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Abstract. Recently, a strong link has been discovered between supermodularity on lattices
and tractability of optimization problems known as maximum constraint satisfaction problems. This
paper strengthens this link. We study the problem of maximizing a supermodular function which is
defined on a product of n copies of a fixed finite lattice and given by an oracle. We exhibit a large
class of finite lattices for which this problem can be solved in oracle-polynomial time in n. We also
obtain new large classes of tractable maximum constraint satisfaction problems.
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1. Introduction. Sub- and supermodular set functions are special real-valued
functions defined on the powerset of a set. They are well studied in combinatorics
(see bibliographical survey [10]) and have numerous applications in combinatorial op-
timization [9, 11] and elsewhere (see, e.g., [24, 28]). Minimization of submodular set
functions is one of the most well-known tractable problems in combinatorial opti-
mization [11, 27]. Examples of other combinatorial problems that can be solved by
using submodular set function minimization include the minimum s-t cut problem
in networks and finding the largest common independent set in two matroids. The
submodular set function minimization problem was also considered for various relax-
ations of submodular functions such as intersecting or crossing submodular functions.
Such relaxations are either defined on some family of subsets of a set, or use a slightly
modified form of submodularity [27].

A more general form of sub- and supermodularity is the one where functions
are defined on general (i.e., algebraic) lattices [28]. This form of supermodularity is
very popular in financial and actuarial mathematics (see, e.g., supermodular games
[28] and supermodular order on multivariate distributions [23, 25]), but it is relatively
little studied in combinatorics and optimization (see, e.g., section 60.3a of [27]), except
for the special case when the lattice is a chain, i.e., a totally ordered set. Sub- and
supermodular functions on finite chains can be alternatively represented by matrices
and arrays which are called Monge and anti-Monge, respectively, matrices and arrays.
Such matrices and arrays are used to identify tractable cases of hard optimization
problems such as TSP [1].
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MAXIMIZING SUPERMODULAR FUNCTIONS ON LATTICES 313

Recently, the general form of supermodularity (on lattices) has been applied to
classify the complexity of maximum constraint satisfaction problems which are very
actively studied optimization problems in artificial intelligence [6] and complexity
theory [5]. In a maximum constraint satisfaction problem, informally speaking, one
is given a finite collection of constraints on overlapping sets of variables, and the
goal is to find an assignment of values to the variables with a maximum number
(or total weight) of satisfied constraints. Some recent papers [3, 8, 19] discovered
that there is a strong link between supermodularity on lattices and tractability of
maximum constraint satisfaction problems with a restricted set of allowed constraints,
and developing this connection is the main aim of this paper.

2. Sub- and supermodularity, and lattices. In this section we describe the
problem of maximizing a supermodular function on a product lattice.

Definition 2.1. Let A be finite set. A function f : 2A → R is called a super-
modular set function (on A) if the inequality

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y )

holds for all X,Y ⊆ A, and it is called submodular if the inverse inequality holds for
all X,Y .

The submodular function minimization problem is, given a submodular function
f on A, to find a subset X ⊆ A with minimum f(X). It is known [11, 17, 16, 26, 27]
that a submodular function on a set A can be minimized in polynomial time (in |A|)
provided getting a value of f is a primitive operation.

A partial order on a set D is called a lattice order if, for every x, y ∈ D, there
exists a greatest lower bound x� y and a least upper bound x	 y. The corresponding
algebra L = (D,�,	) is called a lattice. A subset of D closed under the operations
� and 	 is called a sublattice of L. If Li is a lattice on Di, i = 1, . . . , n, then the
product lattice L1 × . . .× Ln is a lattice with base set D1 × . . .×Dn and operations
acting componentwise. The lattice Ln is the (direct) product of n copies of L, and it
is known as the nth power of L. For more information about lattices, see [13].

Definition 2.2. Let L be a lattice on D. A function f : Dn → R is called
supermodular on L if

f(a) + f(b) ≤ f(a � b) + f(a 	 b) for all a,b ∈ Ln,

and f is called submodular on L if the inverse inequality holds.
If A is a set with |A| = n, then, by identifying subsets of A with 0-1 n-tuples,

one can easily check that the submodular (set) functions on A are simply the n-ary
submodular functions on a lattice on {0, 1} with order 0 < 1. Therefore, it is natural
to consider the problem of minimizing the submodular functions on a given fixed finite
lattice L, in the following form:

Instance: A number n ≥ 1 and a submodular function f on Ln.
Goal: Find an element a ∈ Ln such that f(a) = min {f(b) | b ∈ Ln}.

We will denote this problem by SFM(L). We will say that SFM(L) is oracle-
tractable if it can be solved in polynomial time in n (provided getting the value of
f on a tuple is a primitive operation). It was mentioned in [3] as an open question
whether or not SFM(L) is oracle-tractable for any fixed lattice L. This question was
motivated in [3] by its applications in constraint satisfaction which we will describe
in the next section.
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314 ANDREI KROKHIN AND BENOIT LAROSE

Note that a function f is submodular if and only if – f is supermodular. There-
fore, the SFM(L) problem can also be understood as the supermodular function max-
imization problem. We will always use this reformulation because we will later apply
algorithms for SFM(L) to solve certain maximization problems.

Recall that a lattice is called distributive if it can be represented by subsets of
a set A, where the operations � and 	 are interpreted as set-theoretic intersection
and union, respectively. Note that, in some earlier papers on submodular functions, a
family of subsets closed under intersection and union is simply called a lattice family
(or a ring family). The following result is proved in section 49.3 of [27] (see also [26]).

Theorem 2.3. A submodular function defined on a lattice family L on a set A
can be minimized in polynomial time in |A|, provided we can compute in polynomial
time the largest and the smallest sets in the family, and the preorder � on A defined
as follows: u � v if and only if each set U ∈ L containing v also contains u.

