 5’-

AACAACGGCATTGCTCCCT-3’ to give a 145 bp product; AtIPCS2-forward 

5’-AGCCTCTTGATCATTGCCTC-3’ and AtIPCS2-reverse 5’-

GACTGCTGTGTTGCTCCCA-3’ to produce a 145 bp product; AtIPCS3-

forward 5’-TGGCTTATGGCAGTAATACAG-3’ and AtIPCS3-reverse 5’-

GCCAGAAATGGCAGAACGTTCT-3’ to produce a 141 bp product. To 

determine the highest specificity and sensitivity qPCR profile for each AtIPCS 

transcript, titration experiments were performed over a range of MgCl2 

concentrations (1.5 to 5 mM) and primer concentrations from (0.1 to 0.5 µM). 

Concentrations were considered optimal at the lowest CT value that 

reproducibly gave an amplicon of the correct size in the absence of primer 

dimers. Based on results of these optimization experiments, qPCR assays for 

the AtIPCS1 transcript contained 3 mM MgCl2 and 0.5 µM of each primer; the 

AtIPCS2 transcript 3 mM MgCl2 and 0.4 µM of each primer; and the AtIPCS3 

transcript 4 mM MgCl2, 0.4 µM of the forward and 0.5 µM of the reverse 

primer. The reactions (total volume 20 µl) also contained 2 µl of 10X PCR 

buffer, 10 pg of cDNA, 200 µM dNTPs, SYBR Green I dye and 2 Units of Taq 

polymerase. Assays were carried out using the following conditions: 1 cycle of 

10 min of 95oC, followed by 30 cycles of 10 sec of 95 oC, 15 at 52 oC and 20 

sec of 72 oC. Amplicon dissociation curves were recorded at the end of the 

PCR cycles. External standard curves were constructed using the three 

AtIPCS cDNAs and relevant gene-specific primer pairs and used to determine 

the number of transcripts for each gene. 
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Results 

 

AtIPCS1-3 complement an AUR1 auxotrophic mutant yeast and confer 
aureobasidin A resistance 

Interrogation of the Arabidopsis genome database with the predicted protein 

sequence of the protozoan IPC synthase from Leishmania major (LmIPCS) 

(Denny, et al. 2006) identified opening reading frames encoding three highly 

related sequence orthologues  – Arabidopsis IPC synthase 1 (AtIPCS1 - 

At3g54020.1), AtIPCS2 (At2g37940.1) and AtIPCS3 (At2g29525.1) – 

demonstrating 26%, 29% and 31% identity to the protozoan protein. 

Subsequently, AtIPCS2 has been isolated, characterised and designated 

ERH1 (Wang, et al. 2008). The open reading frames of AtIPCS1-3, when 

cloned into an URA3 selectable expression vector to create pRS426 AtIPCS1-

3, restored the growth of the AUR1 auxotrophic mutant YPH499-HIS-GAL-

AUR1, as did the ectopic expression of S. cerevisiae AUR1p (AUR1) (figure 

1A). These data indicated that AtIPCS1, 2 and 3 are functional orthologues of 

fungal AUR1p, a protein that forms at least part of an IPC synthase (Nagiec, 

et al. 1997).  

By diffusion assay (Nagiec, et al. 1997; Nagiec, et al. 2003) the efficacy of two 

different classes of inhibitor were assayed against YPH499-HIS-GAL-AUR1 

pRS426 AtIPCS1, 2 and 3. The transgenic yeast were resistant to 

aureobasidin A (AbA, a fungal IPC synthase inhibitor) at 100µM (figure 1B), a 

concentration shown to inhibit the growth of LmIPCS complemented yeast 

(Denny, et al. 2006), but remained sensitive to myriocin (which inhibits the first 

step in sphingolipid biosynthesis - serine palmitoyltransferase, SPT). Indeed, 

yeast complemented with the plant enzymes appeared to be more sensitive to 

the SPT inhibitor than the AUR1 control, a similar observation had previously 

been made with regard to the LmIPCS complemented yeast (Denny, et al. 

2006). The in vitro assay for AtIPCS1-3 described below (figure 2A) confirmed 

that the Arabidopsis enzymes are AbA insensitive. In contrast, the IPCS 

activity from Golden butterwax bean extracts has been shown to be acutely 
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sensitive to this inhibitor (Bromley, et al. 2003). The reasons for this difference 

in AbA sensitivity are unclear and no data are currently available, for the bean 

sequence, to help elucidate this discrepancy.  

