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Conventional frustrated internal reflection in which light is able to tunnel across a small air gap

between two prisms is a well known phenomenon. In this work, an experimental proof-of-concept

demonstration of a polarization and highly wavelength selective version of a similar effect via

photonic interface states is given. The photonic interface states are designed to exist within the

photonic band gap of Bragg reflectors on the surfaces of the two prisms. VC 2011 American Institute
of Physics. [doi:10.1063/1.3660266]

Frustrated internal reflection (FIR), also known as opti-

cal tunnelling1,2 in which light is able to pass through a small

air gap between two prisms above the critical angle, has

been of interest since the time of Newton and continues to be

a topic of interest for potential practical applications.3

Recently, a theoretical suggestion concerning a distinctly

wavelength and polarization dependent extension of this

effect has been presented.4 In this case, each of the two

prisms has a nominally identical multilayer Bragg reflector

(BR) coated onto its hypotenuse. The associated transmis-

sion, which can be significant across an air gap much larger

than that in conventional FIR, is via coupling between a pair

of evanescent photonic interface states, one at the surface of

each prism, in the form of symmetric and anti-symmetric

combinations. These are predicted to lead to transmission

peaks at two wavelengths determined by the strength of the

interaction between the coupled states, which in turn depends

upon the size of the air gap and the details of the multilayer

structure. The photonic states are confined near the prism

surfaces because, (1) they are evanescent in the air in the gap

between the two prisms due to total internal reflection above

the critical angle and (2) they decay into the coated prisms

due to the photonic band gap (PBG) of the BR. The design

of the BR, and in particular the thickness of its final over-

layer, can be arranged to position the energy of the interface

states as desired5 preferably near the center of the PBG. The

general design approach has been used previously in the the-

oretical and experimental study of Tamm plasmon

polaritons.6–8 The properties of the system, although only a

single cavity is involved, are similar to those of a more con-

ventional dual cavity semiconductor structure.9 We employ a

BR designed to allow the transmission of light of wavelength

near 1550 nm and TM polarization (magnetic field parallel to

the prism surfaces) to give an experimental demonstration of

the concept. In principle, such structures could be utilized

for a variety of practical uses including filters, sensors, and

terahertz frequency generation.4

The experiments were carried out using a pair of fairly

standard right-angle prisms.10 They were sputter-coated on

the hypotenuse by a commercial company.11 with a 17

bilayer ZrO2/SiO2 structure followed by a final, thicker,

ZrO2 layer. Although materials with a larger refractive index

contrast ratio should produce narrower transmission features

or require fewer layers to achieve a given transmission line-

width, the ZrO2/SiO2 system is a robust and readily available

cost-effective alternative and is adequate to demonstrate the

proposed effect. We employ a tuneable (1520-1570 nm)

diode laser and the basic configuration shown in Fig. 1. The

refractive indices of the sputtered ZrO2 and SiO2 are effec-

tively real and constant with values of 2.05 and 1.44, respec-

tively, (company11 data) in the wavelength regime

employed. The prisms have a refractive index of 1.5 and

hence the critical angle for the system is 41.8�. The nominal

design thicknesses for the ZrO2/SiO2 BR bilayers were 247/

351 nm, respectively. Measurements made on a glass slide

coated at the same time as the prisms indicate that, at normal

incidence, the PBG side-peaks occur at 1800 and 2340 nm,

in good agreement with calculated values of 1800 and

2320 nm. To vary the size of the air gap between the prisms,

we used a simple wedge arrangement, as indicated in Fig. 1,

in which a thin MylarTM sheet was inserted between the

prisms. A similar approach has been employed by Castro

and others when performing the more conventional FIR

experiments with uncoated prisms.12,13 The wedge introdu-

ces a small misalignment of the two prisms of �0.02� but

this is smaller than the quoted 0.05� fabrication tolerance of

the prisms and other experimental errors and can be

neglected. The laser beam diameter is about 1.5 mm but the

measurements are taken using a line-scan facility on the

camera for an �10% slice of this width and the consequent

air gap spread of <100 nm can be neglected as it only con-

tributes a small additional broadening of the transmission

features for the accessible range of air gap.

To place the following experimental results in context,

Fig. 2 shows the calculated transmission through a symmet-

ric 69 layer SiO2/ZrO2 PBG structure (omitting the central

air gap and replacing the dual, thicker ZrO2 layers with a sin-

gle 247 nm wide ZrO2 layer) at angle hi¼ 45.6664�

(he¼ 46�). All calculations employ a standard transfer matrix

approach.14 A PBG region centred near 1550 nm is clearly

visible. Also shown are results for coated prisms with a

2.3 lm air gap and final 372 nm wide ZrO2 layer. In this lat-

ter case, transmission is suppressed over a broad range, with

the only strong transmission being via the interface states.a)Electronic mail: stuart.brand@durham.ac.uk.
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For this system, an air gap of about 2.3 lm represents an im-

portant reference point. With a smaller gap, the interaction

between the interface states is strong enough to produce two

increasingly separated 100% transmission features corre-

sponding to symmetric and anti-symmetric interface state

combinations. For larger air gaps, the interaction weakens

and the single, merged, central transmission feature progres-

sively drops below 100%.

