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1 Abstract 
Issues relating to the practical implementation of the coupled boundary element-

scaled boundary finite element method are addressed in this paper. A detailed 

approach highlights fully the process of applying boundary conditions, including the 

treatment of examples in which the assumptions made in previous work are no longer 

valid. Verification of the method is undertaken by means of estimating stress intensity 

factors and comparing them against analytical solutions. The coupled algorithm 

shows good convergence properties. Issues relating to traction scaling, the use of 

discontinuous boundary elements, and the greater versatility of the coupled method 

over its constituent methods are highlighted. 

 

Keywords: boundary element method; scaled boundary finite element method; 

fracture; linear elasticity; coupled methods 

2 Introduction 
The estimation of stress intensity factors (SIFs) is of fundamental importance in 

damage tolerance assessment and the prediction of crack propagation in engineering 

materials. Methods existing to calculate analytically the SIFs are limited to simple 

geometries. As a result, numerous numerical methods have been developed, each with 

distinct and overlapping advantages and disadvantages, including the finite element 

method (FEM), the boundary element method (BEM), the scaled boundary finite 

element method (SBFEM) [1], the dual boundary element method (DBEM) [2] and 

the eXtended finite element method (XFEM) [3]. 

 

For example, the FEM is known for its ease of implementation; the BEM, DBEM and 

SBFEM share common advantages of reducing the spatial discretisation dimension by 

one; and XFEM overcomes many of the remeshing requirements of a more traditional 

FEM-based crack propagation algorithm. However, their drawbacks include the needs 

of both the FEM and BEM for a heavily refined mesh in the region of a crack tip, the 

computation of hypersingular integrals in the DBEM, and the accurate maintenance of 

a numerical definition of a propagating crack path in XFEM. In efforts to combine 

their respective advantages, many coupled methods have been published. 

 

The coupled BE-SBFEM combines the geometric flexibility of the BEM to model 

sections of a domain that may not be simple in nature, with the accuracy of the 

SBFEM to model the region around a crack tip. 
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The historical development of the BEM is well-known and is not covered here. The 

SBFEM is less well-known and its inclusion in coupled methods is summarised here. 

The SBFEM was predated by the infinitesimal finite-element cell method of Wolf and 

Song [4] and later the consistent infinitesimal finite-element cell method [5, 6], 

although all are evolutions of the same method. However, the mathematics behind the 

original ‘mechanically-based’ derivation of the SBFEM in the publications of Song 

and Wolf, may have contributed to its slow uptake by other engineering researchers. 

 

In an effort to raise its awareness and demonstrate its versatility as a tool for 

computing the dynamic stiffness of an unbounded domain, Song and Wolf re-derived 

the SBFEM by means of a weighted residual approach, as a displacement formulation 

in the frequency domain for general problems in elastodynamics in three dimensions 

[7]. The inclusion of body loads was then addressed and derivations summarised for 

the SBFEM in two and three dimensions for bounded and unbounded domains [8]. 

Two ‘primer papers’ were published to illustrate the SBFEM derived in these two 

manners along with a worked example [9, 10]. 

 

A third (virtual work-based) derivation was presented in Deeks and Wolf [1] 

alongside a comparable virtual work-based FEM derivation, highlighting their 

similarities and increasing the accessibility to researchers with a background in solid 

mechanics. Side face loads and axisymmetric modelling were also addressed and the 

use of domain substructuring and multiple scaling centres was introduced. Deeks and 

Wolf then developed a stress recovery technique and a Zienkiewicz-Zhu-based error 

estimator that provided a direct comparison with the FEM for the first time [11]. The 

SBFEM was compared favourably with the FEM in applications involving 

singularities, discontinuities or unbounded domains. This stress recovery technique 

and error estimator was used in conjunction with an h-hierarchical procedure to 

develop a simple h-adaptive mesh refinement strategy [12]. Vu and Deeks later 

developed a p-adaptive refinement procedure and showed that higher order shape 

functions in this adaptive technique offered improved convergence over h-adaptive 

methods [13, 14]. Deeks developed a method of prescribing Dirichlet boundary 

conditions (displacement constraints) along side faces [15] and also demonstrated that 

the use of linear elements can give higher-order results on the undiscretised side faces. 