Assume that we fix a finite distributive lattice L. It is well known that L can
be represented by subsets of a set A such that |A| ≤ |L|. Clearly, we can compute
in constant time the sets (as 0-1 |A|-tuples) representing the largest and the smallest
elements of L, and we can also compute the preorder � in constant time. Obviously,
for any n, the lattice Ln can be represented by subsets of a set B of cardinality n|A|
(since an element of L is represented by using |A| bits), while the representations for
the largest and the smallest elements of Ln and the preorder for Ln can be trivially
obtained from those for L. It follows that we can solve the problem SFM(L) in
polynomial time in n (in fact, in n|L|, but |L| is a constant).

To the best of our knowledge, there was up to now not a single nondistributive
finite lattice L for which the problem SFM(L) is known to be oracle-tractable. We
will provide such examples in this paper.

The problem of minimizing submodular functions on nondistributive lattices was
mentioned in [17]. However, it was not clear in that paper what the parameter should
be in this case, since, in combinatorics, submodular functions are traditionally con-
sidered to be defined on (some or all) subsets of a set, and the standard parameter in
such situations was always the cardinality of the set. We believe that our formulation
of the problem SFM(L) is an appropriate form of generalization of the standard SFM
problem to the case of arbitrary lattices.

We will generalize this problem even further, by considering classes of finite lat-
tices. Let C be a fixed finite class of finite lattices. Define the optimization problem
SFM(C) as follows:

Instance: A lattice L′ = L1 × . . . × Ln such that Li ∈ C for all 1 ≤ i ≤ n, and a
supermodular function f on L′.

Goal: Find an element a ∈ L′ such that f(a) = max {f(b) | b ∈ L′}.
One can extend the notion of oracle-tractability to the problems SFM(C) in a

natural way, assuming that an instance is given by an n-tuple of names of lattices
in the product and by an oracle for the function f . For any finite class of finite
distributive lattices one can follow the same procedure as for a single distributive
lattice, so, clearly, the following statement holds.

Proposition 2.4. SFM(C) is oracle-tractable for any finite class C of finite
distributive lattices.

3. Maximum constraint satisfaction. Maximum constraint satisfaction prob-
lems are well-studied combinatorial optimization problems. The standard example of
such problems are Max k-Cut and Max k-Sat.
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Let D denote a finite set with |D| > 1. Let R
(m)
D denote the set of all m-ary

predicates over D, that is, functions from Dm to {0, 1}, and let RD =
⋃∞

m=1 R
(m)
D .

Also, let Z+ denote the set of all nonnegative integers.
Definition 3.1. A constraint over a set of variables V = {x1, x2, . . . , xn} is an

expression of the form f(x), where

• f ∈ R
(m)
D is called the constraint predicate, and

• x = (xi1 , . . . , xim) is called the constraint scope.
The constraint f is said to be satisfied on a tuple a = (ai1 , . . . , aim) ∈ Dm if

f(a) = 1.
Definition 3.2. For a finite F ⊆ RD, an instance of Max CSP(F) is a pair

(V,C), where
• V = {x1, . . . , xn} is a set of variables taking their values from the set D,
• C is a collection of constraints f1(x1), . . . , fq(xq) over V , where fi ∈ F for

all 1 ≤ i ≤ q.
The goal is to find an assignment ϕ : V → D that maximizes the number of satisfied
constraints, that is, to maximize the function f : Dn → Z+, defined by f(x1, . . . , xn) =∑q

i=1 fi(xi). If the constraints have (positive integral) weights �i, 1 ≤ i ≤ q, then the
goal is to maximize the total weight of satisfied constraints, that is, maximize the
function f : Dn → Z+, defined by f(x1, . . . , xn) =

∑q
i=1 �i · fi(xi).

Example 3.3 (Max k-Cut). In the Max k-Cut problem, one is given an undi-
rected graph G = (V,E) with weighted edges, and the goal is to find a partition of
V into k parts, V = V0 ∪ V1 ∪ · · · ∪ Vk−1, maximizing the total weight of edges with
endpoints in different parts. This problem is exactly the Max CSP({�=k}) problem
where �=k is the binary disequality predicate on {0, 1, . . . , k − 1}. To see this, think
of vertices of a given graph as variables, and apply the predicate to every pair of
variables x, y such that (x, y) is an edge in the graph, while keeping all weights the
same.

Since predicates are functions, one can consider supermodular predicates on a
lattice. For a finite lattice L, we will denote by SpmodL the set of all predicates that
are supermodular on L.

It is easy to see that if f(x1, . . . , xn) =
∑q

i=1 �i · fi(xi) and, for some lattice L,
every fi is supermodular on L, then f is also supermodular on L. Moreover, it is
clear that one can compute the value of f on a given tuple in linear time in the size
of the instance. Hence, we immediately obtain the following lemma.

Lemma 3.4. Let L be a finite lattice such that the problem SFM(L) is oracle-
tractable. Then, for any finite set F ⊆ SpmodL, the problem Max CSP(F) is
tractable.

It is intriguing that all known tractable problems Max CSP(F) are essentially
(i.e., possibly, after removing redundant elements from D) of this form (i.e., with
F ⊆ SpmodL for some lattice L on D). In particular, it is known [3] (and follows
from Proposition 2.4 and Lemma 3.4) that Max CSP(F) is tractable whenever F
consists of supermodular predicates on some distributive lattice.

In the rest of this section, we present evidence that supermodularity on lattices
probably is the right tool for studying the complexity of problems Max CSP(F).

First, we will consider a form of supermodular constraints that can be defined on
any lattice.

Definition 3.5. A predicate f ∈ R
(n)
D will be called 2-monotone1 on a lattice L

1In [3], such predicates are called generalized 2-monotone.
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on D if it can be expressed as follows:

(3.1) f(x) = 1 ⇔ ((xi1 � ai1) ∧ . . . ∧ (xis � ais)) ∨ ((xj1 � bji) ∧ . . . ∧ (xjt � bjt)),

where x = (x1, . . . , xn), ai1 , . . . , ais , bj1 , . . . , bjt ∈ D, and either of the two disjuncts
may be empty (i.e., the value of s or t may be zero).

It is straightforward to check that every 2-monotone predicate on a lattice is
supermodular on it. The next theorem is, to the best of our knowledge, the only one
available on the complexity of supermodular constraints on arbitrary lattices.