The design of the multilayer coating on the prisms was

chosen in order that the transmission features should ideally

fall within the narrow tuning range of the laser employed

with light at normal incidence to the entry surface of the first

prism, with he¼ hi¼ 45�. However, the position of the fea-

tures is particularly sensitive to the thickness of the final

ZrO2 layer. Calculations indicate that they shift by �0.5 nm

for a 1 nm change in final layer thickness. This can be com-

pensated for by adjusting the angle of incidence, as can be

seen in Fig. 3 where we show the experimental TM polarized

transmission through the system as a function of wavelength

at two slightly different angles and compare these with those

of numerical simulations (corrected for refraction at the ini-

tial prism interface). The two sets of results can be brought

into good agreement by employing different final ZrO2 layer

widths of 362.5 and 381.5 nm on the two prisms and an air

gap of 2.4 lm, which is consistent with the experimental esti-

mate of the gap size. Increasing the air gap reduces the trans-

mission but does not noticeably reduce the separation of the

two features. Ideally, the final ZrO2 layer widths should be

the same as the prisms were coated at the same time within

the sputtering chamber, but given the inherent surface varia-

tions in the prisms and details of the coating process some

difference is to be expected. With an air gap of 2.4 lm, the

interaction between the photonic surface states is relatively

weak and should result in a single transmission peak at an

energy and corresponding wavelength determined by the

degenerate photonic interface states. Thus, the experimental

�11 nm minimum separation of the peaks is a direct indica-

tion of a final layer thickness difference and a corresponding

photonic state energy difference. As predicted by theory,

transmission for the orthogonal TE polarized light was

observed to be negligible, even at the highest powers avail-

able from the laser.

To demonstrate the effect of adjusting the interaction

between the interface states, in Fig. 4, we show the

FIG. 2. (Color online) Theoretical plot at hi ¼ 45.6664� (he ¼ 46�) for a

PBG structure as described in the text in the absence of an air gap and for

coated prisms with an air gap of 2.3 lm (AG). The calculated transmission

for uncoated prisms is always less than 0.01 over this range. For the pur-

poses of all calculations, the outer prism surfaces are effectively extended to

infinity so there are no losses associated with the exterior air/prism

interfaces.

FIG. 3. (Color online) Experimental transmission spectra shown on a com-

mon, but arbitrary, scale at external angles he ¼ 46� 6 0.3� (open squares)

and he ¼ 46.5� 6 0.3� (open diamonds). Overall, these results have been

scaled to match the absolute transmission of the theoretical plots shown by

the solid lines which employ angles corresponding to he ¼ 46� and he

¼ 46.68�, a gap of 2.4 lm and final ZrO2 layer thicknesses of 362.5 and

381.5 nm.

FIG. 4. (Color online) Experimental transmission spectra on a common, but

arbitrary, scale at he ¼ 46�6 0.3� as a function of air gap. Error bars are

omitted for clarity and the lines are guides for the eye. The solid lines corre-

spond to results for the smallest and largest air gaps with feature separation

of about 28 nm and 11 nm, respectively. Inset: Theoretical calculation of

transmission spectra for air gaps of 1230 nm, 1400 nm, 1750 nm, and

2200 nm using an angle corresponding to he ¼ 46.23� and final layer widths

of 362.5 nm and 381.5 nm.

FIG. 1. (Color online) Schematic diagram showing the two coupled prism

arrangement and positioning of the MylarTM sheet creating the wedge-

shaped air gap. The clamps used to hold the prisms are not shown. The input

laser beam is polarized in the plane of incidence (TM). The external and in-

ternal angles with respect to the normal to the prism hypotenuse, he and hi,

respectively are shown; the latter, allowing for refraction at the front prism

surface, is used for the theoretical calculations. The output image of the

beam is collected by a line-scan infra-red camera and the analogue voltage

signal from the full line-scan sent to a digital multimeter.
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experimental transmission at he¼ 46 6 0.3� as a function of

air gap. In practice, the size of the minimum air gap which

can be obtained and precise experimental knowledge of its

value is problematic. It is affected by the quality of the con-

tact between the two prisms, how close the laser beam can

be positioned to this region, mechanical strain within the

prisms, a slight bevel on the edges of the prisms and the

beam diameter. The prisms were clamped quite firmly to-

gether to achieve a separation leading to good observed

transmission and some deformation of the MylarTM sheet

and/or prisms may have occurred. For the minimum air gap

achievable, the maximum separation of the transmission fea-

tures is �28 nm. Simulations employing final ZrO2 layer

widths as above and an internal angle corresponding to

he¼ 46.23� together with a range of air gaps from 1230

! 2200 nm lead to results which are in generally good

agreement in terms of both the form of the transmission

and feature separation. The angle chosen for the simula-

tions was fixed by the position of the minimum between

the two peaks (�1555 nm).

In conclusion, we have experimentally demonstrated a

form of wavelength-selective frustrated internal reflection via

photonic interface/surface states, a different aspect of an age-

old, and well understood phenomenon. The good agreement

with theory confirms that the experimental observations are

due to the proposed mechanism. The results were obtained

using relatively inexpensive, commercially sourced coated

prisms, and a fairly simple experimental procedure. Such

structures have the potential to demonstrate considerably

sharper transmission features and benefit from additional asso-

ciated field enhancement near the interfaces: a 10% increase

in refractive index contrast ratio is predicted to decrease

line-width by about an order of magnitude and allow the effects

to be observed with a significantly larger air gap, much larger

than that for which conventional FIR may be observed.4
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