 

Unlike conventional numerical approaches that, with few exceptions, use a piecewise 

polynomial basis in which to seek a solution, the SBFEM uses an analytical 

assumption in the radial direction from its origin. By defining the origin, or scaling 

centre, at a crack tip, the SBFEM has been found effective in the accurate estimation 

of SIFs. Chidgzey and Deeks [16] showed how the SBFEM can form a truncated 

series expansion around a scaling centre placed at a crack tip that closely resembles 

the Williams expansion [17] for determining stress intensity factors in linear elastic 

fracture mechanics. This allowed for a direct extraction of Williams expansion 

coefficients from the SBFEM solution. Yang developed an algorithm for automatic 

modelling of crack propagation through a SBFEM domain [18], and a procedure for 

fully automated modelling of mixed-mode crack propagation [19]. By introducing a 

method of substructuring around the crack tip, remeshing complications often 

associated with crack propagation in other numerical methods were reduced. This 

procedure was also applied in coupling SBFEM subdomains in the proximity of the 

crack tip with the FEM in the far field region [20]. Deeks and Augarde also 

demonstrated the coupling of the SBFEM to a meshless method [21]. 
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An approach similar to Yang [19] is presented here, but with additional motivation. 

The SBFEM is used to model the singular behaviour of the stress fields around the 

crack tip by means of a relatively small SBFEM subdomain in the proximity of the 

crack tip. The far field may contain geometric features for which the SBFEM may not 

be suited to model, so it is modelled by a relatively large subdomain using the more 

geometrically flexible BEM. This approach was first demonstrated by Chidgzey et al. 

[22], although results were limited to empirical comparisons. Assumptions were made 

that limit the application of their scheme to certain sets of boundary conditions. This 

restriction has been removed in the current paper, and results are compared against 

analytical solutions. An example of modelling a non-trivial domain is also included in 

this paper to demonstrate the method’s suitability for industrial engineering problems. 

 

Though not presented here, this method forms the basis of work to include the use of 

DBEM for an efficient BEM mesh and reanalysis [23, 24], where the reuse of data 

common to multiple analyses lends itself to an efficient BEM-based method of crack 

propagation prediction. In this approach, the computational efficiency may be 

enhanced by the reuse of the entire SBFEM matrix if this region is simply translated 

spatially from one crack growth increment to the next. 

3 Numerical formulation of the method 

3.1 SBFEM overview 

For details of the formulation of the SBFEM the reader is directed to [1]. The key 

points are summarised here. The scaled boundary coordinate system is given by a 

geometrically-specific coordinate s  acting in the circumferential direction running 

parallel to the boundary, scaled about a geometric scaling centre ˆ ˆ( , )x y , by a radial 

coordinate   defined by 0   at ˆ ˆ( , )x y , that passes through the boundary at 1  , as 

shown in Figure 1(a). The model is discretised in s , but remains analytical in   such 

that displacement of node k  in direction ,i x y  is defined by the semi-analytical 

function ( , )iku s . As the  - and s-directions are orthogonal, should the scaling centre 

be placed on the boundary, there will be two sections of boundary over which s  

remains constant in the  -direction. In such cases, s  will become an open axis. The 

remaining sections of scaled boundary are modelled by side faces L
A  and R

A , and 

do not form part of the discretised boundary, as shown in Figure 1(b). Side faces are a 

useful property of the SBFEM [16] as they allow the undiscretised analysis of 

sections of boundary, unlike comparable methods such as the FEM.  
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Figure 1. A bounded domain (shaded) modelled using the SBFEM (a) with an internal scaling 

centre and (b) with the introduction of side faces due to the scaling centre on the boundary 

In 2D, the displacement of any point within the domain   is considered a linear 

combination of 2n  displacement mode shapes, where n  is the number of nodes in the 

model that contribute to its 2n  degrees of freedom. For each SBFEM model, there is 

a total of 4n  mode shapes, since the SBFEM can be used to model both bounded and 

unbounded (infinite) domains, each requiring a different set of 2n  mode shapes. 