Theorem 3.6 (see [3]). Let L be a lattice on a finite set D. If F consists of
2-monotone predicates on L, then Max CSP(F) is tractable.

Note that 2-monotone predicates can be defined on any poset, since the definition
does not use the property of the order to be lattice. However, it was shown in [20]
that if F consists of all binary 2-monotone predicates on a nonlattice poset, then
Max CSP(F) is NP-hard.

An endomorphism of F is a unary operation π on D such that, for all f ∈ F
and all (a1, . . . , am) ∈ Dm, we have f(a1, . . . , am) = 1 ⇒ f(π(a1), . . . , π(am)) = 1.
We say that F is a core if every endomorphism of F is injective (i.e. a permutation).
The intuition here is that if F is not a core, then it has a noninjective endomorphism
π, which implies that, for every assignment ϕ, there is another assignment πϕ that
satisfies all constraints satisfied by ϕ and uses only a restricted set of values, so the
problem Max CSP(F) can be reduced to a similar problem over this smaller set.

Theorem 3.7 (see [5, 3, 19]). Let |D| ≤ 3, and let F ⊆ RD be a core. If there is
a chain C on D such that F ⊆ SpmodC, then Max CSP(F) is tractable. Otherwise,
Max CSP(F) is NP-hard.

For an element d ∈ D, define the unary predicate ud so that ud(x) = 1 ⇔ x = d.
Let CD = {ud | d ∈ D}.

Theorem 3.8 (see [7, 8]). Let D be any finite set, and assume that CD ⊆
F ⊆ RD. If there is a chain C on D such that F ⊆ SpmodC, then Max CSP(F) is
tractable. Otherwise, Max CSP(F) is NP-hard.

Note that (assuming that supermodularity is the right tool) chains are the only
lattices that could possibly appear in Theorems 3.7 and 3.8 because, as is easy to
check, every lattice with at most three elements is a chain and every predicate of the
form ud is supermodular on a lattice if and only if the lattice is a chain (the latter
assertion is essentially Lemma 5.1 of [3]).

However, it is known that classes of supermodular predicates on (essentially)
different lattices are pairwise incomparable. More precisely, for any lattice L, let L∂

denote the dual lattice of L, i.e., the one obtained from L by reversing the order (or by
swapping the lattice operations, which is the same). It is obvious from the definition
that the classes of supermodular functions on L and on L∂ coincide. It was shown
in [20] that, for any finite lattice L′ (on the same set as L) such that L′ is neither L
nor L∂ , there exists a predicate which is 2-monotone (and hence supermodular) on L,
but not supermodular on L′. Hence, essentially, one cannot exclude any lattice from
these considerations.

It follows that the problem SFM(L) restricted to supermodular functions on
a nondistributive lattice L, such as the functions that can appear in instances of
Max CSP(F), is of special interest.

It is a basic fact in lattice theory (see, e.g., [13]) that a lattice is distributive if it
does not contain, as a sublattice, one of the two minimal nondistributive lattices: the
pentagon N5 and the diamond M3. These two lattices are depicted in Figure 3.1.
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Fig. 3.1. The pentagon N5 and the diamond M3.

It will follow from the results in this paper that Max CSP(F) is tractable if
F ⊆ SpmodN5

or F ⊆ SpmodM3
.

4. SFM and constructions on lattices. In this section we show that tractabil-
ity of SFM(L) is preserved under certain constructions on lattices, and exhibit a large
class of nondistributive lattices for which SFM(L) is tractable.

4.1. General constructions. A congruence on a lattice L is an equivalence
relation θ such that, for all a, b, c, d ∈ L, the conditions aθb and cθd imply that both
(a � c)θ(b � d) and (a 	 c)θ(b 	 d) hold.

If θ is a congruence on L and a ∈ L, then let a[θ] denote the θ-class containing
a. It is well known that every θ-class is a sublattice of L. It is also well known that
the family of all θ-classes forms a lattice, called a factor-lattice of L and denoted L/θ,
with operations defined as follows: a[θ]�a′[θ] = (a�a′)[θ] and a[θ]	a′[θ] = (a	a′)[θ].

We will now introduce a certain notion of a product of classes of lattices that was
intensively studied in lattice theory (see, e.g., [14] or pp. 489–490 of [13]).

Definition 4.1. If V and W are classes of lattices, then their Mal’tsev product,
denoted V ◦W, consists of all lattices L such that there is a congruence θ on L with
the following properties:

1. the lattice L/θ belongs to W,
2. every θ-class is a lattice from V.

Let D denote the class of all distributive lattices, let Dk denote the class of all
distributive lattices with at most k elements, and let Dfin denote the class of all finite
lattices from D.

Example 4.2. The lattice N5 belongs to D3 ◦ D2. It is easy to check that
the equivalence relation θ whose two classes are within the ovals in Figure 4.1 is a
congruence. The classes of the congruence are distributive lattices (chains), and the
lattice N5/θ is a distributive lattice (a two-element chain).

Theorem 4.3. Suppose that V,W are finite classes of finite lattices. If SFM(V)
and SFM(W) are both oracle-tractable, then SFM(V ◦ W) is oracle-tractable as well.

Proof. Let L′ = L1 × · · · × Ln such that Li ∈ V ◦W for all 1 ≤ i ≤ n. Then, for
every 1 ≤ i ≤ n, there exist congruences θi such that the lattices Ki = Li/θi belong
to W and every θi-class belongs to V.

Define a function f ′ on K = K1 × · · · × Kn by letting

f ′(a1[θ1], . . . , an[θn]) = max f |a1[θ1]×···×an[θn].