 

AtIPCS1-3 are functional IPC synthases 

In vitro assay of microsomes prepared from YPH499-HIS-GAL-AUR1 pRS426 

AtIPCS1-3 demonstrated that the three plant enzymes are active IPC 

synthases (figure 2A). However, their turnover appeared low when compared 

to an S. cerevisiae AUR1 control. This was also noted by Wang et al (2008) 

and was unaffected by the use of NBD C6-phytoceramide rather than C6-

ceramide as acceptor substrate. In support of the data shown above (figure 

1B), AtIPCS1-3 activity was insensitive to the addition of AbA at a 

concentration (5 µM) that completely inhibited the yeast enzyme (figure 2A). 

Thereafter this inhibitor was applied to the reaction mix for assay of AtIPCS1-

3 at 5 µM.  

In the experiment (figure 2A) above the plant (and yeast) enzymes are 

assayed in the presence of exogenous soybean PI. To ascertain the effect of 

adding this exogenous donor substrate samples were assayed with and 

without PI in the reaction mix (figure 2B). All samples showed a similar level of 

activity in the absence of donor substrate but, surprisingly, only AtIPCS2 

demonstrated any significant increase in turnover on the addition of PI. This 

indicated that the AtIPCS1 and 3 are unable to utilize substrate from this 

source effectively. Similar results were obtained utilizing bovine PI which has 

previously been demonstrated to be effectively utilized by the protozoan 

orthologues from both L. major and Trypanosoma brucei but not by S. 

cerevisiae AUR1p (Mina, et al. 2009). Despite this, these data confirm 

AtIPCS1-3 as functional orthologues of AUR1p, forming at least part of an IPC 

synthase.  
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The plant IPC synthases form a new class of sphingolipid synthase 

The key motifs, D3 and D4, of the sphingolipid synthase family are conserved 

in the plant IPC synthases (Wang, et al. 2008). However, unlike their 

protozoan and mammalian counterparts they lack a D1 domain  (Huitema, et 

al. 2004). In this they resemble the fungal IPC synthases and it may be 

hypothesized that D1 is involved in the binding of ceramide, a substrate for 

the protozoan and mammalian enzymes, whereas another unidentified region 

is involved in binding the phytoceramide substrate to the plant and fungal IPC 

synthases. Despite the conservation of some of these motifs the plant 

sequences are divergent with respect to primary sequence and so, until 

recently, remained cryptic within the genome databases (Wang, et al. 2008). 

This divergence was illustrated by phylogenetic analysis of predicted SM and 

IPC synthase sequences which demonstrated that the plant enzymes, the 

three orthologues identified in the Oryza sativa (rice) database are included, 

form a new clade of sphingolipid synthases (figure 3). 

 
Expression profiling of AtIPCS1-3 

Estimates of the relative abundance of transcripts can be made from their 

representation within the EST databases. For the three AtIPCS genes 

described a similar number of AtIPCS1 and AtIPCS3 transcripts are present, 

whilst the largest number is for AtIPCS2 (Table 1; data derived from TAIR 

BLAST version 2.2.8). However, these data do not give any information 

regarding the tissue location of the transcripts and are therefore of limited use 

when investigating the expression of gene families. Tissue-specific transcript 

abundance data can be obtained from multiple microarray experiments using 

Genevestigator (Grennan 2006). Only AtIPCS2 is represented on the 

Affymetrix arrays that are used to derive these data and this shows that the 

gene is expressed in cauline leaves, roots and rosette leaves at similar levels 

and these are approximately twice the expression levels seen in stems, 

flowers and siliques (Table 2).  

Given the limitations of these data sets, in order to establish a complete 

expression profile for each AtIPCS isoform, real time quantitative RT-PCR 

was performed on RNA isolated from various Arabidopsis tissues (figure 4). 
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AtIPCS2 was the most highly expressed of the three isoforms in all tissues. In 

agreement with the Genevestigator data, the highest levels of AtIPCS2 

transcript were seen in root, rosette leaves and cauline leaves and these were 

five to ten fold greater than the levels of transcripts in siliques, stems and 

flowers. The patterns of expression determined by these two methods are in 

general agreement but the relative levels differ, this may reflect differences in 

the plant material used in the each case. Genevestigator uses a large number 

of microarray experiments to generate data and is therefore robust, however 

the data represents plant material grown under different conditions and which 

may have been harvested at different times within a developmental stage. 

The quantitative RT-PCR data presented here is determined from plants 

grown and harvested under identical conditions and therefore represents 

transcript levels at defined developmental stages in these tissues. 

AtIPCS1 transcripts are expressed at low levels in all tissues, ranging from 

0.05% of AtIPCS2 levels in rosette leaves to 2.8% of AtIPCS2 levels in stems. 

While AtIPCS3 transcripts are also present in low levels in cauline leaves, 

rosette leaves, roots and stems (ranging from 0.02% to 0.67% of AtIPCS2 

transcripts) they are present at similar levels to AtIPCS2 transcripts in stem 

(84 % of AtIPCS2 levels) and flower (74% of AtIPCS2 levels).  