 

The 4n  mode shapes are described by a modal displacement matrix Φ  and a modal 

force matrix Q , from which subsets dΦ  and dQ , each containing information 

relating to the 2n  mode shapes, are selected according to whether the domain is 

bounded or unbounded. dΦ  and dQ  comprise 2n  column vectors of jφ  and jq  

respectively, such that mode 1...2j n  is defined by jq , the vector of 2n  nodal force 

coefficients required at the boundary to cause displacements given by the 

corresponding 2n  nodal displacement coefficients in vector jφ . Mode j  contributes 

to the overall displacement by a modal participation factor 
jc . The displacement 

solution ( )iku   takes the form 

 
2

1

( ) j

n

ik j j

j

u c


 




 φ  (1) 

where j  is the corresponding component of vector λ , found by the solution of the 

following 4 4n n  eigenvalue problem 

 

1 T 1

0 1 0

1 T 1

1 0 1 2 1 0

j

j

j


 

 

    
    

     

φ φE E E

q qE E E E E E
 (2) 

Matrices 0E , 1E  and 2E  are found using Green’s theorem to evaluate a virtual work 

expression transformed into the scaled boundary coordinate system, and are given by 

 
T

0 1 1( ) ( ) ( ) d
S

s s s s E B DB J  (3) 

 
T

1 2 1( ) ( ) ( ) d
S

s s s s E B DB J  (4) 



 5 

 T

2 2 2( ) ( ) ( ) d
S

s s s s E B DB J  (5) 

Readers will recognise the form of equations (3), (4) and (5) as echoing the 

expression for evaluating finite element stiffness matrices. In a similar way to this 

FEM theory, matrices 1B  and 2B  are related to the polynomial shape functions, D  is 

the constitutive matrix and J  is the Jacobian. The vector of 2n  modal participation 

factors c  is given by 

 1

d

c Φ u  (6) 

where u  is the vector of 2n  nodal displacements on the boundary. The equivalent 

forces required to cause these boundary displacements are 

 1

d d d

 P Q c Q Φ u  (7) 

thus it follows the stiffness matrix is given by 

 1

d d

K Q Φ  (8) 

so that 

 Ku P  (9) 

Unlike in the conventional FEM, the system of equations governing the SBFEM, and 

its construction, comprises boundary nodal displacements and forces only, without the 

need for volumetric discretisation, or discretisation of some sections of boundary (side 

faces). However, it should be noted that the solution of equation (2) is 

computationally inefficient as in finding the bounded domain mode shapes, for 

example, the unbounded domain mode shapes are found as a by-product, when 

perhaps just one case is of interest. 

 

The SBFEM suffers also from a ‘line of sight’ meshing requirement [1] that limits its 

applicability. Though this can be overcome by substructuring the domain into 

multiple SBFEM subdomains [15], this can still prove awkward when meshing 

domains that would be modelled by the BEM or FEM with relative ease. This is one 

of the principal motivating factors for the current work. 