Let us check that f ′ is a supermodular function on K. Take two arbitrary elements
in K, say (a1[θ1], . . . , an[θn]) and (b1[θ1], . . . , bn[θn]). Choose a′i, b′i, 1 ≤ i ≤ n, so
that aiθia

′
i and biθib

′
i for all 1 ≤ i ≤ n, and f ′(a1[θ1], . . . , an[θn]) = f(a′1, . . . , a

′
n) and
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Fig. 4.1. The pentagon N5 is in D3 ◦ D2.

f ′(b1[θ1], . . . , bn[θn]) = f(b′1, . . . , b
′
n). Since each θi is a congruence, it follows that

f ′(a1[θ1], . . . , an[θn]) + f ′(b1[θ1], . . . , bn[θn]) = f(a′1, . . . , a
′
n) + f(b′1, . . . , b

′
n)

≤ f(a′1 � b′1, . . . , a
′
n � b′n) + f(a′1 	 b′1, . . . , a

′
n 	 b′n)

≤ f ′((a′1 � b′1)[θ1], . . . , (a
′
n � b′n)[θn]) + f ′((a′1 	 b′1)[θ1], . . . , (a

′
n 	 b′n)[θn])

= f ′((a1 � b1)[θ1], . . . , (an � bn)[θn]) + f ′((a1 	 b1)[θ1], . . . , (an 	 bn)[θn])

= f ′(a1[θ1] � b1[θ1], . . . , an[θn] � bn[θn]) + f ′(a1[θ1] 	 b1[θ1], . . . , an[θn] 	 bn[θn]).

Since K is a direct product of lattices from W, we infer that f ′ can be maximized
in polynomial time if the evaluation of f ′ on a given tuple is a primitive operation.
That is, f ′ can be maximized in at most p1(n) number of steps, where p1 is a fixed
polynomial, and some of the steps are evaluations of f ′ on a given element of K.

Assume that SFM(V) can be solved in p2(n) steps, some of which are function
evaluations. Now, to prove the theorem, it suffices to show that f ′ can be evaluated
on any given element of K in p2(n) steps (assuming that evaluating f on a given
element of L′ is a primitive operation). Fix an element (a1[θ1], . . . , an[θn]) of K. The
goal now is to maximize f on a1[θ1] × · · · × an[θn]. Every ai[θi] is a lattice from V,
so evaluating f ′(a1[θ1], . . . , an[θn]) can be done in p2(n) steps by assumption of the
theorem. Hence, f can be maximized in p1(p2(n)) steps, some of which are evaluations
of f on a given tuple.

Corollary 4.4. If L1 and L2 are finite lattices such that SFM(Li) is oracle-
tractable for i = 1, 2, then SFM(L1 × L2) is oracle-tractable as well.

Proof. Let V = {L1} and W = {L2}. It is immediate that SFM(V) and
SFM(W) are oracle-tractable. The lattice L′ = L1 × L2 belongs to V ◦ W. In-
deed, the relation θ on L′ defined so that (a1, b1)θ(a2, b2) if and only if b1 = b2 is a
congruence such that L′/θ is isomorphic to L2 while every θ-class is isomorphic to
L1. Clearly, when maximizing an n-ary supermodular function on L1 × L2, one can
identify L′/θ with L2 and every every θ-class with L1. The result now follows from
Theorem 4.3.

Definition 4.5. A mapping ϕ from a lattice L1 to a lattice L2 is called a
homomorphism if, for all a, b ∈ L1, it holds that ϕ(a�b) = ϕ(a)�ϕ(b) and ϕ(a	b) =
ϕ(a)	ϕ(b). If such a mapping ϕ is onto, then L2 is said to be a homomorphic image
of L1.
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Fig. 4.2. The lattice L̂.

Theorem 4.6. Fix a finite lattice L. If L is a homomorphic image of some finite
lattice L1 such that SFM(L1) is oracle-tractable, then SFM(L) is oracle-tractable as
well.

Proof. Every supermodular function f on Ln can be transformed into a super-
modular function f1 on Ln

1 by letting f1(a1, . . . , an) = f(ϕ(a1), . . . , ϕ(an)) where ϕ
is a surjective homomorphism from L1 to L. It is straightforward to check that f1

is indeed supermodular on L1. Since ϕ is surjective, the maximum of f1 coincides
with the maximum of f . By assumption, one can find a tuple a maximizing f1 in
polynomial time in n, and the tuple maximizing f is obtained from a by applying ϕ
componentwise.

It is clear, say, since the pentagon belongs to D3 ◦D2, that Theorem 4.3 extends
(compared to Dfin) the class of lattices L for which SFM(L) is proved to be oracle-
tractable. We note that Theorem 4.6 further extends this class. Consider, for example,
the lattice L̂ shown in Figure 4.2. It is shown in the proof of Theorem 1 of [14] that this
lattice is a homomorphic image of a lattice belonging to (D4 ◦D4) ◦D4, so SFM(L̂)
is oracle-tractable. It is easy to verify that this lattice is simple, that is, it has no
congruences except for the equality relation and the full binary relation. Lemma 1 of
[14] states that if a simple lattice belongs to Mal’tsev product of two classes of lattices,
then it belongs to one of these classes. Hence, since L̂ is simple and nondistributive,
it does not belong to any class obtainable from Dfin by using Mal’tsev product.

It follows from Proposition 2.4 and Theorems 4.3 and 4.6 that if a finite lattice
L belongs to a class obtained from finite sets of distributive lattices by (repeatedly)
using Mal’tsev product and also taking homomorphic images, then SFM(L) is oracle-
tractable. What is the family F of finite lattices L which can be obtained as described
above? Unfortunately, it seems quite difficult to give a precise characterization of this
family because, by [22], the process of repeatedly applying Mal’tsev product to D
results in different classes of lattices for different orders of applying the operation.
However, in the next subsection we describe a well-understood and rich subclass of
F, which can be obtained by repeatedly applying Mal’tsev product only to D2. The
subclass consists of the so-called bounded finite lattices.

We will now describe some lattices that definitely do not belong to the family F.
For t ≥ 3, a t-diamond (or simply a diamond), denoted Mt, is a lattice on an (t+ 2)-
element set such that 0Mt , 1Mt are the least and the greatest element, respectively,
and all t elements in Mt \{0Mt

, 1Mt
} are pairwise incomparable. The Hasse diagram

of Mt is given in Figure 4.3. Note that M3 is often referred to as the diamond. It is
well known and easy to check that every diamond is a simple nondistributive lattice.
In addition, every diamond has the property that, for every finite lattice L having
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Fig. 4.3. A diamond lattice Mt.