The data presented here adds to existing studies by providing tissue specific 

expression data for all the isoforms of AtIPCS which may indicate a specific 

role for AtIPCS3 in stems and flowers. 
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Discussion 
 

The data presented describe the analyses of all three orthologues of the 

recently identified Arabidopsis IPC synthase (Wang, et al. 2008). They all 

represented functional orthologues of S. cerevisiae IPC synthase, AUR1p, 

and demonstrated activity in an in vitro assay. However, unlike the yeast 

activity the Arabidopsis enzyme is resistant to aureobasidin A, a non-

competive inhibitor of the fungal IPC synthase with an unknown mechanism of 

action (Zhong, et al. 1999). Conversely, it has previously been shown that the 

IPCS activity in Golden butterwax bean extracts was acutely sensitive to this 

inhibitor (Bromley, et al. 2003). The reasons for this discrepancy are unclear, 

however it is notable that similarly profound differences in aureobasidin A 

sensitivity have been observed within the kinetoplastid parasite IPCS 

orthologues. Whilst the L. major enzyme is relatively refractory to the drug, the 

T. brucei sphingolipid synthase (TbSLS) is highly sensitive (Mina, et al. 2009). 

No reason for this can be deduced from the primary sequence data and it may 

be envisaged that this diversity is due to subtle differences in 3-dimensional 

enzyme structure.  

In the in vitro, microsome-based assay all three Arabidopsis isoforms 

demonstrated IPC synthase turnover. However, although the presence of PI 

(from soybean or bovine sources) led to a significant increase in turnover with 

AtIPCS2, AtIPCS1 and 3 were refractory to the addition of this donor 

substrate. This indicated that PI from these sources was utilized inefficiently 

by these Arabidopsis isoforms. Similarly, it has been noted that mammalian PI 

is not efficiently utilized by the S. cerevisiae IPC synthase activity (Mina, et al. 

2009).  Notably, unlike the yeast phospholipids (Guan and Wenk 2006), plant 

and mammalian PIs exhibit varying degrees of polyunsaturation (Thompson 

and MacDonald 1975; Thompson and MacDonald 1976). It may be 

hypothesized this polyunstauration may confer structural constraints and 

make it less acceptable to the S. cerevisiae enzyme. However, the lack of 

reactivity of AtIPCS1 and with plant derived PI (soybean, C16:0-C18:2) is less 

easy to explain. It is possible that the endogenous yeast PI has a higher 

affinity for these isoforms and outcompetes the exogenous substrate. 
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Attempts to minimize the available quantity of endogenous PI to test this were 

made by detergent washing as previously (Mina, et al. 2009). However, this 

led to apparent inactivation of the enzymes. Alternatively, significant 

differences may exist in the substrate requirements of these Arabidopsis 

isoforms. Notably, AtIPCS1 transcript level is low in all plant tissue and 

AtIPCS3 in many, including siliques, perhaps reflecting the level of acceptable 

donor PI in seeds (such as soybeans, the source of PI in these experiments). 

Despite these variances, all the plant IPC synthase orthologues identified 

share the motifs predicted to form the catalytic triad that promotes nucleophilic 

attack on lipid phosphate ester bonds which, in the case of IPC synthase, is 

thought to lead to the transfer of an inositol phosphate group from PI to the 1-

hydroxyl group of (phyto)ceramide releasing diacylglycerol as a by-product 

(Huitema, et al. 2004; Neuwald 1997). Therefore it is likely that the eukaryotic 

sphingolipid synthases possess a common mechanism of action, indicating a 

single evolutionary origin. In contrast, the prokaryotic SM synthase lacks the 

catalytic triad (Luberto, et al. 2003) and is likely to have evolved 

independently. Phylogenetic analyses show the plant proteins forming a 

distinct clade, thereby defining a new class of eukaryotic sphingolipid 

synthases. 

It has been demonstrated, by RNAi of the first enzyme in the biosynthetic 

pathway - serine palmitoyltransferase, that sphingolipid biosynthesis per se is 

essential for the viability of Arabidopsis (Chen, et al. 2006). Furthermore, 

recent work has suggested that the plant IPC synthase is pivotal in pathogen-

resistance associated PCD. By analyses of leaf tissue from an ERH1 

(AtIPCS2) insertion mutant Wang et al (2008) detected a significant increase 

in ceramide levels, an observation consistent with the fact that ceramide is a 

substrate for IPCS. Importantly, ceramide is a key regulator of PCD 

(Futerman and Hannun 2004) and the accumulation of this factor was co-

incident with PCD at the site of powdery mildew infection in Arabidopsis 

(Wang, et al. 2008). This work is further supported by similar observations in 

accelerated-cell-death (acd11 and acd5) mutants of Arabidopsis in which a 

sphingosine transfer protein (ACD11) or a ceramide kinase (ACD5) are 

affected (Brodersen, et al. 2002; Liang, et al. 2003). Given the prominence of 



 14 

AtIPCS2 as a putative regular of PCD the differential expression levels of 

each of the three functional Arabidopsis orthologues may shed light on this 

key process in the whole plant. 
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Table 1 

EST numbers for AtIPCS genes derived from TAIR BLAST version 2.2.8. 