3.2 Coupled BE-SBFEM 

The following overview of the coupled BE-SBFEM briefly describes its formulation 

and assumes some prior knowledge of its constituent methods. Throughout the 

derivation, subscripts B  and S  are used to denote the BEM and SBFEM subdomains 

respectively, separated by a common interface denoted by subscript I . For simplicity, 

the derivation focuses on the coupling of two subdomains in two dimensions such as 

in Figure 2, where a domain   is divided into a BEM subdomain B
  and a SBFEM 

subdomain S
  bounded by B

  and S
  respectively, and separated by a common 

interface I
 . The additional subscript J  denotes junction degrees of freedom, i.e. 

those associated with the nodes found at the junction of the boundaries B
  , S

  and 

I
 . The two junction nodes are denoted J1 and J2, as illustrated in Figure 2. In the 

illustrated example, B
  includes use of discontinuous boundary elements in order to 

highlight later the additional considerations required when using these elements over 

those necessary when using just continuous boundary elements. 
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Figure 2. An example domain subdivided into BEM and SBFEM subdomains. 

The conventional influence matrices [25] describing B , can be partitioned into their 

J , I  and B components 

 

JJ JI JB J JJ JI JB J

IJ II IB I IJ II IB I

BJ BI BB B BJ BI BB B

H H H u G G G t

H H H u G G G t

H H H u G G G t

       
      

      
             

 (10) 

Similarly equation (9) describing S  can be partitioned into its J , I  and S

components 

 

JJ JI JS J J

IJ II IS I I

SJ SI SS S S

     
    

    
         

K K K u P

K K K u P

K K K u P

 (11) 

Decomposing the nodal forces on S
  , I

  and at junction nodes J1 and J2 into their 

internal and external components 

 

J Jint Jext

I Iint Iext

S Sint Sext

 

 

 

P P P

P P P

P P P

 (12) 

The interface is defined exclusive of the junction nodes and therefore is entirely 

internal; thus there are no external forces so 

 Iext
P 0  (13) 

Similarly, the SBFEM boundary is also defined exclusive of the junction nodes and is 

entirely external (on the boundary); thus there are no internal forces so 

 Sint
P 0  (14) 

Interface tractions are related to the interface forces by the a traction-force 

transformation matrix M , described by Becker [25], and decomposed into 

 
JJ JI JintJ

IJ II IintI

M M Pt

M M Pt

    
    

    
 (15) 

Thus, combining equations (12) and (15) gives 
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JJ JI JS JJ JI JextJ

IJ II IS IJ II IextI

SJ SI SS Sint SextS

J

I

K K K M M 0 Pu

K K K M M 0 Pu

K K K 0 0 P Pu

t

t

      
      

                    
 
 
  

 (16) 

Combining equations (16) with (13) and (14) gives 

 

JJ JI JS JJ JI JextJ

IJ II IS IJ II I

SJ SI SS SextS

J

I

    
    

            
 
 
  

K K K M M Pu

K K K M M 0u

K K K 0 0 Pu

t

t

 (17) 

This differs from [22], where J1 and J2 were considered part of the interface, limiting 

boundary conditions to Jext
P 0 . As equation (17) now contains no terms representing 

internal forces, the ‘ext’ subscripts are dropped for brevity. Combining equations (10) 

and (17) provides the coupled system  

 

JJ JI JS JJ JI J J

IJ II IS IJ II I

SJ SI SS S S

JJ JI JJ JI JB JB J

IJ II IJ II IB IB I

BJ BI BJ BI BB BB B

B

K K K M M 0 0 u P

K K K M M 0 0 u 0

K K K 0 0 0 0 u P

H H 0 -G -G H -G t 0

H H 0 -G -G H -G t 0

H H 0 -G -G H -G u 0

t

     
     
     
     

     
    
    
    
     
 
 

 (18) 

Boundary conditions are applied, and then by separating known and unknown terms 

in equation (18) in the usual manner, can be rearranged to yield a square system of 

linear equations in the form 

 Ax b  (19) 

where x  is the vector of unknown displacements and tractions. 