Mt as a homomorphic image, L also contains Mt as a sublattice (see Lemma 6.21
of [15] or the more general Theorem 2.47 of [18]). Hence, in order to show that no
diamond belongs to F, it is sufficient to prove that if a finite lattice L containing Mt

as a sublattice belongs to X ◦ Y, then at least one of these two classes contains a
lattice with the same property. So assume that L ∈ X ◦ Y. By definition, L has a
congruence θ such that L/θ ∈ Y and every θ-class is in X. It is well known and easy
to show that the restriction θ′ of θ on Mt is a congruence of Mt. By simplicity of
Mt, all the elements of Mt belong either to a single θ′-class or to pairwise different
θ′-classes. In the former case, Mt is entirely contained in some θ-class, so this class
is the required lattice in X. In the latter case, L/θ ∈ Y is the required lattice. This
argument can be easily generalized to show that, in fact, no lattice containing M3 as
a sublattice belongs to F.

Even though we have been unable to prove that SFM(Mt) is oracle-tractable,
we will show in section 5 that the problems Max CSP(F) with F ⊆ SpmodMt

are
tractable.

4.2. Finite bounded lattices. Let L be a lattice and u � v two comparable
(and not necessarily distinct) elements of L. Let I denote the interval [u, v] = {x ∈
L | u � x � v} in L.

Definition 4.7. The lattice L[I] is said to be obtained from L by doubling the
interval I if the base set of L[I] is (L\ I)∪ (I ×{0, 1}) and x � y holds in L[I] if and
only if

• x � y in L and x, y �∈ I, or
• x ∈ L \ I, y = (b, j) and x � b in L, or
• x = (a, i), y ∈ L \ I and a � y in L, or
• x = (a, i), y = (b, j) such that a, b ∈ I and a � b in L, and i ≤ j.

Essentially, doubling an interval I in L means replacing it with I × {0, 1}.
Definition 4.8. A finite lattice L is called bounded2 if there is a sequence

L1, . . . ,Ln such that L1 is one-element, Ln is isomorphic to L, and, for j = 1, . . . , n−
1, there exists an interval Ij in Lj such that Lj+1 is isomorphic to Lj [Ij ].

In other words, a finite lattice is called bounded if it can be obtained from the one-
element lattice by successive doubling of intervals. For example, Figure 4.4 demon-
strates that the pentagon is a bounded lattice, while it is not hard to check the lattice
L̂ from Figure 4.2 is not bounded. Bounded lattices play an important role in lattice
theory [18]. The name “bounded” comes from an equivalent characterization of such
lattices, which is usually used as the definition (but does not play any role in this

2Not to be confused with posets that have both the least and the greatest element.
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Fig. 4.4. Obtaining the pentagon by doubling intervals (in three steps). In each step, the white
elements indicate the interval to be doubled.

paper). Theorem 2.46 of [18] states that a finite lattice L is bounded if and only if
there exists a free lattice FL and a congruence α on FL such that L is isomorphic to
FL/α, and every α-class in FL has both the least and the greatest element.

It is easy to check that for any lattice L and any interval I in L, the binary
relation θ on L[I] defined by the rule

(x, y) ∈ θ ⇔ either x = y �∈ I or x = (a, i), y = (a, j) for some a ∈ I

is a congruence of L[I]. Moreover, the lattice L[I]/θ is isomorphic to L, and every
θ-class is either a one-element lattice C1 or a two-element chain C2. Therefore, we
have that L[I] belongs to the Mal’tsev product {C1, C2} ◦ {L}. So, if we inductively
define D1

2 = D2 and Dn
2 = D2 ◦ Dn−1

2 for n > 1, then we have that every finite
bounded lattice belongs to Dn

2 for a suitable n. Hence, Theorem 4.3 (together with
Lemma 3.4) implies the following statement.

Proposition 4.9. Let L be a fixed finite bounded lattice. Then SFM(L) is
oracle-tractable and, for any finite set F ⊆ SpmodL, Max CSP(F) is tractable.

It is known (see Lemma 2.40 of [18]) that the class of finite bounded lattices is
a pseudovariety, that is, it is closed under taking homomorphic images, sublattices,
and finite direct products. Since the two-element chain is a bounded lattice, it follows
that every finite distributive lattice is bounded. Interestingly, if one allows not only
finite, but arbitrary direct products (i.e., direct products of infinitely many lattices),
then one can generate all lattices from finite bounded lattices (this fact immediately
follows from Theorems 2.25 and 2.44 of [18]). In other words, every (not necessarily
finite) lattice is a homomorphic image of a subalgebra of a direct product of (possibly
infinitely many) finite bounded lattices. Unfortunately, this fact seems to be useless
for the algorithmic aspects which we are interested in.

5. MAX CSP on diamonds. In this section, we consider problems Max CSP

(F) where F consists of supermodular predicates on a diamond Mt (see Figure 4.3).
The middle elements of Mt are called atoms. Note that, for every pair of distinct
atoms a and b, we have a� b = 0Mt and a	 b = 1Mt . For simplicity, let L denote an
arbitrary (fixed) t-diamond, t ≥ 3, throughout this section.

5.1. The structure of supermodular predicates on diamonds. In this
subsection, we describe the structure of supermodular predicates on L by representing
them as logical formulas involving constants (elements of L) and the order relation �
of L.

For a subset D′ ⊆ D, let uD′ denote the predicate such that uD′(x) = 1 ⇔
x ∈ D′. The following lemma can be easily derived directly from the definition of
supermodularity.
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Lemma 5.1. A unary predicate uD′ is in SpmodL if and only if either both
0L, 1L ∈ D′ or else |D′| ≤ 2 and at least one of 0L, 1L is in D′.