 
 

 

 

 

Table 2  

Microarray Data for AtIPCS2 in the Genevestigator database 

Root 
Rosette 

Leaf 

Cauline 

Leaf 
Stem Flower Siliques 

2383 2135 2509 1167 998 705 

 
 

 

 

 EST 

AtIPCS1 32 

AtIPCS2 57 

AtIPCS3 25 
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 Figure 1 

AtIPCS1-3 complements a yeast AUR1 auxotrophic mutant and confers 
aureobasidin A resistance 
 

A. YPH499-HIS-GAL-AUR1 auxotropic yeast transformed with 

pRS246MET25 either empty or bearing AUR1 or AtIPCS1-3 and grown 

under permissive (SGR) or non-permissive conditions (SD). 

B. 100µM aureobasdin A (AbA) in DMSO, 1mM myriocin (Myr) in DMSO 

and DMSO alone spotted in 2 and 3 µl quantities onto YPH499–HIS–

GAL–AUR1 complemented with AUR1 or AtIPCS1-3 on non-

permissive SD plates. 

 

pRS426 – YPH499–HIS–GAL–AUR1 pRS426MET25; AUR - YPH499–HIS–

GAL–AUR1 pRS426 ScAUR1; AtIPCS1-3 - YPH499–HIS–GAL–AUR1 

pRS426 AtIPCS1-3. Grown on either permissive (non-glucose containing) 

SGR -HIS -URA or non-permissive (glucose containing) SD -HIS -URA. 
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Figure 2  

AtIPCS1-3 encode functional IPC synthases 
 

In vitro assay of microsomal extracts from YPH499-HIS-GAL-AUR1 pRS246 

AtIPCS1-3 and YPH499-HIS-GAL-AUR1 pRS246 AUR1. 

A. Assay in the presence of phosphatidylinositol (PI) with (+) or without (-) 

the specific fungal inhibitor aureobasidin A (AbA). In contrast to the S. 

cerevisiae IPC synthase (AUR1), the plant activity encoded by 

AtIPCS1-3 is insensitive to AbA at 5 µM. 
Markers of NDB C6-ceramide and NBD C6-IPC, and the origin (O) 

indicated. 

B.  Assay with (+) or without (-) donor substrate PI in the presence of 5 

µM AbA. Enzyme turnover is only significantly enhanced by the 

addition PI in the case of AtIPCS2.  

Mean of 3 separate experiments, standard error shown. A.F.U. – 

Arbitrary Fluorescence Units.  
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Figure 3 

The plant IPC synthase defines a new class of sphingolipid synthases  
 

Maximum parasimony analysis of Animalae, Fungi, Trypanosomatidae and 

Plantae sphingolipid synthase sequences. Bootstrap scores >60 indicated. 

Homo sapiens LPP1 (outgroup) accession number: O14494; Arabidopsis 

thaliana IPCS1-3 accession numbers: At3g54020.1, At2g37940.1, 

At2g29525.1; Oryza sativa IPCS1-3: NP_001044812, NP_001055712, 

NP_001055096; T. brucei SLS1-4: Tb09.211.1030, Tb09.211.1020, 

Tb09.211.1010, Tb09.211.1000; T. cruzi IPCS1&2: 

Tc00.1047053506885.124, Tc00.1047053510729.290; L. major IPCS: 

LmjF35.4990; Aspergillus fumigatus AUR1p: AAD22750; Candida albicans 

AUR1p: AAB67233; Pneumocystis carinii AUR1p: CAH17867; 

Saccharomyces cerevisiae AUR1p: NP_012922; Schizosaccharomyces 

pombe AUR1p: Q10142; Caenorhabditis elegans SMS1-3: Q9U3D4, 

AAA82341, AAK84597; Homo sapiens SMS1&2: AB154421, Q8NHU3; Mus 

musculus SMS1&2: Q8VCQ6, Q9D4B1. 
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Figure 4 

Steady-state levels of AtIPCS isoform mRNAs in plant tissues 

 
The numbers of AtIPCS1-3 transcripts were determined in total RNA from 

various tissues, by quantitative RT-PCR using a standard curve for each 

transcript. AtIPCS2 (At2g37940.1) is the most abundant form in roots, leaves 

and siliques, whereas stems and flowers have similar numbers of AtIPCS2 

and AtIPCS3 (At2g29525.1) transcripts. AtIPCS1 (At3g54020.1) transcript is 

uniformly low in all tissues.  
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