3.3 Matrix scaling 

In almost all mechanical problems using typical engineering materials, it is likely that 

the traction coefficients t  will be several orders of magnitude larger than the 

displacement coefficients u  when using conventional SI units. By selecting an 

appropriate value for a scale factor  , and introducing it into the BEM system matrix 

  


t
Hu G  (20) 

the displacement and scaled traction influence matrices, H  and G ,  are of the same 

order, improving matrix conditioning. Thus, equation (18) is rewritten 
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J
JJ JI JS JJ JI J

I
IJ II IS IJ II

S
SJ SI SS S

J
JJ JI JJ JI JB JB

IJ II IJ II IB IB

I
BJ BI BJ BI BB BB

B

B

   
  

    
  
  

            
         

 
 
 
 
 

uK K K M M 0 0 P

uK K K M M 0 0 0

uK K K 0 0 0 0 P

tH H 0 - G - G H - G 0

H H 0 - G - G H - G
t

H H 0 - G - G H - G

u

t

 
 
 
 
 
 
 
 
 

0

0

 (21) 

and by the application of boundary conditions reduces once more to equation (19), but 

now x  is the vector of unknown displacements and scaled tractions. The effect of   

is to improve the condition number of the system matrix. An optimum value for   

may not be known a priori, but an appropriate value can be based on the Young’s 

modulus and the size and type of the domain under analysis. 

3.4 Additional BEM considerations 

The SBFEM requires S
  be meshed using continuous elements. Consequently, the 

interface I
  must be meshed using continuous elements in order to provide a fully 

continuous SBFEM subdomain boundary. However, the BEM boundary B
  can be 

meshed using either continuous or discontinuous elements, or some combination of 

the two types. Thus, consideration must be made when using discontinuous boundary 

elements within the coupled BE-SBFEM. 

 

Collocation using the BEM requires the use of singular integration routines to 

evaluate singular integrals when integrating over the section of boundary (element) on 

which the collocation point lies. At both J1 and J2 there are junctions between the 

discontinuous elements on the boundary and the continuous elements on the interface. 

It should be noted that when collocating at J1 and J2 and integrating over the adjacent 

element on B
 , if the element is of the discontinuous type, a singular integration 

scheme is required [26], even though the node does not contribute to the set of nodes 

defining the element geometry. 

4 Results 

4.1 Analytical verification 

4.1.1 Through crack in an infinite plate example 1 

A BE-SBFEM model of dimensions b h  is defined in the immediate vicinity of the 

tip of a crack of length 2a  central to an infinite plate subject to a uniaxial load of  , 

such that the section of crack face modelled is of length a , and the crack tip is 

coincident with the SBFEM scaling centre ˆ ˆ( , )x y , as shown in Figure 3. 
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Figure 3. (a) Through crack in an infinite plate, (b) the section of the crack that is modelled, (c) 

the BE-SBFEM model of the immediate vicinity of the crack tip and (d) the Williams expansion 

coordinate system [17], used in the approximation of displacements ux and uy  

As a a , the displacements that would occur locally as the result of the load on the 

infinite plate can be estimated by [27] as 

 
exact

2I
1

cos 1 sin
2 2 2 2

x

K r
u r

 
 

 

 
   

 
( , ) ( )  (22) 

 
exact

2I
1

sin 1 cos
2 2 2 2

y

K r
u r

 
 

 

 
   

 
( , ) ( )  (23) 

where 

 
exact

I
K a   (24) 
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A plane stress assumption is made, so 

 
3

1










 (25) 

 
2 1

E





( )
 (26) 

in which E  is the Young’s modulus,   is the shear modulus and   is the Poisson’s 

ratio of the material. Displacement boundary conditions given by equations (22) and 

(23) are prescribed on all sections of B
  and S

 , except where traction-free boundary 

conditions can be applied, i.e. in the x-direction to sections of B
  where 0  , and 

side faces L
A  and R

A , and junction node J1, and in the y-direction to the side face L
A

. Other than the assumed continuity between B
  and S

 , no boundary conditions are 

applied to I
  and its nodal displacements remain as unknowns to be solved. Without 

loss of generality, the model is meshed with en  quadratic elements per discretised line 

on boundaries B
  , S

  and I
 , totalling n degrees of freedom in the coupled system, 

which is solved for unknown nodal tractions and displacements. 