For a sequence y = (xi1 , . . . , xim) of variables and a sequence c = (ci1 , . . . , cim) of
elements of L, we write y � c to denote

∧
1≤s≤m (xis � cis), and the condition y � c

is defined dually.
Theorem 5.2. Every predicate f(x1, . . . , xn) in SpmodL, such that f takes both

values 0 and 1, can be represented as one of the following logical implications:
1. [(xi � a1) ∨ · · · ∨ (xi � al)] =⇒ (xi � 0L), where the aj’s are atoms;
2. ¬(y � c) =⇒ (z � d), where y and z are some subsequences of (x1, . . . , xn),

and c, d are tuples of elements of L (of corresponding length) such that c
contains no 0L and d no 1L;

3. [(xi � b1) ∨ · · · ∨ (xi � bk) ∨ ¬(y � c)] =⇒ (xi � a), where the bj’s are
atoms, y does not contain xi, and a �= 1L;

4. ¬(xi � b) =⇒ [¬(xi � a1) ∧ · · · ∧ ¬(xi � al) ∧ (y � c)], where the aj’s are
atoms, y does not contain xi, and b �= 0L;

5. ¬(y � c) =⇒ false, where y is a subsequence of (x1, . . . , xn) and c contains
no 0L;

6. true =⇒ (y � c), where y is a subsequence of (x1, . . . , xn) and c contains
no 1L.

Conversely, every predicate that can be represented in one of the above forms
belongs to SpmodL.

Example 5.3. The unary predicate of type (1) above is the same as uD′ where
D′ = D \ {a1, . . . , al}. The predicates uD′ ∈ SpmodL with |D′| ≤ 2 are the unary
predicates of types (5) and (6).

Remark 5.4. Note that constraints of types (2), (5), and (6) are 2-monotone on
L, while constraints of types (3) and (4) (and most of those of type (1)) are not.

Proof of Theorem 5.2. It is straightforward to verify that all of the predicates in
the list are actually supermodular. Now we prove the converse. Consider first the
case where the predicate f is essentially unary, i.e., there is a variable xi such that
f(x1, . . . , xn) = uD′(xi) for some D′ � D. If D′ = {x : x � a} or D′ = {x : x � a}
for some atom a, then f is of the form (5) or (6); otherwise, both 0L and 1L are in
D′ by Lemma 5.1, and if a1, . . . , al denote the atoms of the lattice that are not in D′,
then it is clear that f is described by the implication (1).

Now we may assume that f is not essentially unary. If it is 2-monotone, then it
is easy to see that f must be described by an implication of type (2), (5), or (6). So
now we assume that f is not essentially unary and it is not 2-monotone; we prove
that it is described by an implication of type (3) or (4). We require a few claims:

Claim 0. The set X of all tuples u such that f(u) = 1 is a sublattice of Ln, i.e.,
is closed under join and meet.

This follows immediately from the supermodularity of f .
Claim 1. There exist indices 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n, atoms e1, . . . , ek and

b1, . . . , bl of L such that f(x) = 1 if and only if

[¬(xi1 � e1) ∧ · · · ∧ ¬(xik � ek)]
∨

[¬(xj1 � b1) ∧ · · · ∧ ¬(xjl � bl)].

Notice first that the set Z of tuples u such that f(u) = 0 is convex in Ln; i.e.,
if u � v � w with f(u) = f(w) = 0, then f(v) = 0. To show this we construct a
tuple v′ as follows: for each coordinate i it is easy to find an element v′i such that
vi� v′i = ui and vi	 v′i = wi. Hence v�v′ = u and v	v′ = w so by supermodularity
of f neither v nor v′ is in X. It follows in particular that neither 0Ln nor 1Ln is in
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Z; indeed, if 0Ln ∈ Z, let a be the smallest element in X (the meet of all elements in
X), which exists by Claim 0. Since Z is convex it follows that every element above a
is in X so f is 2-monotone, a contradiction. The argument for 1Ln is identical.

Now let w ∈ Z be minimal, and let v � w. As above we can find a tuple v′ such
that v 	 v′ = w and v � v′ = 0Ln ; by supermodularity of f it follows that v = w
or v′ = w. It is easy to deduce from this that there exists a coordinate s such that
ws is an atom of L and wt = 0L for all t �= s. A similar argument shows that every
maximal element of Z has a unique coordinate which is an atom and all others are
equal to 1L.

Since Z is convex, we have that f(x) = 0 if and only if x is above some minimal
element of Z and below some maximal element of Z; Claim 1 then follows immediately.

For each index i ∈ {i1, . . . , ik} that appears in the expression in Claim 1, there is
a corresponding condition of the form

¬(xi � es1) ∧ · · · ∧ ¬(xi � esr );

let Ii denote the set of elements of L that satisfy this condition. Obviously it cannot
contain 1L and must contain 0L. Similarly, define for each index j ∈ {j1, . . . , jl} the
set Fj of all elements of L that satisfy the corresponding condition of the form

¬(xj � bt1) ∧ · · · ∧ ¬(xj � btq );

it is clear that 0L �∈ Fj and 1L ∈ Fj .
The condition of Claim 1 can now be rephrased as follows: f(x) = 1 if and only

if xi ∈ Ii for all i ∈ {i1, . . . , ik} or xj ∈ Fj for all j ∈ {j1, . . . , jl}. It is straightfor-
ward to verify that since f is not 2-monotone, one of the Ii or one of the Fj must
contain 2 distinct atoms. We consider the first case, and we show that the predicate
f is of type (4). The case where some Fj contains 2 atoms is dual and will yield
type (3).

Claim 2. Suppose that Ii contains distinct atoms c and d for some i ∈ {i1, . . . , ik}.
Then (a) i is the only index with this property, (b) {j1, . . . , jl} = {i}, and (c) Fi does
not contain 2 distinct atoms.