 

The accuracy of the i-direction displacement i
u s( , )  at some point within S

  is 

dependent on both the accuracy of the nodal displacement 1
i

u s( , ) , and the force and 

displacement modes computed prior to forming the stiffness matrix in equation (8). In 

this example, the majority of the nodal displacements 1
i

u s( , )  are prescribed as 

boundary conditions so it would be inappropriate to use them to determine the 

accuracy of the BE-SBFEM. Instead, values of i
u s( , )  are computed according to the 

boundary coordinates where 1
i

u s( , )  is not prescribed. Regions within S
  can be 

defined whose displacements can be computed without the bias of prescribed 

boundary conditions, denoted by Si
  where 

 S min max
0 1

i
s s s s i x y       : ( , ), , , ,  (27) 

as illustrated by the shaded regions in Figure 4. 

 

Nodal displacements can be extracted directly; non-nodal displacements can be 

estimated by interpolating nodal displacement values. To maintain high accuracy, 

sample points are taken along axes of constant s  that coincide with the boundary 

coordinates of the nodes such that this interpolation is not necessary. Interior sample 

points are defined by the intersection of these axes and the bn  contours (or scaled 

boundaries) sampled within the region, and are illustrated by the example in Figure 4, 

where 8bn  . 
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Figure 4. Shaded regions Sx
s ( , )  and 

Sy
s ( , )  within S

  where (a) x- and (b) y-direction 

displacements respectively at nodes and additional interior sample points (indicated by the black 

circles) can be used for verification of the accuracy of the BE-SBFEM 

The displacement recovered at each sample point within Si
  is used with equations 

(22) and (23) to compute I
K s i( , , ) , an estimation to exact

I
K . The percentage error of 

this estimation is defined by 

 
exact

I I

exact

I

100
K s i K

s i
K


 


 

( , , )
( , , ) %  (28) 

In this example the model properties are 207GPaE  , 0 3  . , 4mmh b  , and 

L R
0 001 1mmA A a a   . , and the applied load is 1MPa  . The range of model 

mesh densities is from 2en   to 10en  . Sample contour plots of s i ( , , )  estimated 

within the ranges defined in equation (27) are shown in Figure 5. 

 

The convergence of I
K  results with n  is presented in Figure 6. Results are shown 

using a family of curves, each considering I
K  as derived from BE-SBFEM results 

obtained using {0.1,0.3,0.5,0.7,0.9}  . It should be noted that I
K  can be established 

from the results at any point in Si
 , and the errors illustrated in Figure 6 are used as 

an indicator of suitable regions within which to choose such a point. 

 

By increasing en , not only does the accuracy at individual points increase, the range 

 s s
max min  is extended allowing a greater total number of sample points to be taken 

within Si
 . Increasing this range shows that the highest errors occur typically in the 

region close to 0s  . Moreover, it can be seen that the errors are significantly lower 

in y-direction degrees of freedom than those in the x-direction. Further, the results do 

not necessarily exhibit greater accuracy at 1  . These observations are significant as 

[22] use the x-direction displacement at ( , ) (1,0)s   to estimate IK , where errors are 

potentially among their highest. 
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Displacements in this type of problem are dominated by those in the y-direction, thus 

the percentage errors s y ( , , )  are expected a priori to be lower than s x ( , , ) . With 

this knowledge, a convergence estimate is defined by max
1 s y ( , , )  where errors are 

predicted to be amongst their lowest. An example of the convergence effect of 

increasing n is shown in Figure 6. 
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Figure 5. Variation of % errors in KI within sample domains for (a) ne=2, (b) ne=5 and (c) ne=10 
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Figure 6. Convergence of error in estimation of KI with increase in calculated using y-direction 

displacements at s=smax 

4.1.2 Through crack in an infinite plate example 2 

In the previous example,   is sufficiently trivial for the SBFEM to model alone. 

However, one attractive property of the coupled BE-SBFEM is its ability to model 

complicated geometries under fracture analysis. The choice of geometry around the 

crack tip used to model a  in this verification process is arbitrary. The square region 

of dimensions h b  may be replaced by a more complicated geometry because the 

analytical solutions used in both the application of boundary conditions and the 

comparison of nodal displacement solutions are independent of model geometry. 

Thus, in the following example, the crack tip region is modelled by S  coupled to a 

more complicated B  where the same method of comparison to an analytical solution 

is available. 

 

The model and example results are shown in Figure 7 from which it can be seen that 

the complexity of the problem has little effect on the convergence characteristics of 

the method. 

 



 14 

(b)

(a)

1000
a

2a

m
ax

s
y


(

,
,

)

 n
200 300 400 500 600 700 800 900 1000 1100 1200

10
-3

10
-2

10
-1

10
0

..\data\BE-SBFEM infinite through crack2 2\

convergence of K1 % error usingy-direction displacements at s=smax

n

%
 e

rr
o
r

 

 

=0.1

=0.3

=0.5

=0.7

=0.9

 

Figure 7. Irregular example with analytical solution highlighting the BE-SBFEM's geometric 

flexibility. (a) the BEM and SBFEM subdomains around the crack tip, and (b) the convergence of 

error in estimation of KI with increase in calculated using y-direction displacements at s=smax 

4.2 Strategy for estimation of stress intensity factor 

The foregoing examples demonstrate that the accuracy to which I
K  can be estimated 

by I
K s i( , , )  is dependent upon both the choice of location of the point S

s ( , ) , 

and also the displacement component at that point, used to determine the estimate 

using equations (22) and (23). However, the optimal values of these parameters are 

problem-dependent, so the purpose of the analytical verification is to establish a 

strategy for the estimation of stress intensity factors for general problems of this 

nature, for which analytical solutions may not be available. 
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Based on the analytical verification, this strategy is summarised as using: 

 displacements in direction of the predicted maximum displacement ; 

 displacements that are of greatest magnitude, i.e. those in the region around 

the crack opening; 

 displacements that are in the immediate vicinity of the crack tip, so that 

equations (22) and (23) are valid. 

4.3 Numerical verification 

4.3.1 Through crack in a finite plate 

A BE-SBFEM model of dimensions h b  is used to model a through crack of length 

2a  central to a finite plate of dimensions 2 2h b  with subject to a uniaxial load of 

, as shown in Figure 8. In this example, 210GPaE   1mma  , 0 2a
b
 .  and 

2h
b
 . The units of all values of IK  quoted in the present work are 0.5MPa mm . 
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Figure 8. (a) The finite plate with through crack and (b) the BE-SBFEM model 

Displacements are recovered that can be used to determine I
K s i( , , ) , without any a 

priori knowledge of an optimum sample point location for which s i ( , , )  may be 

reduced or minimised, other than the general strategy outlined in 4.2. An analytical 
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reference solution is unavailable for this problem, and stated reference values are 

presented with insufficient precision for this purpose. However, given the accuracy 

demonstrated in examples 4.1.1 and 4.1.2, errors are taken relative to the converged 

solution 
I

K i( , )  as, defined by 

 I I

I

100
K s i K i

s i
K i

 
 




 

( , , ) ( , )
( , , ) %

( , )
 (29) 

Figure 9 shows the converged solution for samples of -5{0.1,0.3,0.5,0.7,0.9} 10   , 

found using y-direction displacements. In this example, the five converged results 

range from 
I

3 3294K  .  to 
I

3 3334K  . , which compare well with the value of 

I
3 332K  .  estimated by Aliabadi [28], achieved using the DBEM in which a 

reference value of I
3 324K  .  is cited [29]. 
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Figure 9. (a) Convergence and (b) convergence rate of % error in estimation of KI for through 

crack in finite plate 

4.3.2 Edge crack in a finite plate 

A BE-SBFEM model of dimensions h b  is used to model an edge crack of length a  

that has developed symmetrically in a finite plate of dimensions 2h b , subjected to a 

uniaxial load of  , as shown in Figure 10. In order to constrain the model fully in the 

x-direction, a boundary condition of 0xu   is prescribed at one node, as indicated in 

the figure. 
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Figure 10. (a) The finite plate with edge crack and (b) the BE-SBFEM model 