We prove (b) first. We have that

f(0L, . . . , 0L, c, 0L, . . . , 0L) = f(0L, . . . , 0L, d, 0L, . . . , 0L) = 1

(where c and d appear in the ith position) and by supermodularity it follows that
we also have f(0L, . . . , 0L, 1L, 0L, . . . , 0L) = 1. Since Ii does not contain 1L, we
have that xj ∈ Fj for each j ∈ {j1, . . . , jl}; since Fj never contains 0L, (b) follows
immediately. Since {j1, . . . , jl} is nonempty, (a) follows immediately from (b). Finally,
if Fi contained distinct atoms, then by dualizing the preceding argument we would
obtain that {i1, . . . , ik} = {i} from which it would follow that f would be essentially
unary, contrary to our assumption. This concludes the proof of the claim.

Let b denote the minimal element in Fi, and for each index s ∈ {i1, . . . , ik}
different from i let cs denote the (unique) maximal element of Is; then we can describe
f as follows: f(x) = 1 if and only if

[xi ∈ Ii ∧ (y � c)] ∨ (xi � b),

where y is a tuple of variables different from xi and c is the tuple whose entries are
the cs defined previously. It remains to rewrite the condition xi ∈ Ii. Suppose first
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that there exists at least one atom of L outside Ii, and let a1, . . . , al denote the atoms
outside Ii. Then it is clear that xi ∈ Ii if and only if ¬(xi � a1)∨· · ·∨¬(xi � al) holds,
so the predicate f is of type (4) (simply restate the disjunction as an implication).
Now for the last possibility, where Ii contains all of D except 1L; then it is easy to
see that f can be described by the following:

[¬(xi � b) ∧ (y � c)] ∨ (xi � b),

and this completes the proof of the theorem.
We remark that the preceding theorem can be extended to give a similar charac-

terization of the supermodular constraints on lattices in the larger class of so-called
relatively complemented lattices [21].

5.2. Supermodular constraints on diamonds are tractable.
Theorem 5.5. If F ⊆ SpmodL, then Max CSP(F) can be solved (to optimality)

in O(n3 · |L|3 + q3) time where n is the number of variables and q is the number of
constraints in an instance.

Proof. We will show how the problem can be reduced to the well-known tractable
problem Min Cut.

Let I = {ρ1 ·f1(x1), . . . , ρq ·fq(xq)}, q ≥ 1, be an instance of weighted Max CSP

(F), over a set of variables V = {x1, , . . . , , xn}.
Construction.
Let ∞ denote an integer greater than

∑
ρi. For each constraint fi, fix a repre-

sentation as described in Theorem 5.2. In the following construction, we will refer to
the type of fi which will be a number from 1 to 6 according to the type of represen-
tation. Every condition of the form (y � c) will be read as

∧
(xis � cis), and every

condition of the form ¬(y � c) as
∨
¬(xis � cis), where is runs through the indices

of variables in y. Moreover, we replace every (sub)formula of the form ¬(x � 1L) by∨n
i=1 ¬(x � ai), where a1, . . . , an are the atoms of L.

Next, we construct a digraph GI .
• The vertices of GI are as follows:

– {T, F} ∪ {xd | x ∈ V, d ∈ L} ∪ {x̄d | x ∈ V, d ∈ L is an atom} ∪ {ei, ēi |
i = 1, 2, . . . , q}.3

For each fi of type (5), we identify the vertex ei with F . Similarly, for each
fi of type (6), we identify the vertex ēi with T .

• The arcs of GI are defined as follows:
– For each atom c in L and for each x ∈ V , there is an arc from x0L to xc

with weight ∞, and an arc from x̄c to x1L with weight ∞.
– For each pair of distinct atoms c, d in L and for each x ∈ V , there is an

arc from xc to x̄d with weight ∞.
– For each fi, there is an arc from ēi to ei with weight ρi.
– For each fi of types (1–4), and each subformula of the form (x � a) or

¬(x � a) in the consequent of fi, there is an arc from ei to xa or x̄a,
respectively, with weight ∞.

– For each fi of types (1–4), and each subformula of the form (x � a)
or ¬(x � a) in the antecedent of fi, there is an arc from xa or x̄a,
respectively, to ēi, with weight ∞.

– For each fi of type (5), and each subformula of the form ¬(x � a) in it,
there is an arc from x̄a to ēi with weight ∞.

3The vertices xd will correspond to the expressions x � d and x̄d to ¬(x � d).
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– For each fi of type (6), and each subformula of the form (x � a) in it,
there is an arc from ei to xa with weight ∞.

Arcs with weight less than ∞ will be called constraint arcs.
It is easy to see that GI is a digraph with source T (corresponding to true)

and sink F (corresponding to false). Note that paths of nonconstraint arcs between
vertices corresponding to any given variable x ∈ V precisely correspond to logical
implications that hold between the corresponding assertions. Throughout the proof,
we say “a cut in GI” meaning a (T, F )-cut.

Define the deficiency of an assignment ϕ as the difference between
∑q

i=1 ρi and
the evaluation of ϕ on I. In other words, the deficiency of ϕ is the total weight
of constraints not satisfied by ϕ. We will prove that minimal cuts in GI exactly
correspond to optimal assignments to I. More precisely, we will show that, for each
minimal cut in GI with weight ρ, there is an assignment for I with deficiency at most
ρ, and, for each assignment to I with deficiency ρ′, there is a cut in GI with weight ρ′.

The semantics of the construction of GI will be as follows: the vertices of the
form xa or x̄a correspond to assertions of the form x � a or ¬(x � a), respectively,
and arcs denote implications about these assertions. Given a minimal cut in GI , we
will call a vertex xa reaching if F can be reached from it without crossing the cut.
Furthermore, if a vertex xa is reaching, then this will designate that the corresponding
assertion is false, and otherwise the corresponding assertion is true. A constraint is
not satisfied if and only if the corresponding constraint arc crosses the cut.

Let C be a minimal cut in GI . Obviously, C contains only constraint arcs. First
we show that, for every variable x ∈ V , there is a unique minimal element a ∈ L such
that xa is nonreaching. All we need to show is the following: if c, d are distinct atoms
such that both xc and xd are both nonreaching, then so is x0L . Assume that, on the
contrary, x0L is reaching. Then there is a path from x0L to F not crossing the cut. It
is easy to notice that such a path has to go through a vertex x̄a for some atom a ∈ L,
since the second vertex on this path must be of the form xb for some atom b, and it
is followed either by a vertex x̄a or else by three vertices ēi, ei, xb′ for some 1 ≤ i ≤ q
and some atom b′. However, we have an arc from at least one of the vertices xc, xd to
x̄a, and hence at least one of these vertices would have a path to F not crossing the
cut, a contradiction.