Following the same strategy as before, errors are indicated by equation (29) as an 

analytical reference solution for this problem is unavailable, and are summarised in 

Figure 11. In this example, the five converged results range from 
I

2 644K  .  to 

I
2 645K  . , which compare favourably with the value of I

2 66K  .  estimated by 

Portela et al. [30], achieved using the DBEM in which a reference value of I
2 64K  .  

is cited [31]. It should also be noted that while convergence was reached by Portela et 

al with 144n  , their initial mesh was graded. In the present work, the model is 

meshed uniformly with convergence (to 2 s.f.) at 130n  . Further, because the mesh 

is refined uniformly, the majority of the additional degrees of freedom appear on B , 

and as shown in the example in 4.1.2, the distribution of degrees of freedom in B  

has little contribution to the increase in accuracy with n . Thus, with a graded mesh, 

the BE-SBFEM solution may converge faster still. 
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Figure 11. (a) Convergence and (b) convergence rate of % error in estimation of KI for edge 

crack in finite plate 

4.4 Matrix scaling 

The effect of varying the boundary element traction scale factor   described in 

equation (21) on the condition number of system matrix A  in example 4.1.1 for 

1en   is illustrated in Figure 12. Though this value may not be an accurate optimum 

for a minimum condition number, it can be seen that this is not necessary as sufficient 

reductions can be made simply by the use of a scale factor of a suitable order of 

magnitude.  
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Figure 12. Effect of varying traction scaling parameter on the condition number of the coupled 

BE-SBFEM system matrix A 
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All the results published in this paper have been generated using code developed in 

MATLAB, making use of the ‘backslash’ operator mldivide†, a function that selects a 

solver appropriate for the type of system to be solved. Consequently, ill-conditioned 

systems of the order 1310 , such as found by selecting 1   in both analytical 

verification examples, were solved to the same level of accuracy as those with 
610  . However, should the method be written without such solvers, care should be 

taken to avoid ill-conditioning by selecting an appropriate scaling factor, such that the 

terms in the influence matrices, H  and G , are of the same order of magnitude. 

Analysis of Figure 12, and similar curves produced for different problems of the type 

analysed in the present work, suggests 610   is suitable in all the examined cases. 

Thus, for all examples considered in the present work a scale factor of 610   was 

used. The choice of scale factor will be dependent on the material properties and 

problem dimensions. 

5 Conclusions 
This research has highlighted some issues arising from the coupling of the BEM and 

SBFEM. The coupled BE-SBFEM has been developed for applications to linear 

elastic fracture mechanics, with the view to establishing an efficient method for 

modelling a crack tip region within a general domain. Restrictions in boundary 

conditions imposed in the earlier development of Chidgzey et al. [22] have been 

overcome in the present work. The BE-SBFEM has compared favourably with 

examples whose solutions are analytical in nature. Further, the BE-SBFEM has 

demonstrated geometric flexibility by modelling irregular domains with few degrees 

of freedom, and without the cumbersome substructuring requirements a SBFEM-only 

approach would make. A strategy has been hypothesised for determining with 

confidence the stress intensity factor of problems more typical of practical 

engineering applications. Following this strategy, stress intensity factor estimations 

have shown to offer good convergence. The condition number of the system matrix 

has been shown to be sensitive to the range of the orders of magnitude of terms in the 

BEM traction and displacement influence matrices. Ill-conditioning that may occur in 

examples of a real engineering nature may be reduced the use of an appropriate 

traction scale factor.  
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