Note that, for every x ∈ V , there are no arcs coming out of x1L . Hence, for every
x ∈ V , there is a unique minimal element v ∈ L such that F cannot be reached from
xv without crossing the cut.

Define an assignment ϕC as follows:

ϕC(x) is the unique minimal element a such that xa is nonreaching.

We now make some observations. Note that, for all x ∈ V and a ∈ L, we have
that ϕC(x) � a if and only xa is nonreaching. Moreover, if x̄a is reaching, then, for
each atom b �= a, we have an arc from xb to x̄a meaning that ϕC(x) �� b, and hence
ϕC(x) � a. Furthermore, if x̄a is nonreaching, then ϕC(x) �= a. Indeed, if ϕC(x) = a,
then xb is reaching for all atoms b �= a, and, since every path from xb to F has to go
through a vertex x̄c for some c, we have that x̄c is reaching. Then c �= a, and there is
an arc from xa to x̄c, so xa is reaching, a contradiction. To summarize, we have the
following:

• If a node of the form xa or x̄a is reaching, then the corresponding assertion
is falsified by the assignment ϕC .

• If a node of the form xa is nonreaching, then ϕC(x) � a.
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• If a node of the form x̄a is nonreaching, then the truth value of the corre-
sponding assertion is undecided.

Suppose that a constraint arc corresponding to a constraint fi is not in the cut.
We claim that fi is satisfied by the assignment ϕC . To show this, we will go through
the possible types of fi.

If fi is of type (1), (2), (5), or (6), then the claim is straightforward. For example,
let fi be of type (1). If the node x0L corresponding to the consequent is reaching,
then so are all nodes corresponding to the antecedent. Hence, all atomic formulas
are falsified by the assignment ϕC , and the implication is true. If x0L is nonreaching,
then ϕC(x) = 0L, and the constraint is clearly satisfied. The argument for types (2),
(5), and (6) is very similar.

Let fi be of type (3). Then, if the node corresponding to the consequent is non-
reaching, then the consequent is satisfied by ϕC , and so the constraint is satisfied.
If this node is reaching, then every node corresponding to the disjuncts in the an-
tecedent is reaching. Then both antecedent and consequent are falsified by ϕC , and
the constraint is satisfied.

Let fi be of type (4), that is, of the form

¬(xi � b) =⇒ [¬(xi � a1) ∧ · · · ∧ ¬(xi � al) ∧ (y � c)].

If a node corresponding to some conjunct in the consequent is reaching, then the node
corresponding to the antecedent is also reaching. So ϕC(xi) � b, and the constraint is
satisfied. More generally, if the node corresponding to the antecedent is reaching, then
the constraint is satisfied regardless of what happens with the consequent. Assume
that all nodes corresponding to conjuncts in the consequent and in the antecedent
are nonreaching. Then the conjunct (y � c) is satisfied by ϕC . Furthermore, we
know (see the observations above) that ϕC(xi) �= b, and also that ϕC(xi) �= as for
1 ≤ s ≤ l. If ϕC(xi) = 1L, then both the antecedent and the consequent of fi are
false, and hence fi is satisfied. Otherwise, ϕC(xi) �� b and ϕC(xi) �� as for 1 ≤ s ≤ l,
so fi is satisfied anyway.

Conversely, let ϕ be an assignment to I, and let K be the set of constraints in
I that are not satisfied by ϕ. Consider any path from T to F . It is clear that if all
constraints corresponding to constraint arcs on this path are satisfied, then we have
a chain of valid implications starting from true and finishing at false. Since this is
impossible, at least one constraint corresponding to such an arc is not satisfied by
ϕ. Hence, the constraint arcs corresponding to constraints in K form a cut in GI .
Furthermore, by the choice of K, the weight of this cut is equal to the deficiency of ϕ.

It follows that the standard algorithm [12] for the Min Cut problem can be used
to find an optimal assignment for any instance of Max CSP(F). This algorithm runs
in O(k3), where k is the number of vertices in the graph. Since the number of vertices
in GI is at most 2(1 + n · |D| + q), the result follows.

We remark that a partial converse to Theorem 5.5 was proved in [20] where it is
shown that if F contains all 2-monotone predicates on a diamond and any predicate
which is not supermodular on that diamond, then Max CSP(F) is NP-hard.

6. Conclusion. We have described a large class of lattices on which the SFM
problem is oracle-tractable, and an even larger class of lattices L such that Max CSP

(F) is tractable whenever all predicates in F are supermodular on L. We believe that
more progress in the study of maximum constraint satisfaction can be achieved by
further blending supermodular optimization and algebraic lattice theory.
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The three most standard constructions on algebras (and on lattices in particular)
are the forming of homomorphic images, subalgebras, and direct products. We showed
(Corollary 4.4 and Theorem 4.6) that two of them preserve oracle-tractability of the
problems SFM(L). However, it is an open problem whether, for any finite lattice
L1, oracle-tractability of SFM(L1) implies oracle-tractability of SFM(L2) for any
sublattice L2 of L1.

This paper explores two ways of obtaining tractability results for Max CSP

problems—one is via oracle-tractability of the SFM problem, and the other via explicit
description of supermodular predicates. One other way that remains to be explored
has to do with implicit methods (see [2, 4]) of showing that some predicates can be
simulated (or “strictly implemented” [8, 19]) by other predicates. One interesting
question in this connection is whether any supermodular predicate on a lattice can
be simulated, i.e., strictly implemented, by 2-monotone predicates on that lattice.
A positive answer to this question would, together with Theorem 3.6, imply that
Max CSP(F) is tractable for arbitrary sets F of supermodular predicates on a lattice.

Finally, we hope that the study of sub- and supermodular functions on lattices
will find more applications in combinatorial optimization.
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